Monetary Approaches to Devaluation: Comment

Yeung-Nan Shieh

San Jose State University, yeung-nan.shieh@sjsu.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/econ_pub

Part of the Economics Commons

Recommended Citation

This Article is brought to you for free and open access by the Economics at SJSU ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.
Monetary Approaches to Devaluation: Comment

I. Introduction

In an interesting paper in this Journal, professor Chau-nan Chen [3] ingeniously combines the elasticity, absorption and monetary approaches in the simple, open economy IS-LM framework with full employment assumption. He considers the monetary effect of devaluation as a main feature of monetary approach under the assumption of complete sterilization policy. Recently, Collery [4], Kuska [9] and Takayama [10] show that the complete sterilization policy is inconsistent with the familiar IS-LM framework, and suggest that it is necessary to consider the balance of payments disequilibrium arising from the fixed exchange rate system in the money market. Hahn also points out the monetary flows implied by the disequilibrium of balance of payments is "a matter which had been much neglected in the possibly mistaken belief that monetary authorities would and could 'sterilize' these effects" [6, 232].

The purpose of this paper is to explicitly incorporate the fundamental equation of monetary approach to the balance of payments in Chen's framework and provide an alternative synthesis of the elasticity, absorption and monetary approaches to devaluation. Within this new framework, we will provide a satisfactory synthesis of all the three approaches without the monetary effect of devaluation. Furthermore, we will show that the Cooper paradox [5] can be resolved, only if the monetary effect of devaluation exists.

II. The Model

Following Chen [3], the small open economy under investigation is a price-flexible full-employment type. Its macroeconomic relationships can be described by the following three equations:

\[X(r) + B(q) = y^* \]
\[L(r) = \left\{ M^* / [wep^* + (1-w)p] \right\} + B(q) \]
\[B(q) = B \]

where

- \(X = \) domestic expenditure
- \(y^* = \) fixed full-employment output
- \(B = \) balance of trade in terms of domestic products
Furthermore, we can show that easy to observe that 0, a devaluation shifts both IS and BT rightward by the same distance to IS_1 and BT_1, and shifts LM downward and rightward to LM_1. But LM' shifts rightward horizontally by the less distance than IS_1, and BT, do. The new equilibrium Q_1 lies to the left of BT, and the right of BT. A devaluation will improve the trade balance and increase the price level. Thus, we combine the monetary approach which emphasizes the shift of LM with the familiar absorption and elasticity approaches together, even if we assume away the monetary effect of devaluation.

If the monetary effect of devaluation is in operation (i.e., $w \neq 0$) and substantial, a devaluation will shift LM_2, upward and pass through Q_2, the intersection of BT, and LM', because only at this point (with the change in p equaling the change in e) will the reduction in the real money supply be the same for LM_2 and for LM'. The new equilibrium is established at Q_3, the intersection of LM_3 and IS_3, which lies above and to the left of Q. The Cooper paradox result would arise where the devaluation improves the trade balance while depressing the domestic economy. Thus, we can claim that the Cooper paradox can be resolved in this model, only if the monetary effect of devaluation exists.

1. Johnson describes it by “a balance of payments deficit implies either disshopping by residents or credit creation by the monetary authorities [7, 157].” Mundell expresses it by “$B = H = C$, where H is hoarding (additional domestic money holdings by public) and C is credit creation by the banking sector as whole [8, 150].” For the detailed proof, see Collery [4], Kuska [9] and Takayama [10]. In fact, Chen [2, 3] is also aware of this problem.

2. Total differentiation (1)-(3), with $B > 0$, we can obtain the slopes of IS, LM, and BT as
\[
\frac{dM^*}{dp} = \frac{B_e}{(1 - w)M^* + B_e}, \quad \frac{dL}{dp} = \frac{1 - w)M^* + B_e}{L}, \quad \frac{dB}{dr} = \frac{-wM^* + B_e}{B_e},
\]
where $1 > w > 0$. Furthermore, it is easy to observe that LM_1 shifts rightward horizontally by de and BT_1 shifts horizontally by de too.

3. From (1)-(3), it is easy to obtain that IS_1 shifts horizontally by B_e and BT_1 shifts horizontally by de too. Furthermore, we can show that LM_1 shifts horizontally by $B_e / (M^* + B_e)$, where $B_e / (M^* + B_e) < 1$.

4. We will provide a comparative static analysis in Appendix.

III. Conclusions

We have attempted an alternative synthesis of the elasticity, absorption and monetary approaches to devaluation by explicitly incorporating the fundamental equation of monetary approach into the open economy IS-LM model. This modified IS-LM-BT model enables us to provide a satisfactory synthesis of all the three approaches to devaluation in a more proper way, even if the monetary effect of devaluation is absent. Furthermore, it also enables us to show that the monetary effect of devaluation is a necessary condition for the existence of Cooper paradox in our model.

Yeung-nan Shieh
Texas A&M University
College Station, Texas

Appendix

Total differentiation of (1)-(3) with $dM^* = 0$ gives

\[
\begin{bmatrix}
-B_e & X & 0 & \frac{dp}{dr} = \frac{-B_e}{wM^* + B_e} \\
(1 - w)M^* + B_e & L & 0 & \frac{dB}{dr} = \frac{-wM^* + B_e}{B_e}
\end{bmatrix}
\]

(A.1)
where \(X < 0, L < 0, 0 < w < 1 \) and \(B \) can be expanded into \(I(\eta + \eta' - 1) \), with \(\eta \) and \(\eta' \) standing for home and foreign import demand elasticities and \(I \) standing for initial value of export.

Solving (A.1), we get

\[
(dp/de) = (1/J)B_x(L_x + X) - wM^*X,
\]

\[
(dr/de) = (-1/J)M^*B_t
\]

\[
(dB/de) = (1/J)B_xX,M^*
\]

(2)

(3)

(4)

where

\[J = B_x(L_x + X) + (1 - w)M, \]

regardless of \(B_e \equiv 0 \), if the system is stable.

If \(w = 0 \), it then follows that

\[
(dp/de) > 0, (dr/de) > 0, (dB/de) > 0, \text{ if } B_e > 0
\]

(5)

\[
(dp/de) < 0, (dr/de) < 0, (dB/de) < 0, \text{ if } B_e < 0
\]

(6)

On the other hand, if \(w \neq 0 \), it follows that

\[
(dp/de) \neq 0, (dr/de) > 0, (dB/de) > 0, \text{ if } B_e > 0
\]

(7)

\[
(dp/de) < 0, (dr/de) < 0, (dB/de) < 0, \text{ if } B_e < 0
\]

(8)

Clearly, (A.5), (A.6) and (A.8) are the traditional result, and the Cooper paradox will arise if (A.7) occurs.

References

Monetary Approaches to Devaluation: Reply

I. Introduction

In the comment upon our earlier paper [2], Shieh incorporates the so-called fundamental equation of the monetary approach to the balance of payments in an open-economy IS-LM framework. He then asserts that this fundamental equation will assure the upward shift of the LM curve following devaluation, thus properly showing a main characteristic of the monetary approach to the balance of payments. We know that the monetary approach to devaluation has two main characteristics. Earlier literature emphasizes the tight money effect of devaluation [1; 4; 5, 114-115; 6, 92]. The tight money effect arises as a result of the decline in the real value of cash balances. In the IS-LM framework this means an upward shift of the LM curve [2]. Shieh also emphasizes the upward shift of the LM curve, but his result comes from his careless mistake. Any careful reader can detect from his equation (1) that the LM curve will shift downward rather than upward as a result of devaluation. Intuitively one should be aware of the fact that if the trade balance surplus caused by devaluation is not sterilized, the money supply will increase and hence the LM curve will shift downward. Shieh in effect is emphasizing the easy money effect rather than the tight money effect of devaluation.

Later development in the monetary approach focuses attention to the issue of absorption versus relative prices. Its main conclusion, as Frenkel and Johnson [3, 42] put it, is that "the effects of a devaluation on the terms of trade have little to do with their effects on the flow of reserves." In this note we shall demonstrate that the key to this strong conclusion of the monetary approach is due to its special assumption that domestic demand for imports is a function of expenditure rather than income.

II. Absorption versus Relative Prices

Except that the domestic demand for imports is assumed to depend on expenditure and that the "tight" money effect of devaluation is ignored, the model to be used is basically the same as that of Chen [2]. Following Chen, we write the following three equations to describe the macroeconomic relationships of a small open economy with full-employment and flexible prices:

\[
X(r) + B(q, X) = Y^*
\]

(1)

\[
L(r, Y^*) = M^*/P
\]

(2)
B(q, X) = B

where

\[X = \text{domestic expenditure} \]
\[Y^* = \text{fixed full-employment output} \]
\[B = \text{balance of trade in terms of domestic products} \]
\[M^* = \text{fixed nominal supply of money} \]
\[r = \text{rate of interest} \]
\[e = \text{foreign exchange rate} \]
\[P^* = \text{fixed foreign currency price of imports} \]
\[P = \text{domestic currency price of domestic products} \]
\[q = \text{price of imports in terms of exports} \]

Devaluation means an increase in \(e \). Without loss of generality, assume that before devaluation \(P = P^* = e = q = 1 \) and \(B = 0 \). Differentiation of (1)–(3) yields

\[
\begin{bmatrix}
-B_q & (1-m)X_r & 0 \\
M^*_r & L_r & 0 \\
-B_q & -mX_r & -1
\end{bmatrix}
\begin{bmatrix}
dP \\
dr \\
dB
\end{bmatrix}
= \begin{bmatrix}
-B_q,de \\
0 \\
-B_q,de
\end{bmatrix}
\]

where \(m = -(\partial B/\partial X) > 0 \), \(X < 0 \), \(L_r < 0 \), and where \(B_q \geq 0 \) depending on whether the Marshall-Lerner condition is satisfied or not.

Solving (4), we get

\[dP/de = B_q L_r/\Delta, \]

and

\[dq/de = (1-m)X_r M^*/\Delta; \]

\[dr/de = -B_q M^*/\Delta \]

\[db/de = B_q X_r M^*/\Delta, \]

where \(\Delta = B_q L_r + (1-m)M^* X_r < 0 \), regardless of \(B_q \geq 0 \), if the system is to be stable.

From (7) and (8) we know that

\[\text{sign}(dB/de) = \text{sign}(dr/de) \geq 0 \text{ as } B_q \geq 0. \]

The absorption (expenditure-reducing) effect is a necessary and sufficient condition for a devaluation to improve the balance of trade. On the other hand, a comparison of (6) with (8) tells us that the terms of trade (expenditure-switching) effect is neither a necessary nor a sufficient condition for a devaluation to improve the balance of trade. Let \(B_q > 0 \) and \(m > 1 \), then \(db/de > 0 \) obtains despite of \(dq/de < 0 \). And let \(B_q < 0 \) and \(m < 1 \), then even though \(dq/de > 0 \), still \(db/de < 0 \).

The key to this strong result is the special assumption that imports are a function of expenditure. If they are assumed to be a function of income, the paradoxical result that \(dq/de < 0 \) but \(db/de > 0 \) will never arise. For the terms of trade will always deteriorate as a result of devaluation. Mathematically, if \(B \) is written as \(B(q, Y^*) \), then all the \(m \) terms in (4)–(8) will disappear. Thus \(dq/de > 0 \), and \(db/de \geq 0 \) as \(B_q \geq 0 \).

III. Graphical Depictions

The above arguments can be depicted more clearly with the aid of diagrams. Let us consider first the case where \(B_q > 0 \), \(m > 1 \) and hence \(dq/de < 0 \), \(dB/de > 0 \). In Figure 1, \(IS \) graphs (1), \(LM \) graphs (2), and \(BT \) graphs (3) with \(B = 0 \). From (4) we can easily derive that all the three curves have a position and that \(IS \) should be steeper than \(LM \) due to the stability condition \((\Delta < 0) \) while the slopes of \(LM \) may be steeper or flatter than that of \(BT \).

The equilibrium is established at \(Q \), the intersection of \(IS, LM, \) and \(BT \). Now a devaluation shifts both \(IS \) and \(BT \) rightward by the same distance (by \(de \)) to \(IS^1 \) and \(BT^1 \). The new equilibrium moves to \(Q^1 \), which lies left to \(BT^1 \), implying that the balance of trade has improved.

We now turn to the case where \(B_q < 0 \), \(m < 1 \) and hence \(dB/de < 0 \) despite of \(dq/de > 0 \). From Figure 2 we can see now \(BT \) has a negative slope. After devaluation the equilibrium moves from \(Q \) to \(Q^1 \), which lies left to \(BT^1 \), implying that the balance of trade is in deficit.

IV. Concluding Remarks

The monetary approach to devaluation discussed above amounts to arguing that the balance of trade “depends on the aggregate relationship between domestic expenditure and income and does not depend on the composition of expenditure between exportables and importables [3, 23].” This central view of the monetary approach can be seen clearly from equation (1). Rewrite (1) as

\[Y^* - X(r) = B(q, X). \]

2. From (4) we know that the slopes of the three curves are

\[
\begin{align*}
\text{dr}/\text{dP}_{IS} &= B_q (1-m)X_r \\
\text{dr}/\text{dP}_{LM} &= -M^*/L_r \\
\text{dr}/\text{dP}_{BT} &= -B_q/m X_r
\end{align*}
\]

We assume that \(LM \) is flatter than \(BT \). The alternative assumptions leads to the same result.

3. Notice that the borderline case is \(m = 1 \). In that case \(IS \) is vertical, and \(q \) remains unchanged.

4. Contrary to the case of \(B_q > 0 \), in the case of \(B_q < 0 \), any point left (right) to \(BT \) represents a point of the trade balance deficit (surplus).
Differentiation of (1') with respect to e gives

$$-X,(dr/de) = B,(dq/de) - mX,(dr/de).$$

(10)

The left-hand side of (10) represents the aggregate absorption effect. Domestic expenditure reduces by the amount of $X,(dr/de)$. This decrease in absorption has to be shared by a reduction in expenditure on importables and/or exportables. From the right-hand side of (10) we know that if $m = 1$, the decrease in absorption is matched by equal decrease in imports and the terms of trade remains unchanged. If $m < 1$, the terms of trade has to deteriorate so as to generate further decrease in consumption of importables and exportables. Finally, if $m > 1$, the reduction in imports exceeds the decrease in absorption, so the terms of trade has to improve to raise consumption on exportables and to cut down the reduction in imports. Thus, the composition effect represented by the right-hand side of (10) does not necessarily play a negligible role as is asserted by the writers of the monetary approach.

Chuan-nan Chen
Tien-wang Tsaur

Institute of Three Principles of the People, Academia Sinica
Nankang, Taipei, Republic of China

References