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ABSTRACT 

Web based Recommender Systems and Rating Prediction 

by Tho Nguyen  
 

 This project implements a recommender system on large dataset of Netflix’s movies. 

This project also tries to improve recommender systems by incorporating confidence interval and 

genres of movies.  This new approach enhances the performance and quality of service of 

recommender systems and gives better result than Netflix commercial recommender system, 

Cinematch.
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1. Introduction 

Netflix, a rental movie company, announced on October 2, 2006 that it will give 

$1,000,000 to anyone who can improve the RMSE of its movie recommender system, 

Cinematch, by more than ten percent.  The movies from Netflix were reviewed and rated by its 

subscribers with number from one to five. One means they dislike the movie and five means they 

are really like the movie.  Netflix has about 12 million subscribers who rating over eighty five 

thousands movies.  The numbers of ratings from the users are about two billion [4].  RMSE is a 

root mean square error and it is calculated by [4] 

 

Netflix's contest uses two datasets, a training set and a probe set.  The training set used to 

train the recommender algorithm and test it on the probe set.  There are over one hundred million 

ratings from 480,000 users in the training set.  The users rate on eighteen thousands movies.  The 

probe set has 1,500,000 user movie pairs and the true rating is hidden.  A simple algorithm which 

uses average rating of movies from user to predict rating of target movie will give RMSE of 

1.054.  Netflix's recommender system, Cinematch, gives RMSE of 0.9525.  Therefore, to win the 

contest, the winner algorithm should achieve an RMSE of at least 0.8563, a ten percent 

improvement.  Currently, as of May 11, a team called BellKor in Big Chaos has a highest 

improved algorithm with RMSE of 0.8616 [4]. 

This research applies different algorithms to improve recommender system on Netflix's 

dataset.  The methods are including item-based Collaborating Filtering, CF, and content-based 

technique. For item-based CF, Pearson correlation and its Varian lower limit confidence interval 
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are used.  For content-based method, extra item's profile, genres are computed.  The enhanced 

algorithms gave better improvement over Cinematch. 

 

2. Recommender Systems 

 Recommender systems analyze user's profile and the relationship between user and target 

item to help user purchase or rent the item based on user's interest.  With the help of computer, 

recommender systems can analyze huge collection of data based on users' preferences to give 

good recommended items.  Some online company like Netflix and Amazon use recommender 

systems to help users easy to find items they want on their website [5].  Every time a user logins 

to their website, a new list of recommended items are showed based on past user’s reviews or 

purchases.  Instead of spend time navigate on the website and search for the items, a 

recommender system can save time for the user by display the list of items  which the user likes 

based on user’s profile. 

 Recommender system also can help online companies sell their products better.  

Example, when I logins to Amazon website, there was a screen protector for ipod classis on my 

recommended items.  I bought an eighty gigabyte ipod classis on Amazon website before and did 

not think about buying a screen protector for it.  When I saw the screen protector for ipod, it 

made me thought about the protection for my ipod so I bought it.  Same thing happens to other 

websites like newegg.com and buy.com, the users do not think about buying the items until they 

see them display on their recommended list. 

 Recommender system can give personalize feeling to the user because it is based on the 

real input from the user and it is always update.  Whenever the user buys or reviews new item, a 

new recommended list is created for that particular user.  

 2



 There are two groups in recommender systems, content-based and collaborative filtering 

(CF) algorithms.  Content-based algorithms use user's profile to find matching items with the 

user.  For a twenty three year old user, a content-based algorithm will select all items which are 

interested by this age.  Content-based approach also can use item's profile to recommend item to 

user.  For example, a content-based recommender system can recommend list of movies to user 

base on movies' genre which user's interest.  These user and item's profiles are difficult to collect 

and need to get from external source [5]. 

 Collaborative Filtering algorithm, another choice for recommender system, uses past 

user's behaviors to recommend items to user [5]. These behaviors include user's transactions or 

product rating.  Example, the transactions where users buy some products or the number of 

ratings which users review items.  They don't need the explicit profiles of each user or item.  For 

a user X who rate five on all five movies.  A CF system will analyze the data and find all users 

who give the same five movies with rating of five then recommend the list of movies that these 

same users' interest to user X.  

 A schematic diagram of CF algorithm is shown in Figure 1.  In the picture, we can see the 

matrix mxn represents user-item data.  There is a rating score of each user m on item n at each 

entry of the matrix.  Each individual rating has a numerical scale from 0 to 5.  The 0 means the 

user has not yet rate that item [1]. 
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3. User-based Collaborative Filtering 

 User-based Collaborative Filtering is one of the most chosen algorithms to use in 

recommender systems by online companies [8].  It relies on the similarly behaviors between each 

users in the group. These behaviors are including buying or ratings items. The behaviors of 

various users in one group can help recommending other users in same group to buy or rate 

different items [12].  

 There are many algorithms to calculate the similarity between the two users in CF 

systems.  One of them is Pearson correlation algorithm.  It is a most chosen algorithm to use in 

CF systems [2].  Pearson correlation only computes the similarity between the two users who 

rate a same item.  For example, let S is the set of items where both user x and user y rated.  Then 

the Pearson correlation computes the similarity between user x and user y as [2]: 
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 (3.1) 

 Considering as the most used algorithm in Collaborating Filtering, there are some 

limitations in user-based approach.  The first limitation is the scalability of the algorithm.  The 

computation of user-base CF is more complex when the number of users gets bigger [12]. 

Therefore, it is difficult to use user-based CF in big online service companies as Amazon and 

Netflix.  User-based CF recommender systems can work very well with a small dataset, but they 

usually don't work well with a large dataset like Netflix's dataset.  Second limitation of user-

based CF is performance [12]. Its performance is slow because User-based CF needs to 

recomputed the similarity of user-user every time it gives new recommendation. 

 

4. Item-based Collaborative Filtering  

 Instead of computation between two users, the item-based collaborative filtering 

algorithm computes the similarity between two items.  The computation of item-based algorithm 

is much simpler and more scalability than user-based algorithm.  Usually, there is less number of 

items than users in online service companies.  For example, Netflix's dataset has over 480,000 

users but there are only 18000 movies. 
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Figure 2: Similarity computation on selected items. 
 
 
 To compute the similarity between two items, the users who rated both items need to be 

selected as in Figure 2 [1]. Then the calculation will be used on these users and items.  For 

Pearson correlation algorithm, the similarity of two items is compute by [1] 

(4.1) 

 Here  is average number of item i, Ru,i is number of rating user u gives on item i.

 The prediction of user on target item is computed after we have similarity score of all 

other items to target item.  For the set of all items which rated by the user, the prediction of user 

u on item i is given by [1] 
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        (4.2) 

Where si,N is the similarity between item i and other item in set N.  Ru,N is the rating of user u on 

item in set N. Set N is the set of items which rated by user u. 

5. Fisher Transformation 

 Unlike confidence intervals around means, confidence intervals around Pearson 

correlation r are not symmetrical.  The confidence interval around a Pearson correlation r is 

based on Fisher’s transformation. The transformation is given by [13].  

         (5.1) 

 Difference than Pearson correlation, transform value z is normally distributed with 

expectation equal to 0.5ln(1 + p)/(1 - p).  Where p is the population correlation and have variance 

equals to 1/(n-3) with n is the sample size.  Figure 3 shows the conversion between Pearson 

correlations to fisher value z [13]. 
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Figure 3: Fisher transformation of Pearson Correlation 
 The x-axis is Pearson correlation and has a range from -1 to 1.  Looking at Figure 3, we 

can see that when Pearson correlation value goes near the outer limit, the fisher value will go to 

positive and negative infinitive.  The transformation value is more stable in the middle of the 

range. 

 

6. Confidence Intervals 

 Confidence interval is used to estimate the range of interval for the value of Pearson 

correlation.  With different sample size of items, a ninety five percent of confidence interval will 

estimate value of Pearson correlation correctly ninety five times out of one hundred trials.  To 

calculate confidence interval, the value need to be normal distributed.  Pearson correlation value 

is not normal distributed, so we need to convert Pearson correlation value to fisher value.  Then 

we take the confidence interval on the fisher value and convert it back to Pearson correlation 

confidence interval.  The steps to do it are [13] 
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         1. Convert Pearson correlation value to fisher value by formula (5.1) 

         2. Calculate confidence interval on fisher value z with upper and lower limit. 

     (6.1) 

Where  equals to 1.96 for ninety five percent confident interval. 

         3. Convert the confidence interval back to Pearson correlation r by 

       (6.2) 
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Figure 4: 95% Confidence Interval with different sample sizes [14] 
 
 As show in Figure 4 and equation (6.1), confidence interval is related with Pearson 

correlation and the sample size.  When the value of Pearson correlation is high, the lower limit of 

confidence interval also has high value.  Same thing for the sample size, with high number of 

sample size, the value of lower limit of confidence interval is closer to the Pearson correlation. 

Instead of using Pearson correlation, we can use lower limit of confidence interval to find the 

similarity between the two items and also take the sample size into the computation. 

 

7. Content Based Method 

 Content-based recommendation method use extra information of user's profile or item's 

profile in the computation.  To give recommendation to one user, the profile of target user will 

analyze and items which matching to user's profile will be selected [2].  For user who likes 

action movie, all movies with action genre will be selected and recommend to target user.  In 

another example, when user is twelve year old and likes animation movie, then most of the 

Disney animation movies will be recommended to this user. 
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 Content based algorithm can work best with items that has lots of information like 

documents or news website.  On Google website, a content based algorithm is used to give user 

news and information based on user’s location.  When I logins to Google and go to news page, I 

can see all the news that is happening in San Jose where I live. 

 There are some disadvantages with the content based algorithm, because its algorithm is 

based on user’s or item’s profile.  The profile needs to be easy to extract by computer.  

Therefore, it works well with text or xml file but has difficulty when dealing with media data like 

movies or pictures.  

8. Experimental Results 

 At the beginning of the project, I try to calculate the Pearson correlation between the two 

users with equation (3.1) but it did not work.  It took over six days and did not finish the 

computation.  So I did more research on papers about user-based Pearson correlation.  The 

computation of all user-user correlation is not possible because the dataset is too big.  Netflix’s 

dataset has over 480 thousand users [4] and to compute Pearson correlation on all user-user pair 

will have over 1Terabyte data [5].  So I switch to item-based collaborative filtering approach and 

use equation (4.1) to get all item-item correlations.  To manage the database of Netflix’s training 

set, I use Netflix recommender framework from Benjamin Meyer [11].  The framework is 

written in c++ and it converts Netflix data’s text files into 2 binary files, movies.data and 

users.data.  Each file has about 400 Megabyte data.  Movies.data contains all movies with users 

and ratings and users.data contains all users with movies and ratings as figure 4 shows.  It is 

much easier to manage and access data from binary files than mysql database.  The runtime for 

computation is also faster in binary files because they can be loaded into memory while mysql 

database, over eight Gigabyte, can not be loaded into memory when doing the computation. 
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Figure 4: Netflix database with movies, users and ratings. 

8.1 Pearson Correlation Algorithm 

 I build a web base interface where users can select a movie and view a list of 

recommended items.  The top 30 recommended movies with highest correlations are given when 

user select movie from the table. 

 For movie “Lord of the Rings: The Return of the King” (LOTR:ROK), the Pearson 

correlation is computed by (4.1) and the thirty highest correlations are given in figure 5.  “Lord 

of the Rings: The Two Towers” has the highest Pearson correlation with 0.785264 and have 

114244 users who rate on both movies.  By looking at figure 5, we can see that for the top thirty 
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recommended movies for LOTR:ROK, there are eight movies is about Lord of the Ring story.  

Moreover, the top five recommended movies in the list are about Lord of the Ring movies. 

 

Figure 5: Recommended movies for selected item rank by Pearson correlation. 
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8.2 Pearson Correlation with lower limit of confident interval 
Algorithm 
  

 Fisher transformation and Confidence interval has been used to improve the movies 

recommender system.  The lower limit of confidence interval takes size of the number of ratings 

and Pearson correlation into the computation of recommendation and prediction for the target 

movie.  When the size of the number of ratings is high, the value of lower limit will stay closer to 

the Pearson correlation.  When the size of the number of ratings is low, the value of lower limit 

will get farther from the Pearson correlation.  The movie which has high value in both number of 

ratings and Pearson correlation with the target movie will have high value in lower limit of 

confidence interval.  This movie will be selected into list of recommended movies and set of 

neighbor movies to predict the rating of target movie.  By ranking the movies with lower limit of 

confidence interval from high to low value, we can get the better result as example of Figure 6.  

It also gives better RMSE value over Netflix Probe dataset than the Pearson correlation 

algorithm, 0.92669 compare to 0.929651. 

 For movies “Lord of the Rings: The Return of the King”, the fisher transformation of 

Pearson correlation is computed by equation (5.1) and its highest ranking correlation movie, 

“Lord of the Ring: The Two Towers”, has fisher transform value of 1.05896.  For 95% 

confidence interval, the lower and upper limit of confidence interval is calculated by equation 

(6.1) and “Lord of the Ring: The Two Towers” has lower limit of 1.05316 and upper limit of 

1.06475.  The confidence interval of fisher is converted back to lower and upper limit of Pearson 

correlation by equation (6.2).  Lower limit 1.05316 and upper limit 1.06475 of “Lord of the 

Ring: The Two Towers” are converted to 0.78303 and 0.787477 for lower and upper confidence 
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interval of Pearson correlation as figure 6.  The source code to calculate the lower and upper 

limit of Pearson correlation is follow: 

float fisher_calculation(float pearson_correlation, int count, float percentage){ 

    float fisher = 0.5 * log( (1 + pearson_correlation) / (1- pearson_correlation)); 

    float different = percentage / sqrt(count - 3); 

    return fisher + different; 

} 

float fisher_to_Pearson(float fisher){ 

    return (exp(2*fisher) - 1) / (exp(2*fisher) + 1); 

} 

float calcLowerLimit(float pearson_correlation, int count){ 

    return  fisher_to_Pearson(fisher(pearson_correlation, count, -1.96)); 

} 

float calcUpperLimit(float pearson_correlation, int count){ 

    return  fisher_to_Pearson(fisher(pearson_correlation, count, 1.96)); 

} 

 By using fisher transformation and ranking the movies by lower limit of confidence 

interval, we can have better recommended movies as in figure 6.  We can see that for the top 

thirty recommended movies for LOTR:ROK, there are nine movies is about Lord of the Ring 

story.  Moreover, the top eight recommended movies are about Lord of the Rings story. 
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Figure 6: Recommended movies for selected item rank by lower limit of confidence 
interval. 
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8.3 Content based Algorithm 
  

 To use content based algorithm, extra information of items need to be collected from the 

web.  Netflix provides an API to collect its entire catalog titles including genre of movies into an 

xml file.  The source code to collect the catalog is 

#!/usr/bin/perl 

use WWW::Netflix::API; 

my %variable = do('vars.inc'); 

my $netflix_data = WWW::Netflix::API->new({ 

 consumer_key => $variable {consumer_key}, 

 consumer_secret => $variable {consumer_secret}, 

 content_filter => 'catalog.xml', 

}); 

$netflix_data->REST->Catalog->Titles->Index; 

$netflix_data->Get(); 

 The xml file, catalog.xml, is about three hundred Megabyte and contains movie’s title, 

genre, and released year as in Figure 7.  I try to use java DOM to parse the xml file, but it is too 

big to load all of it into memory.  DOM needs over three Gigabyte to build a tree in memory and 

my computer has only three Gigabyte, so it is out of memory.  A java parser will parse the xml 

file and collects all the genre of movies in Netflix’s training set and imports them into mysql 

table as in Figure 8.  There are total of 501 different genres including action, drama, horror, 

fantasy, etc.  

 17



 

Figure 7: XML schema of Netflix movies catalog. 
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Figure 8: Netflix’s movie genres of training data set. 
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 The content based algorithm finds and matches genres of all the movies to target movie.  

“Lord of the Rings: The Return of the King” movie has five genres and they are “Action and 

Adventure”, “Fantasy”, “Action Sci-Fi and Fantasy”, “Dramas Based on the Book”, “Dramas 

Based on Classic Literature”.   The algorithm finds all the movies in the database and matches 

them with these five genres.  Then it ranks the movies based on the number of matching genres. 

In Figure 9, the top thirty movies with common genres to LOTR:ROK are given.  We can see 

that the algorithm work really well for LOTR:ROK because the top nine movies is relate with 

LOTR:ROK and about Lord of the Rings story. 

The php code to display Figure 9 is follow: 

<html> 
<head><title>Netflix Movies</title></head> 
<body> 
 
<? 
// database server 
$dbServer='mh213a.cs.sjsu.edu'; 
 
// username and password setup 
$username='username'; 
$password='password'; 
$database='netflix'; 
 
// get movies id from user input 
$movies_id = (isset($_GET['movies_id']))?$_GET['movies_id']:''; 
 
// connect to database 
$link = mysql_connect($dbServer,$username,$password) or die("Could not connect"); 
@mysql_select_db($database) or die( "Unable to select database"); 
 
// run the CalGenre script to generate movie list based on movies_id and store them to 
//movies_genres.txt 
exec("java CalGenre $movies_id"); 
 
// open the text file to parse the movies for display 
$file_handle = fopen("movies_genres.txt", "r"); 
$i=0; 
$line_of_text = fgets($file_handle); 
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$values = explode("\n", $line_of_text); 
// get the title and released of movie from movie id. 
$query="SELECT title,released FROM movies_title WHERE movieid=$values[0];"; 
$result=mysql_query($query); 
$movie_title=mysql_result($result,0,"title"); 
$released=mysql_result($result,0,"released"); 
?> 
<h1>30 Recommend movies for: <? echo $movie_title." (".$released. ")"; ?></h1> 
<table border="2" cellspacing="2" cellpadding="2"> 
<tr> 
<th><font face="Arial, Helvetica, sans-serif">Movies</font></th> 
<th><font face="Arial, Helvetica, sans-serif">Number of Same Genres</font></th> 
</tr> 
<? 
// get only the first 30 movies on the list 
while ((!feof($file_handle)) and ($i <30)) { 
 $line_of_text = fgets($file_handle); 
 $values = explode(",", $line_of_text); 
 $query2="SELECT title,released FROM movies_title WHERE movieid=$values[0];"; 
 $result2=mysql_query($query2); 
 $movie_title=mysql_result($result2,0,"title"); 
 $released=mysql_result($result2,0,"released"); 
?> 
<tr> 
<td><font face="Arial, Helvetica, sans-serif"><a 
href="http://mh213d.cs.sjsu.edu/classproject/cs298/tho/genremovies.php?movies_id=<?echo 
$values[0];?>"><? echo $movie_title." (".$released. ")"; ?></a></font></td> 
<td><font face="Arial, Helvetica, sans-serif"><? echo $values[1]; ?></font></td> 
</tr> 
<? 
 $i++; 
} 
?> 
</table> 
</body> 
</html> 
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Figure 9: Recommended movies for selected item with content based Algorithm. 
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8.4 Making Predictions 

 The prediction algorithm is shown in equation (4.2). For each movie i that is unrated, 

Collaborative finds the subset of the similar movies that predict for i.  This subset of movies is 

sorted with respect to the degree of the Pearson correlation and thirty movies with highest 

Pearson correlation will be used as Neighbor movies in equation (4.2). 

 For lower limit confidence interval algorithm, the subset of movies is sorted with respect 

to the degree of the lower limit confidence interval and thirty movies with highest lower limit 

confidence interval will be used as Neighbor movies in equation (4.2). 

 For Pearson correlation algorithm, the RMSE of Netflix’s Probe Data is 0.929651 as in 

Figure 10.  The algorithm took 2759 seconds to make 1408395 predictions.  It is about 510 

predictions for every second, and it is a very slow process.  Pearson correlation algorithm has a 

better improvement over Netflix’s Cinematch. 
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Figure 10: RMSE of Netflix’s Probe Data for Pearson correlation Algorithm. 
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 For lower limit confidence interval algorithm, the RMSE of Netflix’s Probe Data is 

0.930027 as in Figure 11.  The algorithm took 2189 seconds to make 1408395 predictions. 

 

Figure 11: RMSE of Netflix’s Probe Data for lower limit confidence interval Algorithm. 
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 Table 8.1 shows the RMSE results of all algorithms on the Probe Data of Netflix.  

Looking at the result, we can see that both item based Collaborative Filtering methods give better 

improvement over Netflix’s Cinematch algorithm. 

Algorithm RMSE of Probe Data 

Average rating of movie 1.0540 

Netflix’s Cinematch 0.9474 

Pearson correlation 0.929651 

Pearson correlation with lower limit confidence interval 0.92669 

Table 8.1: RMSE of Probe data for each algorithm. 

 

9. Summary of Results 

 For Collaborative filtering approach, the lower limit of confidence interval algorithm 

gives better result than the traditional Pearson correlation.  Confidence interval algorithm takes 

into account both of the size of the users who rate movie and the value of Pearson correlation. 

The movie with more numbers of ratings usually is a popular movie and it gets a high ranking in 

recommended list. The RMSE over Probe data of the confidence interval algorithm also has 

more improvement over Pearson correlation algorithm, 0.92669 over 0.929651. Both the item-

based CF algorithms give better RMSE result than Netflix’s algorithm as in Table 8.1. 

 The content-based approach has better real-time performance than item-based CF 

methods when giving the list of recommended movies.  It takes CF methods over one minute to 

do the calculation and display thirty recommended movies while the content-based method can 

do it in less than ten seconds.  Because the content-based algorithm has extra genre information 

of the movie, it gives same or better recommended list than item-based CF algorithm. 
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10. Future Work 

 Due to the huge size of dataset, many algorithms cannot be use such as user-based 

Collaborative Filtering.  It takes lots of time to do the calculation on Netflix’s dataset.  It needs 

seven hours to import all dataset into mysql database and eight hours to calculate all Pearson 

correlations between each items.  To recommend movies to the user, it takes over one minute to 

do calculation and display the result.  We need to find a better way to improve the respond time 

for each query.  Otherwise, user cannot wait that long for any web service.   

 

11. Conclusion 

 This project has attempted a new approach in doing recommender systems on a large 

dataset.  Confidence interval and extra information like genres have been incorporated into 

recommender system and give better improvement over Netflix’s algorithm.  Both item-based 

algorithms improve RMSE over Netflix’s algorithm by 1.9 percent. 

 It is a challenge to implement a recommender system to work on this scale of data.  I 

need to use different language, such as java, c++, perl, php, to manage the data and have efficient 

computation. 
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Appendix A: How to run recommender systems 
 

1) Item based collaborative filtering with Pearson correlation: 
 
Run pearsonmovies  movie_id 
Example: pearsonmovies  14240 
To output text file output.txt with the top 30 recommended movies for movie_id 14240 
 
output.txt file: 
14240 
11521,0.785264,114244,0.785264,0.787477,0.00221294 
2452,0.760399,111120,0.760399,0.762868,0.00246906 
14961,0.749107,66208,0.749107,0.752431,0.00332379 
7057,0.721817,68248,0.721817,0.725391,0.00357425 
7230,0.707742,66918,0.707742,0.711503,0.00376141 
15521,0.695058,20,0.695058,0.869991,0.174934 
9979,0.581179,26,0.581179,0.790563,0.209383 
10336,0.559706,43,0.559706,0.736281,0.176575 
6725,0.550997,42,0.550997,0.732297,0.1813 
15571,0.541402,13,0.541402,0.841398,0.299997 
4457,0.523518,37,0.523518,0.724623,0.201105 
17616,0.500247,49,0.500247,0.685078,0.184831 
12341,0.496717,34,0.496717,0.714816,0.2181 
14124,0.494782,45,0.494782,0.688347,0.193565 
8430,0.470177,55,0.470177,0.653911,0.183734 
10352,0.467648,908,0.467648,0.516979,0.0493313 
11883,0.461182,53,0.461182,0.650403,0.189221 
14071,0.454057,30,0.454057,0.699847,0.24579 
11598,0.452459,45,0.452459,0.658535,0.206076 
17337,0.443348,65,0.443348,0.620188,0.17684 
4908,0.437958,65,0.437958,0.616055,0.178097 
8091,0.437632,1727,0.437632,0.474997,0.0373646 
8737,0.436805,55,0.436805,0.629193,0.192388 
10313,0.436736,1512,0.436736,0.476654,0.0399185 
9943,0.435509,51,0.435509,0.634896,0.199387 
11856,0.435207,38,0.435207,0.662695,0.227488 
7408,0.434322,83,0.434322,0.594337,0.160015 
8145,0.433127,51,0.433127,0.633141,0.200014 
8144,0.426825,68,0.426825,0.603806,0.176981 
12964,0.426196,25,0.426196,0.702952,0.276756 
 
movie_id, pearson correlation, Number of Rating, lower limit, upper limit, width 
 
Run php script netflixmovies.php?movies_id=movies_id to display the top 30 recommended 
movies for the selected movie_id on the website as in figure 5. 
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Netflixmovies.php file: 
<html> 
<head><title>Netflix Movies</title></head> 
<body> 
<? 
$dbServer='mh213a.cs.sjsu.edu'; 
$username='username'; 
$password='password'; 
$database='netflix'; 
$movies_id = (isset($_GET['movies_id']))?$_GET['movies_id']:''; 
$link = mysql_connect($dbServer,$username,$password) or die("Could not connect"); 
@mysql_select_db($database) or die( "Unable to select database"); 
exec("pearsonmovies.sh $movies_id"); 
$file_handle = fopen("output.txt", "r"); 
 
$i=0; 
$line_of_text = fgets($file_handle); 
$values = explode("\n", $line_of_text); 
$query="SELECT title,released FROM movies_title WHERE movieid=$values[0];"; 
$result=mysql_query($query); 
$movie_title=mysql_result($result,0,"title"); 
$released=mysql_result($result,0,"released"); 
?> 
<h1>30 Recommend movies for: <? echo $movie_title." (".$released. ")"; ?></h1> 
<table border="2" cellspacing="2" cellpadding="2"> 
<tr> 
<th><font face="Arial, Helvetica, sans-serif">Movies</font></th> 
<th><font face="Arial, Helvetica, sans-serif">pearson correlation</font></th> 
<th><font face="Arial, Helvetica, sans-serif">Number of Rating</font></th> 
<th><font face="Arial, Helvetica, sans-serif">Lower Limit</font></th> 
<th><font face="Arial, Helvetica, sans-serif">Upper Limit</font></th> 
<th><font face="Arial, Helvetica, sans-serif">Width</font></th> 
</tr> 
<? 
while ((!feof($file_handle)) and ($i <30)) { 
 $line_of_text = fgets($file_handle); 
 $values = explode(",", $line_of_text); 
 $query2="SELECT title,released FROM movies_title WHERE movieid=$values[0];"; 
 $result2=mysql_query($query2); 
 $movie_title=mysql_result($result2,0,"title"); 
 $released=mysql_result($result2,0,"released"); 
?> 
<tr> 
<td><font face="Arial, Helvetica, sans-serif"><a 
href="http://mh213d.cs.sjsu.edu/classproject/cs298/tho/netflixmovies.php?movies_id=<?echo 
$values[0];?>"><? echo $movie_title." (".$released. ")"; ?></a></font></td> 
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<td><font face="Arial, Helvetica, sans-serif"><? echo $values[1]; ?></font></td> 
<td><font face="Arial, Helvetica, sans-serif"><? echo $values[2]; ?></font></td> 
<td><font face="Arial, Helvetica, sans-serif"><? echo $values[3]; ?></font></td> 
<td><font face="Arial, Helvetica, sans-serif"><? echo $values[4]; ?></font></td> 
<td><font face="Arial, Helvetica, sans-serif"><? echo $values[5]; ?></font></td> 
</tr> 
<? 
 $i++; 
} 
?> 
</table> 
</body> 
</html> 
 
Run pearsonprediction to generate text file outputpearsonpred.txt as in figure 10. 
 

2) Item based collaborative filtering with lower limit confidence interval: 
Run confidencemovies  movie_id 
Example: confidencemovies 14240 
To output text file confidence.txt with the top 30 recommended movies for movie_id 14240 
 
confidence.txt file: 
14240 
11521,0.785264,114244,0.78303,0.787477,0.00444615 
2452,0.760399,111120,0.757908,0.762868,0.00496024 
14961,0.749107,66208,0.745745,0.752431,0.00668573 
7057,0.721817,68248,0.718204,0.725391,0.00718743 
7230,0.707742,66918,0.70394,0.711503,0.00756335 
10352,0.467648,908,0.415221,0.516979,0.101759 
8091,0.437632,1727,0.398693,0.474997,0.0763043 
10313,0.436736,1512,0.39502,0.476654,0.0816344 
15521,0.695058,20,0.364707,0.869991,0.505284 
10336,0.559706,43,0.311767,0.736281,0.424514 
6725,0.550997,42,0.296759,0.732297,0.435539 
17616,0.500247,49,0.254902,0.685078,0.430176 
9979,0.581179,26,0.250132,0.790563,0.540431 
9628,0.251932,65317,0.244736,0.2591,0.0143647 
15790,0.36189,232,0.244485,0.468838,0.224353 
7408,0.434322,83,0.241227,0.594337,0.35311 
1710,0.343157,307,0.240451,0.438264,0.197813 
4457,0.523518,37,0.240248,0.724623,0.484375 
191,0.245783,70713,0.238845,0.252696,0.0138509 
5582,0.245211,68849,0.238177,0.252218,0.0140413 
14124,0.494782,45,0.235437,0.688347,0.45291 
8430,0.470177,55,0.234073,0.653911,0.419838 
7279,0.42353,87,0.233731,0.582237,0.348505 
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11443,0.240263,70357,0.233288,0.247214,0.0139256 
12155,0.239367,83522,0.232963,0.24575,0.0127868 
3491,0.271251,2083,0.230993,0.310582,0.0795894 
5913,0.408275,100,0.230324,0.559804,0.32948 
12338,0.236653,61780,0.229195,0.244083,0.0148879 
16432,0.325102,338,0.22627,0.417308,0.191037 
16265,0.231486,63029,0.224084,0.238861,0.0147775 
 
movie_id, pearson correlation, Number of Rating, lower limit, upper limit, width 
 
Run php script confidencemovies.php?movies_id=movies_id to display the top 30 recommended 
movies for the selected movie_id on the website as in figure 6. 
 
Confidencemovies.php file: 
<html> 
<head><title>Netflix Movies</title></head> 
<body> 
<? 
$dbServer='mh213a.cs.sjsu.edu'; 
$username='username'; 
$password='password'; 
$database='netflix'; 
 
$movies_id = (isset($_GET['movies_id']))?$_GET['movies_id']:''; 
$link = mysql_connect($dbServer,$username,$password) or die("Could not connect"); 
@mysql_select_db($database) or die( "Unable to select database"); 
exec("./confidencemovies.sh $movies_id"); 
$file_handle = fopen("confidence.txt", "r"); 
 
$i=0; 
$line_of_text = fgets($file_handle); 
$values = explode("\n", $line_of_text); 
$query="SELECT title,released FROM movies_title WHERE movieid=$values[0];"; 
$result=mysql_query($query); 
$movie_title=mysql_result($result,0,"title"); 
$released=mysql_result($result,0,"released"); 
?> 
<h1>30 Recommend movies for: <? echo $movie_title." (".$released. ")"; ?></h1> 
<table border="2" cellspacing="2" cellpadding="2"> 
<tr> 
<th><font face="Arial, Helvetica, sans-serif">Movies</font></th> 
<th><font face="Arial, Helvetica, sans-serif">pearson correlation</font></th> 
<th><font face="Arial, Helvetica, sans-serif">Number of Rating</font></th> 
<th><font face="Arial, Helvetica, sans-serif">Lower Limit</font></th> 
<th><font face="Arial, Helvetica, sans-serif">Upper Limit</font></th> 
<th><font face="Arial, Helvetica, sans-serif">Width</font></th> 
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</tr> 
<? 
while ((!feof($file_handle)) and ($i <30)) { 
 $line_of_text = fgets($file_handle); 
 $values = explode(",", $line_of_text); 
 $query2="SELECT title,released FROM movies_title WHERE movieid=$values[0];"; 
 $result2=mysql_query($query2); 
 $movie_title=mysql_result($result2,0,"title"); 
 $released=mysql_result($result2,0,"released"); 
?> 
 
<tr> 
<td><font face="Arial, Helvetica, sans-serif"><a 
href="http://mh213d.cs.sjsu.edu/classproject/cs298/tho/confidencemovies.php?movies_id=<?ech
o $values[0];?>"><? echo $movie_title." (".$released. ")"; ?></a></font></td> 
<td><font face="Arial, Helvetica, sans-serif"><? echo $values[1]; ?></font></td> 
<td><font face="Arial, Helvetica, sans-serif"><? echo $values[2]; ?></font></td> 
<td><font face="Arial, Helvetica, sans-serif"><? echo $values[3]; ?></font></td> 
<td><font face="Arial, Helvetica, sans-serif"><? echo $values[4]; ?></font></td> 
<td><font face="Arial, Helvetica, sans-serif"><? echo $values[5]; ?></font></td> 
</tr> 
 
<? 
 $i++; 
} // end while 
?> 
</table> 
</body> 
</html> 
 
Run confidenceprediction to generate text file confidenceprediction.txt as in figure 11. 
 

3) Content based Algorithm: 
Run java CalGenre movie_id  
Example: java 14240  to generate text file movies_genres.txt with the top 30 recommended 
movies for movie_id 14240 
 
movies_genres.txt file: 
14240 
13,5 
2452,5 
7057,5 
7230,5 
8091,5 
10313,5 
10352,5 
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11521,5 
14961,5 
486,3 
750,3 
1260,3 
3197,3 
3416,3 
3644,3 
4031,3 
4489,3 
5589,3 
6647,3 
6685,3 
7442,3 
7371,3 
8745,3 
9177,3 
10115,3 
10209,3 
11076,3 
10360,3 
11985,3 
11466,3 
 
Movie_id, common genres 
 
Run php script genremovies.php?movies_id=movie_id to display the top 30 recommended 
movies for selected movie_id on the website as in figure 9.  

4) Netflix dataset: 
• training_set folder contains all 17770 movie rating files with Quadruples of <movie_id, 

user_id, rating, date> 
• example mv_0000001.txt contains 

1: 
1488844,3,2005-09-06 
822109,5,2005-05-13 
885013,4,2005-10-19 
30878,4,2005-12-26 
823519,3,2004-05-03 
893988,3,2005-11-17 
124105,4,2004-08-05 
1248029,3,2004-04-22 
1842128,4,2004-05-09 
2238063,3,2005-05-11 
1503895,4,2005-05-19 
2207774,5,2005-06-06 
… 
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mv_0000002.txt contains 
2: 
2059652,4,2005-09-05 
1666394,3,2005-04-19 
1759415,4,2005-04-22 
1959936,5,2005-11-21 
998862,4,2004-11-13 
2625420,2,2004-12-06 
573975,3,2005-07-21 
… 

• Movies.data is a binary file that contains all movies with users and ratings  
• users.data is a binary file that contains all users with movies and ratings as figure 4 shows 

movie_titles.txt contains movie_id, released year, movie title data 
1,2003,Dinosaur Planet 
2,2004,Isle of Man TT 2004 Review 
3,1997,Character 
4,1994,Paula Abdul's Get Up & Dance 
5,2004,The Rise and Fall of ECW 
6,1997,Sick 
7,1992,8 Man 
8,2004,What the #$*! Do We Know!? 
9,1991,Class of Nuke 'Em High 2 
10,2001,Fighter 
11,1999,Full Frame: Documentary Shorts 
12,1947,My Favorite Brunette 
… 

 
• Probe.txt: probe data where the algorithms run on. It contains only movie_id and user_id 

without rating number. 
1: 
30878 
2647871 
1283744 
2488120 
317050 
… 
1059319 
2380848 
548064 
10: 
1952305 
1531863 
1000: 
2326571 
977808 
1010534 
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1861759 
… 
 
• Catalog.xml: contains movie’s title, genre, and released year as in Figure 7. 
• Movies_title_all.sql : mysql database file contains all 17770 movies with movie_id, released 

year, movie_title, genre_1,genre_2, etc… 
• pearson.data contains pearson correlation value between each movies. 
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