
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2009

Automated Artice Generation Using the Web Automated Artice Generation Using the Web

Gaurang Patel
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Patel, Gaurang, "Automated Artice Generation Using the Web" (2009). Master's Projects. 73.
DOI: https://doi.org/10.31979/etd.nejk-kzu2
https://scholarworks.sjsu.edu/etd_projects/73

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/73?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

AUTOMATED ARTICLE GENERATION USING THE WEB
�

A Writing Project
�

Presented to
�

The Faculty of the Department of Computer Science
�

San José State University
�

In Partial Fulfillment
�

of the Requirements for the Degree
�

Master of Science
�

By
�

Gaurang Patel
�

December 2009
�

© 2009
�

Gaurang Patel
�

ALL RIGHTS RESERVED
�

SAN JOSÉ STATE UNIVERSITY
�

The Undersigned Writing Project Committee Approves the Writing Project Titled
�

AUTOMATED ARTICE GENERATION USING THE WEB
�

by Gaurang Patel
�

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE
�

Dr. Chris Pollett, Department of Computer Science 12/17/2009

Dr. Cay Horstmann, Department of Computer Science 12/17/2009

Dr. Mark Stamp, Department of Computer Science 12/17/2009

ABSTRACT
�

AUTOMATED ARTICE GENERATION USING THE WEB

by Gaurang Patel

An article generation application is an intelligent mining engine that looks for web content, then

combines and organizes this content in a meaningful way to generate an article. This contrasts

with a search engine which generates a list of links to pages containing keywords. This writing

project is about such an article generation tool. Our tool generates articles on the topic entered by

the user using information available on the web. The articles have well defined sections, each

talking about different aspect of the topic.

i

ACKNOWLEDGEMENTS
�

I am grateful to my project advisor Dr. Chris Pollett for his guidance throughout year. I would

also like to thank Dr. Cay Horstmann and Dr. Mark Stamp for their time and feedback. Mr.

Ayyappan Arasu deserves a special thanks for answering my concerns at various stages during

the coding of my project. I am also grateful to the developers and users of both the Carrot2 and

the Nutch for their responses to my questions on various discussion forums.

ii

Table of Contents
�

1. Introduction ………………………………………………………………………………… 1
�
2. System Architecture ……………………..……………………………………………….… 3
�

2.1. System modules ……………………..………………………………………………… 3
�
2.2. Architecture …………………………..……………………………………………..… 4
�

3. Crawler/Indexer/Search Engine …………………………………..……………………..…. 5
�
3.1. Nutch Web Crawler …………………………………………..……………………..… 5
�

3.1.1. Sample Nutch Crawl and Search ………………………..……………………... 5
�
3.1.2. Crawling the Whole Web …...…………………………..……………………… 6
�

3.2. Google Search Results …………………………………………..…………………….. 7
�
4. Carrot2 Clustering Engine ……………………………………………..………………….... 8
�

4.1. Exploring the Carrot2 ………………...……………………………..…………………. 8
�
4.2. Clustering Sample Run ………….…………………………………..………………… 9
�
4.3. Lingo Clustering Algorithm ………………..……………………………………...… 12
�

5. Summarizer ……………………………………………………………………………….. 13
�
5.1. OTS (Open Text Summarizer) ……………………………………………………….. 13
�
5.2. Great Summary ………………………………………………………………………. 15
�
5.3. Summarizing Using Carrot2 …………...……………………………………………... 16
�

6. Automated Article Generation Website ………………………………………………..…. 19
�
6.1. Website Architecture …...……………………………………………………………. 19
�
6.2. Summarizing A configurable module ………………………………………………. 20
�

7. Integrating the Whole System ………………...…………………………………………... 22
�
7.1. Integrating Carrot2 into Website ……………...…………..……………………..…… 22
�
7.2. Integrating OTS ……………………………………………………..……………….. 26
�
7.3. Integrating GreatSummary …………………………………………………………... 27
�

8. Noise Reduction ………………………………………………………………………...… 28
�
9. Article Generation Run …………...…….……………………………………………….... 31
�
10. Results and Limitations …………………………………………………………………… 34
�

10.1. Comparison Statistics ……………………………………………………………...... 35
�
10.1.1. Sections Similarity ……………………………………………………………. 36
�
10.1.2. Text Similarity ……………………………………………………………..…. 40
�

10.2. Limitations of AAG generated Articles ……...………………………….………….. 43
�
11. Conclusion ……………………………………………………………………………...… 44
�
12. References ……………………………………………………………………………….... 45
�

iii

List of Figures

2.2.1: System architecture
�

3.1.1: Search and clustering results using Nutch and Carrot2
�

4.1.1: Carrot2 workbench run for query “India” using the Lingo algorithm and a Yahoo source
�

4.2.1: Sample clustering code snippet
�

4.2.2: Sample clustering output
�

5.1.1: Sample OTS output
�

5.2.1: GreatSummary summarizes web page http://en.wikipedia.org/wiki/India
�

5.3.1: Flow of clustering code in Carrot2
�

5.3.2: Code snippet of getDocumentFromFile() mehtod
�

5.3.3: Clustering results for webpage: http://en.wikipedia.org/wiki/Data_mining
�

6.1.1: Directory structure for website
�

6.2.1: Configurable summarizers
�

7.1.1: Method ArticleAPI::executeCommand()

7.1.2: Methods to format Carrot2 output
�

7.1.3: Output format (string) of Carrot2 understandable by PHP
�

7.1.4: Converting Carrot2 output to PHP array
�

7.2.1: OTS integration command line
�

7.2.2: Script echoWeb.sh
�

7.3.1: Source code of GreatSummary web page
�

8.1.1: Function strip_html_tags()

9.1: Article Generation run (paragraph version) for query “san jose” page1
�

9.2: Article Generation run (paragraph version) for query “san jose” page2
�

10.1.1.1: Venn diagram for the query “Java Programming language”
�

10.1.1.2: Venn diagram for the query “Prolog”
�

10.1.1.3: Venn diagram for the query “RDBMS”
�

iv

http:echoWeb.sh
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/India

10.1.1.4: Venn diagram for the query “Scala Programming Language”

10.1.1.5: Venn diagram for the query “C++”

v

1

2

3

4

5

List of Tables
�

10.1.1. : Similar sections in the articles for the query “Java programming language”
�

10.1.1. : Similar sections in the articles for the query “Prolog”
�

10.1.1. : Similar sections in the articles for the query “RDBMS”
�

10.1.1. : Similar sections in the articles for the query “Scala Programming Language”
�

10.1.1. : Similar sections in the articles for the query “C++”
�

vi

1. Introduction

Often when trying to find information on the web, one makes use of a search engine. A query

to such a search engine consists of a list of keywords. The search engine responds with a web

page containing links to pages with that keyword. It does not combine these results into one

resource like an article. A user often has to visit a number of pages to find what he wants. For

this project, we created an automated article generation engine which can produce articles out

of these links. The goal of the project is to be able to produce articles with relevant sections

of text in it. An article is a meaningful collection of sections, each of which talks about

different aspect of the topic. Sections are thematic categories for the entered topic. Our

Article Generation Engine generates article sections with text information. Data in other

formats, for example, images, links, etc, is not considered in article generation.

Our system can be contrasted with other sources of articles on the web. Often such sites

provide static articles (e.g. Wikipedia) which are user contributed. For such static articles,

there might be accuracy and bias issues. One of the goals of this project is to have the Article

Generation Engine produce as accurate information as possible. Clustering and text

summarizing techniques are used to mine the information into sections and to derive the gist

of each of the sections respectively.

The project is mainly divided into two parts. The first deliverable is to develop and test each

system module individually. It includes building the Crawler/Indexer, the Clustering Engine

and the Summarizer. The second part of the project is combining these parts to have the final

Article Generation Engine ready and capable of generating articles. This includes developing

a website, integrating the basic modules with the website and implementing noise reduction

techniques.

1

The project report explains how the Article Generation Engine was developed. It includes

details on each system module as well as how these modules were integrated. It also

discusses noise reduction techniques. It is organized as follows: Sections 3, 4 and 5 talk

about each of three basic modules in detail. These sections include how each system module

was developed. Section 7 mentions steps for integrating these modules into our Article

Generation System. Website development and noise reduction techniques are discussed in

Section 6 and 8 respectively. Section 10 analyzes the article generation results. Section 11

concludes the paper.

2

2. System Architecture

Our Article Generation Engine is a complex system as it has modules that are developed in

different programming languages. These programming languages include C, Java and PHP.

Thus, one part of making these modules to communicate was to pass data among functions in

these different languages.

2.1. System Modules

The Article Generation System is comprised of three core modules:

The Crawler/Indexer/Searcher

The Article Generation Engine is dynamic in the sense that it fetches information from the web

to generate an article. The indexer and the crawler behind it play an important role in the

efficiency and performance of the system. The purpose of this module is to be able to obtain

search results on a given query. This module was built in a way that it could make use of

different open source technologies for performing web search. One of these that we considered

was the Nutch search engine. The other was the Google search API.

The Clustering Engine

An article is a collection of wellorganized, relevant and informative paragraphs/sections. The

clustering module of this project was used to determine which web pages on the entered topic are

related and might be useful to create such sections. This module was built on top of the Carrot2

clustering engine [1]. The clustering engine, after receiving search results, organizes them into

meaningful topics and assigns certain web pages to each cluster.

3

The Text Summarizer

Clustered documents need to be summarized to generate appropriate content to be displayed in

the relevant section. The text summarizer module is responsible for this step. This module was

designed so that it could use different open source text summary engines. In particular,

experiments on OTS (Open Text Summarizer) and Great Summary were carried out in order to

obtain sample summaries. A Carrot2 plugin was also developed for summarizing a page. Section

5 talks about the summarizing module in detail.

2.2. Architecture

Figure 2.2.1 illustrates the architecture of the project. After each of the previously discussed

modules had its turns operating on the data, noise reduction techniques were used to tune the

article quality.

Figure 2.2.1: System architecture

4

3.	 Crawler/Indexer/Searcher

A couple of crawlerindexersearchers were considered for this project.

3.1. Nutch

Nutch is an open source search engine/crawler. It builds on top of Lucene (a text search engine

library). Nutch is written in Java. We next briefly describe how Nutch can be deployed and how

it was used with our system.

3.1.1 Sample Nutch Crawl and Search

Crawling

Nutch configuration consists of the steps of setting the agent name and domain name, creating a

URL file and creating a crawl directory.

Nutch supports command lines for crawling:

$ bin/nutch crawl urls dir crawl depth 3 topN 50

Search the crawled results.

–	 Enable clustering plugin in the nutchsite.xml file by adding a property.

–	 Deploy the web application that comes with Nutch to the Tomcat application server and

run it in a browser.

In this sample run, the “http://www.yahoo.com” domain was crawled to the depth of five levels

starting from the URL “http://sports.yahoo.com”, fetching top 1000 results at each level.

The crawl command is:

$ bin/nutch crawl urls dir crawl.sports.yahoo51000 depth 5 –topN 1000

5

http:http://sports.yahoo.com
http:http://www.yahoo.com

Figure 3.1.1: Search and clustering results using Nutch and Carrot2

The left panel on the page in Figure 3.1.1 shows the search results for the query “sports”. Groups

on the right panel of the page are the clusters found in these search results, if the “clustering

help” check box is selected. It uses the Carrot2 clustering plugin that comes with Nutch.

3.1.2 Crawling the Whole Web

The Article Generation Engine requires the whole web to be crawled, indexed and ready to be

used with the clustering module. Whole web crawling requires totally different steps to be

followed. The crawldb is injected with a list of URLs, crawl sections are generated, and crawling

is applied. Here we use the DMOZ open directory [18] for injecting crawldb. The DMOZ

directory has about 4.5M URLs. Observations during a whole web crawl came out with memory
6

and processing efficiency concerns. Nutch spends 45 minutes to crawl 16k URLs. This equates

to the time of 19 days to crawl 10M URLs, which is still less than the size of the whole web.

3.2. Google Search Results

Another way we obtained search results for our system was to use a Google API. Carrot2 comes

with a source library named GoogleDocuments, which automatically searches for a term on Google

and returns the results. These results can then be used for Carrot2 core libraries to form the article

clusters.

7

4. Carrot2 Clustering Engine

The clustering engine is responsible for generating the article sections. It can be thought as the

first phase in the article generation. As discussed earlier, Carrot2 is used as the clustering engine

for this project. Carrot2 is an open source search results clustering engine. It can organize small

collections of documents into thematic categories [1]. Clustering plays an important role in the

article generation.

Challenges

Carrot2 is a large project. The stable branch of the project has a total of 65 subprojects/plugins

and 700 Java files. Exploring and modifying Carrot2 was difficult, but the Eclipse IDE made it

easier. Eclipse’s project explorer made it easy to explore through the Carrot2 core libraries and

Carrot2 examples. Moreover, Carrot2 is written in Java. Integrating the Carrot2 clustering

algorithm with the website, which was written in PHP, was also a challenge.

4.1. Exploring the Carrot2

The GNU tarball can be used in the Eclipse IDE to create projects in an Eclipse workspace.

Source code can then be modified and various scenarios can be tested within Eclipse. Moreover,

Carrot2 provides a Tomcat deployable web application. Section 3.1 discusses more on this web

application. For this project, we used the version 3.0.1 of Carrot2.

The Carrot2 document clustering workbench is a desktop application that can be used to run

sample clustering processes and explore clustered results visually. It can be useful to understand

the scope and functionalities of Carrot2. Figure 4.1.1 illustrates a workbench run for the query

“India”. This particular run uses the search results from a Yahoo source and the Lingo

8

Figure 4.1.1: Carrot2 workbench run for query “India” using the Lingo algorithm and a Yahoo source

algorithm as the clustering algorithm. The number and size of the clusters can be tuned using the

panel on the right hand side of the tool. The bottomleft panel visually represents clusters and

their relations.

Testing Carrot2 through the workbench helped us learn several things: The available list of

algorithms in Carrot2, the available indexers/search engines that can be used to provide search

results to Carrot2, and so on.

4.2. Clustering Sample Run

We modified the program ClusteringDataFromDocumentSources.java program to test Carrot2

where search results were returned from Google.

Following is the code snippet from ClusteringDataFromDocumentSources.java

9

Figure 4.2.1: Sample clustering code snippet

Briefly, the snippet above works as follows: The SimpleController class defines the lifecycle of a

Carrot2 processing component. The life cycle governs how the controller instances are initialized

and disposed of and how the processing operates. The attributes variable holds a list of

parameters needed during the clustering process. The parameters include query string, maximum

number of results to fetch, etc. The argument GoogleDocumentSource.class in the

SimpleController::process() method indicates that the Google search results are being used for

clustering. The second parameter, LingoClusteringAlgorithm.class, indicates that the Lingo

clustering algorithm will be used of the three available clustering algorithms in Carrot2. The

query string is provided as an argument to this Java program. The ExampleUtils class provides

methods to output the clustering results to the standard output.

10

Output

Figure 4.2.2: Sample clustering output

11

4.3 The Lingo Clustering Algorithm

Carrot2 comes with configurable clustering algorithms. The Article Generation Engine uses the

Lingo clustering algorithm. The algorithm was developed by Stanisław Osiński, Jerzy

Stefanowski, and Dawid Weiss. It operates in following manner:

“The Lingo Algorithm follows steps of frequent phrase extraction, cluster label
induction, cluster content discovery and final cluster formation. When designing a
web search clustering algorithm, special attention must be paid to ensuring that
both content and description (labels) of the resulting groups are meaningful to
humans. As stated on Web pages of Vivisimo (http://www.vivisimo.com) search
engine, “a good cluster—or document grouping—is one, which possesses a good,
readable description”. The majority of open text clustering algorithms follows a
scheme where cluster content discovery is performed first, and then, based on the
content, the labels are determined. But very often intricate measures of similarity
among documents do not correspond well with plain human understanding of what
a cluster’s “glue” element has been. To avoid such problems Lingo reverses this
process—we first attempt to ensure that we can create a humanperceivable cluster
label and only then assign documents to it. Specifically, we extract frequent
phrases from the input documents, hoping they are the most informative source of
humanreadable topic descriptions. Next, by performing reduction of the original
termdocument matrix using SVD, we try to discover any existing latent structure
of diverse topics in the search result. Finally, we match group descriptions with the
extracted topics and assign relevant documents to them.”

Lingo: Search Results Clustering Algorithm
Based on Singular Value Decomposition [17].

12

http:http://www.vivisimo.com

5. Summarizer

After the search results have been divided into clusters, the next step in the article generation is

to summarize the information in each cluster to present the important information. This section

discusses various summarizing approaches.

5.1. OTS

Automatic text summarization is the technique where a computer program summarizes a

document. Summarizing of text and collecting important contents from multiple sentences is an

important module for the Article Generation Engine.

The Open Text Summarizer [6] is an open source tool for summarizing texts. The program reads

a text and decides which sentences are important and which are not. The project uses the OTS

version 0.5.0. OTS uses “GNU make” build mechanism. OTS can be run from command line as

follows:

$ ots articles/sacbee1.txthtml

The above command will summarize the sacbee1.txt file and will generate the summarized text

output in html format. The highlighted text in Figure 5.1.1 shows the summarized text from the

text file.

13

Output

Figure5.1.1: Sample OTS output

14

5.2 Great Summary

GreatSummary [5] is another summarizing tool, which can summarize web pages. We created

our own API on top of GreatSummary as it only has an enduser interface. For an enduser, they

can use GreatSummary via these steps:

1.	� User pastes a text source or URL and identifies the number of sentences to be returned

[5].

2.	� The system identifies the sentences in the text [5].

3.	� Using a mathematical technique called singular value decomposition; the system

identifies the words that capture the key threads of the text. The process is repeated until

the number of sentences requested by the user is reached [5].

4.	� GreatSummary then ranks the sentences according to these words [5].

5.	� The results are returned to the user [5].

Figure 5.2.1 illustrates summary for web page http://en.wikipedia.org/wiki/India

15

http://en.wikipedia.org/wiki/India

Online GreatSummary Run

Figure 5.2.1: GreatSummary summarizes web page http://en.wikipedia.org/wiki/India

5.3. Summarizing Using Carrot2

Here we are looking for the possibility of using Carrot2 for document level clustering. Document

level clustering is basically clustering the contents of a web page to organize the information on

that page. The aim of this deliverable is to modify the Carrot2 code to make it work for document

level clustering. The list of documents to be clustered is one of the input parameters to Carrot2

clustering engine. An API, that breaks a web page into sub documents, was developed. The

output of this API can be passed as input to Carrot2.

Carrot2 code was explored to find the appropriate place to integrate the new API in the system.

While exploring though Carrot2 codebase, the following observations were made on the flow of

the code as illustrated in Figure 5.3.1.

16

http://en.wikipedia.org/wiki/India

Figure 5.3.1: Flow of clustering code in Carrot2

The SampleController, which is the entry point of clustering, receives

GoogleDocumentSource.class as an argument. The GoogleDocumentSource.class is a Java file

in a Carrot2 subproject named carrot2sourcegoogle. This class is responsible for fetching search

results from Google and organizing them into list of documents that can be understood by

Carrot2. Carrot2 has support for several search engines, such as, carrot2sourcegoogle, carrot2

sourcemicrosoft, carrot2sourcelucene, etc. It has separate sub projects for all search engines it

supports. Therefore we simply created a new API, named carrot2sourcedocument, which can

divide a document into sub documents and generate a list of the documents understandable by

Carrot2.

A new file, ClusteringDocument.java, was created in the carrot2examples project. This example

can be run to demonstrate the document content level clustering using the Carrot2.

A new method getDocumentsFromFile(String pageURL) was added to the ClusteringDocument class, to

divide the inputted page in sub documents and return the list of sub documents understandable

by the Carrot2 clustering algorithm. Figure 5.3.2 show a snippet from the code of this method.

17

Figure 5.3.2: Code snippet of getDocumentFromFile() method

Clustering output for URL: http://en.wikipedia.org/wiki/Data_mining

Figure 5.3.3 shows the clustering results.

Figure 5.3.3: Clustering results for webpage: http://en.wikipedia.org/wiki/Data_mining

18

http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining

6. Automated Article Generation Website

The final product of the CS298 writing project is a website that allows users to enter the query

term and see articles. The website was developed using web technologies of PHP, XHTML,

CSS, ETS (Easy Template System).

6.1 Website Architecture

Figure 6.1.1 illustrates directory structure of the website. It used backend models for integration

of clustering and summarizing system modules. The web site further has various modules like

article, summarizer, noise, landing, framework, etc. Each of these modules has their own

Figure 6.1.1: Directory structure for website

19

functionalities. The framework module defines the framework that is used throughout the

website to render pages. The article module is the main clustering engine.

The website follows MVC architectural pattern for organizing the code. Each module directory

has sub directories for MVC components. Directory /main, which is the entry point to the

module, is the “controller” in the MVC pattern. Directory /fe and /modules are “view” and

“model” MVC components respectively.

ETS Easy Template System

ETS is a library that allows the creation of HTML templates that are imported and used in PHP

scripts [13]. The template files generally reside in the /templates directory.

6.2. Summarizing A Configurable Model

Different summarizing approaches were experimented to generate better quality articles. The

website comes with configurable summarizers. The argument on which summarizer to be used is

passed to the constructor of Summarizer class in php/summarizer/Summarizer.php. For example,

GreatSummary, MixedSummarizer and OTS. The summarizer can also be configured with the function

Summarizer::setSummarizer($name), which receives summarizer name as the argument. The

MixedSummarizer module combines both the GreatSummary and OTS modules to produce better

summaries. The Figure 6.2.1 illustrates the configurable model of the summarizer.

20

 Figure 6.2.1: Configurable summarizers

21

7. Integrating the Whole System

Integration of different system modules into the website was another milestone of the project.

The website is in PHP, while Carrot2 code is developed in Java and OTS is written in C.

Moreover, GreatSummary is an online tool and does not have any APIs. It was a challenging task

to integrate all these into one system.

7.1. Integrating Carrot2 with the Website

The easiest way to use output of a Java program in PHP script is via executing that Java program

by command line. PHP has functions, such as, exec(), system() and passthru(), that allow one to

execute shell commands. An API method ArticleAPI::executeCommand(), which executes a shell

command and returns the row output in string format, was developed as shown in Figure 7.1.1.

The function exec() of PHP is used in the above function. It executes a shell command and

returns the results in the form of an array. The returned array elements are merged into a string

using implode() function to format the final output.

Figure 7.1.1: ArticleAPI::executeCommand() method

22

Modified Carrot2
Output Format

As seen in the Figure 4.2.2, the methods in ClusteringDataFromDocumentSources.java output

the clusters in simple text format. We want to have an array of clusters for the PHP code to be

able to analyze those clusters further. So we decided to output the Carrot2 results in a format

which was understandable by PHP. The output was formatted in a way that it looks like a PHP

array.

The following three methods achieve this:

• ExampleUtils::displayResultsPHPUnderstandable()

• ExampleUtils::displayClusterPHPUnderstandable()

• ExampleUtils::displayDocumentPHPUnderstandable()

Figure 7.1.2 illustrates the code snippets of these methods.

23

Figure 7.1.2: Methods to format Carrot2 output

Figure 7.1.3 shows one such output string.

24

Figure 7.1.3: Output format (string) of Carrot2 understandable by PHP

The PHP eval() function is used to evaluate this string and convert it in PHP array. The variable

$clusters in Figure 7.1.4 will contain an array of clusters.

25

Figure 7.1.4: Converting Carrot2 output to PHP array

7.2. Integrating OTS

Open Text Summarizing library is written in C. It can be run from the command line with

various options. For example, it might be executed within PHP using executeCommand() function as

shown in the Figure 7.2.1

Figure 7.2.1: OTS integration command line

This command runs the echoWeb.sh shell script, which outputs the passed in string to Standard

Output. The output is then piped to the OTS tool, which summarizes the paragraphs. Figure 7.2.2

shows the echoWeb.sh script.

Figure 7.2.2: Script echoWeb.sh

26

http:echoWeb.sh
http:echoWeb.sh
http:echoWeb.sh

After obtaining the summary results, the algorithm generating engine applies noise reduction

techniques to remove unimportant text.

7.3. Integrating GreatSummary

GreatSummary is an online tool for summarizing the web pages. The project does not provide

API in the current release. Our project implements parsing technique on the GreatSummary

online page to obtain the summaries. The cURL library is used in PHP to make request to this

web page, which in turn returns the page contents. The web page returned is then parsed to

obtain the summary results. Figure 7.3.1 shows the source code of the GreatSummary web page

and summarized text being parsed in the rectangle.

The list pattern is then identified to create a PHP array of summary sentences. These

sentences are further processes in the noise reduction module. The resulting article sections are a

collection of important sentences from the relevant web pages.

Figure 7.3.1: Source code of GreatSummary web page

27

8. Noise Reduction

The articles generated from the previous steps often contain useless sentences and text. This

noise should be detected and removed to make the article readable and meaningful. The

following noise reduction techniques were implemented in our project.

Invisible Text

Invisible text is the code on web pages which is not being displayed on the web page. This

includes PHP code, html tags, CSS styles, scripts, applets, embedded frames, etc.

GreatSummary automatically strips invisible text before it applies the summarizing algorithm.

Invisible text needs to be removed from the text before passing it to OTS for summarization.

Such text should be detected and removed explicitly. We used the function strip_html_tags() to

remove this kind of text. This is illustrated in Figure 8.1.1.

28

Figure 8.1.1: Function strip_html_tags()

Special Characters

UTF8 encoding is applied to remove the special and junk characters from the web pages. PHP

function utf8_encode() is used to encode the text.

29

Footer Links

Many websites have footer links in the form of a list separated by the pipe character (|). The

footer conveys no meaning in the article body and should be removed to improve the article

quality. We created a regular expression pattern to detect such footers.

RegEx for footer links: "/(.*\|.*)+/"

Copyrights text

Many websites have a “Copyrights text” at the bottom of the page. This also conveys no

meaning in article body.

RegEx for copyrights: "/COPYRIGHT.*\d{4}/i"

Breadcrumbs

Many websites have breadcrumbs, such as, Home>Electronics>Digital Camera, at the top of the

web page. This kind of text should also be removed from the articles.

RegEx: "/>/"

30

9. Article Generation Run

Figure 9.1 and 9.2 shows an example Article Generation run for the query “San Jose”. The

article has various sections each representing different aspect of San Jose.

31

 Figure 9.1: Article generation run (paragraph version) for query “san jose” page1

32

 Figure 9.2: Article Generation run (paragraph version) for query “san jose” page2

33

10.	 Results and Limitations

Our textonly article generation can be thought as a first step towards creating a complete and

accurate Article Generation Engine. The following are a few interesting comparisons between

the Automated Article Generation Engine and some other knowledge engines.

•	 Wikipedia

o	 As Wikipedia articles are generated by users, it is likely to omit articles on some

specific topics. For example, “luna moped” was a widely used moped in India

during 1990s. Google returns 0.1 million results for the query “luna moped”. In

spite of this term being so popular, Wikipedia does not have an article for it.

Nevertheless, our Article Generation Engine can generate article on “luna

moped”. The Automated Article Generated System can thus generate articles on

very specific topics such as, geographically local things, person names, etc.

o	 Sometimes people who have a strong opinion about a subject will try to control

the articles about that subject. Thus articles on Wikipedia or similar websites

might be biased. This problem is potentially reduced with the Automated Article

Generator as it receives most relevant search results from Google or Nutch.

•	 Wolfram|Alpha (http://www.wolframalpha.com)

o	 Wolfram|Alpha is a computational knowledge engine. It generates output by

doing computations from its own internal knowledge base, instead of searching

the web and returning links [16]. It tends to generate visual results rather than text

based results. On the other hand, the Article Generation Engine focuses on

generating text based articles.

34

http:http://www.wolframalpha.com

• Automation
�

Imagine we want to know everything about “Michael Jackson”. The following are

the steps of one of the possible approaches for solving this problem without our

system:

1. Search for “Michael Jackson” on www.google.com.

2. Explore some of the top results to know about him.

3. The knowledge gained while exploring the results will leave an impression

of who is Michael Jackson in one’s mind.

Our Article Generation Engine automates the above steps. It is an effort to

directly present the user with the impression mentioned in step 3.

10.1 Comparison Statistics

We next compare our articles with the static articles of Wikipedia. The comparison is based on

three parameters: (1) The number of schematically similar sections, (2) Interesting information

found in our article that Wikipedia does not have and (3) Interesting information found in

Wikipedia that our article does not have. To perform the tests we observed articles generated by

both Article Generator and Wikipedia for five input queries, which are either names of

programming languages or computer science terms. The terms used were Java programming

language, Prolog, RDBMS, Scala programming language and C++.

35

http:www.google.com

10.1.1 Section Similarity

Here we are observing the number of sections in our article semantically matching with sections

in Wikipedia articles. The section names might not match exactly, but they should convey

analogous meanings. The following are the sections similarity statistics for each query term.

1) Java Programming Language

Table 10.1.1 shows similar sections found in the two articles for query “Java Programming

Language”.

Section from Automated
generated Article

Similar section in
Wikipedia article

1. Tutorial Examples

2. Resources See also, References

3. Third edition

4. Fourth Edition

Editions

5. Guide Java Documentation

Table 10.1.1.1: Similar sections in the articles for the query “Java programming language”

Figure 10.1.1.1 represents the section similarity in form of a simple venn diagram. Two circles in

the figure shows the sets of sections in respective articles. Here, AAG refers to Automated

Article Generation.

36

Figure 10.1.1.1: Venn diagram for the query “Java Programming language”

The venn diagram indicates that AAG generated article has 17 sections while Wikipedia article

has 13 sections in total. Five sections from the two articles overlap, which is about 33% of the

total sections. It means 33% of the sections from the two articles are semantically similar.

2) Prolog

Section from Automated
generated Article

Similar section in
Wikipedia article

1. Prolog tutorial Examples

Table 10.1.1.2: Similar sections in the articles for the query “Prolog”

Figure 10.1.1.2: Venn diagram for the query “Prolog”

Here 7% of the total article sections are semantically similar.

37

3) RDBMS

Section from Automated
generated Article

Similar section in
Wikipedia article

1. SQL Structured Query
Language(SQL)

2. What is RDBMS

3. A Relational Database
Management System

Introduction

Table 10.1.1.3: Similar sections in the articles for the query “RDBMS”

Figure 10.1.1.3: Venn diagram for the query “RDBMS”

Here 26% of the total article sections overlap.

4) Scala Programming Language

Section from Automated
generated Article

Similar section in
Wikipedia article

1. Object oriented and functional Objectoriented features,
Functional programming

Table 10.1.1.4: Similar sections in the articles for the query “Scala Programming Language”

38

Figure 10.1.1.4: Venn diagram for the query “Scala Programming Language”

Here 7% of the total article sections are semantically similar.

5) C++

Section from Automated
generated Article

Similar section in
Wikipedia article

1. C Libraries

2. Library

Standard library

3. C compilers List of C++ Compilers

4. The programming language Introduction

Table 10.1.1.5: Similar sections in the articles for the query “C++”

Figure 10.1.1.5: Venn diagram for the query “C++”

39

Here 30% of the total article sections are semantically similar.

Averaging the percentage for the above observations results in the value of 21%, which means

21% of the sections in our articles are semantically similar with the sections in the Wikipedia

articles.

10.1.2 Text Similarity

Semantic similarity analysis between sentences in both articles can be done to compare the text

similarity between the articles. The analysis includes techniques of LSA (Latent semantic

analysis), Terminology extraction, PMI (Point wise Mutual Information), etc. Such a detailed

analysis is beyond the scope of this project.

Here we are conducting a simple comparison of content/sentences between the two articles. The

aim is to observe mutually exclusive information from both the articles. Following are some of

the observations for the sample queries.

1)	 Query: Java Programming Language

• The following information is present in our article, but not in the Wikipedia article:

–	 Information on various Java books is found in the “Books” section of the article,

while no information on books is present in the Wikipedia article.

–	 “With the Java Media Framework API, Java now has excellent multimedia

playback and encoding capabilities.” The sentence talks about media specific

features of Java language.

40

•	 “Performance” section in the Wikipedia article discusses JVM execution speed and

performance issues. The AAG article does not have sentences talking on performance.

•	 Moreover, the AAG article has sentences talking about the Memory model. Similar

information is conveyed in the “Automatic memory management” section in the

Wikipedia article.

2)	 Query: C++

• The following information is present in our article, but not in the Wikipedia article:

–	 “Dynamic memory allocation : blocks of memory of arbitrary size can be

requested at runtime using library functions such as malloc from a region of

memory called the heap ; these blocks persist until subsequently freed for reuse

by calling the library function free.” It talks about malloc function of C++ library.

–	 “Initialization lists are necessary for most classes that use inheritance or include

objects.” The sentence talks about initializing an object while inheriting.

–	 “C++ History http://www.hitmill.com/programming/cpp/cppHistory.html” This

URL has useful information on the C++ history.

–	 “In 1983, the American National Standards Institute (ANSI) formed a committee,

X3J11, to establish a standard specification of C. In 1989, the standard was

ratified as ANSI X3.1591989 “Programming Language C.” This version of the

language is often referred to as ANSI C, Standard C, or sometimes C8.” The

statement states the evolvement of ANSI standard of C language.

41

http://www.hitmill.com/programming/cpp/cppHistory.html

•	 Criticisms of the C++ language are discussed in a separate section in the Wikipedia

article, but the AAG article does not mention such criticisms.

•	 The C++ standard and other libraries are mentioned in the “Standard Library” section of

the Wikipedia article. The AAG article also narrates different libraries at several places in

the article.

Similar comparisons may be observed for other queries. Observations show that most of the

information in both the articles is semantically same. However, both of the articles have certain

information which is not found in their counterparts.

The dynamically generated articles are superior in the sense that they include more specific

details compared to the Wikipedia articles. For example, the dynamic memory allocation issue

raised in the article on C++ is not found in the corresponding Wikipedia article. Another

example is the information on Java books and the Media framework API found in the article on

Java programming language. On the other hand, these details are sometimes listed with some

unrelated sentences in the AAG article. For example, the sentence talking about the ANSI

standard in the C++ article would have been more meaningful if the article was on the C

Programming language. Furthermore, the information in the Wikipedia articles has a better flow

than AAG articles.

Moreover, the Article Generation Engine produces duplicate contents. Based on the careful

observation of the articles, it can be concluded that 80% of the text in the article is unique. The

remaining 20% of the text is the repetition of sentences.

42

10.2 Limitations of AAG Generated Article

•	 The generated articles are comprised of text data only. The Article Generation Engine

does not consider images and other form of data.

•	 Although the AAG articles convey the gist of the relevant section, the section content

does not flow to the degree that can match with the level of hand written

content/paragraphs.

43

11. Conclusion

Automated Article Generation from information available on the web is a new direction as to

how the articles are generated currently. No authors, no writing, no editing is needed. Our Article

Generation Engine can generate articles on very specific topics, which are likely to be omitted by

static articles like Wikipedia. Moreover the articles include some tiny details on the topic which

are not found in the static articles. The articles are not as organized and continuous as static

articles though. Nevertheless, the engine is able to mine relevant information into well defined

sections with the similarity of 21% with the sections in the Wikipedia articles. Further

improvements to the engine may enable it to generate competitive articles to those on famous

websites. There are performance issues with the engine. Generation is relatively slow because of

the time cURL takes to fetch the documents. Efficient caching strategies can be implemented

around cURL to avoid repeated fetches of pages.

44

12. References

[1] Carrot2 Clustering Engine. Feb. 6, 2006. [Online]. Available: www.carrot2.org/. [Accessed:
JanDec, 2009].

[2] Carrot2 API documentation. Feb. 6, 2006. [Online]. Available:
http://download.carrot2.org/stable/javadoc/ [Accessed: JanDec, 2009].

[3] Carrot2 Users and Developers forum & mailing list archive. Feb. 6, 2006. [Online].
Available: http://project.carrot2.org/forum.html [Accessed: JanDec, 2009].

[4] Carrot2 at Sourceforge.net. July 17, 2003. [Online] Available:
http://sourceforge.net/projects/carrot2/ [Accessed: JanDec, 2009].

[5] GreatSummary Just the Highlights. March 24, 2007. Available:
http://www.greatsummary.com/ [Accessed: JanDec, 2009].

[6] Open Text Summarizer. Aug. 1, 2003. Available: http://libots.sourceforge.net/ [Accessed:
JanDec, 2009].

[7] Nutch Wiki. May 29, 2006. Available: http://wiki.apache.org/nutch/NutchTutorial [Accessed:
JanDec, 2009].

[8] Nutch Crawler. Jun. 4, 2005. Available: http://lucene.apache.org/nutch/ [Accessed: JanDec,
2009].

[9] Jana Kocibova, Karel Klos, Ondrej Lehecka, Milos Kudelka, and Vaclav Snasel. “Web Page
Analysis: Experiments Based on Discussion and Purchase Web Patterns,” IEEE/WIC/ACM
International Conferences on Web Intelligence, 2007.

[10] Hao Han, and Takehiro Tokuda. “A Method for Integration of Web Applications Based on
Information Extraction,” Eighth International Conference on Web Engineering, 2007.

[11] Gang Zhang, Yue Liu, Songbo Tan, and Xueqi Cheng.“A Novel Method for Hierarchical
Clustering of Search Results,” IEEE/WIC/ACM International Conferences on Web
Intelligence, 2007.

[12] PHP: Hypertext Preprocessor. July 1, 1998. Available: http://php.net/ [Accessed: AugNov,
2009].

[13] ETS Easy Template System. Sep. 22, 2002. Available: http://ets.sourceforge.net/
[Accessed: AugNov, 2009].

45

http:http://ets.sourceforge.net
http:http://php.net
http://lucene.apache.org/nutch
http://wiki.apache.org/nutch/NutchTutorial
http:http://libots.sourceforge.net
http:http://www.greatsummary.com
http://sourceforge.net/projects/carrot2
http:Sourceforge.net
http://project.carrot2.org/forum.html
http://download.carrot2.org/stable/javadoc
http:www.carrot2.org

[14] Noise Reduction Remove invisible text. Oct. 11, 2007. Available:
http://nadeausoftware.com/articles/2007/09/php_tip_how_strip_html_tags_web_page
[Accessed: Sept, 2009].

[15] PHP: cURL Manual. Apr. 13, 2008. Available: http://php.net/manual/en/book.curl.php
[Accessed: Sept, 2009].

[16] Wolfram|Alpha. Available: http://www.wolframalpha.com [Accessed: JanDec, 2009].

[17] Stanisław Osiński, Jerzy Stefanowski, and Dawid Weiss. “Lingo: Search Results Clustering
Algorithm Based on Singular Value Decomposition,” Institute of Computing Science,
Pozna´n University of Technology, Poland. 2004.

[18] DMOZ Open Directory. Jan. 25, 1999. Available: http://www.dmoz.org [Accessed: March,
2009].

46

http:http://www.dmoz.org
http:http://www.wolframalpha.com
http://php.net/manual/en/book.curl.php
http://nadeausoftware.com/articles/2007/09/php_tip_how_strip_html_tags_web_page

	Automated Artice Generation Using the Web
	Recommended Citation

	tmp.1295901364.pdf.DLR3O

