
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2010

Parallel Programming Recipes Parallel Programming Recipes

Thuy C. Nguyenphuc
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Nguyenphuc, Thuy C., "Parallel Programming Recipes" (2010). Master's Projects. 64.
DOI: https://doi.org/10.31979/etd.j85t-wfru
https://scholarworks.sjsu.edu/etd_projects/64

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/64?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Master Project:

Parallel Programming Recipes

Thuy C. Nguyenphuc

Computer Science

San Jose State University

Spring 2010

Parallel Programming Recipes, page 2/153

Spring 2010 - Computer Science - SJSU

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

Dr. Robert Chun

Dr. Mark Stamp

Mr. Alexey Khromov

Parallel Programming Recipes, page 3/153

Spring 2010 - Computer Science - SJSU

ACKNOWLEDGEMENTS

I am heartily thankful to my professor, Robert Chun, whose encouragement, guidance

and support from the initial to the final level enabled me to develop an understanding of

the subject.

Special thanks to my dear friends, Alexey Khromov, Vanitha Shirwal, and Hoa

Nguyenphuc, and to Mom and Dad for their encouragement and support during the

completion of the project.

Also, I would like to thank and offer my regards to all of those who supported me in any

respect during the completion of the project.

Parallel Programming Recipes, page 4/153

Spring 2010 - Computer Science - SJSU

Table of Contents

1. Abstract .. 8

2. Introduction .. 10

2.1. Shared Memory System Characteristics ... 10

2.2. Distributed Memory System Characteristics .. 12

2.3. Hybrid Distributed-Shared Memory Characteristics ... 14

2.4. Parallel Programming Tips .. 14

2.5. Programming Architectures .. 16

3. Problem Addressed ... 21

4. Related Works ... 22

5. Approach .. 24

5.1. Algorithms ... 24

5.1.1. Maclaurin Series Computation .. 24

5.1.2. Dot Product of Two Vectors .. 26

5.1.3. Bubble Sort and Odd-Event-Transposition Algorithms ... 27

5.1.4. Graphics Rendering.. 30

5.2. software Complexity Metrics .. 31

5.2.1. Compilation Environment Settings .. 31

5.2.2. Framework Complexities ... 38

5.2.3. Abstractions of Parallelism in Languages .. 40

6. Architecture/Implementation .. 45

6.1. OpenMP Projects .. 45

6.1.1. Maclaurin Series .. 47

6.1.2. Dot Product of Two Vectors of size N .. 48

6.1.3. Parallel Sort .. 49

6.1.4. Graphics Rendering.. 51

6.2. MPI .. 52

6.2.1. Maclaurin Series .. 52

6.2.2. Dot Product of Two Vectors of size N .. 53

6.2.3. Parallel Sort .. 54

Parallel Programming Recipes, page 5/153

Spring 2010 - Computer Science - SJSU

6.2.4. Graphics Rendering.. 55

6.3. OpenCL .. 56

6.3.1. Dot Product of Two Vectors of size N .. 58

6.3.2. Parallel Sort .. 59

6.3.3. Graphics Rendering.. 60

7. Experiments .. 61

7.1. Performance Analysis ... 62

7.1.1. OpenMP ... 62

7.1.2. MPI ... 70

7.1.3. OpenCL ... 76

7.2. Performance Comparison across Languages .. 81

7.3. Implementation Cost .. 84

8. Future Work .. 85

9. Conclusions ... 86

10. References .. 88

Appendix A: Visual C++ Character Set Setting ... 91

Appendix B: OpenMP Source Codes ... 92

Appendix C: MPI Source Codes ... 107

Appendix D: OpenCL Source Codes ... 122

Parallel Programming Recipes, page 6/153

Spring 2010 - Computer Science - SJSU

List of Figures

Figure 1: Shared Memory – UMA .. 11
Figure 2: Shared Memory – NUMA ... 11
Figure 3: Distributed memory systems architecture ... 13
Figure 4: Illustration of instruction and data streams in SISD architecture 17
Figure 5: Illustration of Instruction Stream and Data Streams in SIMD architecture 17
Figure 6: Illustration of Instruction Streams and Data Streams in MIMD Architecture ... 18
Figure 7: OpenMP’s header file is included in source code .. 32
Figure 8: Visual C++ Project Setting to Enable OpenMP .. 33
Figure 9: Odd-Even Transposition or Parallel Bubble Sort algorithm 51
Figure 10: Device memory Architecture ... 58
Figure 11: CPU usage 100% when running parallel OpenMP program 62
Figure 12: Dot Product Program in OpenMP – Execution Time versus Vectors’ Sizes .. 64
Figure 13: CPU & memory usage when vector size is 100M (left) and 200M (right) 64
Figure 14: CPU & memory usage when vector size is 300M (left) and 400M (right) 64
Figure 15: Odd-Even Transposition in OpenMP – Execution Time versus Data Size 66
Figure 16: Graphics Rendering Simulation in OpenMP – Execution Time versus Data
Size .. 68
Figure 17: Output of dot-product program on the eight-core Windows 7 machine 69
Figure 18: Performance increase with the number of cores in OpenMP-Dot-Product
program ... 70
Figure 19: Dot Product of Two Vectors in MPI – Execution Time versus Vectors size .. 72
Figure 20: Odd-Even Transposition in MPI – Execution Time versus Data Size 74
Figure 21: Data output of MPI running Parallel Sort program ... 74
Figure 22: Graphics Rendering Simulation in MPI – Execution Time versus Data Size . 76
Figure 23: Dot Product of Two Vectors in OpenCL – Execution Time versus Vectors
Size .. 78
Figure 24: Odd-Even Transposition in OpenCL – Execution Time versus Data Size 79
Figure 25: glutSolidTorus animation demonstration .. 81
Figure 26: glutSolidTeapot animation demontration .. 81
Figure 27: Execution Time in Seconds of Languages in Dot Product Algorithm 83
Figure 28: Performance (in Seconds) of Languages in Bubble Sort Algorithm (Larger
Data Set) .. 83

Parallel Programming Recipes, page 7/153

Spring 2010 - Computer Science - SJSU

List of Tables

Table 1: Speedup ratio of algorithms in parallel OpenMP.. 46
Table 2: Implementation of Maclaurin Series of ex using OpenMP 48
Table 3: Implementation of Dot Product in OpenMP ... 49
Table 5: Dot Product of Two Vectors in OpenMP – Execution Time versus Vectors’
Sizes .. 63
Table 6: Performance speed up of OpenMP compare to sequential dot product program 65
Table 7: Odd-Even Transposition in OpenMP – Execution Time versus Data Size 66
Table 8: Performance speed up of Odd-even Transposition in OpenMP over sequential
bubble sort ... 66
Table 9: Graphics Rendering Simulation in OpenMP – Execution Time versus Data Size
 ... 68
Table 10: Dot Product of Two Vectors in MPI – Execution Time versus Vectors’ Size . 72
Table 11: MPI Dot Product – Time Analysis .. 72
Table 12: Odd-Even Transposition in MPI – Execution Time versus Data Size 73
Table 13: Speed up ratios of Odd-Even Transposition in MPI ... 75
Table 14: Graphics Rendering Simulation in MPI – Execution Time versus Data Size .. 75
Table 15: Dot Product of Two Vectors in OpenCL – Execution Time versus Vectors Size
 ... 78
Table 16: Odd-Even Transposition in OpenCL – Execution Time versus Data Size 79
Table 17: Performance Comparison .. 82
Table 18: Implementation Cost Comparison .. 86

Parallel Programming Recipes, page 8/153

Spring 2010 - Computer Science - SJSU

1. Abstract

Parallel programming has become vital for the success of commercial applications

since Moore’s Law will now be used to double the processors (or cores) per chip

every technology generation. The performance of applications depends on how

software executions can be mapped on the multi-core chip, and how efficiently they

run the cores. Currently, the increase of parallelism in software development is

necessary, not only for taking advantage of multi-core capability, but also for

adapting and surviving in the new silicon implementation. This project will provide

the performance characteristics of parallelism for some common algorithms or

computations using different parallel languages. Based on concrete experiments,

where each algorithm is implemented on different languages and the program’s

performance is measured, the project provides the recipes for the problem

computations. The following are the central problems and algorithms of the project:

Arithmetic Algebra: Maclaurin Series Calculation for ex, Dot-Product of Two

Vectors: each vector has size n; Sort Algorithms: Bubble sort, Odd-Event sort;

Graphics: Graphics rendering. The languages are chosen based on commonality in

the current market and ease of use; i.e., OpenMP, MPI, and OpenCL. The purpose of

this study is to provide reader a broad knowledge about parallel programming, the

comparisons, in terms of performance and implementation cost, across languages and

application types. It is hoped to be very useful for programmers/computer-architects

to decide which language to use for a certain applications/problems and cost

estimations for the projects. Also, it is hoped that the project can be expanded in the

future so that more languages/technologies as well as applications can be analyzed

Parallel Programming Recipes, page 9/153

Spring 2010 - Computer Science - SJSU

and compared. The larger comparison data is made in this manner, the better project

decisions can be made by programmers when design parallel systems.

Parallel Programming Recipes, page 10/153

Spring 2010 - Computer Science - SJSU

2. Introduction

Parallel programming has become a key factor in determining a system’s life span

and performance in the rapidly changing nature of hardware parallelism. Parallel

programming is generally referred to as ways of building systems that deploy multi-

core processors. The goals of parallel programming are not only to achieve the best

performance from multiprocessor hardware today, but also the best performance

when the number of processors increases in the near future. In order to build such

software applications, programmers should understand the architectures of parallel

computers in today’s market as well as the future’s. There are three categories of

computer architectures: shared memory, distributed memory and hybrid distributed-

shared memory.

2.1. Shared Memory System Characteristics:

Shared memory refers to a large block of random access memory (RAM) that can be

accessed by several central processing units (CPUs) in a multiprocessor system.

Processors in shared memory systems can execute tasks independently from each

other, but they share memory resources. Changes in shared memory by one processor

are visible to other processors. There are two main classes among shared memory

systems based upon memory access time: UMA (uniform memory access) and

NUMA (non-uniform memory access).

Parallel Programming Recipes, page 11/153

Spring 2010 - Computer Science - SJSU

Figure 1: Shared Memory – UMA

UMA is most commonly represented by Symmetric Multiprocessor (SMP) machines,

where processors in the system are identical and they have equal access rights and

equal access time to memory. UMA is often called CC-UMA (cache coherent

UMA). Cache coherent means if one processor modifies a piece of shared memory,

all other processors know about the update. Cache coherency is accomplished at the

hardware level.

Figure 2: Shared Memory – NUMA

NUMA is often a composition of two or more SMPs. One SMP can directly access

memory of another SMP and not all processors have equal access time to all

memories. Memory access across the SMP link is slower. Also, if cache coherency

is maintained in the system, it is called CC-NUMA (cache coherent NUMA).

CPU Memory

CPU

CPU

CPU

CPU Memory

CPU

CPU

CPU

CPU Memory

CPU

CPU

CPU

CPU Memory

CPU

CPU

CPU

Bus Interconnect

Memory

CPU

CPU

CPU CPU

Parallel Programming Recipes, page 12/153

Spring 2010 - Computer Science - SJSU

Shared memory – pros and cons:

The advantages of shared memory models are that they are easy to program, and data

sharing between tasks is fast and uniform. The global address space provides an easy

programming perspective to memory. Shared data is fast and uniform due to the

proximity of the memory to CPUs.

The main disadvantage of shared memory is the lack of scalability due to the cache

coherency is hard to maintain. Adding more CPUs increases traffic geometrically

between the shared memory and the CPUs. Also, the synchronization of global

shared data is difficult, and it is the responsibility of programmers to implement this.

The most common languages that perform shared memory are POSIX threads or

Pthreads, and OpenMP. OpenMP will be described in more depth in the next chapter

(Problem Addressed).

2.2. Distributed Memory System Characteristics:

Distributed memory systems require a communication network to connect inter-

processor memory. Each processor has its own private memory, and changes in its

memory do not affect other processors. Hence, there is no cache coherency. The

communication between processors in a distributed system is necessary to

synchronize tasks among processors. The programmer is responsible for defining

communication messages explicitly. The media used for the communication

Parallel Programming Recipes, page 13/153

Spring 2010 - Computer Science - SJSU

networks can range from local inter-connection between CPUs in a multiprocessor

system to Ethernet between network systems.

Figure 3: Distributed memory systems architecture

Distributed memory – pros and cons:

The advantages are scalability, accessibility, independent local memory maintenance,

and system cost effectiveness. Increasing the number of processors will increase

memory to the system proportionately. A distributed memory system does not have

cache coherency; therefore, processors can access their local memory without

interference from others. This system is cost effective because it can be built using

off-the-shelf processors or computers and their networking.

The disadvantages are difficulties in: programming the communications between

processors, mapping the existing global memory data structure to distributed memory

organization, and handling non-uniform memory access (NUMA) time.

2.3. Hybrid Distributed-Shared Memory Characteristics

Memory CPU Memory CPU

Memory CPU Memory CPU

Parallel Programming Recipes, page 14/153

Spring 2010 - Computer Science - SJSU

The fastest computers today employ both shared and distributed memory

architectures. A shared memory component in the hybrid system is usually a cache

coherent SMP computer. Processors in a SMP machine can access the machine’s

memory as global. The distributed memory component is the network connection

between multiple SMPs. Each SMP sees only its own memory, and network

communications are required to move data from one SMP to another. This

architecture seems to be the most advanced hardware system and can be scaled to

large numbers of computers in the network.

Hybrid distributed-shared memory - pros and cons:

The advantages are scalability, independent task assignment to SMPs in the network

and quick task execution.

The disadvantages are the problems of load balancing, communications, and

synchronization among SMP systems. These are not simple and are programmers’

responsibilities.

2.4. Parallel Programming Tips:

Software developers need to build parallel application models and carefully map the

models on the hardware systems to maximize performance and efficiency. Research

at the Electrical Engineering and Computer Science Departments at UC Berkeley

suggested the following factors for successful software parallelism [9].

Parallel Programming Recipes, page 15/153

Spring 2010 - Computer Science - SJSU

- Design patterns should be deployed to reduce cost of parallel software

implementation. It also provides a maximum achievement of performance on

highly parallel computer systems.

- Targets of the patterns are to support efficient executions on thousands of cores

per chip and the efficiencies are measured not only in MIPS (million instruction

per second) per Watt, but also MIPS per area of silicon, and MIPS per

development cost.

- Patterns of parallel programming help programmers to decide how to model a

system and achieve the best performance from a set of hardware. Patterns of

computations and communications are categorized into thirteen algorithmic

methods: dense linear algebra, sparse linear algebra, operation on structured grids,

operation on unstructured grids, spectral methods, particle methods, Monte Carlo,

combinational logic, finite state machine, graph traversal, dynamic programming,

back track, branch and bound, and graphical models. Depending on the nature of

the application, a subset of these algorithms can be deployed.

- Binary applications from compilers tend to be out of date, because compilers do

not tune for parallelism of programs. Instead, “Autotuners” should play a larger

role in translating parallel programs to binaries.

- Programming models must be human-centric or carry metaphors that are familiar

to programmers so that they can maximize a programmer’s productivity.

- Programming models should be independent from the number of processors so

that programs can run on the future processors. In other words, software will not

need to be re-written if its model does not depend on the number of processors.

Parallel Programming Recipes, page 16/153

Spring 2010 - Computer Science - SJSU

- Programming models should support a wide range of data types and different

level of parallelisms such as task-, word-, and bit- level parallelisms. This factor

will maximize reused codes and models.

- Architects should not include features that affect performance or energy if

programmers cannot measure the impact using performance counters and energy

counters.

- Models should use libraries to utilize the operating system functionalities. This

factor can significantly reduce development and debug time.

- System emulators should be used based on FPGAs (field programmable gate

arrays) to explore the design space. This way, programmers can estimate the

necessary resources for the projects.

2.5. Programming Architectures: An abstract of programming architectures can be

described as the following:

Flynn’s Taxonomy described four possible programming architectures: Single

Instruction, Single Data (SISD); Single Instruction, Multi Data (SIMD); Multi

Instruction, Single Data (MISD); and Multi Instruction, Multi Data (MIMD).[10]

Single Instruction, Single Data (SIMD): In this system, one stream of instructions

processes one stream of data. This architecture is known as von Neumann model,

where a central processing unit (CPU) is used to process stored-instructions, and data

(see Figure 4). This model is virtually used in all single-processor computers.

Parallel Programming Recipes, page 17/153

Spring 2010 - Computer Science - SJSU

Figure 4: Illustration of instruction and data streams in SISD architecture

Single Instruction, Multiple Data (SIMD): One instruction stream concurrently

broadcasts to multiple processors and each processor has its own data stream (see

Figure 5). The CPP DAP Gamma II and Quadrics Apemille are the recent examples

of this model. This architecture is deployed in specialized applications, which

process fine-grained parallelism such as vector computations or digital signal

processing.

Figure 5: Illustration of Instruction Stream and Data Streams in SIMD architecture

Multiple Instruction, Single Data (MISD): no well-known systems using this model.

This model can be ignored.

control unit

processor

input
data

instructions

output
data

instructions

control unit

processor

input
data

output
data

Parallel Programming Recipes, page 18/153

Spring 2010 - Computer Science - SJSU

Multiple Instruction, Multiple Data (MIMD): In this system, each processing element

has its own stream of instructions operating on its own data (see Figure 6). This

architecture is the most general model, in that other models can be mapped onto

MIMD architecture. The most majority of parallel computers nowadays fit onto this

model.

Figure 6: Illustration of Instruction Streams and Data Streams in MIMD Architecture

In the late 1990s, the programmers tend to converge predominantly on two different

environments for parallel programming: OpenMP for shared memory and MPI for

message passing [10].

OpenMP’s implementations are available for Fortran, C, and C++. It performs

parallel executions based on compiler directives. In OpenMP, compiler directives are

often added to sequential code to perform parallelism. For example, compiler

generates parallel instructions to execute iterations of a loop when a compiler

directive is added around the loop. The compiler is responsible for the creation and

management of threads. It tends to work well on SMP systems. However, because of

control unit

processor

input
data

instructions

output
data

control unit

processor

input
data

instructions

output
data

control unit

processor

input
data

instructions

output
data interconnect

network

Parallel Programming Recipes, page 19/153

Spring 2010 - Computer Science - SJSU

the lack of non-uniform memory access time descriptions, OpenMP does not work

well on ccNUMA or distributed-memory systems.

MPI, on the other hand, is a set of library routines that provide process management,

message passing, and collective communication operations such as barrier, broadcast,

and reduction. MPI programs are difficult to write because programmers are

responsible for data distribution and the communication between processes. MPI is a

good fit for MPPs (massively parallel processors) and other distributed-memory

systems because it supports distributed memory characteristics.

Neither OpenMP nor MPI alone can be used for hybrid architectures that have more

than one multiprocessor node. Each node has multiple processes and a shared

memory. Nodes are part of a large system with separate address spaces. The

OpenMP model does not handle non-uniform memory access times correctly and its

data allocation can lead to poor performance on non-SMP machines. On the other

hand, MPI does not construct data structures residing in a shared memory. The

combination of both OpenMP and MPI models is used to compromise a solution for

the hybrid system. OpenMP is used on each shared-memory node and MPI is used

between nodes.

Recently, OpenCL becomes an emerging new standard for applications across

processor cores and GPUs (graphics processing units). In some scientific

applications, this technology has been proven to provide a significant speed up of the

Parallel Programming Recipes, page 20/153

Spring 2010 - Computer Science - SJSU

processing time for parallelizable tasks. For example, one biological molecule

analysis called Molecular Boundary Value Computation took 56.7 s when using a

single high speed CPU, while it took 4.76 s on an eight-core Mac Pro with Hyper

Threading enabled (16 threads), and it took 0.17 second when using Nvidia GTX 285

[15].

These facts show that each language can be well fit in certain hardware architectures,

and application types. When designing a parallel system, programmers need to

carefully consider which language to use to satisfy the hardware platforms and the

application types. Implementation cost, on the other hand, is another factor that needs

to be considered to predict the success of the system. OpenMP, MPI, and OpenCL

are three different flavors of parallel programming. Each has advantages in certain

hardware architectures, or certain types of applications. In this project, the

performance of these languages will be compared based only on the application types

and assumes that the hardware platform is unchanged in all experiments.

Parallel Programming Recipes, page 21/153

Spring 2010 - Computer Science - SJSU

3. Problem Addressed

Parallel programming uses a pattern language to achieve productivity, efficiency and

accuracy. The scope of this project is limited to providing comparisons of

performances between specific languages and their implementation costs which are

determined by their complexity and development time.

Experiments in this project will be performed on a 64-bit Windows Vista operating

system, with Intel ® Core ™ 2 Duo CPU. Intel Thread Profiler and Vtune will be

used to compare performances and efficiencies between languages.

Parallel Programming Recipes, page 22/153

Spring 2010 - Computer Science - SJSU

4. Related Works

Recent research has discovered the human central in parallel programming. This is

one of the most important factors in parallel programming. In fact, the three broad

categories of a parallel programming library are faster programs, larger data, and

easier development [19]. These factors are equally important in parallel

programming to produce a system with high performance, powerful computing

capabilities and easy to maintain and extend.

Programmers will play the main roles to produce software programs. Researchers

have learned how to help novice parallel programmers to gain more skills in parallel

programming. Novice parallel programmers tend to group problems based on the

difficulty and domain type of the problems while experts consider the solution types

for the problems [19]. Understanding of the human factor in parallel programming is

promising the success in software industry. This paper is intended to bring overall

knowledge about parallel programming to programmers with both solution-based and

problem-domain-based approaches.

Unlike other parallel programming tools, which intend to provide programmers ways

to convert the sequential programs into parallel pattern execution with parallel code

hidden [26], [27], [28], [29], [30], this research approaches differently. The template-

or pattern-based approaches do not provide an easy way to maintain or extend a

software project. Programmers are struggling with debugging and tuning

Parallel Programming Recipes, page 23/153

Spring 2010 - Computer Science - SJSU

performance and the worst of all they have to deal with features that don’t have a

pattern/template supported.

Several researchers have compared the performances of OpenMP and MPI programs

on shared memory machines [31], [32], [33]. Their common results showed the

advantages of OpenMP on a shared memory machine over MPI. In this research, the

comparison of OpenMP and MPI are based on different hardware platforms.

OpenMP is used in the shared memory paradigm, while MPI is used in distributed

memory paradigm.

Instead, this project provides programmers with knowledge and hands-on experience

in parallel programming in different technologies such as shared memory, distributed

memory, and heterogeneous platform programming [13], [14], [15], and [16]. The

comparison of performances of different algorithms and the implementation costs

across parallel API libraries provide programmers with knowledgeable and flexible

ways of implement parallel software systems and the system extensions.

Parallel Programming Recipes, page 24/153

Spring 2010 - Computer Science - SJSU

5. Approach

For an accurate comparison of performance and implementation costs between

languages, algorithms are defined and implemented in different languages, and

different metrics are used to measure performance and software complexity.

5.1. Algorithms

In this section, the chosen algorithms will be described in detail, specifically the

decomposition of independent tasks and data to achieve parallelism of program

execution. The following are the descriptions of some concrete arithmetic

algebra, data sorting, and graphics algorithms.

5.1.1. Maclaurin Series Computation:

One example of Maclaurin Series is the calculation of exponential ex:

ex = 1 + x + x2/2! + x3/3! + ... + xn/n!

If processing this series sequentially, O(n) time is needed for a system to

complete the computation. Observe that each term of the series can be

calculated independently. If each term of the series is calculated

simultaneously (assuming number of processor equal to the size n of the

series), the execution time can be reduced to O(1+1), where the first clock

cycle is to calculate n terms and the second clock cycle is to sum up the n

terms.

Parallel Programming Recipes, page 25/153

Spring 2010 - Computer Science - SJSU

In reality, the number of processors, p, are normally less than n. In order to

divide the computation evenly among processors, n/p term-chunks are

assigned to processors. In a worst case scenario, the execution time is O((q

+1)+1), where q is the whole number of dividing n by p, and one additional

clock cycle is for the remainder of dividing n by p, and another clock cycle is

for the sum of the results from p processors.

The algorithm for p processors calculating n terms of a Maclaurin Series of

exponential ex, where p < n, is described in the following pseudo code:

Initially:

 x is a given rational number

 n is the number of terms in the series.

 p is the number of processors in the system.

 m is the number of terms in the series that are assigned to processor pi,

where i is an integer and 0 ≤ i < p.

 sumi = 0. sumi is the partial result of m terms from processor pi.

 sum = 0. is the final result of the computation.

 j is index of the first term and M (= j + m) is index of the last term that are

assigned to pi.

Code for pi:

 1: for j; until j ≤ M

 2: sumi = sumi + xj / factorial(j)

 3: increment j

Parallel Programming Recipes, page 26/153

Spring 2010 - Computer Science - SJSU

Synchronized code:

 4: sum = ∑sumi

5.1.2. Dot Product of two vectors

Let A and B be the vectors of size n. The scalar dot-product S of A and B is:

S = S = A1*B1 + A2*B2 + … + An*Bn

Time complexity analysis of Dot-product is as similar as that of Maclaurin

Series. The algorithm for p processors calculating a dot-product of vectors

A,B, of size n, where p < n, is described in the following pseudo code:

Initially:

 A and B are the given vectors.

 n is the of the vectors A, B.

 p is the number of processors in the system.

 m is the number of terms in the series that are assigned to processor pi,

where i is an integer and 0 ≤ i < p.

 sumi = 0. sumi is the partial result of m terms from processor pi.

 sum = 0. is the final result of the computation.

 j is index of the first term and M (= j + m) is index of the last term that are

assigned to pi.

Code for pi:

 1: for j; until j ≤ M

 2: sumi = sumi + Aj*Bj

Parallel Programming Recipes, page 27/153

Spring 2010 - Computer Science - SJSU

 3: increment j

Synchronized code:

 4: sum = ∑sumi

5.1.3. Bubble Sort or Odd-Event-Transposition Algorithm

Bubble sort algorithm is for sorting a sequence of data S = (a1, a2, …, an) by

comparing and exchanging the neighbor elements ai , where 1 ≤ i ≤ n, in the

sequence S.

If processing the compare-exchange operations sequentially, there are first n –

1 operations for sequential pairs of elements (a1, a2), (a2, a3),…, (an-1, an). As

a result, the element which has the largest value is moved to the end of the

sequence S. In the next iteration of compare-exchange operations, the last

element of S can be omitted. Consider S’ = (a’1, a’2, …, a’n-1) as a

transformation of S. Repeat the compare-exchange operations. Sequence S is

sorted after (n – 1) iterations. The execution time for sequential Bubble sort is

O(n2).

The bubble sort algorithm can be executed in parallel. The modified

algorithm is known as the odd-even transposition. Assume that n processors

operate on the bubble sort algorithm. Each processor holds one element of the

sequence and compare-exchange operations occur between neighboring

processors. In order to perform compare-exchange operations independently,

Parallel Programming Recipes, page 28/153

Spring 2010 - Computer Science - SJSU

there are two different rules that apply to each processor – odd and even

iterations. In other words, the processors with odd or even indices will

perform the compare- exchange operation with the right or left neighbors in

odd or even iterations, respectively.

As a result, the following are snapshots of operations between the neighbors

in odd iterations and in even iterations.

Odd iterations: (a1, a2), (a3, a4), … , (an-1, an) (if n is even),

Even iterations: (a2, a3), (a4, a5), … , (an-2, an-1).

After n iterations, the original sequence is sorted. Time complexity of this

algorithm is O(n).

Odd-even transposition algorithm for n processors to sort n-element sequence:

Initially:

A sequence S has n unsorted elements. There are n processors and each has

an ID from one to n. Each element in S is assigned to each processor.

i = 1, where i is the index of the algorithm’s iteration and 1 < i < n.

Podd, and Peven are the processors which have odd and even ID, respectively.

Loop the iteration i of the algorithm from 1 to n.

In odd iteration: Podd does compare-exchange data with its right neighbor,

and Peven does compare-exchange data with its left neighbor.

In even iteration: Peven does compare-exchange data with its right neighbor

and Podd does compare-exchange data with its left neighbor.

Parallel Programming Recipes, page 29/153

Spring 2010 - Computer Science - SJSU

End of loop.

Synchronized code:

Put result data from processors (after sorting operation) back to sequence S.

However, if the number of processors is p and p < n, where n is the number of

elements in a sequence S, then S will be segmented into p sub-sequences of

size n/p. Each sub-sequence is assigned to each processor. The algorithm’s

iteration will loop through p, the number of sub-sequences. In each iterations,

there are sub-tasks to sort (2n/p) data from two neighbor-processors. The time

complexity is O(p(1+(n/p)2).

Odd-even transposition algorithm for p processors to sort n-element sequence,

where p < n:

Initially:

A sequence S has n unsorted elements. There are n processors and each has

an ID from one to n. Each element in S is assigned to each processor.

i = 0, where i is index of the processors (0 < i < p), and algorithm’s iterations

are i.

Podd, and Peven are the processors which have odd and even ID, respectively.

Loop the iteration i of the algorithm from 0 to p-1.

In odd iteration:

Podd and its right neighbor put their sub-sequences together to sort and then

the sorted data is split into two sub-sequences. Podd gets the first half sub-

Parallel Programming Recipes, page 30/153

Spring 2010 - Computer Science - SJSU

sequence or the min, and the right neighbor gets the second half sub-sequence

or the max.

In even iteration: Peven and its right neighbor put their sub-sequences together

to sort and then the sorted data is split into two sub-sequences. Peven gets the

first half sub-sequence or the min, and the right neighbor gets the second half

sub-sequence or the max.

End of loop.

Synchronized code:

Put result data from processors (after sorting operation) back to sequence S.

5.1.4. Graphics Displays

In a graphics problem, assume there is no limitation for a system to allow

multiprocessors to render an n-pixel bitmap. In theory, if it takes time t for a

single processor to draw one pixel, then it will take n*t for a single processor

to draw a bitmap of size n pixels. In other words, the time complexity for a

single processor to draw an n-pixel bitmap is O(n).

It is possible to use an n-processor system to render an n-pixel bitmap,

assuming each processor equally draws one pixel of the bitmap. The time

necessary to complete n-pixel bitmap is t and time complexity is O(1).

In reality, the number of processors is p and p is typically much smaller than

the number of pixels to be drawn, n. Therefore, the time complexity for p

processors to draw an n-pixel bitmap is O(n/p).

Parallel Programming Recipes, page 31/153

Spring 2010 - Computer Science - SJSU

Algorithm for p processor to draw n bitmaps:

Initially:

Assigned n/p bitmap’s indexes or positions to p processors.

i = 0, where i is the index or ID of the processors. 0 < i < p.

Code for Pi: draws n/p bitmaps.

5.2. Software complexity metrics

This section describes and compares the complexities the languages. The time to

setup a language framework, the number of libraries needed for a language, the

length of the language specification, and the parallel structures in a program are

the metrics used to measure the complexity of a language.

5.2.1. Compilation Environment Settings

Environmental settings of the languages are carefully described in this section.

The complexity of a language-framework bases on the number of components

that users need to install, and time consumed to setup the framework.

5.2.1.1. OpenMP Environment Setting

OpenMP’s API and library are embedded in Microsoft Visual Studio 2008.

This fact makes OpenMP very handy. Developers who use Visual Studio in

Windows platform can easy enable OpenMP by including OpenMP’s library

to the code and setup the project’s properties.

Parallel Programming Recipes, page 32/153

Spring 2010 - Computer Science - SJSU

The following are steps to enable OpenMP in Visual Studio: Enable the

OpenMP Support flag in the Language sub-tab under the C/C++ sub-tab of

the Configuration Properties tab in the project’s Property Pages. Also, users

need to include OpenMP’s header file (omp.h) in source files (*.cpp files).

Once users have these two settings in Visual Studio, the OpenMP’s API is

ready to use.

The following are screen captures of the “include” part of the OpenMP source

code and project’s property enabling OpenMP.

Figure 7: OpenMP’s header file is included in source code

Parallel Programming Recipes, page 33/153

Spring 2010 - Computer Science - SJSU

Figure 8: Visual C++ Project Setting to Enable OpenMP

To summarize, OpenMP needs two simple actions from Visual Studio users.

There is no installation necessary for the framework and the environmental

programming can be achieved in a second.

5.2.1.2. MPI Environment Setting

MPI libraries can be obtained by installing the correct set of MPI for the

correct system platform. In this project, the platform used is 64-bit Windows

Vista and the MPI installation packet is MPICH2. The installation packet for

64-bit Windows Vista can be downloaded from the following link:

http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=do

wnloads

http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads
http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads

Parallel Programming Recipes, page 34/153

Spring 2010 - Computer Science - SJSU

After installing MPI, the following are the steps for the creation of a console

application in MPI using Visual Studio 2008 and in a 64-bit Window Vista.

First, create a Win32 console application. Open the project properties

window to set the following parameters to setup MPI library.

In the General tab, modify the Character Set to Use Unicode Character Set.

This setting is for the conversion of the data type of variables argc and argv to

be used in MPI program. Then, set the Additional Include Directories to point

to the include folder of MPI library. This parameter can be found in the

C/C++ tab. Set Additional Library directories to point to lib folder of the

MPI installed folder. Finally, set the Additional Dependency to contain

mpi.lib. These four steps should be sufficient for a 32-bit Windows

application. The following are steps to convert the Win32 Console to be

compiled in 64-bit system.

Appendix DAppendix DAppendix DAppendix DAppendix

DAppendix DAppendix DFrom project property window, open

Configuration Manager window; create new Active solution platform; choose

X64 platform from the drop-down menu; also, create new Platform and

choose x64 platform. These additional operations set the project to 64-bit

platform application.

Parallel Programming Recipes, page 35/153

Spring 2010 - Computer Science - SJSU

Although there are about six steps in the procedure of creating an MPI project

in Visual Studio, MPI environment needs only one library installation. The

time needed to download and install the library is about one hour.

5.2.1.3. OpenCL Environment Setting

OpenCL was intended to be platform independent. It provides the API

framework in different hardware and Operating System platforms. Not only

do the differences in the CPU chips and Operating Systems matter, but also do

the differences in the GPU chips that require OpenCL’s library, CUDA’s

library and the device driver for the GPU to be accurately selected. This fact

makes the task of setting OpenCL framework extremely difficult. Users must

carefully select the correct version of OpenCL, CUDA libraries, and the GPU

driver according to their Operating System and CPU, GPU hardware.

OpenCL was originally developed by Apple. It was then submitted to a non-

profit technology consortium, Khronos Group, to review and manage the

implementation across technical teams of AMD, Intel, Nvidia and more.

In order to set up OpenCL environment in Microsoft Visual Studio 2008,

users need to get the required hardware and the accordant SDKs (software

development toolkits).

Parallel Programming Recipes, page 36/153

Spring 2010 - Computer Science - SJSU

In this project, Intel Core 2 Duo is the host system; Nvidia GeForce 9200 M

GS is the graphics device; 64-bit Windows Vista is the operating system; and

OpenCL libraries are from Nvidia. The Nvidia libraries include Nvidia

Computing SDK, OpenCL SDK version 2.3, and Nvidia display driver

version 190.89.

Notes: Nvidia’s SDK and driver can be downloaded from the following link:

http://developer.nvidia.com/object/opencl-download.html. Before installing

the Nvidia SDKs, users should make sure to uninstall any previous version of

SDK. Also, the antivirus software must be disabled while installing Nvidia

driver or else the driver cannot be installed correctly.

Depending on hardware platforms, users have to select the correct vendor

library packets to install. In addition, there are three different packets need to

be installed to achieve the framework setting. The time necessary for

downloading and installing the framework is about three hours. These tasks

make OpenCL the most complex language in term of environmental setting.

The necessary installation packets include:

- Nvidia drivers for 64-bit Windows.

- GPU Computing SDK.

- CUDA Toolkit.

http://developer.nvidia.com/object/opencl-download.html

Parallel Programming Recipes, page 37/153

Spring 2010 - Computer Science - SJSU

After installing OpenCL packets, the following are the steps for the creation

of a console application in OpenCL using Visual Studio 2008 and in a 64-bit

Window Vista.

First, create a Win32 console application in either release or debug mode.

Open the project properties window to modify the following parameters to

setup the OpenCL libraries.

Then, set the Additional Include Directories to point to the include folders of

OpenCL libraries. The steps of library setting is as same as that of MPI

setting, except there are two different paths from the installed packet are

needed. They are “..\\NVIDIA Corporation\NVIDIA GPU Computing

SDK\OpenCL\common\inc”, and “..\\NVIDIA Corporation\NVIDIA GPU

Computing SDK\shared\inc”. Set Additional Library directories to point to

lib folder of the OpenCL installed folder. There are three different paths will

be needed. They are “..\\NVIDIA Corporation\NVIDIA GPU Computing

SDK\OpenCL\common\lib”, “..\\NVIDIA Corporation\NVIDIA GPU

Computing SDK\shared\lib”, and “..\\NVIDIA Corporation\NVIDIA GPU

Computing SDK\OpenCL\common\lib\x64”. Finally, set the Additional

Dependency to contain oclUtils64D.lib OpenCL.lib shrUtils64D.lib. These

nine steps should be sufficient for a 32-bit Windows application. There are

two more additional steps to set the project to compile in 64-bit system.

Parallel Programming Recipes, page 38/153

Spring 2010 - Computer Science - SJSU

These steps are as same as the settings in MPI. Totally, there are eleven steps

necessary to setup for an OpenCL project.

Additionally, in order to compile the Nvidia sample codes, there will be more

parameters that need to be modified. One example is the Runtime Library. It

must be set to Multi Threaded for the compiler to recognize some library calls.

5.2.2. Framework Complexities

The complexity of a framework (or API) depends on the number of APIs in its

specification document. The more APIs are defined in the framework the

more complex and harder for a new parallel programmer to learn. This factor

will be used as a metric to measure the complexity of languages.

5.2.2.1. OpenMP Specification Summary

OpenMP’s specification can be found from the following link:

http://www.openmp.org/mp-documents/OpenMP3.0-SummarySpec.pdf. The

OpenMP specification document contains over sixty pages. It describes

fifteen directives, eight clauses, thirty one runtime library routines, eight

environment variables, eight operators legally allowed in a reduction, and five

schedule types for the loop construct. The total number of APIs in OpenMP is

seventy five. The OpenMP user guide can also be found from the following

link:

http://www.openmp.org/mp-documents/OpenMP3.0-SummarySpec.pdf

Parallel Programming Recipes, page 39/153

Spring 2010 - Computer Science - SJSU

http://www.nd.edu/~hpcc/solaris_opt/SUNWspro.s1s7/SUNWspro/prod/lib/lo

cale/C/html/manuals/pdf/openmp.pdf

This document has about fifty pages describing the syntax and use cases of

OpenMP. Overall, the OpenMP specification and user guide have simple

rules and are easy to use.

5.2.2.2. MPI Specification Summary

There are two commonly used MPI’s implementations. They are LAM/MPI

(or LAM) and MPICH (or MPI). Both can be downloaded free of charge.

MPICH2 was used in this project. It can be downloaded at

http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=do

wnloads.

The MPI Specification document includes sixteen chapters, where the Data-

types chapter alone occupies about sixty-pages. Unlike OpenMP, MPI has

complex point-to-point communication, data-types, process synchronization,

and communication space to support library functions, process topologies, and

environmental management. Its specification document contains over six

hundred pages. The length of the document can provide users with a broad

idea about the complexity of the language.

5.2.2.3. OpenCL Specification Summary

There are many different sources of OpenCL frameworks that can be

downloaded free of charge from Internet. Depending on the operating

http://www.nd.edu/~hpcc/solaris_opt/SUNWspro.s1s7/SUNWspro/prod/lib/locale/C/html/manuals/pdf/openmp.pdf
http://www.nd.edu/~hpcc/solaris_opt/SUNWspro.s1s7/SUNWspro/prod/lib/locale/C/html/manuals/pdf/openmp.pdf
http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads
http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads

Parallel Programming Recipes, page 40/153

Spring 2010 - Computer Science - SJSU

systems, CPU chips, and graphic cards, users can download and install

OpenCL frameworks from different vendor sources. OpenCL specification,

however, can be downloaded from Khronos source as the following:

http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf.

 Specifications from different vendors can be different in number of library

interfaces depending on the vendor’s interested. For example, Nvidia does

not support creating CPU’s context and CPU optimizations because it

manufactures graphics cards only.

The OpenCL Specification has about three hundred pages. It includes two

hundred twenty seven constants; five hundred twenty one functions; fifty data

structures and typedefs; seven qualifiers; and forty directives and macros.

OpenCL intensively supports mathematical functions such as trigonometric

and statistical functions.

Due to the young age of OpenCL, the language specification is still

developing and therefore the length of its specification is a lot shorter than

MPI’s specification. Not to mention that MPI exists in the market for about

twenty years.

5.2.3. Abstractions of Parallelism in Languages:

This section describes the parallelism of the languages using data flow

diagrams. These illustrations abstract the ways that multi processes can be

http://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf

Parallel Programming Recipes, page 41/153

Spring 2010 - Computer Science - SJSU

deployed simultaneously in the languages. The number of responsibilities of

programmers in the thread synchronizations determines the complexity of the

languages.

5.2.3.1. Parallelism in OpenMP

Programs in OpenMP are normally driven by one main thread or process. The

compiler is responsible for involving other processors or threads and

balancing tasks among processes within the parallel regions. Threads can

access their own private memories and the shared memories within the

parallel scopes. Programmers are responsible for specifying the parallel

regions in the program, and determining the private and shared memories in

the parallel regions. Programmers are also responsible for synchronizing the

shared memories among threads. The optimizations of parallel performance

can be accomplished by compiler via release mode of the compilation.

In general, compiler creates threads in the parallel regions of the program and

balances tasks among processes. Programmers only need to perform the

mutual exclusion in the use of shared variables. These facts make OpenMP

the least complex compare to other languages.

5.2.3.2. Parallelism in MPI

Unlike OpenMP, parallel region in MPI exists in the entire of the programs.

Threads are created by MPI library. These threads remain in the programs

Parallel Programming Recipes, page 42/153

Spring 2010 - Computer Science - SJSU

until the end of programs. Programmers are responsible for dividing tasks,

and creating communication channels within processes. Programmers are also

responsible for the performance tuning and providing a minimum of data

transferred between processes. This way, program can reach the best

performance of the computations.

Although, programmers don’t create threads in MPI programs, the balancing

tasks among processes and designing distributed memories within processes

are the complex responsibilities. The parallelism structure is therefore more

complex than that of OpenMP.

5.2.3.3. Parallelism in OpenCL

OpenCL has different parallelism approach. The parallelism of the language

deploys the rapidly increasing in number of hardware cores not only on the

CPU chips but also on the GPU chips. OpenCL programs contain two main

components, the host system and the device. The host system performs the

main operations of the program in sequence and the device performs the

parallel tasks. Programmers have to create and setup the workflow from the

host system to the device so that the orders of instructions are reserved and

data from host memories can be correctly copied to the memories of the

kernels or hardware threads.

Parallel Programming Recipes, page 43/153

Spring 2010 - Computer Science - SJSU

The structure of an OpenCL program is rather complex. Five portions of a

program must be explicitly defined [15] as the following:

a. Initialization: Selecting a device or creating a context in which the parallel

computations occur.

cl_int err;
cl_context context;
cl_device_id devices;
cl_command_queue cmd_queue;

err = clGetDeviceIDs(CL_DEVICE_TYPE_GPU, 1, &devices, NULL);

context = clCreateContext(0, 1, &devices, NULL, NULL, &err);

cmd_queue = clCreateCommandQueue(context, devices, 0, NULL);

b. Allocation: memory allocation for buffers that are used on device and copy

data from host memory to the device.

cl_mem vectorA = clCreateBuffer(context, CL_MEM_READ_ONLY,
buffer_size, NULL, NULL);

err = clEnqueueWriteBuffer(cmd_queue, vectorA, CL_TRUE, 0,
buffer_size, (void *)ax, 0, NULL, NULL);

cl_finish(cmd_queue);

c. Program and Kernel Creations: Binary program for the kernel will be built

by the compiler. This portion of the program takes at least about a third of a

second. In the performance analysis of OpenCL, the time to build the kernel

program is excluded.

Parallel Programming Recipes, page 44/153

Spring 2010 - Computer Science - SJSU

cl_program program[1] ;
cl_kernel kernel[1];

program[0] = clCreateProgramWithSource(context, 1, (const char
**)&program_source, NULL, &err);

err = clBuildProgram(program[0], 0, NULL, NULL, NULL, NULL);

kernel[0] = clCreateKernel(program[0], “add”, &err);

d. Execution: Arguments to the kernel are set and the kernel is executed on all

data mapped to it. In this portion of the program, parallel computations are

actually occurred.

size_t global_work_size[2]; local_work_size[2];

global_work_size[0] = x_dim; global_work_size[1] = y_dim;

local_work_size[0] = x_dim/2; local_work_size[1] = y_dim/2;

err = clSetKernelArg(kernel[0], 0, sizeof(cl_mem), &vectorA);

err = clEnqueueNDRangeKernel(cmd_queue, kernel[0], 2, NULL,
&global_work_size, &local_work_size, 0, NULL, NULL);

e. Clean up: Read back the results to host and clean-up memory

err = clEnqueueReadBuffer(cmd_queue, result_src, CL_TRUE, 0,
grid_buffer_size, dest_ptr, 0, NULL, NULL);
clReleaseKernel(kernel);
clReleaseProgram(program);
clReleaseCommandQueue(cmd_queue);
clReleasecontext(context);

Parallel Programming Recipes, page 45/153

Spring 2010 - Computer Science - SJSU

In overall, with five portion structure of program, OpenCL is proven the most

complex language among other two languages, i.e.: OpenMP and MPI.

6. Architecture/Implementation

In this chapter, the implementations of the aforementioned algorithms will be

described in detail for three languages: OpenMP, MPI, and OpenCL.

6.1. OpenMP:

OpenMP stands for open specification for multi-processing. It is a collaborative

work between interested parties from the hardware and software industry,

government, and academia. OpenMP is an application program interface (API)

that is used to direct multi-threaded, shared memory parallelism. Its API is

specified for C/C++ and Fortran. It is comprised of three main API components:

compiler directives, runtime library routines, and environment variables. More

importantly, most major platforms support this API, including Unix/Linux and

Windows NT.

In order to measure the performance and compare the speedup ratios of OpenMP,

some small programs are used. The chosen programs are in different aspects of

computations so that the language can be analyzed in a wider range of

applications. The programs represent for arithmetic computations, sorting

algorithms, and graphic rendering. Maclaurin calculation of ex (up to five

hundred terms), and scalar dot product of two vectors (contain five million items

Parallel Programming Recipes, page 46/153

Spring 2010 - Computer Science - SJSU

in each vector) represent for arithmetic computations; Odd-even transposition

sort of sixteen thousand items of a data set represents for complex algorithms;

and Rendering graphics simulation represent for graphics displacements. Run-

times of algorithms will be measured using time library in Microsoft Visual.

Each program will be compiled with and without enabling OpenMP. The run-

time with OpenMP enabled is the execution time of the multi-processor

simultaneously performing tasks, while the run-time without OpenMP is the

execution time of one processor performing the same tasks. These run-times are

used to calculate the speedup ratios of algorithms in parallel OpenMP. Speedup

ratio formula is the following:

Speedup Ratio =
TimeExecution Sequential

 timeExecution Core Dual - TimeExecution Sequential
*100

 Sequential
Execution time, s

Dual core –
Execution time, s

Speedup Ratio, %

Maclaurin Series,
ex of 500 terms

0.017 0.011 36.9

DotProduct of 2
vectors of 5
billion items

0.016 0.016 0.0 (no speed up)

Bubble Sort of
16,000 items

0.686 0.359 47.67

Graphic
Rendering of
10,000 items

1.124 1.126 -0.2 (no speed up)

Table 1: Speedup ratio of algorithms in parallel OpenMP

The execution time of these algorithms is relatively small (less than a second). In

order to obtain accurate run-time values for the experiments, each algorithm will

be executed in loops and the total run-time will depend on the number of loops.

The algorithm run-time is the average value of each loop. In addition, each

Parallel Programming Recipes, page 47/153

Spring 2010 - Computer Science - SJSU

program takes one command argument, argv, as a number of loop-backs at run-

time so that the total execution time of the programs can be controlled. The time

shown in Table 1 is the total execution time, where the loop-back factor is fixed

and is equal to one. See appendix A for setting up Visual C++ 2008 projects to

accept the command argument.

6.1.1. Maclaurin Series Calculation in OpenMP

Recall the Maclaurin Series of ex, the expression is the following:

ex = 1 + x + x2/2! + x3/3! + ... + xn/n!

The calculation of the series includes the calculation of each term, and the

sum of n terms. The terms’ calculations are independent from each other and

can be set to be simultaneously computed. In this experiment, the number of

terms, n, is set to be one thousand and the tasks to obtain these terms are

equally divided to two processors. Processor 0 calculates the first half of the

series in the sequence, and processor 1 calculates the second half. The results

from two processors will be sum up to obtain the final value of the series.

The following table will show implementation of Maclaurin Series ex using

OpenMP:

/* Here’s the OpenMP pragma that parallelizes the for-loop. */
/* This parallel construct has 4 private variables: */
/* 1) outer loop index “I” by default */
/* 2) inner loop index “j” by explicit declaration */
/* 3) “nfactorial_value” by explicit declaration */
/* 4) “nfactorial_base” by explicit declaration */
/* Schedule claude specify 2 chunks of 500 terms assigned */
/* statically to 2 processors. */
/* Reduction claude synchronized the results of processors */
/* and sum them up to the final result. */

Parallel Programming Recipes, page 48/153

Spring 2010 - Computer Science - SJSU

#pragma omp parallel for \
default(shared) private(I,j,nfactorial_value,nfactorial_base)\
schedule(static,chunk) \
reduction(+:sum)
 for (i=1; I < N; i++)
 {
 nfactorial_value = 1;
 nfactorial_base = 0;
 for(j = 1; j <= I; j++)
 {
 nfactorial_value *= j;
 if(nfactorial_value > 1000)
 {
 nfactorial_value /= 1000;
 nfactorial_base += 3;
 }
 }
 sum = sum + pow(x,i) / (nfactorial_value *
 (float)pow(10.0,nfactorial_base));
 } //end of parallel region and sum holds the result of e^x

Table 2: Implementation of Maclaurin Series of ex using OpenMP

6.1.2. Dot-Product of Two Vectors in OpenMP

Let A and B are the vectors of size n; and the scalar dot product is S.

S = A1*B1 + A2*B2 + … + An*Bn

Like Maclaurin Series, calculations of terms in dot product are independent

and can be set to be simultaneously computed. The final sum of n products

can be obtained by using OpenMP barrier. In this experiment, vectors A and

B have the size of five million coordinates.

The OpenMP program has chopped the dynamic arrays A and B into chunks

of five hundred items of data. Processors 0 and 1 will be assigned to compute

each five hundred chunk at a time, and the sum S will be synchronized

between two processors every five hundred chunk of data of each processor.

In other words, each processor will sum up five hundred products in a chunk

Parallel Programming Recipes, page 49/153

Spring 2010 - Computer Science - SJSU

and then OpenMP’s barriers will sum up the results so far from the processors

every two chunks (one thousand items) of data.

The following table will show implementation of Scalar Dot Product of two

vectors using OpenMP:

/* Here’s the OpenMP pragma that parallelizes the for-loop. */
/* This parallel construct has 1 private variable: */
/* 1) outer loop index “I” by default */
/* Schedule claude specify chunks of 500 terms assigned */
/* statically to 2 processors. */
/* Reduction claude synchronized the results of processors */
/* and sum them up to the final result. */

#pragma omp parallel for private(i) schedule(static,chunk)
reduction(+:DotProduct_Val, DotProduct_Pow)
for (i=0; I < MAXITEMS; i++)
{
 long temp = A[i] * B[i];
 if(DotProduct_Pow == 0)
 {
 DotProduct_V = DotProduct_V + temp;
 if(DotProduct_V > BILLION)
 {
 DotProduct_V = DotProduct_V/BILLION;
 DotProduct_P = DotProduct_P + 9;
 }
 }
 else if(DotProduct_P >= 9)// DotProduct_P >= 9
 {
 DotProduct_V = DotProduct_V + temp/DotProduct_P;
 if(DotProduct_V > BILLION)
 {
 DotProduct_V = DotProduct_V/BILLION;
 DotProduct_P = DotProduct_P + 9;
 }
 }
} //end of parallel region. DotProduct_V holds the scalar value
//of dot product of 2 vectors and DotProduct_P holds its power

Table 3: Implementation of Dot Product in OpenMP

6.1.3. Bubble Sort in OpenMP

Unlike the Maclaurin Series algorithm, Odd-Even Transposition allows the

OpenMP’s for directive to perform parallelism in some blocks and single

Parallel Programming Recipes, page 50/153

Spring 2010 - Computer Science - SJSU

execution in others. The following implementation is for a system of two

processors (P0 and P1). The data set has a large number of items, i.e.: sixteen

thousands of items and items are out of order. The data set is evenly divided

into two halves. The first half of data is assigned to the first processor (P0)

and the second half is assigned to the second processor (P1). Each processor

then performs sorting its chunk of data within the for-directive. After sorting

the chunks of data, each chunk will be split into two portions, e.g.: max and

min portions.

During odd iteration, the combination of the max portion data of processor P0

and the min portion of its right neighbor, P1, will be sorted by processor P0

and then P0 keeps the min portion of the sorted data and gives the max portion

to P1. Each processor again performs sorting its chunk of data.

During even iteration, the combination of min portion of P1 and the max

portion of its left neighbor, P0, is sorted by processor P1 and then P1 keeps the

max portion of sorted data and gives the min portion to P0. Each processor

again sorts its data. The combination of the data chunks from P0 and P1 in

that order will be sorted after two iterations.

The following is the illustrated algorithm with the set of twelve items of

unsorted data:

Parallel Programming Recipes, page 51/153

Spring 2010 - Computer Science - SJSU

60 11 80 99 0 6

0 6 11 60 80 99

3 1 2 5 4 22

1 2 3 4 5 22

60 80 99 1 2 3

1 2 3 60 80 99

0 6 11 1 2 3

0 1 2 3 6 11

60 80 99 4 5 22

4 5 22 60 80 99

3 6 11 4 5 22

3 4 5 6 11 22

0 1 2 3 4 5 6 11 22 60 80 99

60 11 80 99 0 6 3 1 2 5 4 22

Unsorted data S:

Divide data S into 2 chunks of
data, S0 and S1, and assign them
to processors P0 and P1 each

Each processor performs sorting its data

First iteration:
Processor P0 combines its max
half with its right neighbor’s min
half.

P0 performs sort on data

P0 then takes the half min,
and gives the half max to its
right neighbor

Each processor performs sorting its data

Second iteration:
Processor P1 combines its min
half with its left neighbor’s max
half.

P1 performs sort on data

P1 then takes the half max,
and gives the half min to its
left neighbor

0 1 2 3 4 5 6 11 22 60 80 99

Combine the chunks of data from P0 and P1. Data S is sorted

Figure 9: Odd-Even Transposition or Parallel Bubble Sort algorithm

Parallel Programming Recipes, page 52/153

Spring 2010 - Computer Science - SJSU

6.1.4. Graphics Rendering in OpenMP

The graphics rendering algorithm does not form fit the scope of OpenMP

because OpenMP does not support OpenGL. In this experiment, “print a line

of characters” is used to simulate the pixels painted on the screen. The goal is

to compare the execution time of the same task when using multi processor

and single processor.

The implementation deploys the for loop and the for directive to display ten

thousand lines of text. Although two processors execute simultaneously, they

both share the same resource stdout. The execution time of the multi-

processor has no difference compared to the same program running on a

single processor.

6.2. MPI:

MPI stands for message passing interface. It is a portable message-passing

standard that facilitates the implementation of parallel applications and libraries.

It is used for communications in parallel computers, clusters, and heterogeneous

networks. It is widely supported by many hardware vendors and widely used by

academic researchers, government laboratories, and industry. MPI not only

performs message passing from one process to another, but also synchronizes

processes, scatters data across a processes, and sums numbers distributed among

a collection of processes.

Parallel Programming Recipes, page 53/153

Spring 2010 - Computer Science - SJSU

The same small programs of Maclaurin Series, dot product of two vectors,

parallel bubble sort, and graphic rendering will be implemented in MPI so that

the performance and implementation cost of each program can be compared.

In these tests, MPI is used in the communication between two processors in a

local machine. Like OpenMP, the algorithm of MPI programs will divide the

work evenly among two processors in 64-bit Windows Vista. Processor 0 has

the responsibility to divide work evenly to itself and to processor 1. It then

concludes and merges the final result from itself and from processor 1.

6.2.1. Maclaurin Series Calculation in MPI

The total number of terms in Maclaurin Series program in MPI should be the

same as the number of terms in the OpenMP program, one thousand terms.

Each processor will calculate five hundred terms and sum them up. The final

result will be the sum of the results from all processors.

Processor 1 calculates the second five-hundred terms of the series and sums

them up. It then sends the result to processor 0.

Processor 0 calculates the first five hundred terms of Maclaurin Series and

sums them up. Processor 0 then waits for the result from processor 1 to

makes a final sum of the results.

Parallel Programming Recipes, page 54/153

Spring 2010 - Computer Science - SJSU

6.2.2. Dot-Product of Two Vectors in MPI

Similar to Maclaurin Series calculation, the dot-product of two vectors of size

n will be the sum of n products of each dimension of the two vectors. The

work is evenly divided among two processors, P0 and P1.

Processor 1 calculates the second halve terms, n/2, of the dot-product of two

vectors. It then sends the result to processor 0.

Processor 0 calculates the first halve terms, n/2, of the dot-product of two

vectors. Processor 0 then waits for the result from processor 1 to make a final

sum of the results.

6.2.3. Bubble Sort in MPI

Parallel bubble sort or odd-even-transposition will perform the exact

algorithm as explained in section 6.1.3 Appendix D(see Figure 9). The

algorithm can be described as the following.

A data set of size n will be evenly divided to two processors. Each owns an

n/2 subset of the data. Processors can perform serial bubble sort on their set

of data and then exchange a subset of its data to the other processor. The

synchronization among processors is determined by the odd or even iteration

of the loop through the odd or even of processor’s ID.

Parallel Programming Recipes, page 55/153

Spring 2010 - Computer Science - SJSU

In the first iteration (or even iteration) processors P0 and P1 both sort their

data sets. Then, processor P0 performs a send operation of its half-max-data

to processor P1 using MPI_Send. Processor P1 receives data from P0, using

MPI_Rec, and then performs sequential bubble sort on the half-max-data from

the left-neighbor with its own half-min-data. P1 then returns the half-min-

data from the sorted buffer to processor P0.

In the second iteration (or odd iteration) again both processors sort their data

sets. Then, processor P1 performs a send operation of its half-min-data to

processor P0. Processor P0 performs a sequential bubble sort on the half-

min-data from the right neighbor and its own half-max-data. It then returns

the half-max-data from the sorted buffer to processor P1.

Data of size n is sorted after two iterations.

6.2.4. Graphics Rendering in MPI

In a manner similar to the OpenMP program, graphics rendering in MPI will

be simulated by printing characters to the computer screen. In this test, MPI

performs the communication between processors within the same computer.

Even though the print out work is divided evenly among processors, the

shared standard output blocks the speedup of processors. In other words, each

processor is blocked when the other processor is using standard output to

print. The result of the MPI test program shows that the multiprocessor does

Parallel Programming Recipes, page 56/153

Spring 2010 - Computer Science - SJSU

not speed up the process of printing characters. However, in a system of two

computers which has two different standard outputs the speed would be

expected to improve.

6.3. OpenCL:

OpenCL, or Open Compute Language, is the framework for writing programs

that execute across heterogeneous platforms including CPUs and GPUs, and

other processors. It is an API designed for massively parallel processing using

task-based and data-based parallelism.

OpenCL involves running the program on two different platforms – a host system

that includes one or more CPUs to perform tasks, and a device system includes

one or more OpenCL-enabled Nvidia GPUs. Nvidia devices are not only for

rendering graphics, but also for powerful arithmetic engines, which can run

thousands of lightweight threads in parallel. This capability makes them well

suited to computations that leverage parallel execution. In order to use OpenCL

efficiently, it’s important to understand the differences in design between host

and device systems in a server.

In a host system, the execution pipelines can support a limited number of

concurrent threads. Four quad-core processors today can support sixteen threads

in parallel or thirty-two threads if the CPUs support Hyper-Threading. By

comparison, the smallest execution unit of parallelism on a GPU device, called a

Parallel Programming Recipes, page 57/153

Spring 2010 - Computer Science - SJSU

warp, composes thirty-two threads. All Nvidia GPUs can support 768 active

threads per multiprocessor, and some GPUs support 1024 active threads per

multiprocessor. On devices that have thirty multiprocessors, i.e.: Nvidia®

GeForce® GTX 280, will provide more than thirty-thousand active threads.

In addition, threads on a CPU are generally heavyweight entities. The operating

system must swap threads on and off execution channels to provide

multithreading operations. Context switches, when two threads are switched, are

slow and expensive. By comparison, GPUs run extremely lightweight threads.

In a typical system, hundreds of threads are queued up in warps. If the GPU

processor must wait on a warp of threads, it simply begins executing tasks on

another warp. There are no registers and state swapping between GPU threads.

Resources stay allocated to a thread until the thread completes its execution.

Both host system and device have Random Access Memory (RAM). On the host

system, RAM is equally accessible to all code. On the device, RAM is divided

virtually and physically into different types, each of which has a special purpose

and fulfills different needs (see Figure 10). Memory optimizations are the most

important factor for performance in OpenCL.

Parallel Programming Recipes, page 58/153

Spring 2010 - Computer Science - SJSU

Figure 10: Device memory Architecture

The data transfer rate between device memory and the GPU is much higher (for

example, Nvidia GeForce GTX 280 has data rate of 141 GBps) than the rate

between host memory and device memory (for example, PCI Express X16 Gen2

has data rate of 8GBps). For the best performance on an application, it is

important to minimize data transfer between host and device, and maximize the

computations within the device.

The following are the implementation and performance analysis for Dot Product,

Bubble Sort, and Graphics Rendering programs in OpenCL.

6.3.1. Dot-Product of Two Vectors in OpenCL

Similarly to other languages, the dot-product in OpenCL is a scalar result of

two vectors of size n (n = 5,000,000). It is the sum of n products of each

Parallel Programming Recipes, page 59/153

Spring 2010 - Computer Science - SJSU

dimension of the two vectors. The work is evenly divided among available

processors in GPU chip.

Although the GeForce 9200M GS chip has eight cores, each core has much

lower clock rate than the CPU clock rate in the test system. The GPU has the

clock rate of 550 MHz while the Intel Core 2 Duo has the clock rate of 2 GHz.

This factor explains the longer execution time in OpenCL other languages and

even in sequential program.

In addition, the maximum data transfer size between host and device is

33,554,432 bytes (this value was obtained from the execution of the

oclBandwidthTest program from Nvidia sample codes.) This maximum data

size has limited the size of the calculated vectors. This limit explains the

maximum vector size in OpenCL program. The vector size cannot be greater

than ten millions.

6.3.2. Bubble Sort in OpenCL

Knowing the GPU chip has eight cores, the Odd-Even Transposition

algorithm used eight processes instead of two. The data set is divided into

eight subsets in GPU memory. The algorithm of this experiment is as same as

described in section 5.1.3, where number of processor p (= 8), and the size of

the unsorted data is n (= 4,000).

Parallel Programming Recipes, page 60/153

Spring 2010 - Computer Science - SJSU

The greater number of processors used, the smaller size of chunks of data can

be assigned to processes, and therefore, the quicker the processes can perform

the sequential sorts in each iteration. After eight iterations, the data set is

sorted. The outcome of this experiment is shown in section 7.1.3.2.

6.3.3. Graphics Rendering in OpenCL

In this program, OpenCL and OpenGL are used to display animation graphics.

OpenCL was used to compute the next positions, color and light of pixels in a

graphical rotating object. The result positions were fed into OpenGL buffer to

display the next frame of the graphics. The quicker the next graphical frame

was fed to OpenGL buffer the faster the movement of the object. In this

program, the performance metric is the time necessary for the animation

graphics to complete one cycle of rotation. The performances of the

operations with and without OpenCL computation will be compared. The

graphics with OpenCL rotates a lot faster than the graphics without OpenCL.

The result of this experiment is described in section 7.1.3.3.

Parallel Programming Recipes, page 61/153

Spring 2010 - Computer Science - SJSU

7. Experiments

In this chapter, experiment measurements are collected and performance values of

different languages are compared. The experiment variables are the performance

of the languages in different algorithms; the implementation time of each

program; and the complexity of the languages.

7.1. Performance Analysis:

First, the execution time of each language written for each aforementioned

algorithm is carefully examined. The goals of the experiments are to collect the

data of algorithm performance versus the data size; discuss the performance

speed up factors on particular prototypes; and compare performance across

languages.

In general, the performance is measured based on the Visual C++ clock across

languages. MPI has its own clock that returns the same value of time from

different threads. In MPI programs, both clocks are observed, but the result is

based on the MPI clock. In the graphics program that used OpenGL, the

performance was measured differently. In animation graphics, performance is

measured by the time to complete one cycle of animation. More detail about

graphics performance measuring will be discussed in section 7.1.1.3.

Parallel Programming Recipes, page 62/153

Spring 2010 - Computer Science - SJSU

7.1.1. OpenMP:

In general, OpenMP programs run with the maximum usage of the CPU

resources. The performance optimizations are automatically set by the

compiler when programs are built. Figure 11 was captured when running

OpenMP’s Dot-product of vectors which have the size of fifty million

dimensions and the execution was looped back one thousand times. This

figure is used as the sample of efficiency of CPU usage when running the

OpenMP program.

Figure 11: CPU usage 100% when running parallel OpenMP program

7.1.1.1.OpenMP – Dot-Product Analysis.

In dot-product of two vectors, the execution time increases with the vector

size (see Table 4 and Figure 12). From the experiments, the vector’s size

cannot exceed four hundred million dimensions. The system hanged when the

Parallel Programming Recipes, page 63/153

Spring 2010 - Computer Science - SJSU

vector size was five hundred million dimensions. Experiments also showed

that the larger a vector size is used in the computation, the more memory

resource is consumed and the less optimal CPU usage (see Figure 13 and

Figure 14).

Observing data in Table 5, we see that OpenMP does not improve the

performance of dot products over the sequential program when the vector size

is less than twenty million dimensions. The speed up ratio increases

significantly when the vector size is twenty million dimensions and the

vectors are segmented into chunks of two thousand dimensions. Chunks are

segments of the vectors’ data that are assigned to one processor at a given

time for the computation. The speedup ratios from Table 5 are not the

maximum values. These ratios are expected to be further improved at each

vector size by changing the chunk size. However, this work is not covered in

this project. Table 5 proves that OpenMP does increase the performance

compared to sequential dot product programs.

Vector size, dimensions Execution time, s
5,000,000 0.011
8,000,000 0.016
10,000,000 0.016
20,000,000 0.032
100,000,000 0.187
400,000,000 0.813

Table 4: Dot Product of Two Vectors in OpenMP – Execution Time versus Vectors’ Sizes

Parallel Programming Recipes, page 64/153

Spring 2010 - Computer Science - SJSU

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

5M 8M 10M 20M

Execution Time in
Seconds

Figure 12: Dot Product Program in OpenMP – Execution Time versus Vectors’ Sizes

Figure 13: CPU & memory usage when vector size is 100M (left) and 200M (right)

Figure 14: CPU & memory usage when vector size is 300M (left) and 400M (right)

Parallel Programming Recipes, page 65/153

Spring 2010 - Computer Science - SJSU

Data
size

Chunk
size

Execution time, s
Without OpenMP

Execution time, s
With OpenMP

Speed up, %

5M 500 0.011 0.011 0.00
10M 1K 0.016 0.016 0.00
20M 2K 0.047 0.032 31.91
100M 10K 0.219 0.187 14.61
200M 20K 0.422 0.358 15.17
400M 40K Varied: 0.874-0.905 Varied: 0.702-0.936 Not specified
500M 40K System hang System hang Not specified
Table 5: Performance speed up of OpenMP compare to sequential dot product program

7.1.1.2.OpenMP – Odd_Even Transposition Analysis.

In this program, the unsorted data is divided evenly to processors. This

program was written for two processors and each processor owns half a chunk

of data. Obviously, the execution time for the sorting increases with the size

of data (see Table 6 and Figure 15).

The maximum data size of this experiment is one hundred twenty thousand

items. The size was arbitrary selected due to the limitation of the test time.

In order to measure the performance speed up ratios of OpenMP over a

sequential algorithm, the run time of odd-even transposition in OpenMP was

compared to that of the sequential bubble sort program. The results of

experiments are shown in Table 7. The parallel algorithm in OpenMP has

significantly improved the performance of the sort operation, especially if the

unsorted data has a large size; i.e.: eight thousand items.

Parallel Programming Recipes, page 66/153

Spring 2010 - Computer Science - SJSU

Data size Execution time, s
80 0.000

4,000 0.031
8,000 0.093

16,000 0.390
40,000 2.434
60,000 5.491
80,000 9.672
100,000 15.032
120,000 21.568

Table 6: Odd-Even Transposition in OpenMP – Execution Time versus Data Size

0

5

10

15

20

25

4000 1600
0

6000
0

1E+05

Execution Time in
Seconds

Figure 15: Odd-Even Transposition in OpenMP – Execution Time versus Data Size

Data size Execution time, s
Sequential bubble
sort

Execution time, s
Odd-even
transposition

Speed up ratio,
%

80 0.000 0.000 0.00
4K 0.047 0.031 34.04
8K 0.156 0.093 40.38
16K 0.592 0.390 24.12
40K 3.759 2.434 35.25
60K 8.409 5.491 34.70
80K 14.883 9.672 35.01
100K 23.464 15.032 35.94
120K 33.841 21.568 36.27

Table 7: Performance speed up of Odd-even Transposition in OpenMP over sequential bubble sort

Parallel Programming Recipes, page 67/153

Spring 2010 - Computer Science - SJSU

7.1.1.3.OpenMP – Graphics Rendering Analysis.

In general, graphics programs use OpenGL to render images. The idea of

using multi core and parallel computing is to gain more power computing for

the pixels positions, lights, colors and shades so that the graphics can be close

to reality. In particular, the animation graphics needs more computing power

to constantly fill in the pixels’ attributes of the next graphic frame. The

quicker the information of the next frame is filled, the quicker the next frame

can be displayed.

Unfortunately, OpenMP does not have an easy way to support multiple

threads that can concurrently fill into the GL buffer. A simulation algorithm

was used to test the performance of multi processes on displayed graphics.

The detail of the simulation algorithm is described in section 5.1.4.

The simulation of the graphics rendering is the printing of a string line. The

performance measurement is the time necessary to print a number of lines to

screen. We hope this simulation proves that each process will print half the

amount of lines that need to be printed. Therefore, the amount of time to

print will be cut in half. However, the flaw of this simulation is that each

thread cannot simultaneously access the standard input/output (I/O) to print

strings, while the OpenCL/OpenGL allows multi cores to simultaneously fill

in the vertex buffer object (VBO) for GL.

Parallel Programming Recipes, page 68/153

Spring 2010 - Computer Science - SJSU

The results of the experiment are recorded in Table 8 and Figure 16. In fact,

the performance of OpenMP program is worse than the sequential program.

Perhaps the mutual exclusion in the low level of I/O adds more delay in

OpenMP program.

Number of lines printed Execution time, s
(sequential program)

Execution time, s
(OpenMP program)

10,000 2.091 2.55
80,000 15.366 20.592
100,000 19.578 24.944
120,000 23.509 29.874
Table 8: Graphics Rendering Simulation in OpenMP – Execution Time versus Data Size

0

5

10

15

20

25

10K 80K 100K 120K

Execution Time in
Seconds

Figure 16: Graphics Rendering Simulation in OpenMP – Execution Time versus Data Size

7.1.1.4. OpenMP – Eight core test results

The test algorithms, dot-product, parallel sort, are used to test an eight core

Windows 7 machine. The applications can directly run on Windows 7 with

full support of OpenMP’s API.

Parallel Programming Recipes, page 69/153

Spring 2010 - Computer Science - SJSU

The tests show the significant benefits of OpenMP in arithmetic computation

when the number of cores are increased (see Figure 17 and Figure 18).

Observation from Figure 18, the performance increase from one-core to two-

core is greater than that from two-core to four-core and the performance

increase of the two-core to four-core is greater than that from four-core to

eight-core. This result agrees that OpenMP or shared memory system in

general is not scalable.

Figure 17: Output of dot-product program on the eight-core Windows 7 machine

Parallel Programming Recipes, page 70/153

Spring 2010 - Computer Science - SJSU

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1-core 2-core 4-core 8-core

Computation
Time, s

Figure 18: Performance increase with the number of cores in OpenMP-Dot-Product program

7.1.2. MPI:

MPI programs can be optimized by programmers to gain efficiency of CPU

usage. The guidelines for effective MPI programming are to minimize the

number of messages as well as the size of messages across processes, evenly

divide tasks among processes and maximize the computational tasks per data

set.

7.1.2.1.MPI – Dot Product Analysis.

Unlike the OpenMP program, the MPI program splits the vectors into two

chunks each. Processor P0 plays a master role and processor P1 plays a slave

role. P0 sends the second half of each vector to P1 to compute the second

half portion of the dot product. P0 itself computes the first half of the dot

product and then waits for the result from P1 to make the final sum for the

scalar value of the dot product of two vectors.

Parallel Programming Recipes, page 71/153

Spring 2010 - Computer Science - SJSU

There are two different clocks used to measure the performance of MPI

programs. They are C++ clock and MPI clock. The run time measurements

across languages are the time each language runs the parallel computation (not

including overhead time). In MPI programs, it is impossible to exclude the

overhead using the C++ clock. Also, the C++ clock shows different values of

time from different processes in a same program, while the MPI clock does

not. Therefore, the MPI clock is used to measure the performance instead of

the C++ clock. Table 9 contains the execution time of a program with

different clocks from different processes.

Overall, the performance of MPI in the dot product program is much slower

than that of the sequential algorithm. MPI-send and –receive functions used

in this program contain a synchronization mechanism, such that the program

will wait for the complete send and receive of data before proceeding to the

next computations. The delay caused by the synchronization between send

and receive increases significantly when the vector size increases. Table 10

illustrates this point.

The arithmetic calculation, such as dot product program, does not seem to be

beneficial in MPI, especially when the vector size is large. MPI is not

recommended for this type of computation.

Parallel Programming Recipes, page 72/153

Spring 2010 - Computer Science - SJSU

Data size Thread0 run
time, s
(C++ clock)

Thread1 run
time, s
(C++ clock)

Thread0 run
time, s
(MPI clock)

Thread1 run
time, s
(MPI clock)

5,000,000 0.156 0.156 0.14 0.14
8,000,000 0.234 0.234 0.27 0.27
10,000,000 0.432 0.452 0.40 0.40
20,000,000 0.639 0.655 0.59 0.59
Table 9: Dot Product of Two Vectors in MPI – Execution Time versus Vectors’ Size

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

5M 8M 10M 20M

Execution Time in
Seconds (using MPI
clock)

Figure 19: Dot Product of Two Vectors in MPI – Execution Time versus Vectors size

Data size Execution time, s
(MPI clock)

Send time, s
(from P0)

Receive time, s
(from P1)

5,000,000 0.14 0.07 0.13
8,000,000 0.27 0.14 0.27
10,000,000 0.40 0.22 0.39
20,000,000 0.59 0.32 0.57

Table 10: MPI Dot Product – Time Analysis

7.1.2.2.MPI – Odd-Even Transposition Analysis.

Odd-Even Transposition program in MPI increases the performance

significantly compared to sequential bubble sort, and even OpenMP program.

The delay time due to communication APIs seems insignificant because the

size of the data sent is relatively small. Table 11 and Figure 20 record the

Parallel Programming Recipes, page 73/153

Spring 2010 - Computer Science - SJSU

execution time and the data size values are proportional. Figure 21 shows the

samples of commands to run MPI program and the outputs.

Table 12 computes the performance speed up ratios of parallel sort in MPI

compared to that of the sequential bubble sort and the parallel sort in

OpenMP. The results from Table 12 shows that MPI provides good

performance for those algorithms that have a small set of data transferred, and

the computation tasks for each process are rather complex.

MPI is a good candidate for the complex parallel programs with relatively

small chunks of data, such as Odd-even transposition algorithm in data range

of hundreds of thousands of items.

Data size Thread0 run
time, s
(C++ clock)

Thread1 run
time, s
(C++ clock)

Thread0 run
time, s
(MPI clock)

Thread1 run
time, s
(MPI clock)

4,000 0.046 0.062 0.02 0.02
8,000 0.093 0.109 0.07 0.07
16,000 0.297 0.312 0.27 0.27
80,000 7.010 7.016 6.89 6.98
100,000 11.029 11.029 11.01 11.01
120,000 16.021 16.021 16.00 16.00

Table 11: Odd-Even Transposition in MPI – Execution Time versus Data Size

Parallel Programming Recipes, page 74/153

Spring 2010 - Computer Science - SJSU

0

5

10

15

20

25

80 3200 1600
0

1E+05

Execution Time in
Seconds

Figure 20: Odd-Even Transposition in MPI – Execution Time versus Data Size

Figure 21: Data output of MPI running Parallel Sort program

Data
size

Run time, s
(sequential)

Run time, s
(OpenMP)

Run time, s
(MPI)

Speed up, %
(MPI/sequ.)

Speed up, %
(MPI/OMP)

4K 0.046 0.046 0.02 56.52 56.52
8K 0.234 0.125 0.07 70.09 44.00

Parallel Programming Recipes, page 75/153

Spring 2010 - Computer Science - SJSU

16K 0.686 0.359 0.27 60.64 24.79
80K 15.101 8.373 6.98 53.78 16.63
100K 23.318 13.090 11.01 52.78 15.89
120K 33.612 20.121 16.00 52.40 20.48

Table 12: Speed up ratios of Odd-Even Transposition in MPI

7.1.2.3.MPI – Graphics Rendering Analysis.

Like OpenMP, a graphics simulation program is applied for MPI. The detail

algorithm is described in section 5.1.4. A printing string program is used to

simulate a graphics rendering. The simulation algorithm has the same flaw as

described in section 7.1.1.3.

Table 13 and Figure 22 record the results of experiment of graphics

simulation. The performance of the graphics simulation in MPI is much better

than that of OpenMP. Observing the output screens, we see that the MPI

program tends to allow a process occupying the standard I/O longer before

other process can get access to I/O while in OpenMP, processes take turns to

access the I/O more frequently.

Number of
printed
lines

Runtime, s
(sequential
program)

Thread0
runtime, s
(C++ clck)

Thread1
runtime, s
(C++ clck)

Thread0
runtime, s
(MPI clck)

Thread1
runtime, s
(MPI clck)

10K 2.091 1.420 1.435 0.03 0.04
80K 15.366 11.232 11.232 0.21 0.28
100K 19.578 14.258 14.258 0.30 0.33
120K 23.509 17.050 17.050 0.35 0.39
Table 13: Graphics Rendering Simulation in MPI – Execution Time versus Data Size

Parallel Programming Recipes, page 76/153

Spring 2010 - Computer Science - SJSU

0
2
4
6
8

10
12
14
16
18

10K 80K 100K 120K

Execution Time in
Seconds

Figure 22: Graphics Rendering Simulation in MPI – Execution Time versus Data Size

7.1.3. OpenCL:

Although OpenCL has advantages of multi core power in computations, it has

limitations in the size of processing data. In other words, to optimize the

performance of the OpenCL program, the data transferred between host and

device should be minimized, and the amount of tasks for each kernel should

be maximized.

Throughout the experiments, OpenCL programs need extra time to build the

kernel program. Even though this time causes long delays when running

experiment programs, it is excluded from the execution time. This is because

in the reality of software production, this delay can be eliminated by using a

binary kernel program.

Parallel Programming Recipes, page 77/153

Spring 2010 - Computer Science - SJSU

On the other hand, OpenCL is not capable of transferring a large chunk of

data from host to device. This limitation depends on the version of the GPU

chip. The GPU chip in these experiments provides the communication

channel between host and device with page-able memory of about thirty three

million bytes and the bandwidth of about one thousand kilobytes per second.

This constraint has limited the data size of the dot-product computation and

the parallel sort operation significantly compared to other languages.

7.1.3.1.OpenCL – Dot-Product Analysis.

In OpenCL experiments, the vector size of the dot-product computation

cannot exceed ten million dimensions. This is the limitation of the maximum

size of the data transferred between host and device.

Table 14 provides the time to build the kernel program; the total run time of

the program (excluding the kernel program build time); and the parallel

kernels run time versus the data size. Total run time includes the execution

time of the kernels, results from the kernels being read back to host and the

time for host to sum up the result of the scalar value of the dot-product.

The total run time of the OpenCL program is greater than that of the

sequential program. One reason for this delay is because the program uses the

device’s global memory. The tradeoff of using global memory is that the

Parallel Programming Recipes, page 78/153

Spring 2010 - Computer Science - SJSU

memory space is large but slow. However, a strategy for reducing global

memory traffic is not in the scope of this project.

Data size Kernel program
built time, s

Total run time,
s

Parallel kernels run
time, s

5,000,000 0.328 0.873 0.046
8,000,000 0.328 1.388 0.078
10,000,000 0.312 1.653 0.093
Table 14: Dot Product of Two Vectors in OpenCL – Execution Time versus Vectors Size

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

5M 8M 10M 20M

Execution Time in
Seconds

Figure 23: Dot Product of Two Vectors in OpenCL – Execution Time versus Vectors Size

7.1.3.2.OpenCL – Odd-Even Transposition Analysis.

In order to take advantage of eight cores in a GPU, the experiment uses the

maximum of eight cores. Each core has a maximum of five hundred slots of

integers and therefore the maximum number of data to be sorted is four

thousand integers. Table 15 collects the build time of the kernel program, the

total run time (including the kernel runtime and copying the sorted data from

device to host), and the kernel runtime versus data size.

Parallel Programming Recipes, page 79/153

Spring 2010 - Computer Science - SJSU

In general, the kernel program build time does not change when the data size

is changed. This time is necessary for the compiler to build the kernel binary

program. It does not depend on the size of the data, but on the CPU resource.

The total runtime in this experiment does not show any better performance

than sequential bubble sort. However, the kernel runtime shows significantly

improved performance. If OpenCL did not have the bottleneck performance

in copying data between host and device, then the kernel runtime of OpenCL

would be the best performance in parallel sort algorithm.

Data size Kernel program
build time, s

Total runtime, s Parallel kernels
runtime, s

512 0.374 0.031 0.000
800 0.375 0.093 0.000
2400 0.375 0.686 0.008
3200 0.390 1.201 0.008
4000 0.374 1.888 0.009

Table 15: Odd-Even Transposition in OpenCL – Execution Time versus Data Size

0

5

10

15

20

25

80 3200 1600
0

1E+05

Execution Time in
Seconds

Figure 24: Odd-Even Transposition in OpenCL – Execution Time versus Data Size

7.1.3.3.OpenCL - Graphics Rendering Analysis.

Parallel Programming Recipes, page 80/153

Spring 2010 - Computer Science - SJSU

The graphics rendering program is obviously favorable to OpenCL because

OpenCL supports the OpenGL API and the specifications of both languages are

controlled by the same Khronos group.

An implementation of a graphical output to illustrate the performance benefit of

OpenCL is difficult and not in the scope of this project. In this experiment, the

OpenCL program uses a pre-processing graphics API provided by Nvidia’s

library. The kernel program of OpenCL computes the post-processing of the

graphics. The results computed by kernels are simultaneously filled into the

vertex buffer object (VBO) for OpenGL. As soon as the GL buffer is filled,

OpenGL swaps buffers to produce the next frame of the graphics. Therefore, the

duration of a complete graphics animation cycle will represent the performance

of the program. Figure 25 shows frame samples of the experiment output.

Also, this test program has a built-in switch that can switch to sequential

computing post-processing graphics. Thus, the performance of OpenCL and non

OpenCL can be measured and compared.

GLUT pre-built models
sub-API

Duration of complete
animation cycle, s
(sequential/non OpenCL)

Duration of complete
animation cycle, s
(OpenCL)

glutSolidTorus 60 30
glutSolidTeapot 65 30
Stars 5

Parallel Programming Recipes, page 81/153

Spring 2010 - Computer Science - SJSU

Figure 25: glutSolidTorus animation demonstration

Figure 26: glutSolidTeapot animation demontration

7.2. Performance Comparison across Languages:

Parallel Programming Recipes, page 82/153

Spring 2010 - Computer Science - SJSU

Table 16 is the summary of performance comparisons across languages. In arithmetic

computations, the OpenMP program seems to be the best candidate for performance

(see

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

5M 8M 10M 20M

Sequential

OpenMP

MPI

OpenCL

Figure 27). On the other hand, the MPI program seems to have the best

performance for sorting (see Figure 28). Although OpenCL is a most complex

language, its superior performance on graphics makes it the best candidate for

graphics applications.

Algorithms Test
Scenario

Single
Core

OpenMP,
Dual core

MPI OpenCL

Dot Product
of vectors
size 5M

Algorithm
Run Time, s

0.015 0.015 0.13 0.046

Vectors size
8M

 0.016 0.015 0.23 0.078

Vectors size
10M

Algorithm
Run Time, s

0.016 0.016 0.25 0.093

Vectors size
20M

 0.047 0.031 0.72 out of rsc

Bubble Sort
2400 items

 0.035 0.020 0.01 0.686

Parallel Programming Recipes, page 83/153

Spring 2010 - Computer Science - SJSU

.Bubble Sort
3200 items

 0.061 0.043 0.01 1.201

Bubble Sort
4K items

 0.095 0.055 0.02 1.888

Bubble Sort
8K items

 0.234 0.125 0.08 out of rsc

Bubble Sort
16K items

Algorithm
Run Time, s

0.686

0.359 0.26

Bubble Sort
80K items

Algorithm
Run Time, s

15.101 8.373 6.87

Bubble Sort
100K items

Algorithm
Run Time, s

23.318 13.090 10.86

Bubble Sort
120K items

Algorithm
Run Time, s

33.612 20.121 15.71

Pre-
processing
animation
graphics,
from Nvidia

60 30

Table 16: Performance Comparison

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

5M 8M 10M 20M

Sequential

OpenMP

MPI

OpenCL

Figure 27: Execution Time in Seconds of Languages in Dot Product Algorithm

Parallel Programming Recipes, page 84/153

Spring 2010 - Computer Science - SJSU

0

5

10

15

20

25

30

35

40

16000 80000 100000 120000

Sequential

OpenMP

MPI

Figure 28: Performance (in Seconds) of Languages in Bubble Sort Algorithm (Larger Data Set)

7.3. Implementation Cost:

In this section, the specifications of the languages, the languages’ library setting,

and the time necessary for programmers to learn and create programs will be

carefully reviewed and compared.

The compilation setting for a language is used to measure the complexity of the

language. This factor reflects the willingness to use the language and the

complicated environment of the language. In this aspect, OpenMP has the most

advantages because it is embedded in Microsoft Visual Studio 2008, while other

languages have to be downloaded and installed. Users have to carefully select

Parallel Programming Recipes, page 85/153

Spring 2010 - Computer Science - SJSU

the correct version of software to their hardware system. Download time is

another complex factor that could cause the failure of the environment setting.

See 5.2.1 for more details of the download and installation processes. The

comparison values across languages are shown on the first row of Table 17.

Additionally, the number of steps in Visual Studio to setup a project with the

supported language is measured, and compared. See 5.2.1 for the measurement

values, and see the comparison values across languages on the second row of

Table 17.

The parallel structure of a language is also used to determine the complexity of a

language. See detail measurements in section 5.2.3 and the comparison values

across languages on the third row of Table 17.

The fourth through the eighth rows of Table 17 are values collected from the

languages’ specifications. Detailed calculations can be found in section 5.2.2

Finally, the implementation hours of the projects were recorded on the last three

rows of Table 17.

Data collected in Table 17 seem to be in favor of OpenMP. Except the graphics

program, this language has the least complexity and is the easiest to use.

 Sequential OpenMP MPI OpenCL

Parallel Programming Recipes, page 86/153

Spring 2010 - Computer Science - SJSU

Compiler/
environment
setup time

 0 1 minute
using
Visual
Studio 2008

1 3

Number of
steps to setup
a project

 0 2 6 11

Parallel
structure
complexity

 0 1 2 3

API/ Library
complexity

Number of
directives

0 15 0 0

 Number of
clauses

0 8 0 0

 Number of
constants and
handles

0 0 483 227

 Number of
Object
declarations

0 0 33 0

 Number of
routines

0 31 355 521

Programming
time, in hours

Dot-product
algorithm

1 2 8 16

 Odd-even
transposition

8 2 8 16

 Graphics
Redering

2 2
(simulation)

2
(simulation)

80

Table 17: Implementation Cost Comparison

8. Future Work

The goal of this project is to provide programmers patterns of solving problems in

parallel programming. This project analyzed only three categories of parallel

algorithms. In software world there are other well-known problems such as finite

state machine, circuits, graph-algorithms, etc. The more problems are analyzed

and documented the better information for programmers to design the real world

solutions.

Parallel Programming Recipes, page 87/153

Spring 2010 - Computer Science - SJSU

In addition, this project provides solutions using three different parallel

programming languages on Windows platform. In real world, programmers have

much wider range of languages and platforms to work on. The future work will

also be extended to these areas.

9. Conclusions

There are several categories that need to be carefully examined when designing a

parallel system. Depending on the hardware resources, the nature of the business,

the cost effectiveness, and engineering resources, the chosen parallel language

must be optimal for all factors. The following are a list of business models and

the recommended languages.

1. Quick and small business with no future extension: With this business model,

OpenMP should be considered for the parallel programming. OpenMP will be

quick to implement and provide good performance in shared memory system.

Parallel Programming Recipes, page 88/153

Spring 2010 - Computer Science - SJSU

Parallel algorithms like arithmetic computations are the best match for this

language.

2. Large systems in long term business and future expansion: This business type

has the expansion factor and a large size of parallelism. MPI should be the best

for this type of system. In particular, the parallel sort-like algorithms, which

require nodes to perform a large amount of tasks and very little communications

across processes, are the best candidate for this system.

3. Animation graphics, scientific modeling graphics: These types of applications

will need OpenCL to take advantage of OpenGL supports and the powerful multi

core of the GPU chips.

10. References

[1] Faculty of Computational & Cybernetics - University of Nizhni Novgorod (2006),
Introduction to Parallel Programming, URL
http://www.software.unn.ru/ccam/mskurs/ENG/HTML/cs338_pp_materials.htm

[2] Berkeley University of California (2009),
2009 Par Lap Boot Camp – Short Course on Parallel Programming,
URL http://parlab.eecs.berkeley.edu/bootcampagenda

[3] Blaise Barney, Lawrence Livermore National Laboratory (2009)
POSIX Thread Programming, UCRL-MI-133316,
URL https://computing.llnl.gov/tutorials/pthreads/

[4] Kayvon Fatahalian & Mike Houston,
A Closer Look at GPUs,
URL http://graphics.stanford.edu/~kayvonf/papers/fatahalianCACM.pdf

[5] Vasily Volkov & James Demmel,
Using GPUs to Accelerate Linear Algebra Routines,

Parallel Programming Recipes, page 89/153

Spring 2010 - Computer Science - SJSU

URL http://www.cs.berkeley.edu/~volkov/volkov08-parlab.pdf

[6] Wikipedia,
Shared Memory,
URL http://en.wikipedia.org/wiki/Shared_memory

[8] Timothy Mattson, Beverly Sanders, Berna Massingill, (2004)
Patterns for Parallel Programming,
Addison-Wesley Professional

[9] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry
Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf,
Samuel Webb Williams and Katherine A. Yelick
The Landscape of Parallel Computing Research: A View from Berkeley,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

[10] Timothy. G. Mattson, Beverly A. Sanders, and Berna L. Massingill,
Patterns for Parallel Programming,
Addison-Wesley, 2008

[11] Hagit Attiya, Jennifer Welch,
Distributed Computing, second edition,
Wiley-Interscience, 2004

[12] Kevin A. Huck, Oscar Hernandez, Van Bui, Sunita Chandrasekaran,
Barbara Chapman, Allen D. Malony, Lois Curfman McInnes, and Boyana Norris,
Capturing Performance Knowledge for Automated Analysis,
Austin, Texas, CS2008 November, 2008

[13] Jorge Luis Ortega Arjona,
Architectural Patterns for Parallel Programming – Models for Performance Estimation,
Department of Computer Science, University College London, November 2006

[14] Nathan R. Tallent, John M. Mellor-Crummey,
Effective Performance Measurement and analysis of Multithreaded Applications,
Rice University, PPOPP’s 09, February 14-18, 2009

[15] David W. Gohara,
Introduction to OpenCL
Center of Computational Biology, Washington University, 2009

[16] David B. Kirk, Wen-mei W. Hwu,
Programming Massively Parallel Processors,
Morgan Kaufmann, 2010

[17] Ryan Eccles, Deborah A. Stacey,
Understanding the Parallel Programmer,
University of Guelph, HPCS’ 06, 0-7695-2582-2/06, IEEE Xplore, 2006

Parallel Programming Recipes, page 90/153

Spring 2010 - Computer Science - SJSU

[18] Mathew J. Bridges, Neil Vachharajani, Yun Zhang, Thomas Jablin, David I. August,
Revisiting the Sequential Programming Model for Multi Core,
Computer Science of Princeton University, 1072-4451/07, IEEE Xplore, 2007

[19] Lorin Hochstein, Jeff Carver, Forrest Shull, Sima Asgari, Victor Basili, Jeffrey K.
Hollingsworth, Marvin V. Zelkowitz,
Parallel Programmer Productivity: A Case Study of Novice Parallel Programmers,
1-59593-061-2/05, IEEE Xplore, 2005

[20] Anwar Ghuloum, Eric Sprangle, Jesse Fang, Gansha Wu, Xin Zhou,
Ct: A Flexible Parallel Programming Model for Tera-scale architecture,
Intel Leap Ahead, 2007

[21] Hsin-Chu Chen, Alvin Lim, Nazir A. Warsi,
Multilevel master-slave parallel programming models,
Clark Atlanta University, DAAL-O3-G-92-0377, 2006

[22] Luis Moura E Silvay, Rajkumar Buyyaz,
Parallel Programming Models and Paradigms,
Monash Univerity, Melbourne, Australia 2000

[23] Michael J, Quynn,
Parallel Programming in C with MPI and OpenMP,
0-07-282256-2, McGraw-Hill, New York 2004

[24] Barbara Chapman, Gabriele Jost, Juud Van De Pas,
Using OpenMP: Portable Shared Memory Parallel Programming,
978-0-262-53302-7, Massachusetts Institute of Technology, 2008

[25] Clay Breshears,
The Art of Concurrency: A Thread Monkey’s Guide to Writing Parallel Applications,
978-0-596-52153-0, O’Reilly Media Inc, California 2009

[26] Ajit Singh, Jonathan Schaeffer, Duane Szafron,
Views on Template-Based Parallel Programming,
IBM Centre for Advanced Studies Conference, Toronto, Ontario, Canada, 1996

[27] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Abstraction and Reuse of Object-Oriented Designs,
Addison-Wesley, 1995

[28] G. Andrews, R.A. Olsson, M.A. Coffin, I. Elshoff, K. Nilson, T. Purdin, and G. Townsend,
An Overview of the SR Language and Implementation,

Parallel Programming Recipes, page 91/153

Spring 2010 - Computer Science - SJSU

AMC Trans. on Prog. Languages and Systems, 10(1): 52-86, 1988

[29] Kai Tan, Duane Szafron, Jonathan Schaeffer, John Anvik, Steve MacDonald,
Using Generative Design Patterns to Generate Parallel Code for a Distributed Memory
Environment,
University of Alberta, Edmonton, 2003, ISBN: 1-58113-588-2

[30] Arun Kejariwal, Alexander V. Veidenbaum, Alexandru Nicolau, Milind Girkar, Xinmin
Tian, Hideki Saito,
On the Exploitation of loop-level parallelism in embedded applications,
ACM, New York, NY, USA, 2009, ISSN: 1539-9087

[31] Geraud Krawezik, Franck Cappello,
Performance Comparison of MPI and three Programming Styles on Shared Memory
Multiprocessors,
ACM Symposium on Parallel Algorithms and Architectures, San Diego, California, USA, 2003,
ISBN: 1-58113-661-7

[32] B. Chapman, A. Patil, and A. Prabhakar,
Performance Oriented Programming for NUMA Architectures,
In Springer-Verlag Berlin Heidelberg, editor, LNCS 2104,
International Workshop on OpenMP Applications and Tools,
WOMPAT 2001, West Lafayette, IN, USA, 2001

[33] H. Jin, M. Frumkin, and J. Yan,
The OpenMP Implementation of the NAS Parallel Benchmarks and its Performance,
In NASA Ames Research Center, editor, Technical Report NAS-99-01, 1999.

Appendix A
Configuring Visual C++ 2008 program to run command arguments, argv:
The default setting of Character Set in Visual 2008 project’s properties is Use
Unicode Character Set. This property will cause a compilation error due to
incompatibility between _TCHAR and char pointers. This property should be set to
Use Multi-Byte character Set.

Step-by-step to configure Character Set in Visual 2008 projects.
- Open project’s Property Pages.
- Go to Configuration Properties/General
- Select Character Set field
- Change its value to Use Multi-Byte Character Set

Parallel Programming Recipes, page 92/153

Spring 2010 - Computer Science - SJSU

Appendix B - OpenMP source codes
1/ OpenMP – Maclaurin Series of ex:

// Author: Thuy Nguyenphuc
// Date: 9/18/2009

/* MaclaurinSeries.cpp : Defines the entry point for the console
 application.
 Taylor series:
 e^x = 1 + (x+a) + (x+a)^2/2! + (x+a)^3/3! + ... +(x+a)^n/n!
 Maclaurin series(the evaluate point a = 0):
 e^x = 1 + x + x^2/2! + x^3/3! + ... + x^n/n! */

#include "stdafx.h"
#include "windows.h"
#include "iostream"
#include "stdafx.h"
#include "tchar.h"

#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include <math.h>

Parallel Programming Recipes, page 93/153

Spring 2010 - Computer Science - SJSU

/* constant defined*/
#define E 2.71828
#define PROCESSORS 2 //number of processors
#define CHUNKSIZE 500
#define N CHUNKSIZE*PROCESSORS

double walltime(double*); /* the clock on the wall */

int _tmain(int argc, _TCHAR* argv[])
{
 int i,j,chunk, myloop = 0;
 int tid;
 int myRunTime = atoi(argv[1]);
 float x = 0.5;
 double sum = 1;
 double nfactorial_value;
 long nfactorial_base;

 // time variables to measure the draw operation's execution time
 clock_t start, finish;
 double dur, total_rt = 0.0; // execution time of program

 while (myloop < myRunTime)
 {
 /* Now begins the real work which we want to parallelize. */
 /* Mark the starting time of parallel execution.
 **/
 start = clock();
 sum = 1;
 chunk = CHUNKSIZE;

 /* Here's the OpenMP pragma that parallelizes the for-loop. */
 /* This parallel construct has 4 private variables: */
 /* 1) outer loop index "i" by default */
 /* 2) inner loop index "j" by explicit declaration */
 /* 3) "nfactorial_value" by explicit declaration */
 /* 4) "nfactorial_base" by explicit declaration */
 /* Schedule claude specify 2 chunks of 500 terms assigned */
 /* statically to 2 processors. */
 /* Reduction claude synchronized the results of processors */
 /* and sum them up to the final result. */

 #pragma omp parallel for \
 default(shared) private(i,j,nfactorial_value,nfactorial_base) \
 schedule(static,chunk) \
 reduction(+:sum)
 for (i=1; i < N; i++)
 {
 nfactorial_value = 1;
 nfactorial_base = 0;
 for(j = 1; j <= i; j++)
 {
 nfactorial_value *= j;
 if(nfactorial_value > 1000)
 {

Parallel Programming Recipes, page 94/153

Spring 2010 - Computer Science - SJSU

 nfactorial_value /= 1000;
 nfactorial_base += 3;
 }
 }
 sum = sum + pow(x,i) / (nfactorial_value *
 (float)pow(10.0,nfactorial_base));
 }/* end of parallel */

 /* Work's done. Get the elapsed wall time. */
 finish = clock();
 total_rt += (double)(finish - start) / CLOCKS_PER_SEC;
 myloop++;
 }
 dur = total_rt / myRunTime;
 /* Print the sequential execution time.
 **/
 fprintf(stdout, "\n\nParallel execution time of one calculation is
 %f s.", dur);
 fprintf(stdout, "\nParallel execution time of %d calculations is
 %f s.\n", myRunTime, total_rt);

return 0;
}

2/ OpenMP – Dot Product:
// Author: Thuy Nguyenphuc
// Date: 10/05/2009

// DotProduct.cpp : Parallel calculation at each dimension of vectors.
//

#include "stdafx.h"

// for clock_t type
#include <time.h>
#include <stdlib.h>

// for OpenMP
#include <omp.h>

/* constant defined*/
#define PROCESSORS 2 //number of processors
#define CHUNKSIZE 1000
#define MAXITEMS CHUNKSIZE*PROCESSORS*5000 // Array size
#define BILLION 1000000000

int _tmain(int argc, _TCHAR* argv[])
{
 int i,j,chunk, myloop = 0;
 int tid;
 int myRunTime = 1;//atoi(argv[1]);

Parallel Programming Recipes, page 95/153

Spring 2010 - Computer Science - SJSU

 // prepare arrays A and B
 int* A, *B;

 A = new int[MAXITEMS];
 B = new int[MAXITEMS];

 for(i = 0; i < MAXITEMS; i++)
 {
 A[i] = rand()%10;
 B[i] = rand()%10;
 }

 // the result of Dot-Product stored here
 double DotProduct_Val;

 // time variables to measure the draw operation's execution time
 clock_t start, finish;
 double dur, total_rt = 0.0; // for execution time of sequential
program of bubble sort algorithm

 while (myloop < myRunTime)
 {
/* Now begins the real work which we want to parallelize. */
/* Mark the starting time of parallel execution.
***/
 start = clock();
 DotProduct_Val = 0.0;

 chunk = CHUNKSIZE;

/* Here's the OpenMP pragma that parallelizes the for-loop. */
/* This parallel construct has 1 private variable: */
/* 1) outer loop index "i" by default */
/* Schedule claude specify chunks of 500 terms assigned */
/* statically to 2 processors. */
/* Reduction claude synchronized the results of processors */
/* and sum them up to the final result. */

 #pragma omp parallel for private(i) schedule(static,chunk)
reduction(+:DotProduct_Val)//, DotProduct_Pow)
 for (i=0; i < MAXITEMS; i++)
 {
 long temp = A[i] * B[i];
 DotProduct_Val = DotProduct_Val + (double)temp;
 }
 fprintf(stdout, "\nThe scalar dot product of vector A and B
is: (%f)", DotProduct_Val);//, DotProduct_Pow);

 /* Work's done. Get the elapsed wall time. */
 finish = clock();
 total_rt += (double)(finish - start) / CLOCKS_PER_SEC;
 myloop++;
 }
 dur = total_rt / myRunTime;

Parallel Programming Recipes, page 96/153

Spring 2010 - Computer Science - SJSU

 /* Print the sequential execution time.
**/
 fprintf(stdout, "\n\nParallel dot product calculation of data set
of %d is %f s.",MAXITEMS, dur);
// fprintf(stdout, "\nParallel execution time of %d calculations is
%f s.\n", myRunTime, total_rt);

 delete [] A;
 delete [] B;

 return 0;
}

3/ OpenMP – Bubble Sort:
// Author: Thuy Nguyenphuc
// Date: 9/23/2009

// bubble_sort.cpp : This program perform bubble sort of an array
// of 16000 random integers.
//

#include "stdafx.h"
#include <stdlib.h>
#include <time.h>

#define MAXDATA 16000

void compare_exchange(int &a, int &b)
{
 int tmp;
 if (a > b)
 {
 tmp = a;
 a = b;
 b = tmp;
 }
}

int _tmain(int argc, _TCHAR* argv[])
{
 int myRunTime = atoi(argv[1]);
 int myloop = 0;
 /*execution time measurement*/
 clock_t start, finish;
 double dur, total_rt = 0.0;/*run time of bubble sort algorithm */
 int i,j; // indeces of loops

 int A[MAXDATA]; // holding unsorted data array

 while(myloop < myRunTime)
 {
 for(i = 0; i<MAXDATA; i++)// create unsorted array data
 A[i] = rand();

 start = clock();

Parallel Programming Recipes, page 97/153

Spring 2010 - Computer Science - SJSU

 for(i = 0; i<MAXDATA; i++)
 for(j = 0; j< MAXDATA - i - 1; j++)
 compare_exchange(A[j], A[j+1]);

 finish = clock();
 total_rt += (double)(finish - start) / CLOCKS_PER_SEC;

 myloop++;
 }

// for(i = 0; i<MAXDATA; i++)
// printf("%7d,", A[i]);

 dur = total_rt / myRunTime;
 printf("\n\nSerial execution time of one complete sort is %1.3f
 s.", dur);
 printf("\nSerial execution time of %d calculations is %f s.\n",
 myRunTime, total_rt);

 return 0;

}

4/ OpenMP – Odd Even Transposition:

// Author: Thuy Nguyenphuc
// Date: 11/23/2009

// Odd_Even_Transposition.cpp : Parallel sort a data set of size n
// with the number of processors p, where p << n. Divided data set
// into p chunks and perform odd-even transposition algorithm.
// Data is sorted after pth iteration.

#include "stdafx.h"
#include <omp.h>
#include <stdlib.h>
#include <time.h>

#define HALF_CHUNK 4000
#define CHUNK_SIZE HALF_CHUNK*2
#define MAX_ITEMS CHUNK_SIZE*2

void compare_exchange(int &a, int &b)
{
 int tmp;
 if (a > b)
 {
 tmp = a;
 a = b;
 b = tmp;
 }
}

int _tmain(int argc, _TCHAR* argv[])
{
 int S[MAX_ITEMS];
 int chunk0[CHUNK_SIZE], chunk1[CHUNK_SIZE];

Parallel Programming Recipes, page 98/153

Spring 2010 - Computer Science - SJSU

 int workchunk[CHUNK_SIZE];
 int i, j, k, tid, nthreads;

 /*execution time measurement*/
 clock_t start, finish;
 double dur, total_rt = 0.0; // run time of odd even transposition

 /*take the command argument as the number of loop-back*/
 int myRunTime = atoi(argv[1]);
 int myloop = 0;

 while(myloop < myRunTime)
 {
 /*initialize the unordered list S and divide it into 4 segments:
 min_half0, max_half0, min_half1, max_half1*/
 for (i = 0; i<MAX_ITEMS; i++)
 {
 S[i] = rand();
 if(i<CHUNK_SIZE)
 chunk0[i] = S[i];
 else
 chunk1[i-CHUNK_SIZE] = S[i];
 }
 start = clock();
 /*Assign tasks to sort lists A*/

 #pragma omp parallel shared(nthreads, chunk0, chunk1)
 {
 nthreads = omp_get_num_threads();
 #pragma omp for private(i,j,k,tid,workchunk)
 for(i = 0; i < nthreads; i++)
 {
 tid = omp_get_thread_num();
 for(j = 0; j<CHUNK_SIZE; j++) // sort their assigned data
 {
 for(k = 0; k< CHUNK_SIZE - j - 1; k++)
 {
 if(tid%2 == 0)
 compare_exchange(chunk0[k], chunk0[k+1]);
 if(tid%2 == 1)
 compare_exchange(chunk1[k], chunk1[k+1]);
 }
 }
//These for loops are to put 2 middle halves together and sort
 for(j = 0; j<HALF_CHUNK; j++)
 workchunk[j] = chunk0[HALF_CHUNK+j];
 for(j = 0; j<HALF_CHUNK; j++)
 workchunk[HALF_CHUNK+j] = chunk1[j];
 for(j = 0; j<CHUNK_SIZE; j++)
 {
 for(k = 0; k< CHUNK_SIZE - j - 1; k++)
 compare_exchange(workchunk[k], workchunk[k+1]);
 }
//return data from workchunk back to chunk0 and chunk1
 for(j = 0; j<HALF_CHUNK; j++)
 chunk0[HALF_CHUNK+j] = workchunk[j];

Parallel Programming Recipes, page 99/153

Spring 2010 - Computer Science - SJSU

 for(j = 0; j<HALF_CHUNK; j++)
 chunk1[j] = workchunk[HALF_CHUNK+j];
 } // end for loop i

 #pragma omp for private(i,j,k,tid,workchunk)
 for(i = 0; i < nthreads; i++)
 {
 for(j = 0; j<CHUNK_SIZE; j++) //sort their assigned data
 {
 for(k = 0; k< CHUNK_SIZE - j - 1; k++)
 {
 if(tid%2 == 0)
 compare_exchange(chunk0[k], chunk0[k+1]);
 if(tid%2 == 1)
 compare_exchange(chunk1[k], chunk1[k+1]);
 }
 }
 }

 } /*end of parallel sections*/
 finish = clock();
 total_rt += (double)(finish - start) / CLOCKS_PER_SEC;
 myloop++;

}

dur = total_rt / myRunTime;
printf("\n\nSerial execution time of one complete sort is %1.3f

 s.", dur);
printf("\nSerial execution time of %d calculations is %f s.\n",

 myRunTime, total_rt);

return 0;
}

5/ OpenMP – Odd-Even-transposition (second version)

/*
File name: ompOddEven.cpp
Author: Thuy Nguyenphuc
Date: 04/24/2010
This program performs sort on a data set of N items. It sorts data
from small to large in that order.
*/
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#include <time.h>

// constants
#define MAXCHUNKSIZE 1000
#define MAXPROCESSORS 4
#define MAXITEMS MAXCHUNKSIZE*MAXPROCESSORS
#define MAXITEMSPERLINE 10

Parallel Programming Recipes, page 100/153

Spring 2010 - Computer Science - SJSU

// helper functions
//print data
void print_data(int *A)
{
 int i;
 printf("\nData A of %d items:\n", MAXITEMS);
 for(i=0; i<MAXITEMS; i++)
 {
 if(i%MAXITEMSPERLINE == 0) printf("\n");
 printf("%5d", A[i]);
 }
} // end of print_data

// compare the values and exchange if a is greater than b
void compare_exchange(int &a, int &b)
{
 int tmp;
 if (a > b)
 {
 tmp = a;
 a = b;
 b = tmp;
 }
}

// checks if data is sorted
void isSorted(int *A)
{
 int i;
 bool res;
 for(i=0; i<MAXITEMS-1; i++)
 {
 if(A[i] > A[i+1])
 {
 res = false;
 break;
 }
 if(i == MAXITEMS-1)
 res = true;
 }
 if(res)
 printf("\nCongratulations! Data A of %d items is sorted.",
MAXITEMS);
 else printf("\nData A of %d items is not sorted.", MAXITEMS);
} // end of isSorted

// checks if the max number of processors is a power of 2
bool ispowerof2(int numthreads)
{
 bool res;
 if(numthreads < 2) res = false;
 else
 {
 while(numthreads >= 2)
 {

Parallel Programming Recipes, page 101/153

Spring 2010 - Computer Science - SJSU

 if((numthreads%2) == 0)
 {
 if(numthreads == 2)
 {
 res = true;
 break;
 }
 numthreads /= 2;
 }
 else
 {
 res = false;
 break;
 }
 }
 }
 return res;
} // end of ispowerof2

void sort(int *A,int chunksize, int num_procs, double seqdur)
{
 int i, j, k, m, tid, halfchunk = chunksize/2;
 //print_data(A);
 printf("\nThe number of processors used in parallel sort is %d",
num_procs);

 // variables to measure the computation time
 clock_t start, finish;
 double dur;

 // start the timer
 start = clock();

 for(i = 0; i < num_procs; i++)
 {
 #pragma omp parallel private(j,k,m,tid) shared(A, i,
num_procs, chunksize)
 {
 tid = omp_get_thread_num();
 #pragma omp for schedule(static,chunksize)
 for(j = 1; j<MAXITEMS; j++) //processors sort their
assigned data
 {
 for(k = 0; k< MAXITEMS - j; k++)
 {
 m = tid*chunksize+k;
 compare_exchange(*(A+m), *(A+m+1));
 }
 }//end of omp parallel for
 }// end of parallel region
 } // end for loop of i

 finish = clock();
 dur = (finish-start)/(double)CLOCKS_PER_SEC;
 printf("\nTime to parallel sort data of %d items is
%.4lf",MAXITEMS,dur);

Parallel Programming Recipes, page 102/153

Spring 2010 - Computer Science - SJSU

 //printf("\nSequential duration is: %.4lf seconds", seqdur);
 if(seqdur > 0)
 printf("\nSpeed up ratio is: %.4lf per cent",(seqdur -
dur)/seqdur*100);
 //printf("\n");

 // check to see if data sorted
 printf("\n***** After parallel sort: *****\ncores = %d, chunksize
= %d & halfchunksize = %d",num_procs,chunksize,halfchunk);
 //print_data(A);
 isSorted(A);
} // end of sort

double bubble_sort(int *A)
{
 int i, j;
 // variables to measure the computation time
 clock_t start, finish;
 double dur;

 // start the timer
 start = clock();
 for(i = 1; i<MAXITEMS; i++)
 for(j = 0; j< MAXITEMS - i; j++)
 compare_exchange(*(A+j), *(A+j+1));
 finish = clock();
 dur = (finish-start)/(double)CLOCKS_PER_SEC;
 printf("\nTime to bubble sort data of %d items is
%.4lf",MAXITEMS,dur);

 return dur;
} // end of bubble sort

void undosort(int *A, int *copyA)
{
 for(int i = 0; i<MAXITEMS; i++)
 A[i] = copyA[i];
} // undo sort data set

// main function
int main(int argc, char **argv)
{
 printf("\nOPENMP ODD-EVEN SORT:\n");

 bool sorted = false; // hold true if data is sorted
 double seqdur;
 int *A,*copyA; // the given set of data
 A = (int *)malloc(MAXITEMS * sizeof(int));
 copyA = (int *)malloc(MAXITEMS * sizeof(int));

 int i;
 // Assign random values to A
 for(i = 0; i<MAXITEMS; i++)
 A[i]= copyA[i] = rand()%1000;

 int num_procs; // number of maximum processors can be used

Parallel Programming Recipes, page 103/153

Spring 2010 - Computer Science - SJSU

#pragma omp parallel
 {
 num_procs = omp_get_num_threads();
 } // end of parallel region
 bool numThrdspowerof2 = ispowerof2(num_procs);

 int more = 1;
 while(more == 1)
 {
 seqdur = bubble_sort(A);
 // check to see if data sorted
 //isSorted(A);
 undosort(A,copyA);

/* if(numThrdspowerof2)
 {
 i = 2;
 while(i < num_procs)
 {
 sort(A,MAXITEMS/i,i,seqdur);
 undosort(A,copyA);
 i *= 2;
 }
 }*/
 sort(A,MAXITEMS/num_procs,num_procs,seqdur);
 undosort(A,copyA);
 printf("\nwould you like more test? (0/1) ");
 scanf_s("%d",&more,1);
 }

 //delete [] A;
 return 0;

}

6/ OpenMP – Graphics Rendering Simulation:

// Author: Thuy Nguyenphuc
// Date: 9/18/2009

// GraphicsSimulation.cpp : Simulate the graphic rendering.
// This program is the simplest OpenMP program and is used as
// the starting point

#include "stdafx.h"
#include <omp.h>
#include <stdlib.h>
#include <time.h>

#define MAXDATA 10000
#define CHUNK_SIZE 10

int _tmain(int argc, _TCHAR* argv[])
{
 int myRunTime = atoi(argv[1]);
 int myloop = 0;

Parallel Programming Recipes, page 104/153

Spring 2010 - Computer Science - SJSU

 /*execution time measurement*/
 clock_t start, finish;
 double dur, total_rt = 0.0; // run time of program
 int tid; // processor's id
 int chunk = CHUNK_SIZE;

 while(myloop < myRunTime)
 {
 start = clock();
 #pragma omp parallel for private(tid) schedule(static,chunk)
 for(int i=0; i <MAXDATA; i++)
 {
 tid = omp_get_thread_num();
 if(tid%2 == 0)
 printf("\n\tAAAAAAAAAAAAAAAAAAAAAAAAA");
 if(tid%2 == 1)
 printf("\nBBBBBBBBBBBBBBBBBBBBBBBBB");
 }

 finish = clock();

 total_rt += (double)(finish - start) / CLOCKS_PER_SEC;
 myloop++;
 }
 dur = total_rt / myRunTime;
 printf("\n\nParallel execution time of one complete sort is %1.3f
 s.", dur);
 printf("\nParallel execution time of %d calculations is %f s.\n",
 myRunTime, total_rt);

 return 0;
}

7/ OpenMP – Sum of N integers:
/*
File name: ompSumN.cpp
Author: Thuy Nguyenphuc
OpenMP program to test multicore performance
The maximum number of cores is eight
*/
#include <stdio.h>
#include <stdlib.h>
// for clock_t type
#include <time.h>
// for OpenMP
#include <omp.h>

// constants
#define MAXITEMS 400000000
#define MAXLOOPS 10

// helper functions
double test(int *A, int chunksize, int numthreads, double seqdur)
{
 int i, j;

Parallel Programming Recipes, page 105/153

Spring 2010 - Computer Science - SJSU

 // variables to measure the computation time
 clock_t start, finish;
 double sum, dur = 0.0;

 // Loops for the accuracy of the runtime
 for(j=0; j<MAXLOOPS; j++)
 {
 // start the timer
 start = clock();

 // the result sum is stored here
 sum = 0.0;

 // parallel computation start here
#pragma omp parallel for private(i) shared(chunksize,A)
schedule(static,chunksize) reduction(+:sum)
 for(i=0; i<MAXITEMS; i++)
 {
 sum = sum +(double)A[i];
 } // end of parallel region

 finish = clock();
 dur = dur + ((finish-start)/(double)CLOCKS_PER_SEC);
 } // end of loops for accumulation of duration
 printf("\nThe sum is %lf", sum);
 if(numthreads > 1)
 printf("\nComputes the sum with %d cores and %d of chunk
size", numthreads, chunksize);
 else printf("\nComputes the sum with %d core and %d of chunk
size", numthreads, chunksize);
 printf("\nThe runtime is: %.8lf seconds", dur = dur/MAXLOOPS);
 if(seqdur > 0)
 printf("\nSpeed up ratio is: %.4lf per cent", (seqdur -
dur)/seqdur*100);
 printf("\n");
 return dur;
}

bool ispowerof2(int numthreads)
{
 bool res;
 if(numthreads < 2) res = false;
 else
 {
 while(numthreads >= 2)
 {
 if((numthreads%2) == 0)
 {
 if(numthreads == 2)
 {
 res = true;
 break;
 }
 numthreads /= 2;
 }
 else

Parallel Programming Recipes, page 106/153

Spring 2010 - Computer Science - SJSU

 {
 res = false;
 break;
 }
 }
 }
 return res;
}

int main(int argc, char *argv)
{
 int i, numthreads = 1;
 bool numThrdspowerof2 = false;
 double seqdur = 0.0;

 printf("\n\nOPENMP:");

 //prepare array A
 int *A;
 A = (int *)malloc(MAXITEMS * sizeof(int));
 for(i=0; i<MAXITEMS; i++)
 A[i] = rand()%10;

 int more = 1;

#pragma omp parallel
 {
 numthreads = omp_get_num_threads();
 }

 numThrdspowerof2 = ispowerof2(numthreads);

 while(more == 1)
 {
 printf("\n*****Compute sum of %d arbitrary
numbers*****\n",MAXITEMS);
 if(numThrdspowerof2)
 {
 i = 1;
 while(i < numthreads)
 {
 if(i==1) seqdur = test(A,MAXITEMS/i,i,0);
 else test(A,MAXITEMS/i,i,seqdur);
 i *= 2;
 }
 }
 test(A,MAXITEMS/numthreads,numthreads,seqdur);
 printf("\nwould you like more test? (0/1) ");
 scanf_s("%d",&more,1);
 }

 delete [] A;

 return 0;

}

Parallel Programming Recipes, page 107/153

Spring 2010 - Computer Science - SJSU

Appendix C - MPI source codes
1/ MPI – Maclaurin Series of ex:

// Author: Thuy Nguyenphuc
// Date: 1/18/2010

// Maclaurin_MPI.cpp : Parallel Arithmetic computation using MPI.
//

#include "stdafx.h"
#include <mpi.h>
#include <time.h>
#include <math.h>

#define HALFTERMS 500
#define MAXTERMS HALFTERMS*2
#define E 2.71828

int _tmain(int argc, _TCHAR* argv[])
{
 /*MPI variables*/
 int num_procs;
 int ID;
 int tag1=1;

Parallel Programming Recipes, page 108/153

Spring 2010 - Computer Science - SJSU

 MPI_Status stat;

 /*Maclaurin's variables*/
 float x = 0.5;
 double sum1 = 1, sum2 = 0,sum;
 double nfac_value1, nfac_value2;
 long nfac_base1, nfac_base2;

 /*execution time measurement*/
 clock_t start, finish;
 double dur;
 /*MPI execution time*/
 double MPIStart, MPIFinish;

 start = clock();
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&num_procs);
 MPI_Comm_rank(MPI_COMM_WORLD,&ID);

 MPIStart = MPI_Wtime();

 if(ID%2 == 0)
 {
 for (int i=1; i < HALFTERMS; i++)
 {
 nfac_value1 = 1;
 nfac_base1 = 0;
 for(int j = 1; j <= i; j++)
 {
 nfac_value1 *= j;
 if(nfac_value1 > 1000)
 {
 nfac_value1 /= 1000;
 nfac_base1 += 3;
 }
 }
 sum1 = sum1 + pow(x,i) / (nfac_value1 *
(float)pow(10.0,nfac_base1));
 }
 MPI_Send(&sum1,1,MPI_DOUBLE,1,tag1,MPI_COMM_WORLD);
 }
 if(ID%2 == 1)
 {
 for (int k=HALFTERMS; k < MAXTERMS; k++)
 {
 nfac_value2 = 1;
 nfac_base2 = 0;
 for(int h = 1; h <= k; h++)
 {
 nfac_value2 *= h;
 if(nfac_value2 > 1000)
 {
 nfac_value2 /= 1000;
 nfac_base2 += 3;
 }
 }

Parallel Programming Recipes, page 109/153

Spring 2010 - Computer Science - SJSU

 sum2 = sum2 + pow(x,k) / (nfac_value2 *
(float)pow(10.0,nfac_base2));
 }
 MPI_Recv(&sum,1,MPI_DOUBLE,0,tag1,MPI_COMM_WORLD,&stat);
// printf("\nThe sum from P0 is %f",sum);
// printf("\nThe sum from P1 is %f",sum2);
 sum +=sum2;
 printf("\nThe parallel estimation of Maclaurin of e^%1.2f
is: %f", x, sum);
 }

 MPIFinish = MPI_Wtime();
 printf("\nThe measured 1 second sleep time is %1.2f",MPIFinish -
MPIStart);

 MPI_Finalize();

 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\n\nParallel execution time of one complete sort is %1.3f
s.", dur);

 return 0;
}

2/ MPI – Dot Product:
// Author: Thuy Nguyenphuc
// Date: 1/05/2010

// DotProduct.cpp : Parallel arithmetic computation using MPI.
// Master and slave model

#include "stdafx.h"
#include <mpi.h>
#include "windows.h"
#include <time.h> // for clock_t type

#define HALFMAX 2500000
#define MAXITEMS HALFMAX*2

int _tmain(int argc, _TCHAR* argv[])
{
 // time variables to measure the draw operation's execution time
 clock_t start, finish;
 double dur;
 /*MPI execution time*/
 double MPIStart, MPIFinish, mstart1,mstart2,mfinish1,mfinish2;

 int tag1 = 1, tag2 = 2;//message tags
 int num_procs; // number of processes
 int ID; // a unique ID of a process
 MPI_Status stat; // MPI status parameter

Parallel Programming Recipes, page 110/153

Spring 2010 - Computer Science - SJSU

 int *buf01;
 int *buf02;
 int *buf21; //message3: p2 receives from p1
 int *buf22; //message4: p2 receives from p1
 double res03;
 double res23;

 buf01 = (int *)malloc(MAXITEMS * sizeof(int)); //message1: from
p1 to p2
 buf02 = (int *)malloc(MAXITEMS * sizeof(int)); //message2: from
p1 to p2

 buf21 = (int *)malloc(MAXITEMS * sizeof(int)); //message3: p2
receives from p1
 buf22 = (int *)malloc(MAXITEMS * sizeof(int)); //message4: p2
receives from p1

 double acc_res; //stores the scalar result of dot product
 int i,j;

 //initialize data to buffer 01 and 02
 for(i = 0; i < MAXITEMS; i++)
 {
 *(buf01+i) = rand()% 10;
 *(buf02+i) = rand()% 10;
 }

 //Start to count time here
 start = clock();

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &ID);
 MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

 //Sleep(15000);
 MPIStart = MPI_Wtime();
 if(ID==0)
 {
 mstart1 = MPI_Wtime();
 MPI_Send(buf01, HALFMAX, MPI_INT, 1, tag1, MPI_COMM_WORLD);
 MPI_Send(buf02, HALFMAX, MPI_INT, 1, tag1, MPI_COMM_WORLD);
 mfinish1 = MPI_Wtime();
 printf("\nThread %d: MPI_Wtime - P0 send time
%1.2f",ID,mfinish1 - mstart1);

 acc_res = 0.0;
 for(i = HALFMAX; i< MAXITEMS; i++)
 acc_res += (double)(buf01[i]*buf02[i]);

 MPI_Recv(&res03, 1, MPI_DOUBLE, 1, tag2, MPI_COMM_WORLD,
&stat);
 acc_res += res03;

 printf("\nDot Product result is %f\n", acc_res);
 }
 else

Parallel Programming Recipes, page 111/153

Spring 2010 - Computer Science - SJSU

 {
 mstart2 = MPI_Wtime();
 MPI_Recv(buf21, HALFMAX, MPI_INT, 0, tag1, MPI_COMM_WORLD,
&stat);
 MPI_Recv(buf22, HALFMAX, MPI_INT, 0, tag1, MPI_COMM_WORLD,
&stat);
 mfinish2 = MPI_Wtime();
 printf("\nThread %d: MPI_Wtime - P1 recv time
%1.2f",ID,mfinish2 - mstart2);

 res23 = 0.0;
 for(j = 0; j<HALFMAX; j++)
 res23 += (double)(buf21[j]*buf22[j]);

 MPI_Send(&res23, 1, MPI_DOUBLE, 0, tag2, MPI_COMM_WORLD);
 }

 MPIFinish = MPI_Wtime();
 printf("\nThread %d: Measured using MPI_Wtime is
%1.2f",ID,MPIFinish - MPIStart);
 MPI_Finalize();

 /* Work's done. Get the elapsed wall time. */
// if(ID==0)
// {
 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\n\nThread %d: Calculation time of vector size %d
is %f s.",ID,MAXITEMS,dur);
// }

 return 0;
}

3/ MPI – Dot Product (version 2):
#include <stdio.h> // for printf and scanf_s
#include <stdlib.h> // for malloc and rand
#include <mpi.h>
#include <time.h> // for clock_t type
#include "windows.h"

// constants
#define MAXCORES 100
#define MAXITEMS 20000000

// helper functions
void master(int *A, int *B, int chunksize, int num_procs, int ID,
double seqdur)
{
 // time variables to measure the draw operation's execution time
 clock_t start, finish;
 double dur;
 /*MPI execution time*/
 //double MPIStart, MPIFinish;

Parallel Programming Recipes, page 112/153

Spring 2010 - Computer Science - SJSU

 MPI_Status stat; // MPI status parameter
 double sumReturned;
 double res; // result sums from all processors
 int i;

 /* Start to measure time */
 start = clock();
 //MPIStart = MPI_Wtime();

 for(i=1; i<num_procs; i++)
 {
 MPI_Send(A+(i-1)*chunksize, chunksize, MPI_INT, i, ID,
MPI_COMM_WORLD);
 MPI_Send(B+(i-1)*chunksize, chunksize, MPI_INT, i, ID,
MPI_COMM_WORLD);
 }

 res = 0.0;
 for(i = (num_procs - 1)*chunksize; i< MAXITEMS; i++)
 res = res + (double)((*(A+i)) * (*(B+i)));
// printf("\nThe sum from P%d is %lf", ID,res);

 for(i=1; i<num_procs; i++)
 {
 MPI_Recv(&sumReturned, 1, MPI_DOUBLE, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &stat);
 res = res + sumReturned;
 }
 printf("\nP%d: The chunk size is %d.", ID,chunksize);
 printf("\nP%d: The sum result from all processors is %lf",
ID,res);

 //MPIFinish = MPI_Wtime();
 //printf("\nThread %d: Measured using MPI_Wtime is
%1.2f",ID,MPIFinish - MPIStart);

 /* Work's done. Get the elapsed wall time. */
 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\n\n*****>Compute time of dot-product of vectors of size
%d is %f s.<*****\n",MAXITEMS,dur);

 if(seqdur >= dur)
 printf("\nP%d: Speed up ratio is: %.4lf per cent",
ID,(seqdur - dur)/seqdur*100);
 else printf("\nP%d: Slow down ratio is: %.4lf per cent\n",
ID,(dur - seqdur)/dur*100);
}

void slave(int chunksize, int ID)
{
 MPI_Status stat; // MPI status parameter
 int *tmpBufA,*tmpBufB,j;
 tmpBufA = (int *)malloc(MAXITEMS * sizeof(int)); //memory for sub
set of A on thread ID != 0

Parallel Programming Recipes, page 113/153

Spring 2010 - Computer Science - SJSU

 tmpBufB = (int *)malloc(MAXITEMS * sizeof(int)); //memory for sub
set of B on thread ID != 0

 MPI_Recv(tmpBufA, chunksize, MPI_INT, 0, MPI_ANY_TAG,
MPI_COMM_WORLD, &stat);
 MPI_Recv(tmpBufB, chunksize, MPI_INT, 0, MPI_ANY_TAG,
MPI_COMM_WORLD, &stat);

 double tmpRes = 0.0;
 for(j = 0; j<chunksize; j++)
 tmpRes = tmpRes + (double)((*(tmpBufA+j)) *
(*(tmpBufB+j)));
// printf("\nThe sum from P%d is %lf\n",ID, tmpRes);

 MPI_Send(&tmpRes, 1, MPI_DOUBLE, 0, ID, MPI_COMM_WORLD);

 delete [] tmpBufA;
 delete [] tmpBufB;
}

int main(int argc, char **argv)
{
 int num_procs; // number of processes
 int ID; // a unique ID of a process
 int chunksize; // number of integers that are
assigned to processors

 // variables to measure the computation time
 clock_t start, finish;
 double seqscalar, seqdur = 0.0;

 int *A, *B; // set A of n numbers
 A = (int *)malloc(MAXITEMS * sizeof(int)); //allocate memory for
set A
 B = (int *)malloc(MAXITEMS * sizeof(int)); //allocate memory for
set B

 //initialize data to buffer A
 for(int i = 0; i < MAXITEMS; i++)
 {
 A[i] = rand()% 10;
 B[i] = rand()% 10;
 }

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &ID);
 MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

 chunksize = MAXITEMS/num_procs;

// Sleep(10000);
 if(ID == 0)
 {
 printf("\n\nMPI:");
 start = clock();
 seqscalar = 0.0;

Parallel Programming Recipes, page 114/153

Spring 2010 - Computer Science - SJSU

 for(int i = 0; i < MAXITEMS; i++)
 {
 seqscalar = seqscalar + A[i]*B[i];
 }
 finish = clock();
 seqdur = (double)(finish - start)/CLOCKS_PER_SEC;
 if(seqdur == 0) seqdur = 0.0001;

 printf("\nSequential scalar dot-product value is:
%lf",seqscalar);
 printf("\nSequential duration is: %lf",seqdur);

 master(A, B, chunksize, num_procs, ID, seqdur);
 delete [] A;
 delete [] B;
 }
 else
 {
 slave(chunksize, ID);
 }

// MPIStart = MPI_Wtime();
// Sleep(1000);
// MPIFinish = MPI_Wtime();
// printf("\nThread %d: Measured using MPI_Wtime is
%1.2f",ID,MPIFinish - MPIStart);

 MPI_Finalize();

 return 0;
}

4/ MPI – Odd-Even Transposition:
// Author: Thuy Nguyenphuc
// Date: 1/20/2010

// ParaSort.cpp : Parallel sort using MPI. Master-slave model.
//

#include "stdafx.h"
#include <mpi.h>
#include <stdlib.h> //for malloc() and rand()
#include <time.h>

#define QUARTMAX 800
#define HALFMAX QUARTMAX*2
#define MAXITEMS HALFMAX*2

void sort(int *data);
void prnt(int *data);
void d_copy(int *dest, int *src, int count);
void test_result(int *data);

int _tmain(int argc, _TCHAR* argv[])

Parallel Programming Recipes, page 115/153

Spring 2010 - Computer Science - SJSU

{
 int num_procs;
 int ID;
 int tag1=1, tag2=2;
 MPI_Status stat;

 /*execution time measurement*/
 clock_t start, finish;
 double dur;
 /*MPI execution time*/
 double MPIStart, MPIFinish, mstart1, mstart2, mfinish1, mfinish2;

 int *A, *B, *workA, *workB;
 int i, dummy1=1, dummy2=0;

 A = (int *)malloc(HALFMAX * sizeof(int));
 B = (int *)malloc(HALFMAX * sizeof(int));
 workA = (int *)malloc(HALFMAX * sizeof(int));
 workB = (int *)malloc(HALFMAX * sizeof(int));
 for(i = 0; i<HALFMAX; i++)
 {
 A[i] = rand();
 B[i] = rand();
 }

 /* Start time here */
 start = clock();

 /*initial MPI*/
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &ID);
 MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

 MPIStart = MPI_Wtime();
 for(i=0; i<num_procs; i++)
 {
 if(i%2 == 0)//even iterator
 {
 if(ID%2 == 0)//even process
 {
 sort(A);
 mstart1 = MPI_Wtime();

 MPI_Send(A+QUARTMAX,QUARTMAX,MPI_INT,1,tag1,MPI_COMM_WORLD);
 mfinish1 = MPI_Wtime();
 printf("\nP0 sent time is %1.2f",mfinish1 -
mstart1);
 mstart1 = MPI_Wtime();

 MPI_Recv(A+QUARTMAX,QUARTMAX,MPI_INT,1,tag2,MPI_COMM_WORLD,
&stat);
 mfinish1 = MPI_Wtime();
 printf("\nP0 recv time is %1.2f",mfinish1 -
mstart1);
 }
 else //odd process

Parallel Programming Recipes, page 116/153

Spring 2010 - Computer Science - SJSU

 {
 sort(B);
 mstart2 = MPI_Wtime();

 MPI_Recv(workB,QUARTMAX,MPI_INT,0,tag1,MPI_COMM_WORLD, &stat);
 mfinish2 = MPI_Wtime();
 printf("\nP1 recv time is %1.2f",mfinish2 -
mstart2);
 //memcpy(workB+QUARTMAX,B,QUARTMAX);
 d_copy(workB+QUARTMAX,B,QUARTMAX);
 sort(workB);
 mstart2 = MPI_Wtime();

 MPI_Send(workB,QUARTMAX,MPI_INT,0,tag2,MPI_COMM_WORLD);
 mfinish2 = MPI_Wtime();
 printf("\nP1 sent time is %1.2f",mfinish2 -
mstart2);
 //memcpy(B,workB+QUARTMAX,QUARTMAX);
 d_copy(B,workB+QUARTMAX,QUARTMAX);
 }
 }
 else // odd iterator
 {
 if(ID%2 == 1) // odd process
 {
 sort(B);

 MPI_Send(B,QUARTMAX,MPI_INT,0,tag2,MPI_COMM_WORLD);

 MPI_Recv(B,QUARTMAX,MPI_INT,0,tag1,MPI_COMM_WORLD, &stat);
 }
 else // even process
 {
 sort(A);

 MPI_Recv(workA+QUARTMAX,QUARTMAX,MPI_INT,1,tag2,MPI_COMM_WORLD,
&stat);
 //memcpy(workA,A+QUARTMAX,QUARTMAX);
 d_copy(workA,A+QUARTMAX,QUARTMAX);
 sort(workA);

 MPI_Send(workA+QUARTMAX,QUARTMAX,MPI_INT,1,tag1,MPI_COMM_WORLD);
 //memcpy(A+QUARTMAX,workA,QUARTMAX);
 d_copy(A+QUARTMAX,workA,QUARTMAX);
 }
 }
 }

 if(ID==0)
 {
 test_result(A);
 if(A[HALFMAX-1] > B[0]) printf("\nSort program failed at
the middle point");
 delete [] A;
 delete [] workA;
 }

Parallel Programming Recipes, page 117/153

Spring 2010 - Computer Science - SJSU

 else
 {
 test_result(B);
 delete [] B;
 delete [] workB;
 }

 MPIFinish = MPI_Wtime();
 printf("\nThread %d: The execution time using MPI_Wtime is
%1.2f",ID,MPIFinish - MPIStart);

 MPI_Finalize();

 /* Finish MPI tasks */
 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\nThread %d: The execution time of sorting data set of
size %d is %1.3f s.",ID,MAXITEMS, dur);
 return 0;
}

void sort(int *data)
{
 int temp;

 for(int i = 1; i <HALFMAX; i++)
 for(int j = 0; j <HALFMAX - i; j++)
 if(data[j] > data[j+1])
 {
 temp = data[j];
 data[j] = data[j+1];
 data[j+1] = temp;
 }

}

void prnt(int *data)
{
 printf("Data:");
 for(int i = 0; i< HALFMAX; i++)
 {
 if((i%10)==0) printf("\n");
 printf("%5d ", data[i]);
 }

}

void d_copy(int *dest, int *src, int count)
{
 for(int i = 0; i<count; i++)
 *(dest+i) = *(src+i);
}

void test_result(int *data)
{

Parallel Programming Recipes, page 118/153

Spring 2010 - Computer Science - SJSU

 for(int i = 1; i<HALFMAX; i++)
 {
 if(*(data+i) < *(data+i)-1)
 {
 printf("\nSort program failed at position %d", i+1);
 }
 }
}

5/ MPI – Graphics Rendering (simulation):

// Author: Thuy Nguyenphuc
// Date: 1/10/2010

// Graphics_MPI.cpp : The simplest MPI program.
// It is treated as the Hello program in MPI

#include "stdafx.h"
#include <mpi.h>
#include <time.h>

#define HALFITEMS 60000
#define MAXITEMS HALFITEMS*2

int _tmain(int argc, _TCHAR* argv[])
{
 int num_procs;
 int ID;
 MPI_Status stat;

 /*execution time measurement*/
 clock_t start, finish;
 double dur;
 /*MPI execution time*/
 double MPIStart, MPIFinish;

 start = clock();
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD,&num_procs);
 MPI_Comm_rank(MPI_COMM_WORLD,&ID);
 MPIStart = MPI_Wtime();
 if(ID%2 == 0)
 for(int i = 0; i<HALFITEMS; i++)
 printf("\n\tAAAAAAAAAAAAAAAAAAAAAAAAA");
 if(ID%2 == 1)
 for(int j = 0; j<HALFITEMS; j++)
 printf("\nBBBBBBBBBBBBBBBBBBBBBBBBB");

 MPIFinish = MPI_Wtime();
 printf("\nThread %d: The execution time using MPI_Wtime()is
%1.2f\n",ID,MPIFinish - MPIStart);

 MPI_Finalize();

Parallel Programming Recipes, page 119/153

Spring 2010 - Computer Science - SJSU

 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\nThread %d: Parallel display calls of %d lines of
strings is %1.3f s.\n",ID,MAXITEMS, dur);

 return 0;
}

6/ MPI – Sum of n integers:
/*
File name: mpiSumN.cpp
Author: Thuy Nguyenphuc
Date: 04/24/2010
Compute sum of n integers in mpi and measure computation time.
*/
#include <stdio.h> // for printf and scanf_s
#include <stdlib.h> // for malloc and rand
#include <mpi.h>
#include <time.h> // for clock_t type
#include "windows.h"

// constants
#define MAXCORES 100
#define MAXITEMS 200000000

// helper functions
void master(int *A, int chunksize, int num_procs, int ID, double
seqdur)
{
 // time variables to measure the draw operation's execution time
 clock_t start, finish;
 double dur;
 /*MPI execution time*/
 //double MPIStart, MPIFinish;

 MPI_Status stat; // MPI status parameter
 double sumReturned;
 double res; // result sums from all processors
 int i;

 /* Start to measure time */
 start = clock();
 //MPIStart = MPI_Wtime();

 for(i=1; i<num_procs; i++)
 MPI_Send(A+(i-1)*chunksize, chunksize, MPI_INT, i, ID,
MPI_COMM_WORLD);

 res = 0.0;
 for(i = (num_procs - 1)*chunksize; i< MAXITEMS; i++)
 res = res + (double)(*(A+i));
// printf("\nThe sum from P%d is %lf", ID,res);

Parallel Programming Recipes, page 120/153

Spring 2010 - Computer Science - SJSU

 for(i=1; i<num_procs; i++)
 {
 MPI_Recv(&sumReturned, 1, MPI_DOUBLE, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &stat);
 res = res + sumReturned;
 }
 printf("\nP%d: The chunk size is %d.", ID,chunksize);
 printf("\nP%d: The sum result from all processors is %lf",
ID,res);

 //MPIFinish = MPI_Wtime();
 //printf("\nThread %d: Measured using MPI_Wtime is
%1.2f",ID,MPIFinish - MPIStart);

 /* Work's done. Get the elapsed wall time. */
 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\n\n*****>P%d: Calculation time of sum of %d items is %f
s.<*****\n",ID,MAXITEMS,dur);

 if(seqdur >= dur)
 printf("\nP%d: Speed up ratio is: %.4lf per cent",
ID,(seqdur - dur)/seqdur*100);
 else printf("\nP%d: Slow down ratio is: %.4lf per cent\n",
ID,(dur - seqdur)/dur*100);
}

void slave(int chunksize, int ID)
{
 MPI_Status stat; // MPI status parameter
 int *tmpBuf, j;
 tmpBuf = (int *)malloc(MAXITEMS * sizeof(int)); //memory for sub
set of A on thread ID != 0

 MPI_Recv(tmpBuf, chunksize, MPI_INT, 0, MPI_ANY_TAG,
MPI_COMM_WORLD, &stat);

 double tmpRes = 0.0;
 for(j = 0; j<chunksize; j++)
 tmpRes = tmpRes + (double)(*(tmpBuf+j));
// printf("\nThe sum from P%d is %lf\n",ID, tmpRes);

 MPI_Send(&tmpRes, 1, MPI_DOUBLE, 0, ID, MPI_COMM_WORLD);

 delete [] tmpBuf;
}

bool ispowerof2(int numthreads)
{
 bool res;
 if(numthreads < 2) res = false;
 else
 {
 while(numthreads >= 2)
 {
 if((numthreads%2) == 0)

Parallel Programming Recipes, page 121/153

Spring 2010 - Computer Science - SJSU

 {
 if(numthreads == 2)
 {
 res = true;
 break;
 }
 numthreads = numthreads / 2;
 }
 else
 {
 res = false;
 break;
 }
 }
 }
 return res;
}

int main(int argc, char **argv)
{
 int num_procs; // number of processes
 int ID; // a unique ID of a process
 int chunksize; // number of integers that are
assigned to processors
 bool powof2; // check if the total processors
used is a power of 2

 // variables to measure the computation time
 clock_t start, finish;
 double seqsum, seqdur = 0.0;

 int *A; // set A of n numbers
 A = (int *)malloc(MAXITEMS * sizeof(int)); //allocate memory for
set A

 //initialize data to buffer A
 for(int i = 0; i < MAXITEMS; i++)
 A[i] = rand()% 10;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &ID);
 MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

 chunksize = MAXITEMS/num_procs;

// Sleep(10000);
 if(ID == 0)
 {
 printf("\n\nMPI:");
 start = clock();
 seqsum = 0.0;
 for(int i = 0; i < MAXITEMS; i++)
 {
 seqsum = seqsum + A[i];
 }
 finish = clock();

Parallel Programming Recipes, page 122/153

Spring 2010 - Computer Science - SJSU

 seqdur = (double)(finish - start)/CLOCKS_PER_SEC;
 if(seqdur == 0) seqdur = 0.0001;

 printf("\nSequential sum value is: %lf",seqsum);
 printf("\nSequential duration is: %lf",seqdur);

/* powof2 = ispowerof2(num_procs);
 if(powof2)
 {
 int i = 2;
 while(i < num_procs)
 {
 master(A, MAXITEMS/i, i, ID, seqdur);
 i = i*2;
 }
 }*/
 master(A, chunksize, num_procs, ID, seqdur);
 delete [] A;
 }
 else
 {
 slave(chunksize, ID);
 }

 MPI_Finalize();

 return 0;
}

Appendix D - OpenCL source codes
1/ OpenCL – Dot Product:

// Author: Thuy Nguyenphuc
// Date: 2/07/2010

// thDotProduct.cpp: Parallel arithmetic computation in OpenCL

#include <stdio.h>
#include <stdlib.h>
#include <CL/cl.h>
// for clock_t type
#include <time.h>

#define LOCALDATASIZE 1//256
// Number of elements in the vectors to be added
#define SIZE 10000000

// OpenCL source code
const char* OpenCLSource[] = {
 "__kernel void VectorAdd(__global int* c, __global int*
a,__global int* b)",
 "{",
 " // Index of the elements to add \n",

Parallel Programming Recipes, page 123/153

Spring 2010 - Computer Science - SJSU

 " unsigned int n = get_global_id(0);",
 " // Sum the n’th element of vectors a and b and store in c \n",
 " c[n] = a[n] * b[n];",
 "}"
};

// Main function
//

int main(int argc, char **argv)
{
 // time variables to measure the draw operation's execution time
 clock_t start, finish;
 double dur; // for execution time calculation

 // Two integer source vectors in Host memory
 int *HostVector1, *HostVector2;
 HostVector1 = (int *)malloc(SIZE * sizeof(int));
 HostVector2 = (int *)malloc(SIZE * sizeof(int));
 // Initialize with some interesting repeating data
 for(int c = 0; c < SIZE; c++)
 {
 HostVector1[c] = rand()% 10;
 HostVector2[c] = rand()% 10;
 }
 // Create a context to run OpenCL on our CUDA-enabled NVIDIA GPU
 cl_int err_num;
 printf("\nCreate a GPU context");
 cl_context GPUContext = clCreateContextFromType(0,
CL_DEVICE_TYPE_GPU,
 NULL, NULL, &err_num);

 // Get the list of GPU devices associated with this context
 size_t ParmDataBytes;
 printf("\nclGetContextInfo\n...");
 clGetContextInfo(GPUContext, CL_CONTEXT_DEVICES, 0, NULL,
&ParmDataBytes);
 cl_device_id* GPUDevices = (cl_device_id*)malloc(ParmDataBytes);
 clGetContextInfo(GPUContext, CL_CONTEXT_DEVICES, ParmDataBytes,
GPUDevices, NULL);

 // Create a command-queue on the first GPU device
 printf("clCreateCommandQueue\n...");
 cl_command_queue GPUCommandQueue =
clCreateCommandQueue(GPUContext,

 GPUDevices[0], 0, NULL);
 // Allocate GPU memory for source vectors AND initialize from CPU
memory
 printf("\nAllocate GPU memory for source vectors AND initialize
from CPU memory");
 cl_mem GPUVector1 = clCreateBuffer(GPUContext, CL_MEM_READ_ONLY,
 sizeof(int) * SIZE,
HostVector1, &err_num);
 if(err_num != CL_SUCCESS)
 printf("Error in create buffer 1 - %d",err_num);

Parallel Programming Recipes, page 124/153

Spring 2010 - Computer Science - SJSU

 cl_mem GPUVector2 = clCreateBuffer(GPUContext, CL_MEM_READ_ONLY,
 sizeof(int) * SIZE,
HostVector2, &err_num);
 if(err_num != CL_SUCCESS)
 printf("Error in create buffer 2 - %d",err_num);

 // Allocate output memory on GPU
 printf("\nAllocate output memory on GPU");
 cl_mem GPUOutputVector = clCreateBuffer(GPUContext,
CL_MEM_WRITE_ONLY,

 sizeof(int) * SIZE, NULL, &err_num);
 if(err_num != CL_SUCCESS)
 printf("Error in create output buffer - %d",err_num);

 // Create OpenCL program with source code
 printf("\nCreate OpenCL program with source code");
 cl_program OpenCLProgram = clCreateProgramWithSource(GPUContext,
7,

 OpenCLSource, NULL, NULL);
 // Build the program (OpenCL JIT compilation)
 // start to measure the time build the program
 start = clock();
 printf("\nBuild the program (OpenCL JIT compilation)");
 clBuildProgram(OpenCLProgram, 0, NULL, NULL, NULL, NULL);
 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\nTime to build program is %f", dur);

 // Create a handle to the compiled OpenCL function (Kernel)
 printf("\nCreate a handle to the compiled OpenCL function
(Kernel)");
 start = clock();
 cl_kernel OpenCLVectorAdd = clCreateKernel(OpenCLProgram,
"VectorAdd", NULL);

 // In the next step we associate the GPU memory with the Kernel
arguments
 printf("\nAssociate the GPU memory with the Kernel arguments");
 clSetKernelArg(OpenCLVectorAdd, 0,
sizeof(cl_mem),(void*)&GPUOutputVector);
 clSetKernelArg(OpenCLVectorAdd, 1, sizeof(cl_mem),
(void*)&GPUVector1);
 clSetKernelArg(OpenCLVectorAdd, 2, sizeof(cl_mem),
(void*)&GPUVector2);

 // Launch the Kernel on the GPU
 printf("\nLaunch the Kernel on the GPU");
 size_t WorkSize[1] = {SIZE}; // one dimensional Range
 size_t LocalWorkSize[1] = {LOCALDATASIZE};
 err_num = clEnqueueWriteBuffer(GPUCommandQueue, GPUVector1,
CL_FALSE, 0,
 sizeof(cl_int) * WorkSize[0],
HostVector1, 0, NULL, NULL);

Parallel Programming Recipes, page 125/153

Spring 2010 - Computer Science - SJSU

 err_num |= clEnqueueWriteBuffer(GPUCommandQueue, GPUVector2,
CL_FALSE, 0,
 sizeof(cl_int) * WorkSize[0],
HostVector2, 0, NULL, NULL);
 if(err_num != CL_SUCCESS)
 printf("Error in write to GPUbuffers - %d",err_num);

 err_num = clEnqueueNDRangeKernel(GPUCommandQueue,
OpenCLVectorAdd, 1, NULL,
 WorkSize, LocalWorkSize, 0, NULL, NULL);
 if(err_num != CL_SUCCESS)
 printf("\n\nError in clEnqueueNDRangeKernel() -
%d\n",err_num);

 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\nTime to run kernels only with data size of %d is
%f",SIZE, dur);

 // Copy the output in GPU memory back to CPU memory
 printf("\nCopy the output in GPU memory back to CPU memory");
 int *HostOutputVector;
 HostOutputVector = (int *)malloc(SIZE * sizeof(int));
// int HostOutputVector[SIZE];
 err_num = clEnqueueReadBuffer(GPUCommandQueue, GPUOutputVector,
CL_TRUE, 0,
 WorkSize[0] * sizeof(int),
HostOutputVector, 0, NULL, NULL);
 if(err_num != CL_SUCCESS)
 printf("\n\nError in clEnqueueReadBuffer() -
%d\n",err_num);

 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\nTime to run kernels and copy data between device and
host is %f", dur);

 int sum = 0;
 for (int c = 0; c < SIZE; c++)
 sum += *(HostOutputVector+c);
 printf("\nDot Product value is %d", sum);

 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\nTime to complete dot product calculation is %f", dur);

 // Cleanup
 printf("\nCleanup...\n");
 free(GPUDevices);
 clReleaseKernel(OpenCLVectorAdd);
 clReleaseProgram(OpenCLProgram);
 clReleaseCommandQueue(GPUCommandQueue);
 clReleaseContext(GPUContext);
 clReleaseMemObject(GPUVector1);
 clReleaseMemObject(GPUVector2);
 clReleaseMemObject(GPUOutputVector);

Parallel Programming Recipes, page 126/153

Spring 2010 - Computer Science - SJSU

 delete [] HostVector1;
 delete [] HostVector2;
 delete [] HostOutputVector;
 return 0;
}

2/ OpenCL – Odd-Even Transposition:
// Author: Thuy Nguyenphuc
// Date: 3/18/2010
// OddEvenTransposition program is written in OpenCL for 8 cores
// of GPU Nvidia GeForce 9200M GS
// this program was sucessfully sort a set of data of size 32. The
algorithm assumes that the number of processes
// is as same as the number of elements in the data set.
//
// Notes: The CHUNKSIZE must be an even number for the logic to work
correctly and
// the maximum CHUNKSIZE of 500 is limited by the card GeForce 9200M
GS.
// The bottle neck of the card is the resources when returning data to
host.
#include <stdio.h>
#include <stdlib.h>
#include <CL/cl.h>
// for clock_t type
#include <time.h>

#define LOCALDATASIZE 1
// Number of elements in the vectors to be added
#define MAXPROCESSES 8
#define CHUNKSIZE 500
#define SIZE MAXPROCESSES*CHUNKSIZE

// OpenCL source code
const char* OpenCLSource[] = {
 "__kernel void OddEvenSort(__global int* c, __global int* a, int
elements, int totalkernels, int loopindex)",
 "{",
 " int i,j,m,temp,half = elements/2;",
 " // Index of the current element \n",
 " unsigned int n = get_global_id(0);",
 "// bound check (equivalent to the limit on a 'for' loop for
standard/serial C code\n",
 " if(n >= totalkernels){",
 " return;",
 " }",
 "//Sort local data sequential bubble sort\n",
 " for(i = 1; i < elements; i++){",
 " for(j = 0; j < elements - i; j++){",
 " m = n*elements+j;",
 " if(a[m] > a[m+1]){",
 " temp = a[m];",

Parallel Programming Recipes, page 127/153

Spring 2010 - Computer Science - SJSU

 " a[m] = a[m+1];",
 " a[m+1] = temp;",
 " }",
 " }",
 " }",
 " if(loopindex % 2 == 0){",
 " if(n % 2 == 0){",
 " if(n!=0){",
 " for(i = 0; i < elements; i++){",
 " for(j = 0; j < elements - i;
j++){",
 " m = n*elements-half+j;",
 " if(a[m] < a[m-1]){",
 " temp = a[m];",
 " a[m] = a[m-1];",
 " a[m-1] = temp;",
 " }",
 " }",
 " }",
 " }",
 " }",
 " if(n%2 == 1){",
 " if(n < totalkernels -1){",
 " for(i = 0; i < elements; i++){",
 " for(j = 0; j < elements - i;
j++){",
 " m = n*elements+half+j;",
 " if(a[m] > a[m+1]){",
 " temp = a[m];",
 " a[m] = a[m+1];",
 " a[m+1] = temp;",
 " }",
 " }",
 " }",
 " }",
 " }",
 " }",
 " else{",
 " if(n % 2 == 1){",
 " if(n!=0){",
 " for(i = 0; i < elements; i++){",
 " for(j = 0; j < elements - i;
j++){",
 " m = n*elements-half+j;",
 " if(a[m] < a[m-1]){",
 " temp = a[m];",
 " a[m] = a[m-1];",
 " a[m-1] = temp;",
 " }",
 " }",
 " }",
 " }",
 " }",
 " if(n%2 == 0){",
 " if(n < totalkernels -1){",
 " for(i = 0; i < elements; i++){",

Parallel Programming Recipes, page 128/153

Spring 2010 - Computer Science - SJSU

 " for(j = 0; j < elements - i;
j++){",
 " m = n*elements+half+j;",
 " if(a[m] > a[m+1]){",
 " temp = a[m];",
 " a[m] = a[m+1];",
 " a[m+1] = temp;",
 " }",
 " }",
 " }",
 " }",
 " }",
 " }",
 " for(i = 0; i < elements; i++)",
 " c[n*elements+i] = a[n*elements+i];",
 "}"
};

// Main function
//

int main(int argc, char **argv)
{
 // time variables to measure the draw operation's execution time
 clock_t start, finish;
 double dur; // for execution time calculation

 // Two integer source vectors in Host memory
 int *HostVector;
 HostVector = (int *)malloc(SIZE * sizeof(int));
 // Initialize with some interesting repeating data
 for(int c = 0; c < SIZE; c++)
 {
 HostVector[c] = rand()%1000;
 }
 // Create a context to run OpenCL on our CUDA-enabled NVIDIA GPU
 cl_int err_num;
 printf("\nCreate a GPU context");
 cl_context GPUContext = clCreateContextFromType(0,
CL_DEVICE_TYPE_GPU,
 NULL, NULL, &err_num);

 // Get the list of GPU devices associated with this context
 size_t ParmDataBytes;
 printf("\nclGetContextInfo\n...");
 clGetContextInfo(GPUContext, CL_CONTEXT_DEVICES, 0, NULL,
&ParmDataBytes);
 cl_device_id* GPUDevices = (cl_device_id*)malloc(ParmDataBytes);
 clGetContextInfo(GPUContext, CL_CONTEXT_DEVICES, ParmDataBytes,
GPUDevices, NULL);

 // Create a command-queue on the first GPU device
 printf("clCreateCommandQueue\n...");
 cl_command_queue GPUCommandQueue =
clCreateCommandQueue(GPUContext,

Parallel Programming Recipes, page 129/153

Spring 2010 - Computer Science - SJSU

 GPUDevices[0], 0, NULL);
 // Allocate GPU memory for source vectors AND initialize from CPU
memory
 printf("\nAllocate GPU memory for source vectors AND initialize
from CPU memory");

 cl_mem GPUVector = clCreateBuffer(GPUContext, CL_MEM_READ_ONLY,
 sizeof(int) * SIZE,
HostVector, &err_num);
 if(err_num != CL_SUCCESS)
 printf("Error in create buffer 1 - %d",err_num);
 int GPULoopIndex = 0;
 int GPUElements = CHUNKSIZE;
 int GPUTotalKernels = MAXPROCESSES;

 // Allocate output memory on GPU
 printf("\nAllocate output memory on GPU");
 cl_mem GPUOutputVector = clCreateBuffer(GPUContext,
CL_MEM_WRITE_ONLY,

 sizeof(int) * SIZE, NULL, &err_num);
 if(err_num != CL_SUCCESS)
 printf("Error in create output buffer - %d",err_num);

 // Create OpenCL program with source code
 printf("\nCreate OpenCL program with source code");
 cl_program OpenCLProgram = clCreateProgramWithSource(GPUContext,
83,

 OpenCLSource, NULL, NULL);
 // Build the program (OpenCL JIT compilation)
 // start to measure the time build the program
 start = clock();
 printf("\nBuild the program (OpenCL JIT compilation)");
 clBuildProgram(OpenCLProgram, 0, NULL, NULL, NULL, NULL);
 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\nTime to build program is %f", dur);

 // Create a handle to the compiled OpenCL function (Kernel)
 printf("\nCreate a handle to the compiled OpenCL function
(Kernel)");
 start = clock();
 cl_kernel OpenCLOddEvenSort = clCreateKernel(OpenCLProgram,
"OddEvenSort", NULL);

 // In the next step we associate the GPU memory with the Kernel
arguments
 printf("\nAssociate the GPU memory with the Kernel arguments");
 clSetKernelArg(OpenCLOddEvenSort, 0,
sizeof(cl_mem),(void*)&GPUOutputVector);
 clSetKernelArg(OpenCLOddEvenSort, 1, sizeof(cl_mem),
(void*)&GPUVector);
 clSetKernelArg(OpenCLOddEvenSort, 2, sizeof(cl_int),
(void*)&GPUElements);

Parallel Programming Recipes, page 130/153

Spring 2010 - Computer Science - SJSU

 clSetKernelArg(OpenCLOddEvenSort, 3, sizeof(cl_int),
(void*)&GPUTotalKernels);
 //the fourth argument is in the loop of sorting

 // Launch the Kernel on the GPU
 printf("\nLaunch the Kernel on the GPU");
 size_t WorkSize[1] = {SIZE}; // one dimensional Range
 size_t LocalWorkSize[1] = {LOCALDATASIZE};

 err_num = clEnqueueWriteBuffer(GPUCommandQueue, GPUVector,
CL_TRUE, 0,
 sizeof(cl_int)
* SIZE, HostVector, 0, NULL, NULL);
 if(err_num != CL_SUCCESS)
 printf("Error in write to GPUbuffers - %d",err_num);

 for(GPULoopIndex = 0; GPULoopIndex < MAXPROCESSES +1;
GPULoopIndex++)
 {
 clSetKernelArg(OpenCLOddEvenSort, 4, sizeof(cl_int),
(void*)&GPULoopIndex);
 err_num = clEnqueueNDRangeKernel(GPUCommandQueue,
OpenCLOddEvenSort, 1, NULL,
 WorkSize, LocalWorkSize, 0, NULL, NULL);
 if(err_num != CL_SUCCESS)
 printf("\n\nError in clEnqueueNDRangeKernel() -
%d\n",err_num);
 }

 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\nTime to run kernels only is %f", dur);

 // Copy the output in GPU memory back to CPU memory
 printf("\nCopy the output in GPU memory back to CPU memory");
 int *HostOutputVector;
 HostOutputVector = (int *)malloc(SIZE * sizeof(int));
// int HostOutputVector[SIZE];
 err_num = clEnqueueReadBuffer(GPUCommandQueue, GPUOutputVector,
CL_TRUE, 0,
 WorkSize[0] * sizeof(int),
HostOutputVector, 0, NULL, NULL);
 if(err_num != CL_SUCCESS)
 printf("\n\nError in clEnqueueReadBuffer() -
%d\n",err_num);
 finish = clock();
 dur = (double)(finish - start) / CLOCKS_PER_SEC;
 printf("\nTime to run kernels and copy data between device and
host is %f", dur);

 // Cleanup
 printf("\nCleanup...\n");
 free(GPUDevices);
 clReleaseKernel(OpenCLOddEvenSort);
 clReleaseProgram(OpenCLProgram);
 clReleaseCommandQueue(GPUCommandQueue);

Parallel Programming Recipes, page 131/153

Spring 2010 - Computer Science - SJSU

 clReleaseContext(GPUContext);
 clReleaseMemObject(GPUVector);
 clReleaseMemObject(GPUOutputVector);
 // Print out the results
 printf("\n");
 int c;
 for(c = 0; c < 10; c++){
 if(c%8==0) printf("\n");
 printf("%5d",*(HostOutputVector + c));
 }
 for(c = 1; c < SIZE; c++){
 int temp = *(HostOutputVector + c);
 if(temp < *(HostOutputVector + c -1))
 {
 printf("\nSort program failed at position %d/%d",
c+1, SIZE);
 break;
 }
 }
 if(c == SIZE) printf("\nThe program sorts correctly the data set
of size %d!", c);

 delete [] HostVector;
 delete [] HostOutputVector;
 return 0;
}

3/ OpenCL – Graphics Rendering:

/*
 * Graphics.cpp
 * Copyright 1993-2009 NVIDIA Corporation. All rights reserved.
 *
 * NVIDIA Corporation and its licensors retain all intellectual
property and
 * proprietary rights in and to this software and related
documentation.
 * Any use, reproduction, disclosure, or distribution of this software
 * and related documentation without an express license agreement from
 * NVIDIA Corporation is strictly prohibited.
 *
 * Please refer to the applicable NVIDIA end user license agreement
(EULA)
 * associated with this source code for terms and conditions that
govern
 * your use of this NVIDIA software.
 *
 */

//

Parallel Programming Recipes, page 132/153

Spring 2010 - Computer Science - SJSU

// Demo application for postprocessing of OpenGL renderings with OpenCL
// Based on the CUDA postprocessGL sample
//

// standard utility and system includes
#include <oclUtils.h>

// GLEW and GLUT includes
#include <GL/glew.h>

#if defined(__APPLE__) || defined(MACOSX)
 #include <GLUT/glut.h>
#else
 #include <GL/glut.h>
#endif

// CL/GL includes and defines
#include <CL/cl_gl.h>

// Uncomment this #define to enable CL/GL Interop
//#define GL_INTEROP

// constants / global variables
//***

// GL
int iGLUTWindowHandle; // handle to the GLUT
window
int iGLUTMenuHandle; // handle to the GLUT menu
int iGraphicsWinWidth = 512; // GL Window width
int iGraphicsWinHeight = 512; // GL Window height
cl_int image_width = iGraphicsWinWidth; // teapot image width
cl_int image_height = iGraphicsWinHeight; // teapot image height
GLuint tex_screen; // (offscreen) render
target
float rotate[3]; // var for teapot view
rotation

// pbo variables
GLuint pbo_source;
GLuint pbo_dest;
unsigned int size_tex_data;
unsigned int num_texels;
unsigned int num_values;

// CL objects
cl_context cxGPUContext;
cl_command_queue cqCommandQue;
cl_device_id device;
cl_program cpProgram;
cl_kernel ckKernel;
cl_mem cl_pbos[2] = {0,0};
cl_int ciErrNum;
const char* clSourcefile = "postprocessGL.cl";

Parallel Programming Recipes, page 133/153

Spring 2010 - Computer Science - SJSU

// Timer and fps vars
int iFrameCount = 0; // FPS count for averaging
int iFrameTrigger = 90; // FPS trigger for sampling
int iFramesPerSec = 0; // frames per second
int iTestSets = 3; // # of loop set retriggers before
auto exit when bNoPrompt = shrTrue

// app configuration parms
const char* cProcessor [] = {"OpenCL GPU", "Host C++ CPU"};
int iProcFlag = 0; // 0 = GPU, 1 = CPU
shrBOOL bNoPrompt = shrFALSE; // false = normal GL loop, true =
Finite period of GL loop (a few seconds)
shrBOOL bQATest = shrFALSE; // false = normal GL loop,
true = run No-GL test sequence
bool bPostprocess = shrTRUE; // true = run blur filter
processing on GPU or host, false = just do display of old data
bool bAnimate = true; // true = continue incrementing
rotation of view with GL, false = stop rotation
int blur_radius = 8; // radius of 2D convolution
performed in post processing step

// Forward Function declarations
//***

// OpenCL functionality
int initCL(int argc, const char** argv);
void renderScene();
void displayImage();
void processImage();
void postprocessHost(unsigned int* g_data, unsigned int* g_odata, int
imgw, int imgh, int tilew, int radius, float threshold, float
highlight);

// GL functionality
bool InitGL(int argc, const char** argv);
void createPBO(GLuint* pbo);
void deletePBO(GLuint* pbo);
void createTexture(GLuint* tex_name, unsigned int size_x, unsigned int
size_y);
void deleteTexture(GLuint* tex);
void dumpImage();
void DisplayGL();
void idle();
void KeyboardGL(unsigned char key, int x, int y);
void Reshape(int w, int h);
void mainMenu(int i);

// Helpers
void Cleanup(int iExitCode);
void (*pCleanup)(int) = &Cleanup;
void TestNoGL();
void TriggerFPSUpdate();

// Main Program

Parallel Programming Recipes, page 134/153

Spring 2010 - Computer Science - SJSU

//***

int main(int argc, const char** argv)
{
 // start logs
 shrSetLogFileName ("oclPostProcessGL.txt");
 shrLog(LOGBOTH, 0.0, "%s Starting...\n\n", argv[0]);

 // process command line arguments
 if (argc > 1)
 {
 bQATest = shrCheckCmdLineFlag(argc, argv, "qatest");
 bNoPrompt = shrCheckCmdLineFlag(argc, argv, "noprompt");
 }

 // init GL
 if(!bQATest)
 {
 InitGL(argc, argv);
 }

 // init CL
 if(initCL(argc, argv) != 0)
 {
 return -1;
 }

 // init fps timer
 shrDeltaT (1);

 // Create buffers and textures,
 // and then start main GLUT rendering loop for processing and
rendering,
 // or otherwise run No-GL Q/A test sequence
 if(!bQATest)
 {
 // create pbo
 createPBO(&pbo_source);
 createPBO(&pbo_dest);

 // create texture for blitting onto the screen
 createTexture(&tex_screen, image_width, image_height);

 glutMainLoop();
 }
 else
 {
 TestNoGL();
 }

 // Normally unused return path
 Cleanup(EXIT_FAILURE);
}

//***

Parallel Programming Recipes, page 135/153

Spring 2010 - Computer Science - SJSU

void dumpImage()
{
 unsigned char* h_dump = (unsigned char*) malloc(sizeof(unsigned
int) * image_height * image_width);

 clEnqueueReadBuffer(cqCommandQue, cl_pbos[1], CL_TRUE, 0,
sizeof(unsigned int) * image_height * image_width,
 h_dump, 0, NULL, NULL);

 shrSavePPM4ub("dump.ppm", h_dump, image_width, image_height);
 free(h_dump);
}

//***

void displayImage()
{
 // render a screen sized quad
 glDisable(GL_DEPTH_TEST);
 glDisable(GL_LIGHTING);
 glEnable(GL_TEXTURE_2D);
 glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

 glMatrixMode(GL_PROJECTION);
 glPushMatrix();
 glLoadIdentity();
 glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0, 1.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 glViewport(0, 0, iGraphicsWinWidth, iGraphicsWinHeight);

/* glBegin(GL_POLYGON);

 glColor3d(1, 0, 0);

 float x = 0, y = 0;

 glVertex3d(-0.44+x, 0.6+y, 0);
 glVertex3d(-1.85+x, 0.6+y, 0);
 glVertex3d(-0.71+x, -0.24+y, 0);
 glVertex3d(-1.14+x, -1.58+y, 0);
 glVertex3d(0+x, -0.76+y, 0);
 glVertex3d(1.13+x, -1.58+y, 0);
 glVertex3d(0.70+x, -0.24+y, 0);
 glVertex3d(1.85+x, 0.6+y, 0);
 glVertex3d(0.43+x, 0.6+y, 0);
 glVertex3d(0+x, 1.94+y, 0);
*/

 glBegin(GL_QUADS);

 glTexCoord2f(0.0, 0.0);
 glVertex3f(-1.0, -1.0, 0.5);

Parallel Programming Recipes, page 136/153

Spring 2010 - Computer Science - SJSU

 glTexCoord2f(1.0, 0.0);
 glVertex3f(1.0, -1.0, 0.5);

 glTexCoord2f(1.0, 1.0);
 glVertex3f(1.0, 1.0, 0.5);

 glTexCoord2f(0.0, 1.0);
 glVertex3f(-1.0, 1.0, 0.5);

 glEnd();

 glMatrixMode(GL_PROJECTION);
 glPopMatrix();

 glDisable(GL_TEXTURE_2D);
 glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, 0);
 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
}

// Display callback
//***

void DisplayGL()
{
 // Render the 3D teapot with GL
 renderScene();

 // start timer 0 if it's update time
 double dProcessingTime = 0.0;
 if (iFrameCount >= iFrameTrigger)
 {
 shrDeltaT(0);
 }

 // process
 processImage();

 // get processing time from timer 0, if it's update time
 if (iFrameCount >= iFrameTrigger)
 {
 dProcessingTime = shrDeltaT(0);
 }

 // flip backbuffer to screen
 displayImage();
 glutSwapBuffers();
 glutPostRedisplay();

 // Increment the frame counter, and do fps and Q/A stuff if it's
time
 if (iFrameCount++ > iFrameTrigger)
 {
#ifdef GPU_PROFILING
 // set GLUT Window Title
 char cFPS[256];
 iFramesPerSec = (int)((double)iFrameCount/shrDeltaT(1));

Parallel Programming Recipes, page 137/153

Spring 2010 - Computer Science - SJSU

 if(bPostprocess)
 {
 #ifdef _WIN32
 sprintf_s(cFPS, 256, "%s Postprocessing ON | %u x %u |
%i fps | Proc. t = %.4f s",
 cProcessor[iProcFlag],
iGraphicsWinWidth, iGraphicsWinHeight, iFramesPerSec, dProcessingTime);
 #else
 sprintf(cFPS, "%s Postprocessing ON | %u x %u | %i fps
| Proc. t = %.4f s",
 cProcessor[iProcFlag],
iGraphicsWinWidth, iGraphicsWinHeight, iFramesPerSec, dProcessingTime);
 #endif
 glutSetWindowTitle(cFPS);
 }
 else
 {
 #ifdef _WIN32
 sprintf_s(cFPS, 256, "Post Processing OFF | %u x %u |
%i fps", iGraphicsWinWidth, iGraphicsWinHeight, iFramesPerSec);
 #else
 sprintf(cFPS, "Post Processing OFF | %u x %u | %i fps",
iGraphicsWinWidth, iGraphicsWinHeight, iFramesPerSec);
 #endif
 glutSetWindowTitle(cFPS);
 }

 // Log fps and processing info to console and file
 shrLog(LOGBOTH, 0.0, " %s\n", cFPS);
#endif

 // if doing quick test, exit
 if ((bNoPrompt) && (!--iTestSets))
 {
 // Cleanup up and quit
 Cleanup(EXIT_SUCCESS);
 }

 // reset framecount, trigger and timer
 iFrameCount = 0;
 iFrameTrigger = (iFramesPerSec > 1) ? iFramesPerSec * 2 : 1;
 }
}

//***

void idle()
{
 if (bAnimate) {
 rotate[0] += 0.2;
 rotate[1] += 0.6;
 rotate[2] += 1.0;
 }
 glutPostRedisplay();
}

Parallel Programming Recipes, page 138/153

Spring 2010 - Computer Science - SJSU

// Keyboard events handler
//***

void KeyboardGL(unsigned char key, int x, int y)
{
 switch(key)
 {
 case 'P': // P toggles Processing between CPU and GPU
 case 'p': // p toggles Processing between CPU and GPU
 if (iProcFlag == 0)
 {
 iProcFlag = 1;
 }
 else
 {
 iProcFlag = 0;
 }
 shrLog(LOGBOTH, 0.0, "\n%s Processing...\n",
cProcessor[iProcFlag]);
 break;
 case ' ': // space bar toggles processing on and off
 bPostprocess = !bPostprocess;
 shrLog(LOGBOTH, 0.0, "\nPostprocessing (Blur Filter)
Toggled %s...\n", bPostprocess ? "ON" : "OFF");
 break;
 case 'A': // 'A' toggles animation (spinning of teacup)
on/off
 case 'a': // 'a' toggles animation (spinning of teacup)
on/off
 bAnimate = !bAnimate;
 shrLog(LOGBOTH, 0.0, "\nGL Animation (Rotation) Toggled
%s...\n", bAnimate ? "ON" : "OFF");
 break;
 case '=':
 case '+':
 if (blur_radius < 16) blur_radius++;
 shrLog(LOGBOTH, 0.0, "\nBlur radius = %d\n", blur_radius);
 break;
 case '-':
 case '_':
 if (blur_radius > 1) blur_radius--;
 shrLog(LOGBOTH, 0.0, "\nBlur radius = %d\n", blur_radius);
 break;
 case '\033': // escape quits
 case '\015': // Enter quits
 case 'Q': // Q quits
 case 'q': // q (or escape) quits
 // Cleanup up and quit
 Cleanup(EXIT_SUCCESS);
 }

 // Trigger fps update and call for refresh
 TriggerFPSUpdate();
 glutPostRedisplay();
}

Parallel Programming Recipes, page 139/153

Spring 2010 - Computer Science - SJSU

// Window resize handler callback
//***

void Reshape(int w, int h)
{
 iGraphicsWinWidth = w;
 iGraphicsWinHeight = h;

 glBindTexture(GL_TEXTURE_2D, tex_screen);
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, w, h, 0, GL_RGBA,
GL_UNSIGNED_BYTE, NULL);

 image_width = w;
 image_height = h;

 shrLog(LOGBOTH, 0.0, " w = %d, h = %d\n", w,h);

 num_texels = image_width * image_height;
 num_values = num_texels * 4;
 size_tex_data = sizeof(GLubyte) * num_values;

 if(cl_pbos[0] != 0) {
 // update sizes of pixel buffer objects
 glBindBuffer(GL_ARRAY_BUFFER, pbo_source);
 glBufferData(GL_ARRAY_BUFFER, size_tex_data, NULL,
GL_DYNAMIC_DRAW);

 glBindBuffer(GL_ARRAY_BUFFER, pbo_dest);
 glBufferData(GL_ARRAY_BUFFER, size_tex_data, NULL,
GL_DYNAMIC_DRAW);

 glBindBuffer(GL_ARRAY_BUFFER,0);

 #ifndef GL_INTEROP
 // release current mem objects
 clReleaseMemObject(cl_pbos[0]);
 clReleaseMemObject(cl_pbos[1]);

 // create new objects for the current sizes
 cl_pbos[0] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, 4
* image_width * image_height, NULL, 0);
 cl_pbos[1] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY,
4 * image_width * image_height, NULL, 0);

 // update kernel arguments
 clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void *)
&(cl_pbos[0]));
 clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void *)
&(cl_pbos[1]));
 #endif

 clSetKernelArg(ckKernel, 2, sizeof(cl_int), &image_width);
 clSetKernelArg(ckKernel, 3, sizeof(cl_int), &image_height);
 }
}

Parallel Programming Recipes, page 140/153

Spring 2010 - Computer Science - SJSU

//***

void mainMenu(int i)
{
 KeyboardGL((unsigned char) i, 0, 0);
}

//***

void deleteTexture(GLuint* tex)
{
 glDeleteTextures(1, tex);

 *tex = 0;
}

//***

void createTexture(GLuint* tex_name, unsigned int size_x, unsigned int
size_y)
{
 // create a texture
 glGenTextures(1, tex_name);
 glBindTexture(GL_TEXTURE_2D, *tex_name);

 // set basic parameters
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

 // buffer data
 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, size_x, size_y, 0, GL_RGBA,
GL_UNSIGNED_BYTE, NULL);
}

//***

void pboRegister()
{
 // Transfer ownership of buffer from GL to CL
 #ifdef GL_INTEROP
 clEnqueueAcquireGLObjects(cqCommandQue,2, cl_pbos, 0, NULL,
NULL);
 #else
 // Explicit Copy
 // map the PBO to copy data to the CL buffer via host
 glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pbo_source);

 GLubyte* ptr =
(GLubyte*)glMapBufferARB(GL_PIXEL_PACK_BUFFER_ARB,
 GL_READ_ONLY_ARB);

Parallel Programming Recipes, page 141/153

Spring 2010 - Computer Science - SJSU

 clEnqueueWriteBuffer(cqCommandQue, cl_pbos[0], CL_TRUE, 0,
 sizeof(unsigned int) * image_height *
image_width, ptr, 0, NULL, NULL);
 glUnmapBufferARB(GL_PIXEL_PACK_BUFFER_ARB);
 glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0);
 #endif
}

//***

void pboUnregister()
{
 // Transfer ownership of buffer back from CL to GL
 #ifdef GL_INTEROP
 clEnqueueReleaseGLObjects(cqCommandQue,2, cl_pbos, 0, NULL,
NULL);
 #else
 // Explicit Copy
 // map the PBO to copy data from the CL buffer via host
 glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, pbo_dest);

 // map the buffer object into client's memory
 GLubyte* ptr =
(GLubyte*)glMapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB,
 GL_WRITE_ONLY_ARB);
 clEnqueueReadBuffer(cqCommandQue, cl_pbos[1], CL_TRUE, 0,
 sizeof(unsigned int) * image_height *
image_width, ptr, 0, NULL, NULL);
 glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB);
 glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
 #endif
}

// Initialize GL
//***

bool InitGL(int argc, const char **argv)
{
 // init GLUT and GLUT window
 glutInit(&argc, (char**)argv);
 glutInitDisplayMode(GLUT_RGBA | GLUT_ALPHA | GLUT_DOUBLE |
GLUT_DEPTH);
 glutInitWindowPosition (glutGet(GLUT_SCREEN_WIDTH)/2 -
iGraphicsWinWidth/2,
 glutGet(GLUT_SCREEN_HEIGHT)/2 -
iGraphicsWinHeight/2);
 glutInitWindowSize(iGraphicsWinWidth, iGraphicsWinHeight);
 iGLUTWindowHandle = glutCreateWindow("OpenCL/OpenGL post-
processing");

 // register GLUT callbacks
 glutDisplayFunc(DisplayGL);
 glutKeyboardFunc(KeyboardGL);
 glutReshapeFunc(Reshape);
 glutIdleFunc(idle);

Parallel Programming Recipes, page 142/153

Spring 2010 - Computer Science - SJSU

 // create GLUT menu
 iGLUTMenuHandle = glutCreateMenu(mainMenu);
 glutAddMenuEntry("Toggle Post-processing (Blur filter) ON/OFF
<spacebar>", ' ');
 glutAddMenuEntry("Toggle Processor between GPU and CPU [p]", 'p');
 glutAddMenuEntry("Toggle GL animation (rotation) ON/OFF [a]", 'a');
 glutAddMenuEntry("Increment blur radius [+ or =]", '=');
 glutAddMenuEntry("Decrement blur radius [- or _]", '-');
 glutAddMenuEntry("Quit <esc>", '\033');
 glutAttachMenu(GLUT_RIGHT_BUTTON);

 // init GLEW
 glewInit();
 GLboolean bGLEW = glewIsSupported("GL_VERSION_2_0
GL_ARB_pixel_buffer_object");
 shrCheckErrorEX(bGLEW, shrTRUE, pCleanup);

 // default initialization
 glClearColor(0.5, 0.5, 0.5, 1.0);
 glDisable(GL_DEPTH_TEST);

 // viewport
 glViewport(0, 0, iGraphicsWinWidth, iGraphicsWinHeight);

 // projection
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(60.0, (GLfloat)iGraphicsWinWidth / (GLfloat)
iGraphicsWinHeight, 0.1, 10.0);
 glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
 glEnable(GL_LIGHT0);
 float red[] = { 0.1, 1.0, 0.1, 1.0 };
 float white[] = { 1.0, 1.0, 1.0, 1.0 };
 glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, red);
 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, white);
 glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 60.0);

 return true;
}

// Create PBO
//***

void createPBO(GLuint* pbo)
{
 // set up data parameter
 num_texels = image_width * image_height;
 num_values = num_texels * 4;
 size_tex_data = sizeof(GLubyte) * num_values;

 // create buffer object
 glGenBuffers(1, pbo);
 glBindBuffer(GL_ARRAY_BUFFER, *pbo);

 // buffer data

Parallel Programming Recipes, page 143/153

Spring 2010 - Computer Science - SJSU

 glBufferData(GL_ARRAY_BUFFER, size_tex_data, NULL,
GL_DYNAMIC_DRAW);

 glBindBuffer(GL_ARRAY_BUFFER, 0);
}

// Delete PBO
//***

void deletePBO(GLuint* pbo)
{
 glBindBuffer(GL_ARRAY_BUFFER, *pbo);
 glDeleteBuffers(1, pbo);

 *pbo = 0;
}

// render a simple 3D scene
//***

void renderScene()
{
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(60.0, (GLfloat)iGraphicsWinWidth / (GLfloat)
iGraphicsWinHeight, 0.1, 10.0);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -3.0);
 glRotatef(rotate[0], 1.0, 0.0, 0.0);
 glRotatef(rotate[1], 0.0, 1.0, 0.0);
 glRotatef(rotate[2], 0.0, 0.0, 1.0);

 glViewport(0, 0, iGraphicsWinWidth, iGraphicsWinHeight);

 glEnable(GL_LIGHTING);
 glEnable(GL_DEPTH_TEST);
 glDepthFunc(GL_LESS);

 //glutSolidDodecahedron();
 //glutSolidOctahedron();
 //glutWireSphere(1.0,5,8);
 //glutSolidTorus(0.5, 1.0, 1000, 8);
 //glutSolidIcosahedron();
 glutSolidTeapot(1.0);
}

// Init OpenCL
//***

int initCL(int argc, const char** argv)
{
 // Create the OpenCL context on a GPU device

Parallel Programming Recipes, page 144/153

Spring 2010 - Computer Science - SJSU

 cxGPUContext = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL,
NULL, &ciErrNum);
 shrCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

 // get and log the device info
 if(shrCheckCmdLineFlag(argc, (const char**)argv, "device")) {
 int device_nr = 0;
 shrGetCmdLineArgumenti(argc, (const char**)argv, "device",
&device_nr);
 device = oclGetDev(cxGPUContext, device_nr);
 } else {
 device = oclGetMaxFlopsDev(cxGPUContext);
 }
 oclPrintDevName(LOGBOTH, device);

 // create a command-queue
 cqCommandQue = clCreateCommandQueue(cxGPUContext, device, 0,
&ciErrNum);
 shrCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

 // Memory Setup
 #ifdef GL_INTEROP
 cl_pbos[0] = clCreateFromGLBuffer(cxGPUContext,
CL_MEM_READ_ONLY, pbo_source, &ciErrNum);
 cl_pbos[1]= clCreateFromGLBuffer(cxGPUContext,
CL_MEM_WRITE_ONLY, pbo_dest, &ciErrNum);
 #else
 cl_pbos[0] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, 4 *
image_width * image_height, NULL, &ciErrNum);
 cl_pbos[1] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, 4
* image_width * image_height, NULL, &ciErrNum);
 #endif
 shrCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

 // Program Setup
 size_t program_length;
 const char* source_path = shrFindFilePath(clSourcefile, argv[0]);
 char *source = oclLoadProgSource(source_path, "", &program_length);
 shrCheckErrorEX(source != NULL, shrTRUE, pCleanup);

 // create the program
 cpProgram = clCreateProgramWithSource(cxGPUContext, 1,(const char
**) &source, &program_length, &ciErrNum);
 shrCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);
 free(source);

 // build the program
 ciErrNum = clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
 if (ciErrNum != CL_SUCCESS)
 {
 // write out standard error, Build Log and PTX, then cleanup
and exit
 shrLog(LOGBOTH | ERRORMSG, (double)ciErrNum, STDERROR);
 oclLogBuildInfo(cpProgram, oclGetFirstDev(cxGPUContext));
 oclLogPtx(cpProgram, oclGetFirstDev(cxGPUContext),
"oclPostProcessGL.ptx");

Parallel Programming Recipes, page 145/153

Spring 2010 - Computer Science - SJSU

 Cleanup(EXIT_FAILURE);
 }

 // create the kernel
 ckKernel = clCreateKernel(cpProgram, "postprocess", &ciErrNum);

 // set the args values
 ciErrNum |= clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void *)
&(cl_pbos[0]));
 ciErrNum |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void *)
&(cl_pbos[1]));
 ciErrNum |= clSetKernelArg(ckKernel, 2, sizeof(image_width),
&image_width);
 ciErrNum |= clSetKernelArg(ckKernel, 3, sizeof(image_width),
&image_height);
 shrCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

 return 0;
}

// Kernel function
//***

int executeKernel(cl_int radius)
{

 // set global and local work item dimensions
 size_t szGlobalWorkSize[2];
 size_t szLocalWorkSize[2];
 szLocalWorkSize[0] = 16;
 szLocalWorkSize[1] = 16;
 szGlobalWorkSize[0] = shrRoundUp((int)szLocalWorkSize[0],
image_width);
 szGlobalWorkSize[1] = shrRoundUp((int)szLocalWorkSize[1],
image_height);

 // set the args values
 cl_int tilew = (cl_int)szLocalWorkSize[0]+(2*radius);
 ciErrNum = clSetKernelArg(ckKernel, 4, sizeof(tilew), &tilew);
 ciErrNum |= clSetKernelArg(ckKernel, 5, sizeof(radius), &radius);
 cl_float threshold = 0.8f;
 ciErrNum |= clSetKernelArg(ckKernel, 6, sizeof(threshold),
&threshold);
 cl_float highlight = 4.0f;
 ciErrNum |= clSetKernelArg(ckKernel, 7, sizeof(highlight),
&highlight);

 // Local memory
 ciErrNum |= clSetKernelArg(ckKernel, 8,
(szLocalWorkSize[0]+(2*16))*(szLocalWorkSize[1]+(2*16))*sizeof(int),
NULL);

 // launch computation kernel
 ciErrNum |= clEnqueueNDRangeKernel(cqCommandQue, ckKernel, 2, NULL,
 szGlobalWorkSize,
szLocalWorkSize,

Parallel Programming Recipes, page 146/153

Spring 2010 - Computer Science - SJSU

 0, NULL, NULL);
 shrCheckErrorEX(ciErrNum, CL_SUCCESS, pCleanup);

 return 0;
}

// copy image and process using OpenCL
//***

void processImage()
{
 // activate destination buffer
 glBindBuffer(GL_PIXEL_PACK_BUFFER_ARB, pbo_source);

 //// read data into pbo. note: use BGRA format for optimal
performance
 glReadPixels(0, 0, image_width, image_height, GL_BGRA,
GL_UNSIGNED_BYTE, NULL);

 if (bPostprocess)
 {
 if (iProcFlag == 0)
 {
 pboRegister();
 executeKernel(blur_radius);
 pboUnregister();
 }
 else
 {
 // map the PBOs
 glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, pbo_source);
 glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, pbo_dest);

 unsigned int* source_ptr = (unsigned
int*)glMapBufferARB(GL_PIXEL_PACK_BUFFER_ARB,

GL_READ_ONLY_ARB);

 unsigned int* dest_ptr = (unsigned
int*)glMapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB,

GL_WRITE_ONLY_ARB);

 // Postprocessing on the CPU
 postprocessHost(source_ptr, dest_ptr, image_width,
image_height, 0, blur_radius, 0.8f, 4.0f);

 // umap the PBOs
 glUnmapBufferARB(GL_PIXEL_PACK_BUFFER_ARB);
 glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0);
 glUnmapBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB);
 glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
 }

 // download texture from PBO
 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo_dest);

Parallel Programming Recipes, page 147/153

Spring 2010 - Computer Science - SJSU

 glBindTexture(GL_TEXTURE_2D, tex_screen);
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0,
 image_width, image_height,
 GL_BGRA, GL_UNSIGNED_BYTE, NULL);

 }
 else
 {
 // download texture from PBO
 glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo_source);
 glBindTexture(GL_TEXTURE_2D, tex_screen);
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0,
 image_width, image_height,
 GL_BGRA, GL_UNSIGNED_BYTE, NULL);

 }
}

// Helper to trigger reset of fps vars at transition
//***

void TriggerFPSUpdate()
{
 iFrameCount = 0;
 shrDeltaT(1);
 iFramesPerSec = 1;
 iFrameTrigger = 2;
}

// Run a test sequence without any GL
//***

void TestNoGL()
{
 // execute OpenCL kernel without GL interaction
 cl_pbos[0] = clCreateBuffer(cxGPUContext, CL_MEM_READ_ONLY, 4 *
image_width * image_height, NULL, &ciErrNum);
 cl_pbos[1] = clCreateBuffer(cxGPUContext, CL_MEM_WRITE_ONLY, 4 *
image_width * image_height, NULL, &ciErrNum);

 // set the args values
 ciErrNum |= clSetKernelArg(ckKernel, 0, sizeof(cl_mem), (void *)
&(cl_pbos[0]));
 ciErrNum |= clSetKernelArg(ckKernel, 1, sizeof(cl_mem), (void *)
&(cl_pbos[1]));
 ciErrNum |= clSetKernelArg(ckKernel, 2, sizeof(image_width),
&image_width);
 ciErrNum |= clSetKernelArg(ckKernel, 3, sizeof(image_width),
&image_height);

 // warmup
 executeKernel(blur_radius);
 clFinish(cqCommandQue);

 // Measure Time
 shrDeltaT(0);

Parallel Programming Recipes, page 148/153

Spring 2010 - Computer Science - SJSU

 executeKernel(blur_radius);

 clFinish(cqCommandQue);

 // Get elapsed time, and Log state and var data
 shrLog(LOGBOTH, 0.0, "\n%s Postprocess GL QA Test | %u x %u | Proc.
Time = %.4f s\n",
 cProcessor[iProcFlag], iGraphicsWinWidth,
iGraphicsWinHeight, shrDeltaT(0));

 // Cleanup and exit
 Cleanup(EXIT_SUCCESS);
}

// Function to clean up and exit
//***

void Cleanup(int iExitCode)
{
 // Cleanup allocated objects
 shrLog(LOGBOTH, 0.0, "\nStarting Cleanup...\n\n");
 if(pbo_source)deletePBO(&pbo_source);
 if(pbo_dest)deletePBO(&pbo_dest);
 if(tex_screen)deleteTexture(&tex_screen);
 if(ckKernel)clReleaseKernel(ckKernel);
 if(cpProgram)clReleaseProgram(cpProgram);
 if(cqCommandQue)clReleaseCommandQueue(cqCommandQue);
 if(cxGPUContext)clReleaseContext(cxGPUContext);
 if(cl_pbos[0])clReleaseMemObject(cl_pbos[0]);
 if(cl_pbos[1])clReleaseMemObject(cl_pbos[1]);
 if(iGLUTMenuHandle)glutDestroyMenu(iGLUTMenuHandle);
 if(iGLUTWindowHandle)glutDestroyWindow(iGLUTWindowHandle);
 shrLog(LOGBOTH, 0.0, "TEST %s...\n\n", iExitCode == 0 ? "PASSED" :
"FAILED !!!");

 // finalize logs and leave
 if (bNoPrompt || bQATest)
 {
 shrLog(LOGBOTH | CLOSELOG, 0.0, "oclPostProcessGL.exe
Exiting...\n");
 }
 else
 {
 shrLog(LOGBOTH | CLOSELOG, 0.0, "oclPostProcessGL.exe
Exiting...\nPress <Enter> to Quit\n");
 #ifdef WIN32
 getchar();
 #endif
 }
 exit (iExitCode);
}

Parallel Programming Recipes, page 149/153

Spring 2010 - Computer Science - SJSU

/*
 * Hostcode.cpp
 * Copyright 1993-2009 NVIDIA Corporation. All rights reserved.
 *
 * NVIDIA Corporation and its licensors retain all intellectual
property and
 * proprietary rights in and to this software and related
documentation.
 * Any use, reproduction, disclosure, or distribution of this software
 * and related documentation without an express license agreement from
 * NVIDIA Corporation is strictly prohibited.
 *
 * Please refer to the applicable NVIDIA end user license agreement
(EULA)
 * associated with this source code for terms and conditions that
govern
 * your use of this NVIDIA software.
 *
 */

#include <math.h>
#include <oclUtils.h>

template<class T>
T clamp(T x, T a, T b)
{
 return MAX(a, MIN(b, x));
}

// convert floating point rgb color to 8-bit integer
unsigned int rgbToInt(float r, float g, float b)
{
 r = clamp(r, 0.0f, 255.0f);
 g = clamp(g, 0.0f, 255.0f);
 b = clamp(b, 0.0f, 255.0f);
 return (((unsigned int)b)<<16) + (((unsigned int)g)<<8) + ((unsigned
int)r);
}

// get pixel from 2D image, with clamping to border
unsigned int getPixel(unsigned int *data, int x, int y, int width, int
height)
{
 x = clamp(x, 0, width-1);
 y = clamp(y, 0, height-1);
 return data[y*width+x];
}

/*
 2D convolution
 - operates on 8-bit RGB data stored in 32-bit uint
 - assumes kernel radius is less than or equal to block size
 - not optimized for performance

 | : : |

Parallel Programming Recipes, page 150/153

Spring 2010 - Computer Science - SJSU

 |_ _:_____:_ _|
 | | | |
 | | | |
 |_ _|_____|_ _|
 r | : : |
 |___:_____:___|
 r bw r
 <----tilew---->
*/

void postprocessHost(unsigned int* g_data, unsigned int* g_odata, int
imgw, int imgh, int tilew, int radius, float threshold, float
highlight)
{

 for(int y=0; y<imgh; ++y) {
 for(int x=0; x<imgw; ++x) {

 // perform convolution
 float rsum = .0f;
 float gsum = 0.0f;
 float bsum = 0.0f;
 float samples = 0.0f;

 for(int iy=0; iy<=radius+radius+1; iy++) {
 for(int ix=0; ix<=radius+radius+1; ix++) {
 int dx = ix - radius;
 int dy = iy - radius;

 unsigned int pixel = getPixel(g_data, x+dx, y+dy,
imgw, imgh);

 // only sum pixels within disc-shaped kernel
 float l = dx*dx + dy*dy;
 if (l <= radius*radius) {
 float r = (float)(pixel&0x0ff);
 float g = (float)((pixel>>8)&0x0ff);
 float b = (float)((pixel>>16)&0x0ff);

#if 1
 // brighten highlights
 float lum = (r + g + b) / (255*3);
 if (lum > threshold) {
 r *= highlight;
 g *= highlight;
 b *= highlight;
 }
#endif
 rsum += r;
 gsum += g;
 bsum += b;
 samples += 1.0f;
 }
 }
 }

Parallel Programming Recipes, page 151/153

Spring 2010 - Computer Science - SJSU

 rsum /= samples;
 gsum /= samples;
 bsum /= samples;

 g_odata[y*imgw+x] = rgbToInt(rsum, gsum, bsum);
 }
 }
}

/*
 * postprocessGL.cl
 * Copyright 1993-2009 NVIDIA Corporation. All rights reserved.
 *
 * NVIDIA Corporation and its licensors retain all intellectual
property and
 * proprietary rights in and to this software and related
documentation.
 * Any use, reproduction, disclosure, or distribution of this software
 * and related documentation without an express license agreement from
 * NVIDIA Corporation is strictly prohibited.
 *
 * Please refer to the applicable NVIDIA end user license agreement
(EULA)
 * associated with this source code for terms and conditions that
govern
 * your use of this NVIDIA software.
 *
 */

#define USE_LOCAL_MEM

// macros to make indexing shared memory easier
#define SMEM(X, Y) sdata[(Y)*tilew+(X)]

int iclamp(int x, int a, int b)
{
 return max(a, min(b, x));
}

// convert floating point rgb color to 8-bit integer
uint rgbToInt(float r, float g, float b)
{
 r = clamp(r, 0.0f, 255.0f);
 g = clamp(g, 0.0f, 255.0f);
 b = clamp(b, 0.0f, 255.0f);
 return (convert_uint(b)<<16) + (convert_uint(g)<<8) +
convert_uint(r);
}

// get pixel from 2D image, with clamping to border
uint getPixel(__global uint *data, int x, int y, int width, int height)

Parallel Programming Recipes, page 152/153

Spring 2010 - Computer Science - SJSU

{
 x = iclamp(x, 0, width-1);
 y = iclamp(y, 0, height-1);
 return data[y*width+x];
}

/*
 2D convolution using local memory
 - operates on 8-bit RGB data stored in 32-bit uint
 - assumes kernel radius is less than or equal to block size
 - not optimized for performance

 | : : |
 |_ _:_____:_ _|
 | | | |
 | | | |
 |_ _|_____|_ _|
 r | : : |
 |___:_____:___|
 r bw r
 <----tilew---->
*/

__kernel void postprocess(__global uint* g_data, __global uint*
g_odata, int imgw, int imgh, int tilew, int radius, float threshold,
float highlight, __local uint* sdata)
{
 const int tx = get_local_id(0);
 const int ty = get_local_id(1);
 const int bw = get_local_size(0);
 const int bh = get_local_size(1);
 const int x = get_global_id(0);
 const int y = get_global_id(1);

 if(x >= imgw || y >= imgh) return;

#ifdef USE_LOCAL_MEM
 // copy tile to shared memory
 // center region
 SMEM(radius + tx, radius + ty) = getPixel(g_data, x, y, imgw,
imgh);

 // borders
 if (tx < radius) {
 // left
 SMEM(tx, radius + ty) = getPixel(g_data, x - radius, y, imgw,
imgh);
 // right
 SMEM(radius + bw + tx, radius + ty) = getPixel(g_data, x + bw,
y, imgw, imgh);
 }
 if (ty < radius) {
 // top
 SMEM(radius + tx, ty) = getPixel(g_data, x, y - radius, imgw,
imgh);
 // bottom

Parallel Programming Recipes, page 153/153

Spring 2010 - Computer Science - SJSU

 SMEM(radius + tx, radius + bh + ty) = getPixel(g_data, x, y +
bh, imgw, imgh);
 }

 // load corners
 if ((tx < radius) && (ty < radius)) {
 // tl
 SMEM(tx, ty) = getPixel(g_data, x - radius, y - radius, imgw,
imgh);
 // bl
 SMEM(tx, radius + bh + ty) = getPixel(g_data, x - radius, y +
bh, imgw, imgh);
 // tr
 SMEM(radius + bw + tx, ty) = getPixel(g_data, x + bh, y -
radius, imgw, imgh);
 // br
 SMEM(radius + bw + tx, radius + bh + ty) = getPixel(g_data, x +
bw, y + bh, imgw, imgh);
 }

 // wait for loads to complete
 barrier(CLK_LOCAL_MEM_FENCE);
#endif

 // perform convolution
 float rsum = 0.0f;
 float gsum = 0.0f;
 float bsum = 0.0f;
 float samples = 0.0f;

 for(int iy=0; iy<=radius+radius+1; iy++) {
 for(int ix=0; ix<=radius+radius+1; ix++) {
 int dx = ix - radius;
 int dy = iy - radius;

#ifdef USE_LOCAL_MEM
 uint pixel = SMEM(radius+tx+dx, radius+ty+dy);
#else
 uint pixel = getPixel(g_data, x+dx, y+dy, imgw, imgh);
#endif

 // only sum pixels within disc-shaped kernel
 float l = dx*dx + dy*dy;
 if (l <= radius*radius) {
 float r = convert_float(pixel&0x0ff);
 float g = convert_float((pixel>>8)&0x0ff);
 float b = convert_float((pixel>>16)&0x0ff);
#if 1
 // brighten highlights
 float lum = (r + g + b) / (255*3);
 if (lum > threshold) {
 r *= highlight;
 g *= highlight;
 b *= highlight;
 }

Parallel Programming Recipes, page 154/153

Spring 2010 - Computer Science - SJSU

#endif
 rsum += r;
 gsum += g;
 bsum += b;
 samples += 1.0f;
 }
 }
 }

 rsum /= samples;
 gsum /= samples;
 bsum /= samples;

 g_odata[y*imgw+x] = rgbToInt(rsum, gsum, bsum);
}

	Parallel Programming Recipes
	Recommended Citation

	/var/tmp/StampPDF/VQmP3m__9h/tmp.1295901364.pdf.2kpVx

