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 Abstract 
 
Information flow in Discretionary Access Control (DAC) is a well-known 

difficult problem. This paper formalizes the fundamental concepts and 

establishes a theory of information flow security.  A DAC system is 

information flow secure (IFS), if any data never flows into the hands of 

owner’s enemies (explicitly denial access list.) 
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1. Introduction 

Computer technology has been advanced greatly in the recent years. With 
technology growth, faster and cheaper computers are widely available to the 
users. Needless to say, these big leaps in technology have greatly improved 
our efficiency and effectiveness; nonetheless, they also pose a serious 
challenge in maintaining adequate data security. 
 
Commercial security systems take the following view: A system is considered 
to be “secure” if an individual user has the authority to allow or deny access to 
the data that he owns. Its formal model is the so-called the discretionary 
access control model (DAC). In this model, users are called subjects, and 
data are called objects.  
 
However, it has been known for a long time that access control of information 
on Discretionary Access Control system is a difficult problem.  A discretionary 
access control (DAC) model is, well, at the discretion of the owner of data.  
An object’s owner has discretionary authority over who else may access that 
object.  DAC, however, does not deal with information flow, and discretionary 
usually means anyone with access can propagate information.  With this 
model, it is often criticized that discretionary access control cannot prevent 
the illegitimate propagation once access is granted.  
 
In this report, we will formalize the fundamental concepts and establish the 
theory of information flow security on discretionary access control system. As 
a consequence we have solved information propagation via granular 
computing. 
 
 
2. Concept of security 
 
Common definition of computer security is: a system is secure if it adequately 
protects information that it processes against the followings: 
 

a. Unauthorized disclosure 
b. Unauthorized modification 
c. Deny of service 

 
In this report, we are addressing information flow security. So, item a is the 
only relevant one. 
 
In military security, the department of the defense (DoD) is the sole agent 
who decides the authorization. However, in UNIX, the owner of the data is the 
agent to authorize who can access his data; for simplicity, we shall call those 
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who have been authorized the friends (access control list with abbr. ACL).  In 
practice, by default, those who are not in ACL are enemies. 
 
In this paper, we will sharpen the relevant concepts. An enemy is the one to 
whom the owner has absolute objection for accessing his data. In military 
security, enemy list is the so-called explicitly denied access list. The concept 
of enemy list is stronger than the default in UNIX SYSTEM. So, we will 
discuss three lists for each user 
 

1) E-list: enemy list 
2) F-list: friend list 
3) MF-list: the complement of E-list 
 

By definition, E-list and F-list are disjoint, and F-list is subset of MF-list.  
Theoretically, we deal with MF-list. The closest concept to the UNIX’s friend 
list (ACL) is F-list 

 
3.   Concept of Granular computing 
 
Informally, Granular computing (GrC) is a computing theory based on 
granulation; A classical granulation is partition: 
 

 
      Figure 1. Partition is a very neat granulation 

 
The term granular computing (GrC) was coined by Dr. Lin and Zadeh in Fall, 
1996 [59]. However the idea can be traced back to [39].  Both Zadeh and Lin 
have basically adopted mathematical approach to GrC.  Zadeh stated 
[58]:“Basically, TFIG… its foundation and methodology are mathematical in 
nature”.  The word “TFIG”, abbreviation of theory of fuzzy information 
granulation, is precisely the granular computing (GrC).  
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Having adopted incremental approach, Dr. Lin has accumulated nine GrC 
models. They are: 

• First GrC Model (Local Granular Model) 
• Second GrC Model (Global Granular Model) 
• Third GrC Model (Binary Granular Model) 
• Fourth GrC Model (Multi-Binary Granular or Binary Granular Data 

Model) 
• Fifth GrC Model (Relational Granular Model) 
• Sixth GrC Model  
• Seventh GrC Model 
• Eighth GrC Model (Categorical Granular Model) 
• Ninth GrC Model 
 

In these nine models, the Eighth GrC Model, with its higher level view, is 
considered as the formal model of granulation, and the rest of them are 
basically “convenient models” as they all can be derived from the Eighth by 
specifying the general category to various special cases.  
 
We would like to quote the informal definition and formal definition from [57]. 
  
Zadehs informal definition: 
“information granulation involves partitioning a class of objects (points) into 
granules, with a granule being a clump of objects (points) which are drawn 
together by some constraints or forces, such as ‘indistinguishability, similarity 
or functionality”.  “Intuitively, a class of objects that are drawn by some 
constraints forms a tuple with these constraints as the schema of the tuple. 
Let CAT be a given category 
 
Lin’s formal definition on Category Theory Based GrC Model: 
  

1. Let C={Cj
h | h ∈ H and j ∈ Jh } be a family of objects in the Category 

CAT; it is called the universe (of discourse).  
2. Consider a family Π of product objects in C 
3. Consider a family β of relation objects, which are subobjects of Π. 

 
Then the pair (C, β) is the “final” Formal GrC Model that has been called the 
Category Theory Based GrC Model (also 8th GrC Model). 
Remark: Note that if CAT is the category of sets, then we can regard C as the 
union of these sets Cj

h.  “ 
 
From the Eighth model, if we specify the category to the category of sets, we 
have the Fifth model. This model is a collection of n-relations or n-tuples in 
the view of relational database schema. From this model, the First and Fourth 
models are formed if the product objects are limited to be the product of 2 
objects. The First model is referred to neighborhood system (NS), and the 
Fourth is a multi-binary model. If all n-ary relations in the Fifth model are 
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symmetric, the Second model is formed. However, a granule in the Second 
model has to be a set, and a granule in the Fifth model can be a tuple and 
may not be a set. The Third model is built if the number of binary relations is 
reduced to be one. This model is referred to be binary neighborhood (BNS). 
Because BNS is a special case of NS, the Third model is a special case of 
the First model. The Sixth, the Seventh, and the Ninth are derived directly 
from the Eighth model depending on how the category is taken category. If 
category is taken to be the category of fuzzy sets, functions, random variables 
and generalized functions, we form the Sixth model. If category is taken to be 
the category of Turing machines, we form the Seventh model. If category is 
taken to be the category of qualitative fuzzy sets, we form The Ninth model. 
 
In this report, we only concern with the Third model, binary neighborhood 
system (BNS). As BNS is special case of NS (neighborhood system), we shall 
discuss the First model (Local GrC) and Third (Binary GrC) model in more 
details.   
 

3.1 First Model (Local GrC Model - Neighborhood System) 
 
“The theory of neighborhood systems is abstracted from the geometric notion 
of ‘near’ or ‘negligible distances’." [16]. For each point p in the universe U, 
one associates with it a family of subsets. This family may or may not be 
empty, and each subset in the family is NS(p) and is called a neighborhood 
system at p or a neighborhood at p respectively. A neighborhood system of 
the universe U, denoted as NS(U), is the collection β of that kind of a family at 
every element or point p of the universe. In granular computing, 
Neighborhood and neighborhood system are called granule and the granular 
structure respectively. Let β be NS, the pair (U, β) will be a local granular 
model as each granule is associated with some points. We use Dr. Lin’s 
words to give the formal definition for this model [57] 
 
Definition “First GrC Model: The 3-tuple (V,U,β) is called Local GrC Model, 
where β is a neighborhood system (NS). If V = U, the 3-tuple is reduced to a 
pair (U, β). In addition, if we require NS to satisfy the topological axioms, then 
it becomes a TNS.” 
 

3.2 Third Model (Binary GrC Model – Binary Neighborhood 
System) 

 
The type of neighborhood system arises from binary relation is called binary 
neighborhood system.  
 
Let U and V be the two classical sets. With a subset R of Cartesian product V 
× U is a binary relation, we will re-express R by binary granulation [17].  
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A binary relation defines a mapping B, called binary granulation for each p of 
the set V as: 
B : V →  2U :  p →  B(p), where B(p) = {u |  (p, u) ∈ R} 
 
Conversely, given B, we can define the binary relation R, which is a set of 
ordered pairs (p, u) from a set Bp, a power set of the set U, to a set V as:  
R = {(p, u)  | u ∈ Bp∀ p ∈ V} 
 
The defining of B(p) = {u |  (p, u) ∈ R} is a right neighborhood, and the 
collection B of B(p) at each p of V is the (right) binary neighborhood system 
(BNS). Similarly, a left version is defined as: a left neighborhood system L is 
defined by the set of L(p) where L(p) = {u | (u, p) ∈ R} at every p of V.  
 
The Third model is the pair (U, β) where β is R or right (left) neighborhood 
system. This model arises from a binary relation, so it is called a binary 
granular model. Dr. Lin gives the definition for the model as follows: [57] 
 
Definition: “3rd GrC model is the three-tuple (U, V, β), where β is a BNS. It 
may be referred to as a binary GrC model. If U = V, then the three-tuple is 
reduced to a pair (U, β). 
Observe that BNS is equivalent to a BR: 

BR = {(p, Y ) | Y ∈ B(p) and p ∈ V}. 
Conversely, a BR defines a (right) BNS as follows: 

p → B(p) = {Y | (p, Y ) ∈ BR} 
So both modern examples give rise to BNS, which was called a binary GrS in 
Lin (1998a). We would like to note that based on this (right) BNS, the (left) 
BNS can also be defined: 

D(p) = {Y | p ∈ B(Y ) for all p ∈ V }.“ 
 
In computer security, Discretionary Access Control Model (DAC) assigns 
each user p a family of users, Yi, i = 1, 2, 3, …, who can access p’s data.  In 
other words, each p is assigned a granule of friends. To formalize DAC 
model, let U and V be two classical sets.  Each p∈ V is assigned a subset 
B(p) of “basic knowledge”. This knowledge is a set of friends or a 
“neighborhood” of positions. 

p →  B(p) = {Yi, i = 1, 2,  … } ⊆ U 
 
In this model, such a set B(p) is called a right binary neighborhood, and the 
collection { B(p) | ∀ p ∈ V} is called the binary neighborhood system (BNS) 
 
In granular computing point of view, DAC is a binary neighborhood system. 
We will examine DAC in more details in section 4. 
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4. Discretionary Access Control (DAC) 

 
We will formulate UNIX’s ACL based on BN’s language. In 1989, Brewer and 
Nash (abbreviated, BN) proposed a very interesting security policy, called 
Chinese wall security policy [2]. The paper essentially addresses the 
information flow problem on DAC. So we will use its notations and language, 
to formulate the idea of UNIX-permission-bits in terms of the concepts of 
information flow on DAC. 
 
A user in UNIX is the owner of an account. Without the lost of generality, we 
will refer the files in an account that have the same permission bits as the 
dataset of the account, owned by a company. BN referred the dataset of a 
company as an object. So the UNIX-permission-bits essentially specify a 
group of users who can access the information of an object, say X. Here the 
access means to read and may be to save the information of X to the 
datasets of this group. We will abstract such an access to a concept of 
information flow. We say information in object X has flowed into an object Y 
when this type of an access occurs. Here, Y is a generic object in the group. 
 
We have taken pains to abstract the UNIX files into objects. However, the 
notion of objects shall not be restricted to UNIX. Abstractly, an object consists 
of information (dataset) and its container (the account). So, information in a 
DAC can flow from an object and can be received by objects. Following BN, 
we will denote the collection of all those objects to be the set O. Therefore, 
the permission bits are abstracted to the following: 
 
To each object, say X ∈ O, we associate a group F(X) = {Yj, j = 1, 2, …} of 
objects who may receive information from X. In other words, information in X 
may flow into any object Yj, j = 1, 2, …. The set F(X) is often referred to as the 
access control list (ACL). We will call it the friend-list of X. 
 
Similarly, the enemy-list of X, denoted by E(X), consists of a group of objects, 
to which no information of X can be flowed to or from X directly. This list has 
been referred to as explicitly denied list [23]. 
 
Definition 1 Discretionary Access Control Model (DAC) is a map 
 

F : O → 2O :  X → F(X). 
 
that associates each object of O with a group of friends, called friend-list. 2O, 
known as the power set of O, denotes the collection of all subsets of O. In this 
report, we will denote this DAC by F-DAC. Here, F is used to emphasize that 
the information is flowed into friends' datasets. 
 
By analogy, we can define the following: 
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Definition 2 E-DAC model is a map 
 

E : O → 2O :  X → E(X). 
 
that associates each object of set O with a group of enemies, called an 
enemy-list. Such a list has been called explicitly denied list [23]. 
 
Abstractly, the friend-list F(X) and the enemy-list E(X) concern the "same" 
concept (see the geometric discussions below.) Let Y be an object that 
information of X is allowed to flow into, in other words, Y ∈ F(X). We will 
denote this permissibility by X ⇒ Y. Observe that the collection of the pairs 
(X, Y) related by X ⇒ Y is a subset of Cartesian product O x O. Hence, a 
binary relation is defined. 
 
Definition 3 The set {(X, Y) | Y ∈ F(X)} is a binary relation, denoted by F or 
more graphically ⇒. This binary relation is called Direct Information Flow 
Model (DIF).  
 
Similarly, {(X, Y)  | Y ∈ E(X)} is a binary relation, denoted by E. 
 
From these definitions, it is clear that we have the following proposition. 
 
Proposition 1 F-DAC and F are equivalent. Similarly, E-DAC and E are 
equivalent. 
 
By abuse of notations, F and E will denote both F-DAC and E-DAC and the 
respectively corresponding binary relations. 
 

4.1 Geometric Views of DAC 
 
The concept of F(X) and E(X) can be viewed geometrically: Let U be a set 
and p be a point in U. Here, U is a geometric view of O. We shall consider the 
geometric abstraction of F-DAC or E-DAC. Namely, 
 
Definition 1 Geometric abstraction of F-DAC (or E-DAC) is a map 
 
B :  U → 2U :  p → B(p) 
 
that associates each point p of U with a subset B(p). This map is called a 
binary neighborhood system (BNS) or a binary granulation. B(p), called a 
neighborhood, is the geometric abstraction of F(X). By abuse of language, we 
will also call the collection {B(p) |  p ∈  U} a BNS. 
 
Definition 2 Let O be the set of all objects, and X an object. 
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T(X) = F( X) ∪  F[F[X]] ∪  F[F[F[X]]] … (transfinitely many) is called the 
trajectory of information flows from X. 

 
5. Information Flow Security on DAC 
 
The nature of the information flow is "continuously flowing." So we need to 
trace its trajectories, namely, we have to apply ⇒ repeatedly to the objects. 
So we define: 
 
Definition 1 Information Flow from X to Y is defined to be the compositions of 
finite sequences of ⇒ (Direct information flow): 
 
X = {X0 ⇒ X1 ⇒ X2 …  ⇒ Xn = Y} 
 
Here, n varies through integers. Note that this includes the case, X ⇒ X. The 
collection of such (X, Y) is a reflexive binary relation, denoted by C and called 
Information Flow Model. 
 
Corollary 1 C is the transitive closure of F.  
The following corollary is immediate from the definition. 
 
Corollary 2 T(X) = {Y |  (X, Y ) ∈ C} 
Intuitively, T(X) consists of all possible points that the information flows are 
allowed to reach. 
 
The central theme of this report is to discuss: How the DAC can be designed 
properly so that  
 
Main Theme  
Information flows can never flow into enemies' hands. Formally, we say 
T(X) ∩  E(X) = ∅  ∀  X ∈  O.  
 
Definition 2 The requirement that information flows will never flow into enemy 
list is called information flow security policy (IFSP). 
 
As a result, if T(X) meets IFSP, we will denote such T(X) as ST(X) and call it 
the secure trajectory information flows from X. We have ST(X) = MF(X),  and 
F(X) ⊆ ST(X) if F(X) is not maximal. 
 

5.1 Illustrations 
 

Let us illustrate the concept by examples: 
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Example 1 (Positive example): Assume we have a set O that contains five 
objects A, B, C, D, E and their E-DAC is given below: 
A  →  E { } 
B  →  E {A} 
C →  E {A, B} 
D →  E {A, B, C} 
E →  E {A, B, C, D} 
 
By default, we assume the complement of each friend-list is an enemy-list. 
Therefore, each friend-list (F) is also its maximal friend-list (MF) and F-DAC 
is:  
A →  {A, B, C, D, E} 
B →  {B, C, D, E} 
C →  {C, D, E} 
D →  {D, E} 
E →  {E}  
 
In this example, the F-DAC is secure in the sense that no information of an 
object X may flow into its enemies' objects. Let us look at the trajectory of 
each object 
 
A ⇒ A ⇒ B => C ⇒ D ⇒ E 
    T(A) = {A, B, C, D, E} does not meet E(A) = { } 
   T(A) meets IFSP; therefore, T(A) = ST(A) 
 
 
 
 
 
 
      

 
       A

D
B 

E

C

 
Figure 2. Trajectory of object A, T(A) 

 
 
 
 
 
 
 
 
 
 
 

 - 12 - 



CS298 Report 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

              
 

A 
 
B 
 
C 
 
D 
 
E 

A 
 
B 
 
C 
 
D 
 
E 

A 
 
B 
 
C 
 
D 
 
E 

A 
 
B 
 
C 
 
D 
 
E 

A 
 
B 
 
C 
 
D 
 
E 

A 
 
B 
 
C 
 
D 
 
E 

Figure 3. Geometric view of T(A) 
 
B ⇒ B ⇒ C ⇒ D ⇒ E  
    T(B) = {B, C, D, E} does not meet E(B) = {A} 
   T(B) meets IFSP; therefore, T(B) = ST(B) 
 
 
 
 

 
 
 
 
 
 

B

D
A 

E

C 

Figure 4. Trajectory of object B , T(B) 
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Figure 5. Geometric view of T(B) 
\ 
C ⇒ C ⇒ D ⇒ E   
    T(C) =  {C, D, E} does not meet E(C) = {A, B} 
   T(C) meets IFSP; therefore, T(C) = ST(C) 

 
 
 

 
 

 
 
 

 
Figure 6. Trajectory of object C, T(C) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 7. Geometric view of T(C) 
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D ⇒ D ⇒ E 
    T(D) = {D, E} does not meet E(D) = {A, B, C} 
   T(D) meets IFSP; therefore, T(D) = ST(D) 
 
 
 
 
 
 
 
 

 
D

CA 

B 

E

Figure 8. Trajectory of object D, T(D) 
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Figure 9. Geometric view of T(D) 
 
E ⇒ E 
   T(E) = {E} does not meet E(E) = {A, B, C, D} 
  T(E) meets IFSP; therefore, T(E) = ST(E) 
 
 

 
 
 
 
 

EB 

C 

D

A 

Figure 10. Trajectory of object E, T(E) 
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B 
 
C 
 
D 
 
E 
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Figure 11. Geometric view of T(E) 

 
So information in every object can never flow into the enemies. 
 

 
 

Figure 12. Screen 1 of Programmatic view of example 1 
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Figure 13. Screen 2 of Programmatic view of example 1 
 

Next,let us look at a negative example. 
 
Example 2 (Negative example): The enemy lists are: 
A →  E {B, D, E} 
B →  E {D} 
C →  E {A, B, D, E} 
D →  E {A, B, C, E} 
E →  E {B, C, D} 
 
By default, the friend-lists (F) again same as maximal friend-lists (MF) are: 
A →  {A, C} 
B →  {A, B, C, E} 
C →  {C} 
D →  {D} 
E →  {A, E} 
 
Now, observe that the trajectories are: 
 
A ⇒ A ⇒ C  
    T(A) = {A, C} does not meet E(A) = {B, D, E} 

        T(A) meets IFSP; therefore, T(A) = ST(A) 
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Figure 14. Trajectory of object A, T(A) 
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Figure 15. Geometric view of T(A) 
 
 B ⇒ B ⇒ A ⇒ C ⇒ E 

   T(B) = {A, B, C, E} does not meet E(B) = {D} 
  T(B) meets IFSP; therefore, T(B) = ST(B) 
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Figure 16. Trajectory of object B, T(B) 
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Figure 17. Geometric view of T(B) 
 
C ⇒ C  
   T(C) = {C} does not meet E(C) = {A, B, D, E} 
  T(C) meets IFSP; therefore, T(C) = ST(C) 
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Figure 18. Trajectory of object C, T(C) 
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             Figure 19. Geometric view of T(C) 
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D ⇒ D  
   T(D) = {D} does not meet E(D) = {A, B, C, E} 
  T(D) meets IFSP; therefore, T(D) = ST(D) 

 
 

 
 
 
 
 

 
 
 
Figure 20. Trajectory of object D, T(D) 

 
 

   
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21. Geometric view of T(D) 
 
E ⇒ E ⇒  A ⇒ C  
   T(E) = {A,  C, E} does meet E(E) = {B, C, D} 
  T(E) does not meet IFSP; therefore, T(E) ≠ ST(E) 
 
 
 
 
 

 
 
 

 
Figure 22. Trajectory of object E, T(E) 
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Figure 23. Geometric view of T(E) 
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Figure 24. The failure of Information Flow Security Policy of object E 
 

These phenomena occur because F-DAC does not satisfy the Information 
Flow Security conditions. 
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Figure 25. Programmatic view of example 2 
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5.2 Main Theorems 
 

Let us recall some definitions 
 
1. A symmetric binary relation B is a binary relation such that for every (u, v) 

∈ B implies (v, u) ∈ B. 
2. B’ = V × V ~ B, which is the complement set of B, defines the complement 

binary relation (CBR). 
3. A binary relation B is anti-reflexive if B is non-empty and no pair (v, v) is in 

B. Observed that B is anti-reflexive iff (if and only if) B' is reflexive. 
4. A binary relation B is anti-transitive if B is non-empty and if (u, v) belongs 

to B implies that for all w either (u, w), (w, v) or both belongs to B. 
Observed that B is anti-transitive iff B' is transitive. 

 
Let us examine the main theorem, which can be viewed as a generalization of 
Chinese wall security theorem [22]. 
 
Theorem 1 Information Flow Security Theorem.  
 
E-DAC enforces information flow security policy if E-DAC is anti-transitive 
 
This will follow directly from the following corollary. 
 
Proposition Information Flow Security Theorem.  
 
Let F-DAC be the complement of E-DAC, then E-DAC enforces information 
flow security policy if F-DAC is transitive 
 
Observe that since F-DAC is transitive, the trajectories stay in F(X). So, T(X) 
is disjoint from E(X), and hence it satisfies IFSP. 
 
Next we re-state the Chinese Wall Security Theorem in terms of IFSP. 
 
We quote two important statements from BN: 
 
1. "The Chinese wall security policy combines commercial discretion with 
legally enforceable mandatory controls . . . , perhaps, as significant to the 
financial world as Bell-LaPadula's policies are to the military." See for Bell-
LaPadula's policies 
2. "People are only allowed access to information which is not held to conflict 
with any other information that they already possess." See [2], Section 
"Simple Security", p. 207. 
 
Simple Chinese wall security policy implies that F-DAC is an equivalence 
relation: 
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1. We observe that if two datasets are accessible by the same agent, we 
should conclude that the information of two datasets can be flowed into 
each others 

2. From the second assertion of BN, we conclude that an agent can access 
any information that is not in conflict with the information they already 
possess. So in F(X), which is outside of E(X), all information can flow into 
each other. Hence F-DAC is an equivalence relation. 

 
So we define: 
 
Definition   
1. Simple Chinese wall security policy (SCWSP) means F-DAC is an 

equivalence relation. 
2. Aggressive Chinese wall security policy (ACSWP) means C is an 

equivalence relation. 
 
Theorem 2 Chinese Wall Security Theorem. 
Simple Chinese wall security policy implies Aggressive Chinese wall security 
policy. 
 
This is immediate: C is an equivalence relation if and only if F is. 
 
Corollary Simple Chinese Wall Security Policy (SCWSP) implies IFSP. 
This is immediate: since equivalence relation is transitive. 
 
Equivalence relation is a special case of binary relation. F-DAC in the Third 
GrC model is a binary relation, and F-DAC in Chinese wall model is an 
equivalence relation. Therefore, Chinese wall model is a special case of 
Information flow model. 
 

5.2.1 Example 
 
Example 3 Assume we have a set O with five objects A, B, C, D, E and their 
E-DAC is given below: 
A  →  E {B, D, E} 
B  →  E {A, C, E} 
C →  E {B, D, E} 
D →  E {A, C, E} 
E →  E {A, B, C, D} 
 
By default, we assume the complement of each friend-list is an enemy-list. 
Therefore, each friend-list (F) is also its maximal friend-list (MF) and F-DAC 
is:  
A  →  {A, C} 
B →  {B, D} 
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C →  {A, C} 
D →  {B, D} 
E →  {E}  
 
In this example, the F-DAC is secure in the sense that no information of an 
object X may flow into enemies' objects. Let us look at the trajectory of each 
object 
 
A ⇒ C ⇒ A 

T(A) = {A, C} does not meet E(A) = {B, D, E} 
T(A) meets IFSP; therefore, T(A) is ST(A) 
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Figure 26. Trajectory of object A 
 
B ⇒ D ⇒ B  
    T(B) = {B, D} does not meet E(B) = {A, C, E} 
   T(B) meets IFSP; therefore, T(B) is ST(B) 
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Figure 27. Trajectory of object B 
 
C ⇒ A ⇒ C   

T(C) =  {A, C} does not meet E(C) = {B, D, E} 
T(C) meets IFSP; therefore, T(C) is ST(C) 
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Figure 28. Trajectory of object C 
 
D ⇒ B ⇒ D 

T(D) = {B, D} does not meet E(D) = {A, C, E} 
T(D) meets IFSP; therefore, T(D) is ST(D) 
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Figure 29. Trajectory of object D 
 

E ⇒ E 
   T(E) = {E} does not meet E(E) = {A, B, C, D} 
  T(E) meets IFSP; therefore, T(E) is ST(E) 
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Figure 30. Trajectory of object E 
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Figure 31. A Geometric view of all 5 objects in set O 
 
So, information in every object can never flow into the enemies. In the above 
graph, the double arrow line connecting a pair of different objects indicates 
symmetry. For example, a symmetry is between A and C, and other is 
between B and D. The red lines on the graph divide the set O into 3 disjoint 
subsets {A, C}, {B, D}, and {E}. This partition represents an equivalence 
relation, which is a special case of binary relation. 
  

5.3 Chinese wall security policy (CWSP) 
 

This model was proposed by Brewer and Nash in 1989. Intuitively, Chinese 
Wall Security Policy (CWSP) is a very intriguing commercial security model. 
The basis idea of CWSP is to build the walls between datasets in the same 
“conflict of interest class”, and people are only allowed to access to 
information in the same side of the wall. In other words, they are not allowed 
to access information that is in the same “conflict of interest class”.  
 
All company data are stored in a hierarchical filing system.  This filing system 
contains three levels: 
 

a. At the lowest level, we deal with individual items of information, each 
concerning a single company.  We shall refer to the files in which such 
information is stored as objects. 

  
b. At the intermediate level, all objects concerning the same company are 

grouped together into what is called a company dataset. 
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c. At the highest level, all company datasets whose companies are in 
competition are grouped together into what is called a conflict of 
interest class. 

 
This policy combines commercial discretion with legally enforcement 
mandatory controls.  There is no information flow from X to Y if and only if X 
and Y belong to the same “conflict of interest class”, or equivalently, 
information flows from X to Y if and only if X and Y are not in the same 
“conflict of interest class”. 

 
For example, there are two “conflict of interest” classes on business about oil 
and bank. The first class contains four oil companies which are Oil-A, Oil-B, 
Oil-C, and Oil-D; the second contains three banks which are Bank-A, Bank-B, 
and Bank-C. As there is no conflict of interest between bank dataset and oil 
dataset, a user A, who has accessed to Bank-A dataset, can only request 
access to the dataset of an oil company, such as Oil-A, Oil-B, Oil-C, or Oil-D.  
He no longer has access to the dataset of either Bank-B or Bank-C since they 
are in same “conflict of interest” as Bank A. Similarly, once he gains access to 
an oil company, say Oil-A, he would no longer has access to any bank or oil 
company other than Bank-A and Oil-A. 

 

5.4 Programmatic illustration 
 
To analyze the security of information flow for each object in the system, we 
build a window application to validate whether the system satisfies IFSP.  The 
system is considered to be secure if every object in the system satisfies IFSP, 
i.e., the intersection of its E list and its T list equals to an empty set.   
         
This application works as follows: 
 

a. Input: 
The application will read the E-DAC in the system from an input file. 
The file contains many rows.  Each row in the file describes the E 
list of an object in the system. 
 

b. Process: 
The application will compute the friend lists (denoted as MF lists). 
The MF notation is used to indicate the complement of E list and is 
the maximal friend list. The trajectory lists (denoted as T lists) will 
then be generated from MF lists for each object in the system.  
Based on T list and E list of an object, the application then validates 
whether the dataset of this object is satisfied the IFSP. The system 
is secure if the datasets of all objects in the system meet IFSP.  
 

c. Output: 
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The application will write the result of the analysis to an output file. 
 
The program takes O(n3) with the main design as follows: 
 

5.4.1 Structure 
 
Input file: 
The input file describes the E-DAC for all objects in the system.  Each row of 
the input file describes an E list of an object.  Each row has the following 
format: 
E(A) = { B, D, E } 
This row defines the E list of object A to be the set containing objects B, D, 
and E. 
 
Sample input file: 
 

 
 

Figure 32. Input file 
 
Data structure: 
 
Each object of the system has the following attributes: 

a. ID: a unique identifier, which identifies each object in the system. 
b. enemyString:  this is the enemy list of the object, described in a string.  

A comma separates each enemy.  This is basically the same format as 
the row in the input file. 

c. E list: this is a hash table, which contains the entire enemy list of the 
object. Each entry in the hash table has a (key, value) pair. The key is 
an enemy object ID, and the value is a reference to an enemy object. 
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d. MF list: this is a hash table, which stores the complement of E list.  
Similarly, each entry in the hash table has a (key, value) pair. 

e.  T list: this is a hash table, which stores the trajectory list of the object.  
Similarly, each entry in the hash table has a (key, value) pair. 

f. I list: this is a linked list, which stores E ∩ T 
 
We will use a hash table to store all the objects in the system.  Each entry in 
the hash table has a (key, value) pair.  The key stores the object ID.  The 
value stores the reference to the object itself.  To make it easy to refer to this 
hash table later on, we will call this hash table the allObjects hash table.  

 
Output file: 
The output file contains the result of our analysis.  It contains the following 
sections: 

a. Summary of the result of the analysis. 
b. Each object’s MF list, T list, I list, and whether its dataset is secure. 
 

       Sample output file: 
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Figure 33. Output file 

5.4.2 Algorithm 
 
            Step 1:  Initialize allObjects hash table from input file. 
 

• Read input file, row by row 
• Construct an object, and parse each row to obtain the ID, the 

enemyString for that object. 
• Store the object to allObjects hash table. 

            
                  At the end of step 1, the allObjects hash table will contain all objects in 

the system. 
 
            Step 2:  Build E list 
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          The E list of each object X is built as follows:  
     

function buildEList() 
{ 
       Parse enemyString into a temporary array of object IDs, tmpIDarray.        
       Traverse tmpIDarray { 
           - Obtain a reference to an enemy object by looking up allObjects 

hash table, using the object ID as key. 
           - Put this reference to the E list hash table of object X.     
       } 
} 
 
Step 3: Build MF list 
 
The MF list of each object X is built as follows: 
 
Function buildMFList() 
{ 
       - Make a copy of allObjects hash table called MF list 
       - Traverse object X’s E list        
       - Remove objects found in X’s E list from that MF list 
} 
 
Step 4: Build T list 

 
           The T list of each object X is built as follows: 

 
function buildTList() 
{  
      Object X: the examined object for which its T list is built 
      Queue q: a temporary queue to hold all possible objects of T list 
      Object curObject: an object in the queue q to be examined.  
 
      // Observe: the maximum length of queue q is n for n objects or users.   
      // Queue q only stores distinct objects or users. 
 
      while (there is an item in the queue) 
      {//The loop cannot be looped more than the total number of distinct 

objects  
 
              curObject := dequeue the 1st item in the queue q; 
 
               foreach (object o in curObject’s MF list) 
               { 
                  if (o is not in X’s T-list)  
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                          {//This condition keeps q to store only distinct objects or 
users 

 
                                Add object o to X’s T list; 
            If o is not curObject: enqueue to place o into queue q 
                          }  
                } 
       } 
} 
 
Step 5: Build I list 

            
           The I list of each object X is built as follows: 
              
           Function builtIList() 
           { 
         Traverse X’s E list 
         Add object to X’s I list if object is found in X’s T list 
 } 

 
Step 4 is the most critical part of the application to achieve O(n3) 
performance.  
 
To avoid infinitely looping and minimize the run time, we ensure that the MF 
list of each possible object can only be visited once during the traversal 
process while building the T list.   
 
For easier understanding, let us go through the buildTList function, steps by 
steps, to build T list of object E in the following example: 
 
Example: the given enemy list, E-DAC as follows: 
A →  E {B, D, E} 
B →  E {A, C, E} 
C →  E {B, D, E} 
D →  E {A, C, E} 
E →  E {B, C, D} 
 
We will have the complement of E-list, the maximal friend-list MF below: 
  
A →  {A, C} 
B →  {B, D} 
C →  {A, C} 
D →  {B, D}  
E →  {E, A}  
  
1. Place E in the queue.  
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2. Enter while loop 
a. Since the queue contains E, E is dequeued. 
b. Enter foreach loop 

i. Since MF list of E contains E and A, we will examine to see 
whether E’s T list contains E and A. 

ii. Since E’s T list is initially empty, it does not contain E.  
Therefore, E is added to E’s T list. 

iii.  E will not be placed in the queue since it is the curObject, 
and its MF list is currently examined. 

iv. A is added to E’s T list, since E’s T list does not contain A. 
v. A is also enqueued, since A is not the curObject. 

      c.   Exit foreach loop.  At this point, the queue has one object, which is         
A. 

3. Re-enter while loop 
a. Since the queue contains A, A is dequeued. 
b. Enter foreach loop 

i. Since MF list of A contains A and C, we will examine to see 
whether E’s T list contains A and C. 

ii. Since E’s T list already contains A, nothing happens. 
iii. C is added to E’s T list, since E’s T list does not contain C. 
iv. C is also enqueued, since C is not the curObject. 

      c.   Exit foreach loop.  At this point, the queue has one object, which is          
C. 

4. Re-enter while loop 
a. Since the queue contains C, C is dequeued. 
b. Enter foreach loop 

i. Since MF list of C contains A and C, we will examine to see 
whether E’s T list contains A and C. 

ii. Since E’s T list already contains A and C, nothing happens. 
      c.   Exit foreach loop.  At this point, the queue is empty. 

5. Exit while loop since the queue is now empty. 
6. E’s T list is now completely built. 

  

5.4.3 Testing results 
 

We have done the test for all possible cases of 4 and 5 objects. The results 
are following: 
 
1. Four objects 

 
For IFSP: 
Total number of objects = 4 
Total number of cases examined = 4096 
Total number of 0 object secure = 699 
Total number of 1 object secure = 1140 
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Total number of 2 objects secure = 1098 
Total number of 3 objects secure = 804 
Total number of secure (all 4 objects are secure) = 355 
 
For ACWSP: 
Total number of cases examined = 355 
Total number of cases met CWSP requirement = 15 

 
2. Five objects 

 
For IFSP: 
Total number of objects = 5 
Total number of cases examined = 1048576 
Total number of 0 object secure = 412004 
Total number of 1 object secure = 336210 
Total number of 2 objects secure = 176980 
Total number of 3 objects secure = 84720 
Total number of 4 objects secure = 31720 
Total number of secure (all 5 objects are secure) = 6942 
 
For ACWSP: 
Total number of cases examined = 6942 
Total number of cases met CWSP requirement = 52 
 

5.4.4 Illustration of application 
 

 
 

Figure 34. Start application 
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Import input filename in Open Input File text box 
 

 
 

Figure 35. Import Input file 
 
Click on Start Analysis button to run the application. The notification displays 
when the analysis is completed.  
 

 
 

Figure 36. Notification of completion of analyzing process 
 
Click OK button to go back the application 
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Figure 37. Four buttons available for retrieving information and analysis result 
 
Click on View Input Data Set button to see E list, the content of input file.  
For example of section 5.4.2 above, file input should be in the following format. 
 

 
 

Figure 38. The given E List in input file 
 
Click on View Complement Set button to see MF list, the complement of E list.  
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Figure 39. MF List (the complement) of the given E List 
 
Click on View Trajectory Set button to see T list. 
 

 
 

Figure 40. T List of the given E List 
 
Click on View Result button to see the analysis of security state for the given E 
list. 
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Figure 41. Final result of information flow analysis 
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6. Conclusion 
 

In this project, we address the most "ancient" problem in computer security.  
Propagation of information is vulnerable. With the information flow security 
policy, we are able to state that the propagation under most general theorem 
for a DAC can be secure.  
 
To ensure a DAC being secure, the minimum requirement of a system is to 
store not only the access control list (ACL) but also the denial access list. The 
access control list is considered as F-DAC, and the denial access list is 
considered as E-DAC.   
 

6.1 Historical Notes on the methodology 
 

Let us say few words about the history of the new methodology. The very first 
idea was started from David Hsiao, who is one of the initial members of the 
group of doing research on this field. I would like to take this chance to thank 
him for introducing the great idea of granulation. I would also like to take this 
opportunity to specially thank Dr. Lin for his guidance though out the course 
of the project. 
 
Our approach is essential based on a computational theory of granulation, 
called “granular computing”. It has originated from four facets. Let us speak in 
the chronological order. The first one is David Hsiao. In his attribute based 
database model, Hsiao clusters the attribute domain into semantically related 
granules (equivalence classes); Clustering (this is different from the same 
term in data mining) is a very important technique in database that stores 
logically related data in physical proximity [7, 8, 5, 15]. The second one, 
probably the deepest one, is actually buried in the design of fuzzy control 
systems. The explicit discussion of the concept is in the article [39]; its newest 
version is in [40]. The third groups are from theory of data. Both Z. Pawlak 
and T.T. Lee observed independently that attributes of a relation induce 
partitions on the set of entities [26, 10] and studied the data from such 
observation. Pawlak called it rough set theory, while Lee named it the 
algebraic theory of relational databases. The last one comes from 
approximate retrieval [24, 11, 4]. To develop a theory of approximate retrieval 
in database, Dr. Lin imported the notion of topology from the continuous world 
to the discrete world; he has called it neighborhood system, which can be 
viewed as a geometric (topological) theory of granulations [17, 18]. Having 
citing so many works, he notes that the notion of partitions (= equivalence 
relations) is a very ancient notion in mathematics. It can be dated back to 
Euclid time, for example, the congruence. The notion of infinitesimal granules 
can be traced back to Archimedes. Here, however, the focus is on the 
computable side of the notion; so the notion has been called “granular 
computing”. The methodology has been far reaching consequence, for 
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example, there are applications to the foundation of database mining (e.g., 
association rules) [20, 21]. In earlier paper, he applies it to security, more 
precisely, on conflict analysis [27], which is an essential notion in commercial 
security. 
 
 

6.2 Future work 
 
There is more work that could be continued on this research to achieve 
security on the future systems that are developed on DAC model. 
 

1) Making minimal change to fulfill the information flow security policy 
(IFSP) for a given F-DAC that does not meet IFSP. 

 
2) Improving efficiency of storing and retrieving large data. 

 
3) Resolve the complexity of the process to define and to analyze all 

possible 2(n-1)n cases for n objects in the system. 
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