
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2008

Web Security Detection Tool Web Security Detection Tool

Abhishek Agashe
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Agashe, Abhishek, "Web Security Detection Tool" (2008). Master's Projects. 76.
DOI: https://doi.org/10.31979/etd.fgue-aq59
https://scholarworks.sjsu.edu/etd_projects/76

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/76?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Web Security Detection Tool

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

by

Abhishek Agashe

December 2008

 ii

© 2008

Abhishek Agashe

ALL RIGHTS RESERVED

 iii

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

__

Dr. Chris Tseng

Professor of Computer Science, San José State University

__

Dr. Chris Pollett

Professor of Computer Science, San José State University

__

Dr. Robert Chun

Professor of Computer Science, San José State University

__

 iv

ABSTRACT

Web Security Detection Tool

by Abhishek Agashe

According to Government Computer News (GCN) web attacks have been marked as all-

time high this year. GCN says that some of the leading security software like SOPHOS

detected about 15,000 newly infected web pages daily in initial three months of 2008 [13].

This has lead to the need of efficient software to make web applications robust and

sustainable to these attacks. While finding information on different types of attacks, I found

that SQL injection and cross site scripting are the most famous among attackers. These

attacks are used extensively since, they can be performed using different techniques and it

is difficult to make a web application completely immune to these attacks. There are myriad

detection tools available which help to detect vulnerabilities in web applications. These

tools are mainly categorized as white-box and black-box testing tools.

In this writing project, we aim to develop a detection tool which would be efficient

and helpful for the users to pinpoint possible vulnerabilities in his/her PHP scripts. We

propose a technique to integrate the aforementioned categories of tools under one

framework to achieve better detection against possible vulnerabilities. Our system focuses

on giving the developer a simple and concise tool which would help him/her to correct

possible loopholes in the PHP code snippets.

 v

ACKNOWLEGEMENTS

I would like to thank Dr. Tseng for his guidance and support through out my writing project.

I would also like to thank Dr. Chun and Dr. Pollett for being my committee members and

giving me valuable suggestions.

 I am grateful to my family and friends for their continuous encouragement during this

project.

 vi

Table of Contents

1. INTRODUCTION………………………………………………………………………………………1

2. BACKGROUND ………………………………………………………………………………………...3

2.1 SQL INJECTION …………………………………………………………………………………….....3
2.2 CROSS-SITE SCRIPTING...….…………………………………………………………………….......5
2.3 EFFECTS ON APPLICATION……………………………………………………………………….....7
2.4 SOLUTIONS...….…………………………………………………………………………………….....8

3. PROJECT DESIGN AND COMPONENTS…………………………………………………..............11

 3.1 DETECTION TOOLS ……………………………………………………………………………….. 11
 3.2 WHITE BOX TESTING...……………………………………………………………………………..11
 3.2.1 PIXY……….…………………………………………………………………………………….....12
 3.2.2 RESULT ANALYSIS OF PIXY…………………………………………………………………..15
 3.2.3 COMPARISON WITH OTHER WHITE BOX TOOLS ……………………………………..…..17
 3.3 BLACK BOX TESTING……………………………………………………………………………...18
 3.3.1 WAPITI…………………………………………………………………………………………....19
 3.3.2 RESULT ANALYSIS OF WAPITI………………………………………………………………..19
 3.2.3 COMPARISON WITH OTHER BLACK BOX TOOL …..21

4. IMPLEMENTATION…………………………………………………………………………………...24

 4.1 OVERVIEW ………………………………………………………………………………………….24
 4.2 ARCHITECTURE …………………………………………………………………………………...26
 4.3 DETECTION PROCESS …………………………………………………………………………….25
 4.4 OUTPUT FORMAT…………………………………………………………………………………..29

5. RESULTS AND ANALYSIS …………………………………………………………………………....32

 5.1 RESULTS …………………………………………………………………………………………….33
 5.2 TESTING AND ANALYSIS ………………………………………………………………………....34

6. CONCLUSION AND ENHANCEMENTS ………………………………………………………….....35

 6.1 CONCLUTION ……………………………………………………………………............................38
 6.2 FUTURE WORK ………………………………………………………………………………….....39

7. REFERENCES…………………………………………………………………………………………...41

 vii

List of Table and Figures

Figure 2.1: Screenshot of basic SQL injection attack ……………………………………………….4

Figure 2.2: Screenshot of persistent XSS attack …………………………………………………….6

Figure 2.4: Application secured with mysql_real_escape_string ……………………………………9

Figure3.2.1: Sample PIXY result …………………………………………………...………………15

Figure 3.3.2 Wapiti sample output ………………………………………………………………….21

Figure 4.1: Architecture of Web Security Detection Tool ………………………………………….25

Figure 4.2: GUI to accept user input ……………………………………………………………….26

Figure.4.3: XML file generated by the wrapper ……………………………………………………30

Figure 5 PHP files categorized as per vulnerabilities ………………………………………………32

Figure 5.1 Results generated by the tool …………………………………………………………...35

 1

1. Introduction

Internet has become an imperative part in present industry and our lives. Due to its

widespread use web security has become a vital issue since last decade. There has been an

exponential increase in e-commerce and online transactions in past few years. This has lead

to need for developers to build robust and sustainable web applications. The most common

reason for a susceptible web application is sloppy coding techniques. It is found that though

it is not easy to make web applications immune to theses attacks, one can definitely

mitigate them by taking some precautions. Developers tend to ignore security precautions

due to constant deadlines and time constraints. This has resulted in increasing number of

exploits in web based applications.

This project is based on the current needs for web application developers to create

high end applications without compromising on security. The aforementioned conditions

have lead to increasing demand of vulnerability detection tools to aid developers to deliver

time critical and robust software. This project focuses on developing a detection tools

which would not only help the user detect possible vulnerability in his code, but will also

help in locating the vulnerable line. The contemporary vulnerability detection tools are

categorized as white box and black box testing. This project tries to exploit advantages of

both these testing techniques by combining them under one framework. This technique

helps the two separate tools to complement each others results and help application

developer to better pinpoint vulnerabilities in their code.

 This project accepts only PHP scripts and a URL to the web hoisted application. The

system will give the user a formatted result for possible vulnerabilities in his/her scripts.

 2

The rest of the report is organized as follows:

• Chapter 2 gives a detailed background information related to SQL injection (SQLI)

and Cross-Site scripting (XSS). It contains the most commonly used SQLI and XSS

attacks along with a few techniques to mitigate these attacks. This section would

also enumerate the possible effects of these attacks on a target application. This

section concludes with list of PHP functionality which could be used to debilitate

the aforementioned attacks.

• Chapter 3 starts with an overview of open source projects used as detection tools for

SQLI and XSS attacks. This section includes detailed description of the two testing

tools including PIXY and WAPITI. There is also a comparison of these tools with

other famous detection tools.

• Chapter 4 describes the working of the detection tool. This section starts with an

overview and the architecture. Later it also discusses about the detection process

adopted along with the output generated by this tool.

• Section 5 discusses the testing phase of our system along with analysis of the

results.

• Section 6 concludes the report and discusses about further enhancement on this

project.

 3

2. Background

2.1 SQL Injection

 SQL injection is a technique used by attackers to exploit a vulnerability found in

the database of an application [2]. This technique is often used on web applications which

acquire inputs from user to process them and present relevant information. It is found that

this technique is very prevalent in acquiring confidential information from application login

pages. SQL injection can be performed on any web application based on almost any web

technology like ASP, ASP.NET and PHP with any flavor of SQL database at the back-end.

SQL injection is typically performed on user login pages where, the user information

namely username and password are requested from the users. Then these username and

passwords are compared with the list of legitimate users in the database. Once a match is

found an SQL query is fired behind the application to display necessary user information.

Now, in SQL injection an attacker uses a specially crafted SQL query syntax and passes it

to such applications through the login page.

Consider the following example; where the attacker uses specially crafted query like

admin’ or 1=1# as username. In this case the user input is not sanitized by the application

and is directly used to build queries like:

"SELECT * FROM uname_pwd WHERE username='".$_GET['username']."' and

password ='".($_GET['password'])."'";

Thus, in this case the query is rendered useless as the syntax causes username to be

accepted as ‘1=1’, which is always true and the rest of the query is bypassed by SQL

 4

comment syntax “#”. Following figure gives an instance of such attack

Figure 2.1: Screenshot of basic SQL injection attack

There are numerous ways in which SQL injection is performed. Each method varies in its

syntax and the possible results. The most common methods in SQL injection are:

• Redirection and reshaping of the query.

• Error message based

• Blind injection

 5

2.2 Cross-Site scripting (XSS)

 Cross-site scripting sometimes is found to be very similar to SQL injection attacks.

Though these attacks have similar attacking styles of injection, both are quite different from

each other. SQL injection is a technique as mentioned before, which directly attacks the

database of the application by using certain specially crafted queries. Cross-site scripting

also performs similar code injection, but this attack is not performed to achieve access to

the database and perform modification. XSS is used to attack other users of the web

application by injecting malicious code in same, which is able to run in legitimate user’s

browser [5]. Thus, XSS attack is not against the web application, but it is against the

application’s users. An example of XSS attack with malicious JavaScript can be shown as

follows:

 <html>

<body>

<p> Hello friends, I am a student of Computer Science Department</p>

<script> MALICIOUS CODE </script>

<p> San Jose State University </p>

</body>

</html>

 XSS attacks are categorized as:

• Non-persistent

• Persistent attacks.

Non-persistent attacks need the user to specifically visit the specially crafted link. These

 6

attacks are most commonly found in search engines e.g. Google, Ebay, Amazon, etc. The

persistent XSS attacks store the malicious script in the application itself and get activated

whenever a particular web page is accessed by the user. The most common example of this

attack is in forums: accepting user comments and displaying the same to other users. The

following example shows a pop-up appearing every time the blogg is read by any user. This

happens due to injection of a malicious script in the application database, which executes

on the user browsers every time data is retrieved from it.

Figure 2.2: Screenshot of persistent XSS attack

 7

2.3 Effects on the application

Effects of SQL injection can be fairly understood from the examples given in the

previous sections. The attacker can get a full access to the database of a web application and

might be able to insert, delete or even modify any of the original database entries. An SQL

injection attack is widely known in the industry and even after its widespread use, some

application tend to ignore their vulnerabilities and get exploited. SQL injection has the

potential to affect all the four sides of security which include confidentiality, authentication,

authorization, and integrity [2].

As mentioned before Cross-site scripting can be implemented in myriad ways. The

attacker might use Java Script, PHP, or even HTML for code injection. Cross-site scripting

attack can have different effects on the application and its user experience. XSS can be used

by the attacker for varied purposes

An attacker can inject malicious scripts in the web application, which may display

pictures, pop ups or even close the browsers window. Following is a list of commonly used

XSS attacks:

• Users’ browser might inadvertently execute the injected scripts form an attacker.

This may display dynamically generated web pages created by the attacker which is

not related to the legitimate website [5].

• Cross-site scripting attack may also be used by the attacker to connect a legitimate

user of a website to a malevolent server.

 8

• XSS also allows the attacker to take over legitimate user’s session cookie before it

expires.

• Cross-site scripting can also be used by the attacker to convince the user of an

application to access a malicious URL. This URL might result in execution of the

attacker scripts on the legitimate user’s browser. This will allow the attacker to

exploit the user privileges to access the application and issue SQL queries and

exploit the underlying application [5].

Aforementioned are some of the most common attacks performed by the attacker using

Cross-site scripting. It’s not feasible to discuss every possible effect on the system due

to such attacks, since these attacks can be performed in numerous forms each affecting a

specific part of the application.

2.4 Solutions

While we develop web applications it’s very important to sanitize all user input. If the

inputs are sanitized it restricts the attacker from using certain special characters, which

otherwise are not needed by legitimate users [3].

Though sanitizing user inputs helps to avoid attacks, it is not always feasible to do so. In

case of entering an email address the above technique of sanitizing might be useful but not

always. There are a few common ways in PHP which can be used for sanitizing user

inputs.. One such very common methodology is using addslash(), which adds a backslash

 9

before occurrence of any single or double quote. The magicquotes() is the functionality

which appeared in the 4.X and higher versions of PHP. Though being similar to

addslashes(); magicquotes() also provides security for other syntax like ‘\r’, ‘\n’, and EOF

along with those covered under addslashes(). The following example shows how

mysql_real_escape_strings() a functionality in PHP works:

 Figure 2.4: Application secured with mysql_real_escape_strings()

 10

Here, in the above example consider the lower login application wherein, we have used the

same SQL injection technique mentioned in section 2. When the application is secured with

either addslashes or magicquotes, as you can see an input like:

USERNAME: admin’ or 1=1 # doesn’t give any form of access to the database. One can see

in the right section of the above screenshot that an input mentioned above is debilitated by

adding a backslash before the single quote. Even after we use these technique there is a

possibility that the attacker might still get access since we are still considering the user

inputs as SQL statements. This might cause a potential vulnerability.

There is a better way in which we can make our web applications more secured. We can use

‘bound parameters’ which are possible to be used in almost all databases. Bound parameters

also called as the Prepare Statement allow us to create a SQL query with a place holder

which is a question mark for each parameter [2]. In this way any inputs from user are not

used directly to form a query behind the application. The prepare statement not only helps

in making the application secure but also gives performance benefits. In case to mitigate

XSS attacks one can use htmlentities(), which blocks any possible script tags to be executed

over user’s browser.

There are many open source soft-wares available which help to keep the code secure

against SQL injection and XSS attacks. Few of such tools available are as follows:

• Nessus è http://www.nessus.org/nessus/

• Nikto è http://www.cirt.net/nikto2

• PHP Security Scanner è http://securityscanner.lostfiles.de

The aforementioned tools can definitely be customized as per the user’s requirements so as

http://www.nessus.org/nessus/
http://www.cirt.net/nikto2
http://securityscanner.lostfiles.de/

 11

to be used for personal use. These soft-wares come with documentation and are easily

available over web. There are also commercial soft-wares available, which perform similar

security measures.

 12

3. Project design and components

3.1 Detection tools

 As mentioned earlier there are myriad detection tools available which include many

open source software. These detection tools though cannot guarantee that their use will

debilitate the attacks completely, but they can definitely make the application more secured.

These tools are categorized in two methodologies, the white box testing and black box

testing.

3.2 White box testing

 White box testing is a widely used testing tool which is used for detecting

vulnerabilities in PHP scripts. This software allow the user to pass PHP files (scripts) to

these software, wherein they are scanned for possible XSS or SQL injection vulnerabilities.

Some of the most commonly used tools for white box testing are:

All these tools have specific functions differing from each other; though have the same

Nessus http://www.nessus.org/nessus

Acunetics http://www.acunetix.com/vulnerability-

scanner/features.htm

PHP security http://securityscanner.lostfiles.de/

http://www.nessus.org/nessus
http://www.acunetix.com/vulnerability-scanner/features.htm
http://www.acunetix.com/vulnerability-scanner/features.htm
http://securityscanner.lostfiles.de/

 13

concept of scanning the scripts for vulnerabilities. Our project uses one such similar tool

called PIXY 3.02 (http://pixybox.seclab.tuwien.ac.at/pixy/).

3.2.1 PIXY

 PIXY is a Java based vulnerability detection tool. This tool is very common to the

other white box testing tools, as it accepts PHP scripts and scans them for possible

vulnerabilities. PIXY understands that PHP script accepts data from the user using

statements such as $_GET[], this data becomes harmful when used in other scripts or in

SQL queries. It recognizes these evil lines of code as sensitive sinks. PIXY calls SQL

injection and Cross Site Scripting vulnerabilities as tainted vulnerabilities and categorizes

them weakly and strongly tainted.

Consider the following scenario when the PHP script takes user inputs and creates an SQL

query using the user data achieved from $_GET statements.

$UNAME = addslashes($_GET['username']);

$PWD = addslashes($_GET['password']);

mysql_query("SELECT * FROM some_table WHERE username=$UNAME AND

password='$PWD'"); [12]

In the code snippet given above we take user inputs and create a SQL query. Now, as you

can see the $UNAME is not embedded in (‘’) as in case of $PWD [12]. This opens up a

loophole in the script which might get exploited by the attacker as:

http://pixybox.seclab.tuwien.ac.at/pixy/

 14

SELECT * FROM some_table WHERE username=1 or 1=1 AND password=''

In this case even though we have used addslashes() function of PHP the script is open to

vulnerabilities. PIXY considers such a scenario as potential exploitable loophole and calls it

as weakly tainted. Strongly tainted are supposed to be harmful regardless of the structure

of SQL query [12].

Pixy is a command line tool and is able to accept single PHP file as input and generates

vulnerability results for it. Consider the following sample result from PIXY

 15

Figure3.2.1: Sample PIXY result

As we can see figure 1 depicts the results of PIXY analysis on a given PHP script which

includes both SQLI injection as well as Cross Site Scripting analysis. In the above case

there was no XSS threat found, whereas in SQL analysis PIXY detected a directly tainted

vulnerability which is found to be at line 41 of login11.php script. Pixy at the end also

displays the amount of time it took for the analysis, which in this case is 3 seconds.

Pixy as mentioned before is written completely in java and uses PERL script as a startup

 16

script for calling the main java file and increasing the initial heap size.

3.2.2 Result analysis of PIXY

XSS analysis

As mentioned earlier PIXY categorizes the results as directly tainted and indirectly tainted.

Consider the following PHP code snippet:

1. $input = $_GET[‘input’];

2. echo $input;

3. echo $input1; [12]

Now in this case Pixy might generate results as follows:

Vulnerability detected!

- unconditional

- x.php:2

Vulnerability detected!

- conditional on register_globals=on

- x.php:3 [12]

In this case as we can see Pixy detects two vulnerabilities in the php script. One being the

unconditional, While second one is conditional. Here as we see the second

 17

vulnerability depends conditionally on register_globals being set or not set, while first

vulnerability is regardless of any specific option being set or unset.

SQL injection analysis

 PIXY analyses SQL injection results on similar lines as XSS. Consider the

following PHP code:

1: $a = $_GET['a'];

2: $b = addslashes($b);

3: mysql_query("SELECT * FROM articles WHERE id = '1'"); // harmless

4: mysql_query("SELECT * FROM articles WHERE id = '$a'"); // dangerous

5: mysql_query("SELECT * FROM articles WHERE id = '$b'"); // harmless

6: mysql_query("SELECT * FROM articles WHERE id = $b"); // dangerous [12]

Given the above PHP script we get the following results from PIXY analysis:

directly tainted!

- myfile.php:4

- unconditional

indirectly tainted and dangerous!

- myfile.php:6

- unconditional [12]

 18

As we can see in this case again we use the $_GET and PHP function of addslashes() for

sanitation. The two statements marked as dangerous are detected by PIXY as directly and

indirectly tainted. In first case it’s directly tainted since we are not at all sanitizing user

inputs and directly creating an SQL query using the same. In second case we get an indirect

tainted and dangerous warning. This is due to the fact that though we have used

addslashes() for sanitizing user inputs, the query isn’t framed correctly avoiding use of

quotes for $b thus making a possible loophole to be exploited.

3.2.3 Comparing with other white box testing

 White box testing is a very crucial component in building a secure web application.

There are myriad white box testing tools available each with their pros and cons. Here is a

list of some commonly used tools with their features and certain disadvantages.

Tools Characteristics/ Features

Nessus

• Supports SQLI and XSS attack detection
• Well documented
• NO support for white box testing but not

explicitly for PHP files.
• Highly complex

Acunetics

• Supports SQLI and XSS attack detection.
• Well documented.
• Commercial software

 19

PHP Security scanner

• Supports general PHP script vulnerable
detection.

• Support for scanning an entire directory.
• Well documented.
• Depends on database for tests and results.

3.3 Black-box testing

Black box testing is a very common tool found which can scan websites for possible

vulnerabilities. Usually these tools have web crawlers or spiders in them that scan the

website and all possible sub-links trying to detect vulnerabilities on the application running

on server. Following are a few commonly used black box testing tools:

NIKTO 2 http://www.cirt.net/nikto2

Kayra http://sourceforge.net/projects/kayra/

Space Monkey http://sourceforge.net/projects/spacemonkey/

Agares Security http://sourceforge.net/projects/agaressecurity/

All the aforementioned tools have spiders build in them to scan through entire websites

performing an automated attack to detect possible attacks which might be successful. Some

of these tools have databases to store in possible attack cases and some don’t. Yet, they all

http://www.cirt.net/nikto2
http://sourceforge.net/projects/kayra/
http://sourceforge.net/projects/spacemonkey/
http://sourceforge.net/projects/agaressecurity/

 20

perform injection by injecting test cases through application forms.

3.3.1 Wapiti

Wapiti is a black box testing tool that scans through web pages in a web site using a web-

spider. Wapiti then starts injecting payloads through forms accepting user inputs and detects

if the script is vulnerable to SQL injection or Cross Site Scripting [3].

Wapiti can be used to detect multiple errors like:

• Database injection

• Cross site scripting

• HTTP response splitting

• HTTP 500 error

• Command execution detection

3.3.2 Result analysis of Wapiti

Wapiti determines XSS as either permanent or non-permanent. A non-permanent XSS also

known as temporary XSS includes scripts which get executed only when the script code is

used by the crafted user query. In other words the temporary XSS attack doesn’t stay over

the server and is returned immediately. The root cause of permanent XSS is un-sanitized

user inputs which gets stored in the application’s database.

Thus each time some one access this web application the code segment in the database gets

executed in the user’s browsers performing XSS.

 21

Figure 3.3.2 Wapiti sample output

Wapiti uses library called “lswww” which is a web spider. This requires html tidy

(http://tidy.sourceforge.net/) since it accepts only well formatted html web pages.

Wapiti 1.1.5 provides options like verbose, timeout options, starting URL specifications,

etc.

http://tidy.sourceforge.net/

 22

3.3.3. Comparison with other black-box tools

As mentioned before there are many black-box testing tools available both in open

source and commercial domain. Most of these tools are efficient and widely used for testing

purposes. The following chart gives an overview of few widely used black box testing tools

along with Wapiti.

Nikto 2

• Open Source
• Web Server scanning tool
• Detects XSS and 404 errors
• Provides and Intrusion Detection System
• Username guessing plugin
• Generates XML reports
• Relies on database for test cases
• Doesn’t detect SQL injection explicitly

Kayra

• Open source
• Detects XSS and SQL injection attacks
• Provides GUI
• No documentation
• Doesn’t detect permanent XSS
• Doesn’t detect server errors

Space Monkey

• Detects SQL injection and XSS attacks
• Written in C/C++
• Platform dependent.
• No documentation.
• Doesn’t detect permanent XSS
• Not suitable for testing purposes.

 23

Witko

• Witco detects XSS as well as SQI
• Has many enhance features.
• Well documented.
• Written on non open source (.NET
 Framework)
• Difficult to merge with other tools

 24

4. Implementation

4.1 Overview

As mentioned above both; the black box testing as well as white box testing is used

widely in detecting vulnerabilities in web applications. All these applications either provide

a scanning for external web application or accept user’s scripts and scan them for

vulnerability. Both of these techniques have their pros and cons. White box testing gets

complete access to server side files and can pin point the location of the vulnerability.

Whereas, in case of black box, one can monitor possible loopholes in an application which

is already deployed and how well it can sustain attacks.

 In my project I am trying to combine these techniques to give user functionality of

both methodologies in a single framework. This project uses two open source software:

• PIXY 3.2 (White box testing)

• Wapiti (Black box testing)

This project uses a JAVA wrapper code to combine these techniques and give a presentable

result to the user.

4.1 Architecture:

The project uses JAVA as its base language to combine both testing techniques and

small amounts of PERL is used for automation.

 25

Figure 4.1: Architecture of Web Security Detection Tool

Figure 3 describes the architecture of the detection tool. As shown in figure 3 the main

wrapper is built in JAVA, which is responsible for combining both the open source

software. The Java wrapper includes enhancements for the open source and is responsible

for processing the output generated by PIXY and Wapiti.

WSDT

JAVA wrapper

PIXY 3.2

TEXT FILES

WAPITI

TEXT FILE

XML PHP
script

HTML Files/Folder
ADDRESS
WEB-SITE

I /P

Files/Folder WEB-SITE

 26

Figure 4.2: GUI to accept user inputs

Figure 4.2 depicts that WSDT (wrapper) gets two inputs from the user namely:

• Files/Folders

• Address of deployed web application

These as shown are passed to the open source tools. Once output is generated in XML and

text files format, it’s further processed by PHP scripts generating output in form of HTML

page.

This architecture gives following enhancements over the contemporary software:

• PIXY as a standalone tool take a single PHP file as input. Our system now takes an

entire folder and performs a search to find PHP files in the same.

• Both the aforementioned tools are based on command line. The tool developed gives

user a GUI interface.

 27

• Both the open source tools i.e. Wapiti and PIXY give unorganized results about the

detected vulnerability on the command line. This result can get complex while

dealing with huge applications. The proposed system converts the output generated

by the open source software in XML format thus, making it easier to manipulate.

Later the final results are presented to the user in HTML format.

• Pixy gives the vulnerability only at the point where the sink ends. Our system uses

the Wapiti output to detect the point where the user inputs are accepted by the PHP

scripts. Our system also detects possible permanent XSS found in the submitted

PHP files.

4.2 Detection Process

WSDT accepts an entire folder consisting of PHP files and starts scanning the folder

for all possible PHP files, which in turn are passed to PIXY. PIXY as mentioned before is

the white box testing tool that accepts PHP files and scans them for possible XSS and SQL

injection vulnerabilities. The result generated by PIXY is stored in form of text file which is

different for each PHP file scanned. For simplicity the names of the PHP files are retained

and the output text file of each PHP script is given the same name.

e.g. login.php è WSDTè login.txt

A sample text output file would look as follows:

XSS Analysis BEGIN

 28

Vulnerability detected!

- unconditional

- C:\Program Files\xampp\htdocs\blogg_results.php:72

Total Vuln Count: 1

XSS Analysis END

SQL Analysis BEGIN

Number of sinks: 2

SQL Analysis Output

directly tainted!

- C:\Program Files\xampp\htdocs\blogg_results.php:43

- unconditional

Total Vuln Count: 1

SQL Analysis END

While PIXY processes the PHP files for vulnerabilities the second user input which is web-

 29

site address of the deployed application is passed by WSDT to Wapiti. The black box

testing tool (Wapiti) starts crawling through the web pages and tries to inject payloads and

detects any possible evil (vulnerable) links. Again this output generated by wapiti is stored

in text files for further processing.

Once PIXY is done processing all the text files these text files are given as input back to

WSDT(wrapper) for further processing. Now that WSDT has the entire output of all the

files scanned by PIXY, it starts scanning these output files. As per the output generated for

each file the files gets categorized as XSS vulnerable, SQL injection vulnerable or both.

This entire categorization along with other details of each of the PHP files is stored in an

XML file. The entire output is stored in XML so that it becomes easier to further process

this information in systematic pattern.

 30

Figure.4.3: XML file generated by the wrapper

As shown in figure 4, the wrapper processes the PIXY’s output files in XML form. Each of

the “FILE” element shown above includes the output generated for the PHP files scanned

by PIXY. As depicted above, the FILE element has basically three sub-elements embedded

in it namely: Vulnerability, File, and description.

Now, here the Vulnerability element tells us the type of vulnerability detected in that

particular PHP file. The File element gives us the name of that file and description element

 31

has all the detailed result of that particular PHP file generated by PIXY.

4.3 Output format

 Once we have all the data that we need in the XML form now we can present the

results to the user in a better format. The output text file generated from Wapiti and the

aforementioned XML file forms the basic raw data which is processed further. This project

also includes a PHP script which is used for presenting the data generated from WSDT. This

PHP script parses the XML data and according to the Vulnerabilities element generated for

each of the files, it enters the PHP filenames given by the user in a table form. This helps in

determining which files have either or both of the vulnerabilities.

 This tabular form can be shown as follows:

 32

Figure 4.3 PHP files categorized as per vulnerabilities

Figure 5 shows the tabular form in which the files are categorized as per the vulnerabilities

detected. The user would be able to see the analysis details by clicking on the particular

PHP file in the table. While this depicts the PIXY results, the Wapiti results will also be

presented to the user on the same page. This would give information on the possible

vulnerable variable in the scripts along with detection of permanent XSS. For instance,

 33

consider an HTML form accepts user’s comments and stores it in database. Now, this user

data is passed as a parameter to the PHP scripts using either GET, POST or REQUEST

methodology. This is the actual point where the vulnerability actually entered the script.

Using Wapiti we are able to detect this vulnerable parameter and find the point where the

user input can be sanitized.

 34

5.0 Results and Analysis:

5.1 Results

This project has two sections one being the web hoisted test application, which

basically acts as a tutorial for understanding SQL injection and Cross-site scripting. The

web application is hoisted at http://abhishek1984.zxq.net . This application has been tried

and tested by many of my friends and also have been utilized by other students in their

academic projects. The second section of my project is basically the detection tool which is

developed in Java and PHP to combine the black-box and white box testing techniques.

The results of this tool are generated by parsing through the user’s PHP scripts located

locally on his/her machine, at the same time crawling the live application deployed on the

server. The results generated by the tool include a table categorizing all the submitted files

to the tool into SQL injection and cross-site scripting respectively.

Each of these files when clicked gives a combined result of PIXY and wapiti in the

right frame displaying the possible vulnerable line found in the particular script with respect

to SQLI or XSS. It also gives information about the vulnerable variable which might have

been used by the script to accept user input with sanitizati

http://abhishek1984.zxq.net/

 35

Figure 5.1 Results generated by the tool.

These results would be useful for the application developer to better pinpoint the

vulnerability in his/her scripts. Since, we now get information on the point of entry where

the vulnerability first occurred as well as the point to which it sank in script it would help to

better mitigate the possible attacks. This tool also indicates the user if the submitted script is

 36

vulnerable to persistent cross-site scripting vulnerability. This would also help user to get an

indication that his/her database might be uploaded with malicious scripts performing XSS

attacks. Persistent XSS indicates that some kind of script like JavaScript can be injected in

his/her database and used for attacking others by its execution on legitimate user’s browser.

5.2 Testing and Analysis

To test this system, we used a pool of PHP files and various other websites to

determine its efficiency. Since this detection tool works on scripting language like PHP. It

was found that many a times PIXY as well as Wapiti tends to overlook certain

vulnerabilities in code. The major reason for this is the flexibility of scripting languages

which allows a single implementation in numerous ways. This tool gives better efficiency

for a well formatted HTML web pages and PHP scripts.

While testing the output generated by the tool it’s found that using the start and sink point

suggested by the tool it becomes easier to track down possible vulnerabilities in the scripts.

Though, this tool might not be able to pin point the exact and all the locations which might

have vulnerabilities, while testing it was found that it definitely gives better results than

using the two testing techniques individually. For testing this tool the aforementioned

tutorial website http://abhishek1984.zxq.net was used extensively along with matching PHP

scripts available locally. We found that wapiti being a black box testing tools many a times

overlooks possible vulnerabilities in web application. Since, it uses a fuzzer technique and

needs well formed HTML pages it tends to overlook certain vulnerabilities. We found while

http://abhishek1984.zxq.net/

 37

testing that a very efficient fuzzer independent of well formed HTML page would have

been helpful as most of the PHP scripts developed do not generate well formed HTML

pages.

 38

6.0 Conclusion and Enhancements

6.1 Conclusion

As mentioned before most of the open source tools provide either the black box

testing or the white box testing. This tool would give benefits of both the methodologies

under a single roof. Many a time’s vulnerabilities cannot be detected just by scanning the

PHP scripts. Using black box testing we are able to test an already deployed website. This is

useful in projects where the website updates is an ongoing process.

White Box testing helps developer to know the actual attacks which might be

successful on the already deployed website. The White box testing would allow the

developer to pin point the vulnerability in the PHP scripts. This would help the developer

have complete control on the security loopholes present or one which, might be found on

his/ her website. In case of PIXY, it gives only the second and final level sink points of the

user inputs. It’s vital that user inputs should be sanitized before any further operation Pixy

sometimes gives false alarms as it has access only to source files. Wapiti output can be used

to reduce these false alarms.

The black-box and white-box techniques can be used to complement each others

results and mitigate aforementioned vulnerability. Though this tool might not be very useful

for unformatted HTML pages and PHP scripts, it can definitely have added advantage over

using both the tools used independently.

 39

6.2 Future work

While discussing about this project with my other peers and friends I came across some

added features which might be developed in future.

• Updating the test cases is a matter of concern in Vulnerability detection tool. There

are options of maintaining a database for test cases, but it adds to the overhead for

processing multiple files.

• As of now this system accepts only PHP files, but there are many other server side

languages like JSP and PERL which are used extensively and should be

incorporated for detection.

• The system could give possible PHP snippet which could mitigate the vulnerability

in developer’s script.

• Vulnerability correction tool would be definitely be useful and feasible if it would

be possible to create a regular expression, which could be compatible with the

flexibility of scripting languages like PHP and PERL

 40

7. References

[1] Engin Kirda, Cristopher Kruegel, Giovanni Vigna, Nenad Jovanovic, “Noxes: a

client-side solution for mitigating cross-site scripting attacks”, 2006, Pages: 330 – 337,

Proceedings of the 2006 ACM symposium on Applied computing, ACM Press.

[2] Wei K, Muthuprasanna M, Suraj Kothar “Preventing SQL injection attacks in stored

procedures” 18-21 April 2006 Pages: 8 pp. Software Engineering Conference, 2006.

Australian, IEEE.

[3] Muthuprasanna M, Ke Wei, Kothari S, “Eliminating SQL Injection Attacks - A

Transparent Defense Mechanism” Sept. 2006, Pages: 22 -32 ,Web Site Evolution, 2006.

WSE '06, Eighth IEEE International Symposium.

[4] Rubin, A.D. Geer, D.E., Jr. ,” A Survey of Web Security”, Sept. 1998

Volume: 31 , Issue: 9, Pages: 34 – 41,computer, ISSN: 0018-9162 IEEE computer

society.

[5] Benjamin Livshits, Úlfar Erlingsson, “Using web application construction

frameworks to protect against code injection attacks”, 2007, Pages: 95 – 104,

Proceedings of the 2007 workshop on Programming languages and analysis for security,

ACM press.

[6] Shanmugam,J. Ponnavaikko, M.,” A solution to block Cross Site Scripting

Vulnerabilities based on Service Oriented Architecture”, 11-13 July 2007, Pages: 861-866,

Computer and Information Science, 2007, ICIS 2007.6th IEE/ACIS international

conference.

 41

[7] Di Lucca, G. Fasolino, A. Mastoianni, M. Tramontana, P.,” Identifying Cross Site

Scripting Vulnerabilities in Web Applications”, 2004,Pages: 71-80, Proceedings of the Web

Site Evolution, Sixth IEEE International Workshop.

[8] Buehrer, G. Weide, B. Sivilotti, P.,” Using parse tree validation to prevent SQL injection

attacks”, 2005, Pages: 106-113, Proceedings of the 5th international workshop on Software

engineering and middleware.

[9]SQL injection.(2007).Retrieved May/09, 2008, from

http://www.owasp.prg/index.php/SQL_injection

[10] Cross-site scripting. (2007). Retrieved May/09, 2008, from
http://www.owasp.org/index.php/Cross-site-scripting

[11] Wapti. (2006). Retrieved May/09, 2008, from http://wapiti.sourceforge.net/

[12] PIXY. (2007). Retrieved May/09, 2008, from

http://pixybox.seclab.tuwien.ac.at/pixy/documentation.php

[13] Government computer news. (2008). Retrieved May/08, 2008, from

http://www.gcn.com/

http://www.owasp.prg/index.php/SQL_injection
http://www.owasp.org/index.php/Cross-site-scripting
http://wapiti.sourceforge.net/
http://pixybox.seclab.tuwien.ac.at/pixy/documentation.php
http://www.gcn.com/

	Web Security Detection Tool
	Recommended Citation

	1. Introduction
	2. Background
	2.1 SQL Injection
	2.2 Cross-Site scripting (XSS)
	2.3 Effects on the application
	2.4 Solutions

	3. Project design and components
	3.1 Detection tools
	3.2 White box testing
	3.2.1 PIXY
	3.2.2 Result analysis of PIXY
	3.2.3 Comparing with other white box testing

	3.3 Black-box testing
	3.3.1 Wapiti
	3.3.2 Result analysis of Wapiti
	3.3.3. Comparison with other black-box tools

	4. Implementation
	4.1 Overview
	4.1 Architecture:
	4.2 Detection Process
	4.3 Output format

	5.0 Results and Analysis:
	5.1 Results
	5.2 Testing and Analysis

	6.0 Conclusion and Enhancements
	6.1 Conclusion

	While discussing about this project with my other peers and friends I came across some added features which might be developed
	Updating the test cases is a matter of concern in Vulnerability detection tool. There are options of maintaining a database fo
	7. References

