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This paper describes the development and analysis of finite-volume methods 
for the Landau–Lifshitz Navier–Stokes (LLNS) equations and related stochastic 
partial differential equations in fluid dynamics. The LLNS equations incorporate 
thermal fluctuations into macroscopic hydrodynamics by the addition of white-
noise fluxes whose magnitudes are set by a fluctuation-dissipation relation. Origi­
nally derived for equilibrium fluctuations, the LLNS equations have also been 
shown to be accurate for nonequilibrium systems. Previous studies of numerical 
methods for the LLNS equations focused primarily on measuring variances and 
correlations computed at equilibrium and for selected nonequilibrium flows. In 
this paper, we introduce a more systematic approach based on studying discrete 
equilibrium structure factors for a broad class of explicit linear finite-volume 
schemes. This new approach provides a better characterization of the accuracy 
of a spatiotemporal discretization as a function of wavenumber and frequency, 
allowing us to distinguish between behavior at long wavelengths, where accuracy 
is a prime concern, and short wavelengths, where stability concerns are of greater 
importance. We use this analysis to develop a specialized third-order Runge–Kutta 
scheme that minimizes the temporal integration error in the discrete structure 
factor at long wavelengths for the one-dimensional linearized LLNS equations. 
Together with a novel method for discretizing the stochastic stress tensor in 
dimension larger than one, our improved temporal integrator yields a scheme for 
the three-dimensional equations that satisfies a discrete fluctuation-dissipation 
balance for small time steps and is also sufficiently accurate even for time steps 
close to the stability limit. 
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1. Introduction
 

Recently the fluid dynamics community has considered increasingly complex physi­
cal, chemical, and biological phenomena at the microscopic scale, including systems 
for which significant interactions occur across multiple scales. At a molecular 
scale, fluids are not deterministic; the state of the fluid is constantly changing and 
stochastic, even at thermodynamic equilibrium. As simulations of fluids push toward 
the microscale, these random thermal fluctuations play an increasingly important 
role in describing the state of the fluid, especially when investigating systems where 
the microscopic fluctuations drive a macroscopic phenomenon such as the evolution 
of instabilities, or where the thermal fluctuations drive the motion of suspended 
microscopic objects in complex fluids. Some examples in which spontaneous 
fluctuations can significantly affect the dynamics include the breakup of droplets 
in jets [56; 27; 42], Brownian molecular motors [4; 58; 24; 54], Rayleigh–Bénard 
convection (both single species [65] and mixtures [60]), Kolmogorov flows [14; 15; 
52], Rayleigh–Taylor mixing [41; 40], combustion and explosive detonation [57; 
49], and reaction fronts [55]. 

Numerical schemes based on a particle representation of a fluid (e.g., molecu­
lar dynamics, direct simulation Monte Carlo [2]) inherently include spontaneous 
fluctuations due to the irregular dynamics of the particles. However, by far the 
most common numerical schemes in computational fluid dynamics are based on 
solving partial differential equations. To incorporate thermal fluctuations into 
macroscopic hydrodynamics, Landau and Lifshitz introduced an extended form of 
the compressible Navier–Stokes equations obtained by adding white-noise stochastic 
flux terms to the standard deterministic equations. While they were originally 
developed for equilibrium fluctuations, specifically the Rayleigh and Brillouin 
spectral lines in light scattering, the validity of the Landau–Lifshitz Navier–Stokes 
(LLNS) equations for nonequilibrium systems has been assessed [28] and verified in 
molecular simulations [33; 51; 53]. The LLNS system is one of the more complex 
examples in a broad family of PDEs with stochastic fluxes. Many members of this 
family arise from the LLNS equations in a variety of approximations (e.g., stochastic 
heat equation) while others are stochastic variants of well known PDEs, such as the 
stochastic Burger’s equation [12], which can be derived from the continuum limit 
of an asymmetric excluded random walk. 

Several numerical approaches for fluctuating hydrodynamics have been proposed. 
The earliest work by Garcia et al. [32] developed a simple scheme for the stochastic 
heat equation and the linearized one-dimensional LLNS equations. Ladd et al. 
[45] have included stress fluctuations in (isothermal) Lattice Boltzmann methods 
for some time, and recently a better theoretical foundation has been established 
[1; 26]. Moseler and Landman [56] included the stochastic stress tensor of the 
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LLNS equations in the lubrication equations and obtain good agreement with their 
molecular dynamics simulation in modeling the breakup of nanojets. Sharma 
and Patankar [61] developed a fluid-structure coupling between a fluctuating in­
compressible solver and suspended Brownian particles. Coveney, De Fabritiis, 
Delgado-Buscalioni and coworkers have also used the isothermal LLNS equations 
in a hybrid scheme, coupling a continuum fluctuating solver to a molecular dynamics 
simulation of a liquid [29; 35; 23]. Atzberger et al. [7] have developed a version 
of the immersed boundary method that includes fluctuations in a pseudospectral 
method for the incompressible Navier–Stokes equations. Voulgarakis and Chu 
[63] developed a staggered scheme for the isothermal LLNS equations as part of a 
multiscale method for biological applications, and a similar staggered scheme was 
also described in [22]. 

Recently, Bell et al. [13] introduced a centered scheme for the LLNS equations 
based on interpolation schemes designed to preserve fluctuations combined with 
a third-order Runge–Kutta (RK3) temporal integrator. In that work, the principal 
diagnostic used for evaluation of the numerical method was the accuracy of the 
local (cell) variance and spatial (cell-to-cell) correlation structure for equilibrium 
and selected nonequilibrium scenarios (e.g., constant temperature gradient). The 
metric established by those types of tests is, in some sense, simultaneously too 
crude and too demanding. It is too crude in the sense that it provides only limited 
information from detailed simulations that cannot be directly linked to specific 
properties of the scheme. On the other hand, such criteria are too demanding in 
the sense that they place requirements on the discretization integrated over all 
wavelengths, requiring that the method perform well at high wavenumbers where 
a deterministic PDE solver performs poorly. Furthermore, although Bell et al. 
[13] demonstrate that RK3 is an effective algorithm, compared with other explicit 
schemes for the compressible Navier–Stokes equations, the general development of 
schemes for the LLNS equations has been mostly trial and error. 

Here, our goal is to establish a more rational basis for the analysis and develop­
ment of explicit finite-volume scheme for stochastic partial differential equations 
(SPDEs) with a stochastic flux. The approach is based on analysis of the structure 
factor (equilibrium fluctuation spectrum) of the discrete system. The structure 
factor is, in essence, the stationary spatiotemporal correlations of hydrodynamic 
fluctuations as a function of spatial wavenumber and temporal frequency; the 
static structure factor is the integral over frequency (i.e., the spatial spectrum). 
By analyzing the structure factor for a numerical scheme, we are able to develop 
notions of accuracy for a given discretization at long wavelengths. Furthermore, in 
many cases the theoretical analysis for the structure factor is tractable (with the aid 
of symbolic manipulators) allowing us to determine optimal coefficients for a given 
numerical scheme. We perform this optimization as a two-step procedure. First, a 
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spatial discretization is developed that satisfies a discrete form of the fluctuation-
dissipation balance condition. Then, a stable temporal integrator is proposed and 
the covariances of the random numbers are chosen so as to maximize the order 
of temporal accuracy of the small-wavenumber static structure factor. We focus 
primarily on explicit schemes for solving the LLNS equations because even at the 
scales where thermal fluctuations are important, the limitation on time step imposed 
by stability is primarily due to the hyperbolic terms. That is, when the cell size is 
comparable to the length scale for molecular transport (e.g., mean free path in a 
dilute gas) the time step for these compressible hydrodynamic equations is limited 
by the acoustic CFL (Courant–Friedrichs–Lewy) condition. At even smaller length 
scales the viscous terms further limit the time step yet the validity of a continuum 
representation for the fluid starts to break down at those atomic scales. 

The paper is divided into roughly two parts: The first half (Sections 2–4) defines 
notation, develops the formalism, and derives the expressions for analyzing a general 
class of linear stochastic PDEs from the LLNS family of equations. The main 
result in the first half, how to evaluate the structure factor for a numerical scheme, 
appears in Section 3B. The second half applies this analysis to systems of increasing 
complexity, starting with the stochastic heat equation (Section 5A), followed by the 
LLNS system in one dimension (Section 6) and three dimensions (Section 7). The 
paper closes with a summary and concluding remarks, followed by an Appendix 
on the semi-implicit Crank–Nicolson method. 

2. Landau–Lifshitz Navier–Stokes equations 

We consider the accuracy of explicit finite-volume methods for solving the Landau– 
Lifshitz Navier–Stokes (LLNS) system of stochastic partial differential equations 
(SPDEs) in d dimensions, given in conservative form by 

∂t U = −V · [F(U) − Z (U, r, t)], (1) 

where U(r, t) = [ρ , j , e]T is a vector of conserved variables that are a function 
of the spatial position r and time t . The conserved variables are the densities of 
mass ρ, momentum j = ρv, and energy e = ε(ρ , T ) + 1 

2 ρ v2, expressed in terms 
of the primitive variables, mass density ρ, velocity v, and temperature T ; here ε 
is the internal energy density. The deterministic flux is taken from the traditional 
compressible Navier–Stokes–Fourier equations and can be split into hyperbolic and 
diffusive fluxes: 

F(U) = FH (U) + FD(U), 
where ⎡ ⎤ ⎡ ⎤ 

ρv 0 
FH = ⎣ρvv T 

+ P I⎦ and FD = − ⎣ σ ⎦ , 
(e + P)v σ · v + ξ 
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P = P(ρ, T ) is the pressure, the viscous stress tensor is   
2 (V · v)

σ = ηVv = η (Vv + Vv T ) − I
d 

for d ≥ 2 (we have assumed zero bulk viscosity) and σ = ηvx for d = 1, and the 
heat flux is ξ = µVT . We denote the adjoint (conjugate transpose) of a matrix or 
linear operator M with M* 

= MT . As postulated by Landau and Lifshitz [46; 28], 
the stochastic flux ⎡ ⎤

0 ⎣ ⎦Z = j 
j · v + g 

is composed of the stochastic stress tensor j and stochastic heat flux vector g, 
assumed to be mutually uncorrelated random Gaussian fields with the following 
covariance (where bars denote means): 

' '

<< j(r, t)j
*(r , t ')>> = Cjδ(t − t ')δ(r − r ),   

where Ci j
(j
,kl 
) 

= 2η̄kB T δik δ jl + δil δ jk − d 
2 
f 
δi j δkl ; (2) 

<< g(r, t)g
*(r ', t ')>> = Cgδ(t − t ')δ(r − r '), where C (g) = 2µ̄kB T 2δi j .i, j 

In the LLNS system, the hyperbolic or advective fluxes are responsible for 
transporting the conserved quantities at the speed of sound or fluid velocity, without 
dissipation. On the other hand, the diffusive or dissipative fluxes are the ones 
responsible for damping the thermal fluctuations generated by the stochastic or 
fluctuating fluxes. At equilibrium a steady state is reached in which a fluctuation-
dissipation balance condition is satisfied. 

In the original formulation, Landau and Lifshitz only considered adding stochastic 
fluxes to the linearized Navier–Stokes equations, which leads to a well-defined sys­
tem of SPDEs whose equilibrium solutions are random Gaussian fields. Derivations 
of the equations of fluctuating hydrodynamics through careful asymptotic expansions 
of the underlying microscopic (particle) dynamics give equations for the Gaussian 
fluctuations around the solution to the usual deterministic Navier–Stokes equations 
[47], in the spirit of the Central Limit Theorem. Therefore, numerical solutions 
should, in principle, consist of two steps: first solving the nonlinear deterministic 
equations for the mean solution, and then solving the linearized equations for the 
fluctuations around the mean. If the fluctuations are small perturbations, it makes 
sense numerically to try to combine these two steps into one and simply consider 
nonlinear equations with added thermal fluctuations. There is also hope that this 
might capture effects not captured in the two-system approach, such as fluctuation­
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driven transport in nonequilibrium systems [59], or the effect of fluctuations on the 
very long-time dynamics of the mean (e.g., shock drift [13]) and hydrodynamic 
instabilities [65; 56; 40]. 

The linearized equations of fluctuating hydrodynamics can be given a well 
defined interpretation with the use of generalized functions or distributions [19]. 
However, the nonlinear fluctuating hydrodynamic equations (1) must be treated 
with some care since they have not been derived from first principles [28] and 
are in fact mathematically ill defined due to the high irregularity of white-noise 
fluctuating stresses [34]. More specifically, because the solution of these equations 
is itself a distribution the interpretation of the nonlinear terms requires giving a 
precise meaning to products of distributions, which cannot be defined in general 
and requires introducing some sort of regularization. Although written formally as 
an SPDE, the LLNS equations are usually interpreted in a finite volume context, 
where the issues of regularity, at first sight, disappear. However, in finite volume 
form the level of fluctuations becomes increasingly large as the volume shrinks 
and the nonlinear terms diverge leading to an “ultraviolet catastrophe” of the kind 
familiar in other fields of physics [34; 16]. Furthermore, because the noise terms 
are Gaussian, it is possible for rare events to push the system to states that are not 
thermodynamically valid such as negative T or ρ. For that reason, we will focus 
on the linearized LLNS equations, which can be given a well-defined interpretation. 
Since the fluctuations are expected to be a small perturbation of the deterministic 
solution, the nonlinear equations should behave similarly to the linearized equations 
anyway, at least near equilibrium for sufficiently large cells. 

To simplify the exposition we assume the fluid to be a monoatomic ideal gas; 
the generalization of the results for an arbitrary fluid is tedious but straightforward. 
For an ideal gas the equation of state may be written as 

P = ρ (kB T/m) = ρc2 , 

where c is the isothermal speed of sound. The internal energy density is ε = ρcv T , 
where cv is the heat capacity at constant volume, which may be written as cv = 
df kB /2m where df is the number of degrees of freedom of the molecules (for 
monoatomic gases there are df = d translational degrees of freedom), and cp = 
(1 + 2/df )cv is the heat capacity at constant pressure. For analytical calculations, 
it is convenient to convert the LLNS system from conserved variables to primitive 
variables, since the primitive variables are uncorrelated at equilibrium and the 
equations (1) simplify considerably: 

Dt ρ = − ρV · v, 

ρ ( Dt v) = −V P + V · (σ + j) , (3) 

ρcp (Dt T ) = Dt P + V · (ξ + g) + (σ + j) : Vv, 
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where Dt D = ∂t D + v · V (D) denotes the familiar advective derivative. Note that 
in the fully nonlinear numerical implementation, however, we continue to use the 
conserved variables to ensure that the physical conservation laws are strictly obeyed. 

Linearizing (3) around a reference uniform equilibrium state ρ = ρ0 + δρ, v = 
v0 + δv, T = T0 + δT , and dropping the deltas for notational simplicity, ⎡ ⎤ ⎡ ⎤ 

δρ ρ 
U = ⎣δv ⎦ → ⎣v ⎦ , 

δT T 

we obtain the linearized LLNS system for the equilibrium thermal fluctuations, 

∂t U = −V · [FU − Z ] = −V · [FH U + FDVU − Z ], (4) 

where ⎡ ⎤ ⎡ ⎤ 
ρ0v + ρv0 0 ⎢ ⎥ ⎢ −1 ⎥2 −1 2 TFH U = ⎣ c0ρ ρ + c0 T −1T ⎦ and FDVU = ⎣ ρ η0Vv ⎦ ,0 0 I + v0v 0 

2 −1 −1c0cv ρ−1c µ0VTv + T v0 0 v 

and Z (r, t) is a random Gaussian field with a covariance 

* ' ' ' ' 
<< Z (r, t)Z (r , t )>> = C Zδ(t − t )δ(r − r ), 

where the covariance matrix is block diagonal, ⎡ ⎤
0 0 0 

−2C Z = ⎣0 ρ Cj 0 ⎦ ,0 
−2 −20 0 ρ c Cg0 v 

and Cj and Cg are given in (2). Equation (4) is a system of linear SPDEs with 
additive noise that can be analyzed within a general framework, as we develop next. 
We note that the stochastic “forcing” in (4) is essentially a divergence of white 
noise, modeling conservative intrinsic (thermal) fluctuations [47], rather than the 
more common external fluctuations modeled through white noise forcing [21; 39]. 

The next two sections develop the tools for analyzing finite volume schemes 
for linearized SPDEs, such as the LLNS system, specifically how to predict the 
equilibrium spectrum of the fluctuations (i.e., structure factor) from the spatial and 
temporal discretization used by the numerical algorithm. These analysis tools are 
demonstrated for simple examples in Section 5A and applied to the LLNS system 
in Sections 6 and 7. 
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3. Explicit methods for linear stochastic partial differential equations 

In this section, we develop an approach for analyzing the behavior of explicit 
discretizations for a broad class of SPDEs, motivated by the linearized form of the 
LLNS equations. In particular, we consider a general linear SPDE for the stochastic 
field U (r, t) ≡ U (t) of the form 

d U (t) = LU (t) dt + K dB(t), (5) 

with periodic boundary conditions on the torus r ∈ V = [0, H ]d , where L (the 
generator) and K (the filter) are time-independent linear operators, and B is a 
cylindrical Wiener process (Brownian sheet), and the initial condition at t = 0 is 
U 0. As common in the physics literature, we will abuse notation and write 

∂t U = LU + KW , 

where W = dB(t)/dt is spatiotemporal white noise, that is, a random Gaussian 
field with zero mean and covariance 

* ' ' ' ' 
<< W (r, t)W (r , t )>> = δ(t − t )δ(r − r ). (6) 

The so-called mild solution [19] of (5) is a generalized process  t 
U (t) = etL U 0 + e(t−s)LK dB(s), (7) 

0 

where the integral denotes a stochastic convolution. If the operator L is dissipative, 
'that is, limt→∞ etL U 0 = 0 for all U 0, then at long times t the solution to (5) is a 

Gaussian process with mean zero and covariance  0 
' (t−s)L * C U (t) = << U (t )U * (t ' + t)>> = e−sLKK* e ds, t ≥ 0. (8) 

−∞ 

This means that (5) has a unique invariant measure (equilibrium or stationary 
distribution) that is Gaussian with mean zero and covariance given in (8). 

In general, the field U (r, t) is only a generalized function of the spatial coordinate 
r and cannot be evaluated pointwise. For the cases we will consider here, specifically, 
translationally invariant problems where L and K are differential operators, this 
difficulty can be avoided by transforming (5) to Fourier space via the Fourier series 
transform  

i k·r fU (r, t) = e U (k, t), (9) 
k∈Vf 

Uf(k, t) = 
1 

e−i k·r U (r, t)d r, (10)
V r∈V 
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where V = |V| = H d is the volume of the system, and each wavevector k ≡ k(κ) 
is expressed in terms of the integer wave index κ ∈ 7d , giving the set of discrete 
wavevectors   fV = k = 2πκ/H | κ ∈ 7d . 

In Fourier space, the SPDE (5) becomes an infinite system of uncoupled stochastic 
ordinary differential equations (SODEs), 

d Uf(t) = f Kd fLUf(t)dt + f B(t), (11) 

one SODE for each k ∈ fV . The invariant distribution of (11) is a zero-mean Gaussian 
random process, characterized fully by the covariance obtained from the spatial 
Fourier transform of (8), 

∞ 
' S(k, t) = V << Uf(k, t )Uf* (k, t ' + t)>> = 

1 
eiωt S(k, ω)dω, (12)

2π −∞ 

where the dynamic structure factor (space-time spectrum) is
 

* * *−1 −1KfS(k, ω) = V << Uf(k, ω)f (k, ω)>> L − iω) K L ,U = (f ( f )(f + iω) (13) 

which follows directly from the space-time (k, ω) Fourier transform of the SPDE 
(5). By integrating the dynamic spectrum over all frequencies ω, one gets the static 
structure factor 

∞1 
S(k) = S(k, t = 0) = S(k, ω)dω, (14)

2π −∞ 

which is the spatial spectrum of an equilibrium snapshot of the fluctuating field 
and is the Fourier equivalent of C U (t = 0). Note that the dynamic structure 
factor of spatiotemporal white noise is unity independent of the wavevector and 
wavefrequency: SW (k, ω) = I . 

3A. Discretization. For the types of equations we will consider in this paper, the 
invariant measure is spatially white, specifically, S(k) is diagonal and independent 
of k. The associated fluctuating field U cannot be evaluated pointwise, therefore, 
it is more natural to use finite-volume cell averages, denoted here by U . In the 
deterministic setting, for uniform periodic grids there is no important difference 
between finite-volume and finite-difference methods. Our general approach can 
likely be extended also to analysis of stochastic finite-element discretizations, 
however, such methods have yet to be developed for the LLNS equations and here 
we focus on finite-volume methods. For notational simplicity, we will discuss 
problems in one spatial dimension (d = 1), with (mostly) obvious generalizations 
to higher dimensions. 
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Space is discretized into Nc identical cells of length  x = H/Nc, and the value 
U j stored in cell 1 ≤ j ≤ Nc is the average of the corresponding variable over the 
cell 

j x1
U j (t) = U (x, t)d x . (15)

 x ( j−1) x 

Time is discretized with a time step  t , approximating cell averages of U (x, t) 
pointwise in time with Un 

= {U1 
n , . . . , Un 

},Nc 

Un 
j ≈ U j (n t), 

where n ≥ 0 enumerates the time steps. The white noise W (x, t) cannot be 
evaluated pointwise in either space or time and is discretized using a spatiotemporal 
average 

(n+1) t j x 
n 1

W j (t) = W (x, t)d x d t , (16)
 x t n t ( j−1) x 

which is a normal random variable with zero mean and variance ( x t)−1, in­
dependent between different cells and time steps. Note that for certain types of 
equations the dynamic structure factor may be white in frequency as well. In this 
case, a pointwise-in-time discretization is not appropriate and one can instead use a 
spatiotemporal average as done for white noise in (16). 

We will study the accuracy of explicit linear finite-volume schemes for solving 
the SPDE (5). Rather generally, such methods are specified by a linear recursion of 
the form  

Un+1  t
= (I + L t) Un 

+ K W n , (17)
 x 

where L and K are consistent stencil discretizations of the continuum differential 
operators L and K (note that L and K may involve powers of  t in general). Here 

nWn 
= ( x t)1/2 W (18) 

is a vector of standard normal variables with mean zero and variance one. 
Without the random forcing, the deterministic equation U t = L U and the 

associated discretization can be studied using classical tools and notions of stability, 
consistency, and convergence. Under the assumption that the discrete generator L 
is dissipative, the initial condition U0 will be damped and the equilibrium solution 
will simply be a constant. The addition of the random forcing, however, leads 
to a nontrivial invariant measure (equilibrium distribution) of Un determined by 
an interplay between the (discretized) fluctuations and dissipation. Because of 
the dissipative nature of the generator, any memory of the initial condition will 
eventually disappear and the long time dynamics is guaranteed to follow an ergodic 
trajectory that samples the unique invariant measure. In order to characterize 
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the accuracy of the stochastic integrator, we will analyze how well the discrete 
invariant measure (equilibrium distribution) reproduces the invariant measure of the 
continuum SPDE (this is a form of weak convergence). Note that due to ergodicity, 
ensemble averages can either be computed by averaging the power spectrum of 
the fields over multiple samples or averaging over time (after sufficiently many 
initial equilibration steps). In the theory we will consider the limit n → ∞ and then 
average over different realizations of the noise W to obtain the discrete structure 
factors. In numerical calculations, we perform temporal averaging. 

Regardless of the details of the iteration (17), Wn will always be a Gaussian 
random vector generated anew at each step n using a random number generator. 
The discretized field Un is therefore a linear combination of Gaussian variates and it 
is therefore a Gaussian vector-valued stochastic process. In particular, the invariant 
measure (equilibrium distribution) of Un is fully characterized by the covariance 

*C(U) U Ns +n 
j, j ' ,n = lim << U j 

Ns 
j ' >> , (19)

Ns →∞ 

which we would like to compare to the covariance of the continuum Gaussian field 
CU (t = n t) given by (8). This comparison is best done in the Fourier domain by 
using the spatial discrete Fourier transform, defined for a spatially discrete field U 
(for example, U ≡ Un or U ≡ U(t)) via 

i j kU j = Ufk e , (20) 
k∈Vfd 

Nc−11 
−i j kUfk = U j+1e x, (21)

V 
j=0 

where we have denoted the discrete dimensionless wavenumber 

k x = 2πκ/Nc, 

and the wave index is now limited to the first Nc values, 

fVd = {k = 2πκ/H | 0 ≤ κ < Nc} ⊂ V. 

Since the fields are real-valued, there is a redundancy in the Fourier coefficients Ufk 

because of the Hermitian symmetry between κ and Nc − κ (essentially, the second 
half of the wave indices correspond to negative k), and thus we will only consider 
0 ≤ κ ≤ LNc/2J, giving a (Nyquist) cutoff wavenumber kmax ≈ π/ x . 

What we would like to compare is the Fourier coefficients of the numerical 
approximation, Ufk 

n , with the Fourier coefficients of the continuum solution 

fU k (t = n t). 
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The invariant measure of Ufn has zero mean and is characterized by the covariancek 
obtained from the spatial Fourier transform of (19), 

* Sk,n = V lim << Ufk 
Ns Ufk 

Ns +n 
>> . (22)

Ns →∞ 

From the definition of the discrete Fourier transform it follows that for small k, that 
is, smooth Fourier basis functions on the scale of the discrete grid, Ufk (t) converges 
to the Fourier coefficient Uf(k, t = n t) of the continuum field. Therefore, Sk,n is 
the discrete equivalent (numerical approximation) to the continuum structure factor 
S(k, t = n t). We define a discrete approximation to be weakly consistent if 

lim Sk,n=Lt/ tJ = S (k, t) , 
x, t→0 

for any chosen k ∈ fV and t . This means that, given a sufficiently fine discretization, 
the numerical scheme can accurately reproduce the structure factor for a desired 
wave index and time lag. An alternative view is that a convergent scheme reproduces 
the slow (compared to t) and large-scale (compared to x) fluctuations, that is, it 
accurately reproduces the dynamic structure factor S(k, ω) for small k = k 
and  ω = ω t . Our goal here is to quantify this for several numerical methods for 
solving stochastic conservation laws and optimize the numerical schemes by tuning 
parameters to obtain the best possible approximation to S(k, ω) for small k and ω. 

Much of our analysis will be focused on the discrete static structure factor 

* U Ns U NsSk = Sk,0 = V lim << f f .k k >>Ns →∞ 

Note that for a spatially white field U (x), the finite-volume averages U j are indepen­
dent Gaussian variates with mean zero and variance x−1 , and the discrete Fourier 
coefficients Ufk are independent Gaussian variates with mean zero and variance V −1 . 
As a measure of the accuracy of numerical schemes for solving (5), we will compare 
the discrete static structure factors Sk with the continuum prediction S(k), for all of 
the discrete wavenumbers (i.e., pointwise in Fourier space). It is expected that any 
numerical scheme will produce some artifacts at the largest wavenumbers because 
of the strong corrections due to the discretization; however, small wavenumbers 
ought to have much smaller errors because they evolve over time scales and length 
scales much larger than the discretization step sizes. Specifically, we propose to 
look at the series expansions 

Sk − S(k) = O( t p1 k p2 ), 

and optimize the numerical schemes by maximizing the powers p1 and p2. Next 
we describe the general formalism used to obtain explicit expressions for the 
discrete structure factors Sk for a general explicit method, and then illustrate the 

x 
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formalism on some simple examples, before attacking the more complex equations 
of fluctuating hydrodynamics. 

3B. Analysis of linear explicit methods. Regardless of the details of a particular 
scheme and the particular linear SPDE being solved, at the end of the time step a 
typical explicit scheme makes a linear combination of the values in the neighboring 
cells and random variates to produce an updated value, 

j=wD j=wS 

Un+1 
= Un 

j Un 
j Wn 

j j + < j+ j + w j+ j , (23) 
j=−wD j=−wS 

where wD and wS are the deterministic and stochastic stencil widths. The particular 
forms of the matrices of coefficients < and w depend on the scheme, and will 
involve powers of t and x . Here we assume that for each n the random increment 
Wn is an independent vector of Ns normal variates with covariance 

CW = << W
n 
j (W j 

n) * >> 

constant for all of the cells j and thus wavenumbers, where Ns is the total number 
of random numbers utilized per cell per stage. Computer algebra systems can be 
used to obtain explicit formulas for the matrices in (23); we have made extensive 
use of Maple for the calculations presented in this paper. 

Assuming a translation invariant scheme, the iteration (23) can easily be converted 
from real space to an iteration in Fourier space, 

j=wD j=wS
 

Un+1
f = f < j fk exp (i j k) + w Wn j k) , (24)Un Un 
j fk exp (ik k +
 

j=−wD j=−wS
 

where different wavenumbers are not coupled to each other. In general, any linear 
explicit method can be represented in Fourier space as a recursion of the form 

Un+1 Un Wnf = Mk fk + Nk fk , (25)k 

where the explicit form of the matrices Mk and Nk depend on the particular scheme 
and typically contain various powers of sin k, cos k, and t , and 

* Wn f = N −1C f = << fk Wn 
>> CW .W k c 

By iterating this recurrence relation, we can easily obtain (assuming Uf0 
= 0)k 

n 

Ufn+1 Wn−l
= (Mk )

l Nk f ,k k 
l=0 
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from which we can calculate 
n−1 n−1 

* l lSk 
n 

= V << Ufk 
n Ufk 

n 
>> = (Mk ) ( x Nk CW N* 

k )(Mk 
* ) = (Mk )

l CC(Mk 
* ) . 

l=0 l=0 

In order to calculate this sum explicitly, we will use the identity 

Mk Sn 
k Mk 

* 
− Sn 

= (Mk )
n CC(Mk 

* )n 
− CC (26)k 

to obtain a linear system for the entries of the matrix Sn 
k . If the deterministic method 

is stable, which means that all eigenvalues of the matrix Mk are below unity for all 
wavenumbers, then in the limit n → ∞ the first term on the right side will vanish, 
to give 

Mk Sk M* 
k − Sk = − x Nk CW N* 

k . (27) 

If one assumes existence of a unique structure factor, Equation (27) can be most 
directly obtained from the condition of stationarity Sn+1 

= Sn 
k ≡ Sk ,k 

* *Mk Ufn Wn Un Wn f f = V −1 Sk ,k + Nk f Mk fk + Nk f = Un Un
<< k k >> << k k >> 

giving a path to easily extend the analysis to more complicated situations such as 
multistep schemes. 

Equation (27) is a linear system of equations for the equilibrium static structure 
factor produced by a given scheme, where the number of unknowns is equal to 
the square of the number of variables (field components). By simply deleting the 
subscripts k one obtains a more general but much larger linear system [36] for the real 
space equilibrium covariance of a snapshot of the discrete field C (j

U 
, j 
) 
' = C(j

U 
, j 
) 
' ,n=0 : 

MCU M* 
− CU = − x N C(Nc) N* ,W 

where 
C(Nc) (Wn) * W = << W

n 
>> 

is the covariance matrix of the random increments. Note that this relation continues 
to hold even for schemes that are not translation invariant such as generalizations 
to nonperiodic boundary conditions; however, the number of unknowns is now the 
square of the total number of degrees of freedom so that explicit solutions will in 
general not be possible. Based on standard wisdom for deterministic schemes, it is 
expected that schemes that perform well under periodic boundary conditions will 
also perform well in the presence of boundaries when the discretization is suitably 
modified only near the boundaries. 

A similar approach to the one illustrated above for the static structure factor can 
be used to evaluate the discrete dynamic structure factor 

* Sk,ω = lim V (Ns t) << Ufk 
N
,ω 

s Ufk 
N
,ω 

s 
>>Ns →∞ 
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from the time-discrete Fourier transform 
Ns1

Ufk 
N
,ω 

s 
= exp (−i l ω) Ufk 

l ,
Ns l=0 

where  ω = ω t , and the frequency is less than the Nyquist cutoff ω ≤ π / t . 
The calculation yields 

Sk,ω = [ I − exp (−i ω) Mk ]
−1( x t Nk CW N* 

k )[I − exp (i ω) M* 
k ]

−1 . (28) 

Equation (28) can be seen as discretized forms of the continuum version (13) in 
the limits k → 0, t → 0 (the corresponding correlations in the time-domain are 
given in [36]). 

Equations (27) and (28) are the main result of this section and we have used it 
to obtain explicit expressions for Sk and Sk,ω for several equations and schemes. 
Many of our results are in fact rather general; however, for clarity and specificity, in 
the next sections we will illustrate the above formalism for several simple examples 
of stochastic conservation laws. 

3B1. Discrete fluctuation-dissipation balance. We consider first the static structure 
factors for very small time steps. In the limit t → 0, temporal terms of order two 
or more can be ignored so that all time-integration methods behave like an explicit 
first-order Euler iteration as in (17), 

L(0) 
t 

K (0) fUfk 
n+1 

= I + tfk Ufk 
n 
+ f

k Wk , (29)
x 

where L(0) = L ( t = 0) can be thought of as the spatial discretization of the 
generator L, and K (0) = K ( t = 0) is the spatial discretization of the filtering 

L(0)operator K. Comparing to (25) we can directly identify Mk = I + tf andk√ 
K (0)Nk = t/ x f and substitute these into (27). Keeping only terms of order k 

t on both sides we obtain the condition 

L(0) S(0) L(0) * K (0) K (0) *ff
k k + S(k 

0) 
k = − fk CW fk , (30) 

where S(0) = lim t→0 Sk (see also a related real-space derivation using Ito’s calculus k 
L(0)in [6], as well as in [36, Section VIII]). It can be shown that if f is definite, (30) k 

has a unique solution. Assuming that W is as given in (18), that is, that CW = I , 
and that the spatial discretizations of the generator and filter operators satisfy a 
discrete fluctuation-dissipation balance 

* * L(0) L(0) K (0) K (0)f + f = − f f , (31)k k k k 

we see that S(k 
0) 

= I is the solution to (30), that is, at equilibrium the discrete fields 
are spatially white. The discrete fluctuation-dissipation balance condition can also 
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be written in real space: 

L(0) + (L(0)) * = − K (0)(K (0)) * . (32) 

The condition (32) is the discrete equivalent of the continuum fluctuation-dissipation 
balance condition [44] 

L + L* = −KK* , (33) 

which ensures that S(k) = I , that is, that the invariant measure of the SPDE is 
spatially white. We observe that adding a skew adjoint component to L does not 
alter the fluctuation-dissipation balance above, as is the case with nondissipative 
(advective) terms. Numerous equations [47] modeling conservative thermal systems 
satisfy condition (33), including the linearized LLNS equations (with some addi­
tional prefactors). In essence, the fluctuations injected at all scales by the spatially 
white forcing W are filtered by K and then dissipated by L at just equal rates. 

Assuming a spatial discretization satisfies the discrete fluctuation-dissipation 
balance condition, it is possible to extend the above analysis to higher powers of 

t and analyze the corrections to the structure factors for finite time steps. Some 
general conclusions can be reached in this way, for example, the Euler method is 
first-order accurate, predictor-corrector methods are at least second-order accurate, 
while the Crank–Nicolson semi-implicit method gives Sk = I for any time step. We 
will demonstrate these results for specific examples in the next section, including 
the spatial truncation errors as well. 

4. Linear stochastic conservation laws 

The remainder of this paper is devoted to the study of the accuracy of finite-volume 
methods for solving linear stochastic PDEs in conservation form, 

∂t U = −V · [( AU − CVU ) − EW ], (34) 

where A, C and E are constants, and W is Gaussian spatiotemporal white noise. 
The white noise forcing and its divergence here need to be interpreted in the 
(weak) sense of distributions since they lack the regularity required for the classical 
definitions. The linearization of the LLNS equations (1) leads to a system of the 
form (34), as do a number of other classical PDEs [47], such as the stochastic 
advection-diffusion equation  

∂t T = −a · VT + µV
2T + 2µV · W , (35) 

where T (r, t) ≡ U(r, t) is a scalar stochastic field, A ≡ a is the advective velocity, 
√ 

C ≡ µI , µ > 0 is the diffusion coefficient, and E ≡ 2µI . The simplest case is 
the stochastic heat equation, obtained by taking a = 0. 
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A key feature of the type of system considered here is that the noise is intrinsic 
to the system and appears in the flux as opposed to commonly treated systems that 
include an external stochastic forcing term, such as the form of a stochastic heat 
equation considered in [21]. Since white noise is more regular than the spatial 
derivative of white noise, external noise leads to more regular equilibrium fields 
(e.g., continuous functions in one dimension). Intrinsic noise, on the other hand, 
leads to very irregular equilibrium fields. Notationally, it is convenient to write (34) 
as 

∂t U = −D(AU − CG U − EW ), (36) 

defining the divergence D ≡ V· and gradient G ≡ V operators, D* 
= −G. In the 

types of equations that appear in hydrodynamics, such as the LLNS equations, the 
operator D A is skew-adjoint, (D A) * = −D A (hyperbolic or advective flux), C : 0 
(dissipative or diffusive flux), and E E * = 2C, that is, E* = (2C)1/2. Therefore, 
the generator L = −D A + DCG = (D A) * − DCD∗ and filter K = D E satisfy 
the fluctuation-dissipation balance condition (33) and the equilibrium distribution 
is spatially white. Note that even though advection makes some of the eigenvalues 
of L complex, the generator is dissipative and (34) has a unique invariant measure 
because the real part of all of the eigenvalues of L is negative except for the unique 
zero eigenvalue. 

It is important to point out that discretizations of the continuum operators do 
not necessarily satisfy the discrete fluctuation-dissipation condition (32). One way 
to ensure the condition is satisfied is to discretize the diffusive components of the 
generator L D = D C G and the filter K = D E using a discrete divergence D and 
discrete gradient G so that the discrete fluctuation-dissipation balance condition 
L D +L* D = −K K * holds. If, however, the discretization of the advective component 
of the generator L A = − D A is not skew-adjoint, this can perturb the balance (31). 
Notably, various upwinding methods lead to discretizations that are not skew­

S(0)adjoint. The correction to the structure factor S(0) = I + due to a nonzero k k 
L A = (L A + L* A)/2 can easily be obtained from (30), and in one dimension the 

result is simply 
L(A) 

S(0) k 
k = − . (37)

L(D) L(A)+k k 

We will use centered differences for the advective generator in this work, which 
ensures a skew-adjoint L A, and our focus will therefore be on satisfying the discrete 
fluctuation-dissipation balance between the diffusive and stochastic terms. 

4A. Finite-volume numerical schemes. We consider here rather general finite-
volume methods for solving the linear SPDE (34) in one dimension,     ∂ ∂ ∂ 

∂t U = − [F(U ) − Z ] = − A − C U − EW (38)
∂x ∂x ∂x
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with periodic boundaries, where we have denoted the stochastic flux with Z = EW . 
As for classical finite-volume methods for the deterministic case, we start from the 
PDE and integrate the left and right sides over a given cell j over a given time step 

t , and use integration by parts to obtain the formally exact 

t t 1
Un+1 

= Un 
j j − (Fj+1/2 − Fj−1/2) + √ (Z j+1/2 − Z j−1/2), (39)

x x x t 

where the deterministic discrete fluxes F and stochastic discrete fluxes Z are cal­
culated on the boundaries of the cells (points in one dimension, edges in two 
dimensions, and faces in three dimensions), indexed here with half-integers. These 
fluxes represent the total rate of transport through the interface between two cells 
over a given finite time interval t , and (39) is nothing more than a restatement of 
conservation. The classical interpretation of pointwise evaluation of the fluxes is 
not appropriate because white noise forcing lacks the regularity of classical smooth 
forcing and cannot be represented in a finite basis. Instead, just as we projected the 
fluctuating fields using finite-volume averaging, we ought to project the stochastic 
fluxes Z to a finite representation Z = ( x t)−1/2 Z through spatio-temporal 
averaging, as done in (16) and (18). For the purposes of our analysis, one can 
simply think of the discrete fluxes as an approximation that has the same spectral 
properties as the corresponding continuum Gaussian fields over the wavevectors 
and frequencies represented by the finite discretization. 

The goal of numerical methods is to approximate the fluxes as best as possible. 
In general, within each time step of a scheme there may be Ns t stages or substeps; 
for example, in the classic MacCormack method there is a predictor and a corrector 
stage ( Ns t = 2), and in the three-stage Runge–Kutta method of Williams et al. [13], 
there are three stages ( Ns t = 3). Each stage 0 < s ≤ Nst is of the conservative form 
(39): 

s−1 t
Un+s/Ns t (s)Un+s ' /Ns t (F(s) j = α j − j+1/2 − F(s) s ' j−1/2) x 

s ' =0 
t1/2 

+ (Z(j 
s 
+

) 
1/2 − Z(j 

s 
−

) 
1/2), (40)

x3/2  s−1 (s)where the α’s are some coefficients, s ' =0 αs ' = 1, and each of the stage fluxes 
are partial approximations of the continuum flux. For the stochastic integrators we 
discuss here, the deterministic fluxes are calculated the same way as they would 
be in the corresponding deterministic scheme. In general, the stochastic fluxes 
Z j+1/2 can be expressed in terms of independent unit normal variates W j+1/2 that 
are sampled using a random number generator. The stochastic fluxes in each stage 
may be the same, may be completely independent, or they may have nontrivial 
correlations between stages. 
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Note that it is possible to avoid noninteger indices by reindexing the fluxes in 
(39) and writing it in a form consistent with (23): 

Un+1 t t1/2 

j = Un 
j − (Fj − Fj−1) + 

x3/2 (Z j − Z j−1). (41)
x 

However, when considering the order of accuracy of the stencils and also fluctuation-
dissipation balance in higher dimensions, it will become important to keep in mind 
that the fluxes are evaluated on the faces (edges or half-grid points) of the grid, and 
therefore we will keep the half-integer indices. Note that for face-centered values, 
such as fluxes, it is best to add a phase factor exp (i k/2) in the definition of the 
Fourier transform, even though such pure phase shifts will not affect the correlation 
functions and structure factors. 

Before we analyze schemes for the complex LLNS equations, we present an 
illustrative explicit calculation for the one-dimensional stochastic heat equation. 

5. Example: stochastic heat equation 

We now illustrate the general formalism presented in Section 4 for the simple case 
of an Euler and predictor-corrector scheme for solving the stochastic heat equation 
in one dimension, 

υt = µυx x + 2µWx , (42) 

where υ (x, t) ≡ U (x, t) is a scalar field and µ is the mass or heat diffusion 
coefficient. The solution in the Fourier domain is trivial, giving 

2µk2 
S(k, ω) = and S(k) = 1. (43)

ω2 + µ2k4 

5A. Static structure factor. We first study a simple second-order spatial discretiza­
tion of the dissipative fluxes 

Fj+1/2 = 
µ 
(u j+1 − u j ), x 

combined with an Euler integration in time, to give a simple numerical method for 
solving the SPDE (42): 

t1/2 
n+1 n µ t n n n (W nu j = u j + (u j−1 − 2u j + u j+1) + 2µ 

x3/2 j+1/2 − W j 
n 
−1/2), (44)

x2 

where u ≡ U and the W ’s are independent unit normal random numbers with zero 
mean generated anew at every time step (here Ns = Ns t = 1). From (44), we can 
extract the recursion coefficients appearing in (25), 

−i i kMk = 1 + β (e k 
− 2 + e ) = 1 + 2β (cos k − 1) , 

t1/2 
i k/2 

− e−i k/2Nk = 2µ (e ), 
x3/2 
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where 
µ t 

β = 
x2 

denotes a dimensionless diffusive time step (ratio of the time step to the diffusive 
CFL limit). Together with CW = 1, Equation (27) becomes a scalar equation for 
the discrete structure factor 

* (Mk Mk 
* 
− 1)Sk = − x Nk Nk , 

with dimensionless solution 

4β (1 − cos k)
Sk = = [1 + β (cos k − 1)]−1 . (45)

(1 − Mk 
2) 

The time-dependent result can also easily be derived from (26): 

−t/τSn 
= (1 − e )Sk , where t = n t,k 

and τ −1 
= 4µ (cos k − 1) / x2 

≈ 2µk2 is the familiar relaxation time for wave-
number k, showing that the smallest wavenumbers take a long time to reach the 
equilibrium distribution. 

Equation (45) is a vivid illustration of the typical result for schemes for stochastic 
transport equations based on finite difference stencils, also shown in Figure 1. Firstly, 
we see that for small k we have that Sk ≈ 1 + β k2/2, showing that the smallest 
wavenumbers are correctly handled by the discretization for any time step. Also, 
this shows that the error in the structure factor is of order β, that is, of order t , 
as expected for the Euler scheme, whose weak order of convergence is one for 
SODEs. Finally, it shows that the error grows quadratically with k (from symmetry 
arguments, only even powers will appear). By looking at the largest wavenumber, 

kmax = π , we see that Skmax = (1 − 2β )−1, from which we instantly see the CFL 
stability condition β < 1/2, which guarantees that the structure factor is finite and 
positive for all 0 ≤ k ≤ π . Furthermore, we see that for β « 1, the structure factor 
is approximately unity for all wavenumbers. That is, a sufficiently small step will 
indeed reproduce the proper equilibrium distribution. 

By contrast, a two-stage predictor-corrector scheme for the diffusion equation, 

t1/2 µ tn n n n nũ j = u j + (u j−1 − 2u j + u j+1) + 2µ (W j 
n 
+1/2 − W j 

n 
−1/2), x2 x3/2 

(46)
t1/21 µ tn+1 n n n n nu j = u j + ũ j + (ũ j−1 − 2ũ j + ũ j+1) + 2µ (W j 

n 
+1/2 − W n 

j−1/2) . x3/22 x2 

achieves much higher accuracy, namely, a structure factor that deviates from unity 
by a higher order in both t and k, 

2 k4PC-1RNG: Sk ≈ 1 − 1 
4 β , 
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Figure 1. An illustration of the discrete structure factor Sk for the 
Euler (44) and predictor-corrector (46) schemes for the stochastic 
heat equation (42). 

as illustrated in Figure 1. We can also use different stochastic fluxes in the predictor 
and the corrector stages (i.e., use Ns = 2 random numbers per cell per stage), with 

√ 
an added prefactor of 2 to compensate for the variance reduction of the averaging 
between the two stages, 

t1/2 µ t √n n n n n W (n,P)ũ = u j + 
x2 (u j−1 − 2u j + u j+1) + 2 µ j+1/2 − W (n,P) ,j x3/2 j−1/2 

(47)
t1/2 

n+1 1 n n µ t n n n √ 
(W (n,C)u = u j + ũ j + (ũ j−1 − 2ũ j + ũ j+1) + 2 µ j+1/2 − W (n,C) .j x3/2 j−1/2)2 x2 

For the scheme (47) the analysis reveals an even greater spatiotemporal accuracy of 
the static structure factors, namely, third order temporal accuracy: 

3PC-2RNG: Sk ≈ 1 + 1 
8 β k6 . 

This illustrates the importance of the handling of the stochastic fluxes in multi­
stage algorithms, as we will come back to shortly. Note, however, that the PC­
1RNG method (46) may be preferred in practice over the PC-2RNG method (47) 
even though using two random numbers per step gives greater accuracy for small 
wavenumbers for small time steps. This is not only because of the computational 
savings of generating half the random numbers, but also because PC-1RNG is 
better-behaved (more stable) at large wavenumbers for large time steps. Specifically, 
the structure factor can become rather large for k = π for PC-2RNG for β > 0.1. 

The analysis we presented here for explicit methods can easily be extended to 
implicit and semi-implicit schemes as well, as illustrated in the Appendix for the 
Crank–Nicolson method for the stochastic heat equation. 
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Previous studies [13; 29] have measured the accuracy of numerical schemes 
through the variance of the fields in real space, which, by Parseval’s theorem, is 
related to the integral of the structure factor over all wavenumbers. For the Euler 
scheme (44) for the stochastic heat equation this can be calculated analytically, 

2 2 2 −1 −1/2 
≈ −1σu = << u j >> − << u j >> = x (1 − 2β) x (1 + β), 

showing first-order temporal accuracy (in the weak sense). For the predictor-
corrector scheme (46), on the other hand, 

PC −1 2(σ )2 
≈ x (1 − 3β /2).u 

It is important to note, however, that using the variance as a measure of accuracy of 
stochastic real-space integrators is both too rough and also too stringent of a test. It 
does not give insights into how well the equipartition is satisfied for the different 
modes, and, at the same time, it requires that the structure factor be good even 
for the highest wavenumbers, which is unreasonable to ask from a finite-stencil 
scheme. 

For pseudospectral methods, as studied for the incompressible fluctuating Navier– 
Stokes equation in [8; 43], one can modify the spectrum of the stochastic forcing 
so as to balance the numerical stencil artifacts, and one can also use an (exact) 
exponential temporal integrator in Fourier space to avoid the artifacts of time 
stepping. However, for finite-volume schemes, a more reasonable approach is to 
keep the stochastic fluxes uncorrelated between disjoint cells (which is actually 
physical), and instead of looking at the variance, focus on the accuracy of the 
static structure factor for small wavenumbers. Specifically, basic schemes will 
typically have Sk − 1 = O( tk2), while multistep schemes will typically achieve 
Sk − 1 = O( t2k2) or higher temporal order, or even Sk − 1 = O( t2k4). 

5B. Dynamic structure factor. It is also constructive to study the full dynamic 
structure factor for a given numerical scheme, especially for small wavenumbers 
and low frequencies. This is significantly more involved in terms of analytical 
calculations and the results are algebraically more complicated, especially for 
multistage methods and more complex equations. For the Euler scheme (44) the 
solution to (28) is 

2χ1χ2 
−1 µk2 

Sk,ω = ,
−1 2k42 t−2 (1 − cos ω) + χ1 

2χ2 µ

where χ1 = 2(1 − cos k)/ k2 and χ2 = 1 + 2β (cos k − 1). This shows that the 
dynamic structure factor does not converge to the correct answer for all wavenumbers 
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even in the limit t → 0, namely, 

2χ1µk2 
lim Sk,ω = . (48) 
β→0 ω2 + χ2 2k4 

1 µ

For small k, χ1 ≈ 1 − k2/6, and the numerical result closely matches the 
theoretical result (43). However, for finite wavenumbers the effective diffusion 
coefficient is multiplied by a prefactor χ1, which represents the spatial truncation 
error in the second-order approximation to the Laplacian. For all of the time-
integration schemes for the stochastic heat equation discussed above, one can 
reduce the discrete dynamic structure factor to a form 

2χstochµk2 
Sk,ω = ,

2 t−2 (1 − cos ω) + χ2 2k4 
detµ

where χstoch and χdet depend on β and k and can be used to judge the accuracy 
of the scheme. 

In this paper we focus on the static structure factors in order to optimize the 
numerical schemes and then simply check numerically that they also produce rea­
sonably accurate results for the dynamic structure factors for small and intermediate 
wavenumbers and frequencies. 

5C. Higher-order differencing. Another interesting question is whether using a 
higher-order differencing formula for the viscous fluxes improves upon the second-
order formula in the basic Euler scheme (44). For example, a standard fourth order 
in space finite difference yields the modified Euler scheme 

µ tn+1 n n n n n nu = u j + (−u j−2 + 16u j−1 − 30u j + 16u j+1 − u j+2)j 12 x2
 

t1/2
 
+ 2µ (W j+1/2 − W j−1/2). (49)

x3/2 

Repeating the previous calculation shows that 

lim Sk = 6 [7 − cos k]−1 , (50) 
β→0 

demonstrating that the fluctuation-dissipation theorem is not satisfied for this scheme 
at the discrete level even for infinitesimal time steps. This is because the spatial 
discretization operators in (49) do not satisfy the discrete fluctuation dissipation 
balance. 

In order to obtain higher-order divergence and Laplacian stencils that satisfy 
(31) we can start from a higher order divergence discretization D and then simply 
calculate the resulting discrete Laplacian L = − D D*. Here D should be a fourth-
order (or higher) difference formula that combines four face-centered values, two 
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on each side of a given cell, into an approximation to the derivative at the cell 
center. Conversely, D* combines the values from four cells, two on each side of a 
given face, into an approximation to the derivative at the face center. A standard 
fourth-order finite-difference stencil for D produces the higher-order Euler scheme 

µ t 1 3 87 365 87 3 1n+1 n n n n n n n nu j = u j + u j−3 − u j−2 + u j−1 − u j + u j+1 − u j+2 + j+3x2	 576 32 64 144 64 32 576 
u 

t1/2 1 9 9 1 
+ 2µ W j−3/2 − W j−1/2 + W j+1/2 − W j+3/2 , (51)

x3/2 24 8 8 24 

for which Sk ≈ 1 + β k2/2, which is the same leading-order error as the basic 
Euler scheme (44). On the other hand, the dynamic structure factor for small time 
steps is as in (48) but now 

k2 3 k4χ1 = (1 − cos k)(13 − cos k)/ 72 ≈ 1 − 320 , 

which shows the higher spatial order of the scheme. 
Note that in (51) both the discretization of the Laplacian and of the gradient are of 

higher spatial order than in (44), however, the Laplacian operator is not of the highest 
order possible for the given stencil width. We will not use higher-order differencing 
for the diffusive fluxes in this work in order to avoid large Laplacian stencils like 
the one above. Rather, we will use the traditional second-order discretization and 
focus on the time integration of the resulting system. 

5D. Handling of advection. The analysis we illustrated here for the stochastic 
heat equation can be directly applied to the scalar advection-diffusion equation (35) 
in one dimension: 

υt = −aυx + µυx x + 2µWx .	 (52) 

For example, a second-order centered difference discretization of the advective term 
−aυx leads to the following explicit Euler scheme 

αn+1 n n n n n nu j = u j − (u j+1 − u j−1) + β (u j−1 − 2u j + u j+1)2 
t1/2 

+ 2µ (W j 
n 
+1/2 − W j 

n 
−1/2), (53)

x3/2 

where the dimensionless advective CFL number is 

a t 
α = = βr, 

x 

and r = a x/µ is the so-called cell Reynolds number and measures the relative 
importance of advective and diffusive terms at the grid scale. Note that this scheme 
is unconditionally unstable when µ = 0, specifically, the stability condition is 
α2/2 ≤ β ≤ 1/2. 
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For the Euler method (53) the analysis yields a structure factor 

1 (1 − r2/4)
Sk ≈ + β k2 ,

1 − αr/2 2(1 − αr/2)2 

showing that even the smallest wavenumbers have the wrong spectrum for a finite 
time step when |r | > 0, which is unacceptable in practice since it means that even 
the slowly evolving large-scale fluctuations are not handled correctly. Adding an 
artificial diffusion  µ = µ |r | /2 to µ leads to an improved leading order error: 

2Sk ≈ 1 + 1 
2 (1 − r /4)β k2 

+ O( t2 k2). 

It is well known that adding such an artificial diffusion is equivalent to upwinding 
the advective term and leads to much improved stability for large r as well.1 

The second-order predictor-corrector time stepping scheme can be applied when 
advection is included as well. If |r | > 0, the leading order errors are 

PC-1RNG: Sk ≈ 1 − 4 
1 α2 1 − 2 

1 rα k2 , (54) 
3 k2PC-2RNG: Sk ≈ 1 − 1 

8 rα , (55) 

showing that PC-2RNG gives a more accurate discrete structure factor than PC­
1RNG for small wavenumbers and time steps. Note that the predictor-corrector 
method is unconditionally unstable when µ = 0. In Section 6A we analyze a 
three-stage Runge–Kutta scheme that has a small leading order error in Sk but is 
also stable when α < 1 even if µ = 0. 

6. LLNS equations in one dimension 

In this section, we will consider the linearized LLNS system (4) for a monoatomic 
ideal gas in one spatial dimension, that is, where symmetry dictates variability along 
only the x axis. As explained in the Introduction, focusing on an ideal gas simply 
fixes the values of certain coefficients and thus simplifies the algebra, without 
limiting the generality of our analysis. We will arbitrarily choose the number of 
degrees of freedom per particle to be df = 1, even though in most cases of physical 
interest df = 3 is appropriate; this merely changes some of the constant coefficients 
and does not affect our discussion. Explicitly, the one-dimensional linearized LLNS 

1Note that for this particular type of upwinding the denominator in (37) vanishes identically and it 
S(0)can be shown that the correct solution is = 0; however, this is not necessarily true for other, k 

higher order, upwind discretizations of advection. 



�
 

�
 

174 DONEV, VANDEN-EIJNDEN, GARCIA AND BELL 

equations are ⎤⎡⎤⎡ 
∂t ρ ρ0v + ρv0 

∂
⎢⎣
 
⎥⎦
=
 ⎢⎣
c
 ⎥⎦
2 −1 2ρ + c0 T −1 

0ρ0 0−
 T + v0v∂t v 
∂x
 

0 
2c−1∂t T v + T v0c
 v ⎤⎡⎤⎡ 

0 0
 
∂
 ∂
⎢⎣
 

⎥⎦
+
 ⎢⎣
 
⎥⎦
ρ
−1 

0 ρ
−1 
0 ,
 (56)
+
 η0vx 

∂x
 ∂x

−1 −1−1 −1 µ0Tx 8
ρ
 ρ
c
 c
0 0v v 

where the covariance matrices of the stochastic fluxes are C� = 2η0kB T0 and 
C8 = 2µ0kB T0 

2 . In Fourier space the flux becomes ⎡
 ⎤
 
v0 ρ0 0 ⎢⎣
 

⎥⎦
−1 2 −1 T −1 2c (v0 − ikρ η0) 0 cF = 
2 −1 −1 −10 c (v0 − ikρ c µ0)0cv 0 v 

which through Equations (13) and (14) (or, equivalently, (30)) gives static structure 
factors that are independent of k: 

f ρ
 ,
0 0 0 0 

⎡
 ⎤
 
ρ0c0 

−2kB T0 0 0 
−1⎣
 ⎦
S(k) =
 .
 (57)
0
 kB T0 0ρ
0 

−1 −10 0 ρ c kB T 2 
0 v 0 

Therefore, the invariant distribution for the fluctuating fields is spatially-white, with 
no correlations among the different primitive variables, and with variances given 
in (57). This is in agreement with predictions of statistical mechanics, and how 
Landau and Lifshitz obtained the form of the stochastic fluxes. Note that in the 
incompressible limit, c0 → ∞, the density fluctuations diminish, but the velocity 
and temperature fluctuations are independent of c0. 

In this section we will calculate the discrete structure factor for several finite-
volume approximations to (56). From the diagonal elements of Sk we can directly 
obtain the nondimensionalized static structure factors for the three primitive vari­
ables, for example, 

S(ρ) 
V 

k = 
−2 << ρ̂k ρ̂k 

* 
>> , 

ρ0c0 kB T0 

which for a perfect scheme would be unity for all wavevectors. Similarly, the 
off-diagonal or cross elements, such as, for example, 

S(ρ,v) 
V 

k =
 * 
<< ρ̂k v̂

−2 −1(ρ0c0 kB T0)(ρ0 kB T0) 
k >> ,
 



  

 

 

 

175 F IN ITE -VOLUM E SCHEM ES F O R FLUCTUATI NG HYD RODYNAMIC S 

would all vanish for all wavevectors for a perfect scheme. Our goal will be to 
quantify the deviations from “perfect” for several methods, as a function of the 
discretization parameters x and t . 

6A. Third-order Runge–Kutta (RK3) scheme. When designing numerical schemes 
to integrate the full LLNS system, it seems most appropriate to base the scheme on 
well known robust deterministic methods, and modify the deterministic methods 
by simply adding a stochastic component to the fluxes, in addition to the usual 
deterministic component. With such an approach, at least we can be confident that 
in the case of weak noise the solver will be robust and thus we will not compromise 
the fluid solver just to accommodate the fluctuations. 

A well known approach to solving PDEs in conservation form 

∂t U = −V · [F(U )] = −V · [F H (U ) + F D(VU )] 

is to use the method of lines to decouple the spatial and temporal discretizations. We 
will focus on one dimension first for notational simplicity. In the method of lines, a 
finite-volume spatial discretization is applied to the obtain a system of differential 
equations for the discretized fields 

dU j 
= − x−1

[Fj+1/2(U) − Fj−1/2(U)]d t 
= − x−1

[FH (U j+1/2) − FH (U j−1/2)]

− x−1
[FD(V j+1/2U) − FD(V j−1/2U)], (58) 

where U j+1/2 are face-centered values of the fields that are calculated from the 
cell-centered values U j , and V j+1/2 is a cell-to-face discretization of the gradient 
operator. Any classical temporal integrator can be applied to the resulting system 
of semidiscrete system. It is well known that the Euler and Heun (two-step second-
order Runge–Kutta) methods are unconditionally unstable for hyperbolic equations. 
In [13], an algorithm for the solution of the LLNS system of equations (1) was 
proposed, which is based on the three-stage, low-storage TVD Runge–Kutta (RK3) 
scheme of Gottlieb and Shu [37]. The RK3 scheme is the simplest TVD RK 
discretization for the deterministic compressible Navier–Stokes equations that is 
stable even in the inviscid limit, with the omission of slope-limiting. Here we adopt 
the same basic scheme and investigate optimal ways of evaluating the stochastic 
flux. 

In the RK3 scheme, the hyperbolic component of the face flux FH is calculated 
by a cubic interpolation of U from the cell centers to the faces using an interpolation 
formula borrowed from PPM (piecewise parabolic method), [18], 

7U j+1/2 = 12 (U j + U j+1) − 1 (59)12 (U j−1 + U j+2), 
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and then directly evaluating the hyperbolic flux from the interpolated values. In 
[13; 10] a modified interpolation is proposed that preserves variances; however, our 
analytical calculations indicate that this type of interpolation artificially increases 
the structure factor for intermediate wavenumbers in order to compensate for the 
errors at larger wavenumbers. Note that for the full nonlinear equations, either 
the conserved or the primitive quantities can be interpolated. For the linearized 
equations it does not matter and it is simpler to work exclusively with primitive 
variables. 

In the RK3 method, the diffusive components of the fluxes FD are calculated 
using classical face-centered second-order centered stencils to evaluate the gradients 
of the fields at the cell faces. Stochastic fluxes Z j+1/2 are also generated at the faces 
of the grid using a standard random number generator (RNG). These stochastic 
fluxes are generated independently for velocity and temperature, and are zero for 
density,
 ⎤⎡ 

0 
1/2 W (1) j+1/2 

⎢⎢⎣
 
⎥⎥⎦
Z(R N G ) 

j+1/2 =
 ρ0 
−1 (2η0kB T0) ,
 

−1 −1ρ c (2µ0kB T0 
2)1/2W (2) 0 v j+1/2 

where W (1/2) j+1/2 denotes a normal variate with zero mean and unit variance. 
For each stage of the RK3 scheme, a total cell increment is calculated as 

t1/2t
U j (U, W) = − [Fj+1/2(U) − Fj−1/2(U)] + (Z j+1/2 − Z j−1/2). x3/2x 

Each time step of the RK3 algorithm is composed of three stages 

Un+1/3 
= Un 

j + U j (Un , W1) (estimate at t = (n+1) t),j 

UnUn+2/3 
= 3 

j +
1 
[Un+1/3

+ U j (U
n+1/3 

, W2)] (estimate at t = (n+ 2 
1 ) t), (60)j 4 4 j j 

Un+1 
= 1 Un 

j +
2 
[Un+2/3

+ U j (Un+2/3 , W3)],j 3 3 j 

where for now we have not assumed anything about how the stochastic fluxes 
between different stages, W1, W2 and W3, are related to each other. The relevant 
dimensionless parameters that measure the ratio of the time step to the CFL stability 
limits are 

c0 t η0 t α µ0 t 1 α α 
α = , β = = , βT = = = , 

x ρ0 x2 r ρ0cv x2 Pr r p 

where r = c0ρ0 x/η0 is the cell Reynolds number (we have assumed a low Mach 
number flow, that is, |v0| « c0), and Pr = η0cv/µ0 is the Prandtl number of the 
fluid. For low-density gases, r and p = rPr can be close to or smaller than one; 
however, for dense fluids sound dominates and r > 1 and p > 1 for all reasonable 
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x (essentially, x > λ, where λ is the mean free path). In practice, in order to 
fully resolve viscous scales, one should keep both r and p reasonably small. 

6B. Evaluation of the stochastic fluxes. In the original RK3 algorithm [13], a 
√ 

2W (s)different stochastic flux is generated in each stage, that is, Ws = 1, 2, 3.
√ RNG, s = 

The additional prefactor 2 is added because the averaging between the three stages 
reduces the variance of the overall stochastic flux. One can also use different weights 
for each of the three stochastic fluxes, that is, Ws = ws W

(s) 
RNG. Another option is to 

simply use the same stochastic flux W (0) 
= W (0) 

RNG in all three stages, that is, Ws RNG. 
A further option is to use the same random flux W (0) 

RNG in all three stages, but put 
in different weights in each stage, that is, Ws RNG. Our goal is to find out = ws W

(0) 

which approach is optimal. For this purpose, we can generally assume that the 
three random fluxes are different, to obtain a total of six random numbers per cell 
per step, and use the formalism developed in Section 3 with Ns = 6 to express the 
structure factor in terms of the 6 × 6 covariance matrix of the random variates. This 
calculation is too tedious even for a computer algebra system, and we therefore first 
study the simple advection-diffusion Equation (35) in order to gain some insight. 

6B1. Advection-diffusion equation. The RK3 method can be directly applied to 
the scalar advection-diffusion equation in one dimension (52). Experience with 
deterministic solvers suggests that a numerical scheme that performs well on this 
type of model equation is likely to perform well on the full system (1) when viscous 
effects are fully resolved. Here we use PPM-interpolation based discretization of 
the hyperbolic flux given in (59), which leads to a standard fourth-order centered 
difference approximation to the first derivative υx [9], and thus justifies our choice 
for the interpolation. We discretize the gradient used in calculating the diffusive 
fluxes using the second-order centered difference 

u j+1 − u j
V j+1/2u = , 

x 
which leads to the standard second-order centered difference approximation to the 
second derivative υx x (the challenges with using the standard fourth-order centered 
difference approximation to υx x [9] are discussed in Section 5C). The stencil widths 
in (23) are wD = 6 (three stages with stencil width two each) and wS = 4, and 
there are Ns = 3 random numbers per cell per step (one per stage), with a general 
3 × 3 covariance matrix CW . Equation (27) can then be solved to obtain the static 
structure factor for any wavenumber, however, these expressions are too complex 
to be useful for analysis. Instead, we perform an expansion of both sides of (27) 
for small k and thus focus on the behavior of the static structure factors for small 
wavenumbers and small time steps. 

As a first condition on CW , we have the weak consistency requirement Sk=0 = 1. 
With this condition satisfied, the method satisfies the discrete fluctuation-dissipation 
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balance in the limit t → 0 since the discretization of the divergence is the negative 
adjoint of the discretization of the gradient. A second condition is obtained by 
equating the coefficient in front of the leading-order error term in Sk , of order α k2 , 
to zero; where the advective dimensionless CFL number is α = a t/ x . It turns 
out that this also makes the term of order α k4 vanish. A third condition is obtained 
by equating the coefficient in front of the next-order error term of order α2 k2 to 
zero. Finally, a fourth condition equates the coefficient in front of α2 k4 to zero. 
For this three-stage method, it is not possible to make the terms with higher powers 
of α vanish identically for any choice of CW . No additional conditions are obtained 
by looking at terms with powers of the diffusive CFL number β = µ t/ x2 since, 
as it turns out, the accuracy is always limited by the hyperbolic fluxes. 

The various ways of generating the stochastic fluxes can now be compared by 
investigating how many of these conditions are satisfied. It turns out that only the 
first condition is satisfied if we use a different independently generated stochastic 
flux in each stage (one can satisfy one more condition by using different weights 
for the three independent stochastic fluxes). The second condition is satisfied if we 
use the same stochastic flux in all stages with a unit weight, that is, Ws = ws W

(0) 
RNG 

with w1 = w2 = w3 = 1. Armed with the freedom to put a different weight for this 
flux in each of the stages, we can satisfy the third condition as well if we use 

3 3 15 w1 = 4 , w2 = 2 , w3 = (61)16 , 

which gives a structure factor 

3 2Sk = 1 − 
r 
α k2 

− 
1 
α k4 

+ h.o.t.
24 6r2 

If we are willing to increase the cost of each step and generate two random 
numbers per cell per step, we can satisfy the fourth condition as well. For this 
purpose, we look for a covariance matrix CW that satisfies the four conditions and 
is also positive semidefinite and has a rank of two, that is, has a smallest eigenvalue 
of zero. A solution to these equations gives the following method for evaluating 
the stochastic fluxes in the three stages 

W1 = W (A) √ 
3W (B) W2 = W (A) √ 

3W (B) W3 = W (A) (62)RNG − RNG, RNG + RNG, RNG, 

where W (A) 
RNG are two independent random vectors that need to be gener-RNG and W (B) 

ated and stored during each RK3 step. This approach produces a structure factor 
2r 24 + r3 k2 

− 3Sk = 1 − α α k4 
+ h.o.t. 

24 288r 
We will refer to the RK3 scheme that uses one random flux per step and the weights 
in (61) as the RK3-1RNG scheme, and to the RK3 scheme with two random fluxes 
per step as given in (62) as the RK3-2RNG scheme. 
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It is important to point out that for the MacCormack method, which is equivalent 
to the Lax–Wendroff method for the advection-diffusion equation, the leading-order 
errors are of order α k2. This is much worse than for the stochastic heat equation 
(see Section 5A) even though the MacCormack scheme is a predictor-corrector 
method. This is because of the low-order handling of advective fluxes used in the 
MacCormack method to stabilize the two-stage Runge–Kutta time integrator. 

6C. Results for LLNS equations in one dimension. We can now theoretically 
study the behavior of the RK3-1RNG and RK3-2RNG schemes on the full linearized 
system (56), specializing to the case of zero background flow, v0 = 0. As expected, 
we find that the behavior is very similar to the one observed for the advection­
diffusion equation; in particular, the leading order terms have the same basic form. 
Specifically, the expansions of the diagonal and off-diagonal components of the 
structure factor Sk for the RK3-1RNG method are 

S(ρ ) 
≈ S(T ) Sk 

(u) 
− 1 

≈ 1 + ≈ 1 + ε(α) k2 ,k k 3 

S(ρ ,u) i 2
≈ α k3 ,k 12r (63) 

S(ρ ,T ) 
k ≈ 2ε(α) k2 , 

r − p
S(u,T ) 2

≈ i α k3 ,k 6pr 

where 

3α3 pr 
ε(α) = − .

4(3p + 2r) 

These structure factors are shown in Figure 2 for sample discretization parameters, 
along with the corresponding results for RK3-2RNG. We see from these expressions 
that as the speed of sound dominates the stability restrictions on the time step more 
and more, namely, as p or r become larger and larger, a smaller α is required to 
reach the same level of accuracy, that is, a smaller time step relative to the acoustic 
CFL stability limit is required. 

Similar results to Equation (63) hold also for the isothermal LLNS equations (in 
which the there is no energy equation), for which the calculations are simpler. For 
linearization around a constant background flow of speed v0 = c0Ma, where Ma is 
the reference Mach number, the analysis for the isothermal LLNS equations shows 
that the error grows with the Mach number as 

S(ρ ) 
≈ 1 + ε(α)[1 + 6Ma2 

+ Ma4
] k2 .k 
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Figure 2. Discrete structure factor Sk for the LLNS equation under 
the RK3-1RNG (lines) and RK3-2RNG (same style of lines with 
added symbols) schemes, as calculated by numerical solution of 
(27) for an ideal one-dimensional gas, for α = 0.5, β = 0.2 and 
βT = 0.1. Left: diagonal (self) structure factors, which should 
ideally be identically unity. Also shown is the leading order error 
term 1 +ε(α) k2 (dotted line), which is the same for both schemes. 
Right: off-diagonal (cross) structure factors, which should ideally 
be identically zero. 

7. Higher dimensions 

Much of what we already described for one dimension applies directly to higher 
dimensions [13; 10]. However, there is a peculiarity with the LLNS equations in 
three dimensions that does not appear in one dimension, and also does not appear 
for the scalar diffusion equation [6]. In one dimension the velocity component of 
the LLNS system of equations is essentially an advection-diffusion equation. In 
higher dimensions, however, there is an important difference: namely, the dissipation 
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operator is a modified Laplacian Lm . By neglecting the hyperbolic coupling between 
velocity and the other variables in the linearized LLNS equations, we obtain the 
stochastic diffusion equation 

ϑt = ηV · [C(Vϑ )] + 2ηV · [C1/2 W ] 
(64) 

= η (DCG) ϑ + 2ηDC1/2 W = ηLm ϑ + 2ηW m , 

where C is the linear operator that transforms the velocity gradient into a traceless 
symmetric stress tensor 

C(Vϑ ) = 2

 
1 T 

2 (Vϑ + Vϑ ) − 1 
3 

 

I (V · ϑ ) , (65)
 

and we have denoted the continuum velocity field by ϑ ≡ U in order to distinguish 
from the discretized velocities v ≡ U . Here we will focus on two-dimensional flows, 
ϑ = [ϑx , ϑy ], however, identical considerations apply to the fully three-dimensional 
case. 

If we arrange the components of the velocity gradient as a vector with four com­
ponents, Vϑ = [∂x ϑx , ∂x ϑy, ∂ y ϑx , ∂y ϑy ]

T , the linear operator C in (65) becomes 
the matrix ⎡
 ⎤
4 0 0 −

2 
3 3 
0 1 1 0 
0 1 1 0 

4
−

2 
3 0 0 3 

⎢⎢⎣
 
⎥⎥⎦
C =
 , (66)
 

which is not diagonal. This means that the components of the stochastic stress 
C1/2W would need to have nontrivial correlations between the x fluxes for vx and 
y fluxes for vy , as well as between the x fluxes for vy and y fluxes for vx . These 
correlations essentially amount to the requirement that the stochastic stress be a 
traceless symmetric tensor, at least at the level of its covariance matrix. Numerically, 
one generates independent random variates for the upper triangular portion of the 
stochastic stress tensor for each cell, then makes the tensor traceless and symmetric 
[28]. Note that one can save one random number by using only d − 1 variates to 
generate the diagonal elements. 

However, it is important to point out that an equivalent formulation is obtained 
by using the operator ⎡
 ⎡
⎤
 ⎤
4 1 1 10 0
 0 0
 3 3 3 3 ⎢⎢⎣
 

0 1 0 0
 
0 0 1 0
 

⎥⎥⎦
 = I +
 
⎢⎢⎣
 

⎥⎥⎦

0 0 0 0
 
0 0 0 0
 

C =
 , (67)
 

1 4 1 10 0 0 0 3 3 3 3 

where there is nontrivial cross correlations only between the x fluxes for vx and y 
fluxes for vy . The splitting of the operator C in (67) corresponds to rewriting the 
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stochastic diffusion Equation (64) in the equivalent but suggestive form 

1ϑt = −η V2ϑ + 1 
V (V · ϑ) + 2η (V · W T ) + VWV3 3 

1
− = η DT GT + 1 

3 GV DV ϑ + 2η DT W T + 3 GV WV , (68) 

where we have now distinguished between the tensorial divergence DT and gradient 
operators GT = −D* 

T , which map from tensor to vector fields and vector to tensor 
fields, respectively, and the vectorial divergence DV and gradient operators GV = 
−D* 

V , which map from vector to scalar fields and scalar to vector fields, respectively. 
Corresponding to the splitting of the modified Laplacian Lm = DCG = LT + LV 

into the tensorial Laplacian operator LT = DT GT and the vectorial component 
LV = GV DV /3, in (68) we have split the stochastic stress into a tensor white-
noise field W T in which all components are uncorrelated, and a scalar white-noise 
field WV , which we will call the stochastic divergence stress. This representation 
is perhaps more physically intuitive than the standard formulation in which the 
stochastic stress has unexpected exact symmetry and is exactly traceless. Note that 
in the more general case where the diffusion coefficient is spatially dependent and 
there is nonzero bulk viscosity ηB , the dissipative term in (68) becomes 

V · [η(Vϑ)] + V[(η/3 + ηB )V · ϑ], 

with an equivalent change in the stochastic term. Also note that for the fluctuating 
incompressible Navier–Stokes equation the term with the velocity divergence disap­
pears and the dissipation operator is a projected traditional Laplacian [8; 5], while 
the stochastic flux is simply a projected tensor white-noise field. 

7A. Discrete fluctuation dissipation balance. Our ultimate goal is to find a scheme 
that satisfies the discrete fluctuation dissipation theorem, that is, find a discrete 
modified Laplacian Lm that is a consistent approximation to the continuum modified 
Laplacian Lm (k)fϑ = k · [C(kfϑT )] for small k, and a way to efficiently generate 

*random increments Wm that discretize W m and whose covariance is << Wm W = m >> 
Lm . This task is nontrivial in general, and completing it requires some ingenuity 
and insight, as illustrated in the work of Atzberger [6] on multigrid methods for the 
scalar stochastic diffusion equation. We illustrate two different approaches next, 
the first corresponding to attempting to directly discretize the modified Laplacian 
Lm , and the second corresponding to discretizing the split Laplacian LT + LV /3. 
In the continuum context these are, of course, equivalent, but this is not the case in 
the discrete context. Namely, in the continuum formulation, C maps from gradients 
to stresses, the divergence operator D maps from fluxes to fields, and the gradient 
G maps from fields to gradients. In the continuum context, stresses, gradients 
and fluxes are all tensor fields and thus in the same Hilbert space. In the discrete 
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context, however, stresses, gradients and fluxes may be discretized differently and 
thus belong to different spaces. 

7A1. The modified Laplacian approach. One approach to the problem of con­
structing discrete operators that satisfy the discrete fluctuation-dissipation balance 
is to find a discretization of the divergence D and gradient G operators that are 
skew-adjoint and then form the modified Laplacian Lm = D C G = − D C D*, and 
generate the stochastic increments as Wm = D C 1/2W . As discussed above, for the 
meaning of C1/2 to be clear, stresses and gradients must belong to the same space. 
Furthermore, it is required that the discrete operators D and G be skew adjoint so 
that the discrete fluctuation dissipation balance condition (31) is satisfied. 

The issue of how to define skew adjoint D and G operators also arose in the 
historical development of projection algorithms for incompressible flow. The 
incompressible flow literature suggests two approaches that discretize both gradients 
and stresses by representing them with tensors at the same grid of points. The first 
approach corresponds to fully cell-centered discretization originally proposed by 
Chorin [17], which uses centered differences to define a skew-adjoint gradient and 
divergence operators. The second approach corresponds to a finite element-based 
discretization developed by Fortin [31] and later used in the projection algorithm of 
Bell et al. [11]. 

In the Fortin approach both stresses and gradients are represented as d ×d tensors 
at the corners of a regular grid, where d is the spatial dimension. The divergence 
operator D combines the values of the stresses at the 2d corners of a cell to produce 
a value at the center of the cell. The gradient G = − D* combines the values of the 
fields at the centers of the 2d cells that share a corner into a gradient at that corner. 
In this scheme, the stochastic stresses also live at the corners of the grid. They 
are generated to have the required covariance, for example, (66). Unfortunately, 
the discrete Fortin Laplacian L = D G suffers from a serious drawback: it has a 
nontrivial null space. For example, for the scalar heat equation on a uniform grid in 
two dimensions, the Laplacian stencil obtained from the Fortin discretization is 

−2 1(L(F)u)i, j = x 2 (ui+1, j+1 + ui−1, j+1 + ui−1, j−1 + ui+1, j−1) − 2ui, j , 

for which the odd (i + j odd) and even (i + j even) points on the grid are completely 
decoupled. In Fourier space the above Laplacian is −2[1−cos( kx ) cos( ky )] and 
thus vanishes for the largest wavevectors, | kx | = π , | ky | = π , which correspond 
to checker board zero eigenmodes. 

It can easily be verified that the same type of checker board zero eigenmodes 
also exist for the modified Fortin Laplacian Lm = D C G. In three dimensions, 
there are O(N ) zero eigenmodes for a grid of size N 3. Issues arising when using 
these types of stencils in the deterministic context are discussed in Almgren et 
al. [3]. Our theory for the structure factor implicitly relies on the definiteness of the 
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discrete generator, and in fact, in the general nonlinear setting the zero modes lead 
to instabilities of the solution of the full LLNS system of equations. We therefore 
abandon the Fortin corner-centered discretization of the fluxes. 

Fully cell-centered approximations to D and G based on second-order centered 
differences, previously studied in the context of projection methods for incompress­
ible flows by Chorin [17], lead to a discrete Laplacian that also has a nontrivial null 
space and suffers similar shortcomings as the Fortin Laplacian. Specifically, even 
in one dimension one obtains a Laplacian stencil 

(L(C) 
1 

u)i = [ui−2 − 2ui + ui+2],4 x2 

where the odd-even decoupling is evident. Here we develop a cell-centered (collo­
cated) discretization that preserves the null space of the continuum Laplacian. 

7A2. The split Laplacian approach. An alternative to trying to form a discrete 
modified Laplacian Lm = LT +LV directly is to use the splitting in (68) and form the 
discrete tensorial LT = DT GT and vectorial LV = GV DV /3 components separately 
from discretizations of the tensorial and vectorial divergence and gradient operators 
that are skew-adjoint, GT = − D* and GV = − D* The stochastic increments T V .√ 
would simply be generated as DT WT + GV WV / 3, where WV and the components 
of WT are independent normal variates. 

A popular approach to discretizing the tensorial divergence and gradient opera­
tors, commonly referred to as a MAC discretization in projection algorithms for 
incompressible flow [38], defines a divergence at cells centers from normal fluxes 
on edges, with a corresponding gradient that gives normal derivatives at cell edges 
from cell-centered values: 

−1(Z(x) −1(Z(y)( D Z)i, j = x i+1/2, j − Zi 
(
−

x) 
1/2, j ) + y i, j+1/2 − Zi

( 
, 
y
j 
) 
−1/2) → V · Z, 

− (D* −1 v)i+1/2, j = x (vi+1, j − vi, j ) → ∂v/∂x, (69) 
−1

− (D* v)i, j+1/2 = y (vi, j+1 − vi, j ) → ∂v/∂y. 

In this discretization, the tensor field 

Z = [ Z(x); Z(y)] = [ Z (x) , Z (x); Z (y) , Z (y)]vx vy vx vy 

is strictly divided into an x vector Z(x), which is represented on the x faces of 
the grid, and a y vector Z(y), represented on the y faces of the grid. The MAC 
discretization, which we used in the earlier one-dimensional examples, leads to a 
standard 5 point discrete Laplacian in two dimensions (3 point in one dimension, 7 
point in three dimensions), 

(L(MAC) −2 −2u)i, j = [ x (ui−1, j − 2ui, j + ui+1, j ) + y (ui, j−1 − 2ui, j + ui, j+1)]. 
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In Fourier space the MAC Laplacian is 2 cos( kx ) + 2 cos( ky) − 4 and is strictly 
negative for all nonzero wavevectors, and thus does not suffer from the instabilities 
of the Chorin and Fortin discrete Laplacians, discussed in Section 7A1. 

The vectorial divergence and gradient operators cannot be discretized using the 
MAC framework. Namely, DV must operate on a cell-centered vector field v, 
whereas the MAC-type discretization operates on face-centered values. Instead, 
for the vectorial component we can use either the Chorin discretization [17], in 
which both scalar and vector fields are cell-centered, or the Fortin discretization 
[31], in which scalar fields are represented at corners and vector fields are cell-
centered. Here we choose the Fortin discretization and calculate a (scalar-valued) 
velocity divergence and the corresponding divergence stress at the corners of the 
grid, and also generate a (scalar) random divergence stress at each corner. The 
deterministic and random components are added to form the total corner-centered 
divergence stress, and the velocity increment is calculated from the (vector-valued) 
cell-centered gradient of the divergence stresses. Note that the nontrivial nullspace 
of LV does not pose a problem since LT and thus also Lm = LT + LV has a trivial 
nullspace. 

The discrete modified Laplacian that is obtained by this mixed MAC/Fortin 
discretization can be represented in terms of second-order centered-difference 
stencils. The first (i.e., the vx ) component of this Laplacian can be represented as a 
linear combination of the velocities in the 9 neighboring cells: 

1 
(vx ) 1 

L(MAC,x) (x) 1 
L(MAC,y) (x)

(Lm v) j k = 
x2 2−m,2+l v j+l,k+m + 

y2 2−m,2+l v j+l,k+m 
l,m=−1 

1 
L(F,x) (x) 1 

L(F,x y ) (y)
+ + , (70)2−m,2+l v j+l,k+m 2−m,2+l v j+l,k+m3 x2 3 x y 

where L(MAC,x/y) and L(F,x/y) correspond to a second-order MAC and Fortin 
discretizations of the terms ∂x x ϑx and ∂y y ϑy respectively, and L(F,x y ) discretizes 
∂x y ϑy . The same stencils apply to the second (i.e., the vy) component of the 
Laplacian as well, by symmetry: 

1
 
(vy ) 1 

L(MAC,x) (y) 1 
L(MAC,y) (y)


(Lm v) = +j k x2 2−m,2+l v j+l,k+m y2 2−m,2+l v j+l,k+m 
l,m=−1 

1 
L(F,y) (y) 1 

L(F,x y ) (x)
+ . (71)2−m,2+l v j+m,k+l + 2−m,2+l v j+m,k+l3 y2 3 x y 

Note that we chose the peculiar indexing of the stencils so that when printed on 
paper they correspond to the usual Cartesian representation of the x-y grid. The 
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coefficients of the MAC stencil (70) are ⎤⎡⎤⎡ 
0 0 0 0 1 0
 

L(MAC,x) 
=
⎣
1 −2 1
 ⎦
 and
 L(MAC,y) 

=
⎣
0 −2 0
 ⎦ ,
 (72)
 
0 0 0 0 1 0 

while the Fortin stencils are ⎡
 ⎡⎤ ⎤
1 
−

1 1 
2 

1 1 1 
4 4 4 2 4 ⎢⎣
 

⎥⎦
,
 L(F,y) =
 ⎢⎣
−1 
−1 −

1 
2 2 

⎥⎦
L(F,x) =
 1 1
−1
 ,
2 2 

1 
−

1 1 1 1 1 
24 4 4 2 4⎡
 ⎤
1

−
1 
4 0 4 ⎢⎣
 

⎥⎦
L(F,x y) 0 0 0
 (73)
=
 .
 
1 0 −

1 
4 4 

7B. Results in three dimensions. Our theoretical calculations have helped in for­
mulating a complete three-stage Runge–Kutta scheme for solving the full LLNS 
system in one, two or three spatial dimensions. We have discussed how to generate 
stochastic fluxes in each stage, including the required correlations among the 
components of the stochastic stress, and have also discussed how to relate the 
stochastic fluxes in each stage. Since theoretical calculation of the three-dimensional 
structure factors is out of reach, we present some numerical results for the RK3­
2RNG method in three dimensions with the mixed MAC/Fortin handling of the split 
Laplacian as given in Equations (70) and (71), hereafter termed the RK3D-2RNG 
algorithm. 

We note in passing that it is also possible to discretize the modified Laplacian (see 
Section 7A1) using a MAC-like discretization of the viscous and stochastic stresses 
that avoids the use of the Fortin corner-based discretization of the divergence stress. 
This saves one random number per cell per stochastic flux, however, it requires the 
use of a nonstandard randomized cell-to-face projection (splitting) of the stochastic 
stresses that complicates the analysis and handling of physical boundaries and 
makes parallelization more difficult. We therefore do not describe this approach 
here, and only note that it produces very similar structure factors to those reported 
here. 

We focus on the behavior of the scheme in global equilibrium with periodic 
boundary conditions. We have implemented the full nonlinear fluxes as proposed 
in [13; 10], using the interpolation in (59) for the hyperbolic fluxes and simple 
interpolation of the spatially varying viscosity and thermal conductivity in the 
handling of the viscous and stochastic fluxes. However, in the tests reported here we 
have made the magnitude of the fluctuations small compared to the means to ensure 
that the behavior is very similar to the linearized LLNS equations. Including the full 
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nonlinear system guarantees conservation and ensures that there are no nonlinearly 
unstable modes. More careful study of the proper handling of nonlinearity in 
the LLNS equations themselves and the associated numerical solvers is deferred 
to future publications; here, we focus on verification that the nonlinear scheme 
produces behavior consistent with the linearized analysis. We note that we have 
implemented the new RK3D algorithm also for the LLNS equations for a mixture 
of two ideal gases, closely following the original scheme described in [10]. We find 
that the spatial discretization satisfies the discrete fluctuation-dissipation balance 
even in the presence of concentration as an additional primitive variable and that 
the RK3D-2RNG method performs very well with reasonably large time steps. 

7B1. Static structure factors. Examples of static structure factor Sk for the RK3D­
2RNG scheme are shown in Figure 3, showing that the diagonal components S(ρ ) ,k 
S(vx ) , S(vx ,vy ), and S(T ) are close to unity, while the off-diagonal components S(ρ ,vx ) ,k k k k 
and S(ρ ,T ) are close to zero (similar results hold for S(vx ,T ), not shown), even for a k k 
large time step (half of the stability limit). Note that the static structure factor is 
difficult to obtain accurately for the smallest wavenumbers (slowest modes) and 
therefore the values near the centers of the k-grid should be ignored. 

It is seen in the figures that the diagonal components of Sk are quite close to unity 
for the largest wavevectors, which is somewhat surprising, and the largest error is 
actually seen for intermediate wavenumbers, consistent with the one-dimensional 
results shown in Figure 2. We have tested the method on several cell Reynolds 
numbers r and found that the results are worse as r increases, consistent with 
the previous analysis, however, the higher order of temporal accuracy allows for 
increasing the time step to be a reasonable fraction of the stability limit even for 
large r . 

These results represent a significant improvement over the results obtained for 
the original RK3 scheme presented in Bell et al. [13; 10]. Results with the original 
scheme were sensitive to time steps, requiring small time steps to obtain satisfactory 
results; the new scheme produces satisfactory results for time steps near the stability 
limit. Also, through the use of the mixed MAC and Fortin discretization, the new 
scheme eliminates a weak but spurious correlation S(vx ,vy ) present in the original k 
scheme for small wavenumbers even in the limit of small time steps. 

7B2. Dynamic structure factors. Examples of dynamic structure factors Sk,ω for 
the RK3D-2RNG scheme are shown in Figure 4 as a function of ω for two relatively 
large wavevectors, along with the correct continuum result obtained by solving 
the system (4) through a space-time Fourier transform (we did not make any of 
the usual approximations made in analytical calculations of Sk,ω [20], and instead 
used Maple’s numerical linear algebra). It is well known that S(ρ ) and S(T ) exhibit k,ω k,ω 
three peaks for a given k [20], one central Rayleigh peak at ω = 0 similar to the 
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S(ρ ) S(vx )Figure 3. Left: , , and S(T ) (top to bottom). Right:k k k 
|S(ρ ,vx )

|, |S(vx ,vy )
| and |S(ρ ,T )

| (top to bottom) for RK3D-2RNG k k k 
(random direction), with the time step α = 0.5, β = 3βT /2 = 0.1, 
periodic boundary conditions with 303 cells, and averaging over 
106 time steps. 
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Figure 4. Diagonal (left) and the real part of the off-diagonal 
(right) components of the dynamic structure factor Sk,ω for RK3D­
2RNG (dashed lines) for the same parameters as in Figure 3. For 
comparison, the analytical solution of the LLNS equations in 
Fourier space are also shown (solid lines). The imaginary part 
of the off-diagonal components is less than 0.1 and it vanishes in 
the theory. The top part shows the wavevector k =(kmax/2, 0, 0) 
and the bottom shows k =(kmax/2, kmax/2, kmax/2). 

peak for the diffusion equation given in (43), and two symmetric Brillouin peaks 
at ω ≈ cs k, where cs is the adiabatic speed of sound, cs = cT 1 + 2/df for an 
ideal gas. For the velocity components, the transverse components S(v⊥) exhibit k,ω 
all three peaks, while the longitudinal component Sk

(v

,ω
1) lacks the central peak, as 

seen in the figure. Note that as the fluid becomes less compressible (i.e., the speed 
of sound increases), there is an increasing separation of time-scales between the 
side and central spectral peaks, showing the familiar numerical stiffness of the full 
compressible Navier–Stokes equations. 

We have verified that for small wavevectors the numerical dynamic structure 
factors are in excellent agreement with the analytical predictions, even for such 
large time steps. For wavevectors that are not small compared to the discretization 
limits we do not expect a perfect dynamic structure factor, even for very small 
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time steps. It is important, however, that the discretization behave reasonably for 
all wavevectors (e.g., there should be no spurious maxima), and be somewhat 
accurate for intermediate wavevectors, even for large time steps. As seen in Figure 
4, the RK3D-2RNG algorithm seems to perform well even with a large time step. 
Improving the accuracy at larger wavevectors requires using higher-order spatial 
differencing [50] (see discussion in Section 5C), compact stencils (linear solvers) 
[48], or pseudospectral methods [30], each of which has certain advantages but 
also significant disadvantages over the finite-volume approach in a more general 
nonlinear nonequilibrium context. 

8. Summary and concluding remarks 

We analyzed finite-volume schemes for the linearized Landau–Lifshitz Navier– 
Stokes (LLNS) system (4) and related SPDEs such as the stochastic advection­
diffusion Equation (35). Our approach to studying the accuracy of these explicit 
schemes is based on evaluating the discrete static and dynamic structure factors, 
focusing on the accuracy at small wavenumber k = k x and wavefrequency
 ω = ω t . The methodology for formulating the structure factor for numerical 
schemes is developed in Section 3, and then specialized to stochastic conservation 
laws in Section 4. Applying this analysis to the stochastic heat Equation (42) in 
Section 5 we find the truncation error for the Euler method to be O( t k 2); the 
error for a standard predictor-corrector scheme is O( t2k4) using the same random 
numbers in the predictor and corrector stages but O( t3k6) using independent 
random numbers at each stage. Section 6 extends this analysis to the third-order 
Runge–Kutta scheme of Bell et al. [13; 10] for the one-dimensional advection­
diffusion SPDE. We find the best accuracy when the stochastic fluxes at the three 
stages are generated from two sets of random numbers, as given by (62); using this 
version, called RK3-2RNG, for the LLNS equations gives good results, even when 
nonlinear effects are included (see Figures 2–4). Finally, Section 7 explains why the 
cross-correlations in the stress tensor in the three-dimensional LLNS require special 
treatment and proposes a mixed MAC/Fortin discretization as a way to obtain the 
desired discrete fluctuation-dissipation balance. 

Here we have investigated linearized PDEs with stochastic fluxes where the 
noise is additive. As such, the stability properties of the numerical schemes are the 
same as for the deterministic case. Yet in practice one would like to implement 
these schemes for the nonlinear stochastic PDEs with state-dependent stochastic 
fluxes. While in the limit of small fluctuations the behavior of the schemes is 
expected to be similar to the linearized case, the proper mathematical foundation 
and even formulation of the nonlinear fluctuating equations has yet to be laid 
out. Furthermore, the stability properties of numerical schemes for the nonlinear 
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LLNS system are not well understood and the whole notion of stability is different 
than it is for deterministic schemes. For example, even at equilibrium, a rare 
fluctuation can cause a thermodynamic instability (e.g., a negative temperature 
which implies a complex sound speed) or a mechanical instability (e.g., a negative 
mass density). Capping the noises in the stochastic flux terms will not necessarily 
solve the problem because the hydrodynamic variables are time-correlated so the 
numerical instability may not appear on a single step but rather as an accumulated 
effect. We are investigating these issues and will discuss strategies to address this 
type of stability issue in future publications. 

One of the advantages of finite volume solvers over spectral methods is the ability 
to implement realistic, complex geometries for fluid simulations. In this paper we 
only consider periodic boundaries but many other boundary conditions are of interest, 
notably, impenetrable flat hard walls with stick and slip conditions for the velocities 
and either adiabatic (zero temperature gradient) or thermal (constant temperature) 
conditions for the temperature. Equilibrium statistical mechanics requires that 
the static structure factor be oblivious to the presence of walls, even though the 
dynamic structure factors typically exhibit additional peaks due to the reflections 
of fluctuations from the boundaries [25]. Therefore, the numerical discretization 
of the Laplacian operator L, the divergence operator D and the covariance of the 
stochastic fluxes C should continue to satisfy the discrete fluctuation-dissipation 
balance condition L + L* = −2D C D* and be consistent, even in the presence 
of boundaries. Standard treatments of boundary conditions used in deterministic 
schemes can easily be implemented in the stochastic setting [13; 6], however, 
satisfying the discrete fluctuation-dissipation balance is not trivial and requires 
modifying the stochastic fluxes and possibly also the finite-difference stencils near 
the boundaries [6], as briefly discussed in the Appendix to [25]. In particular, the 
case of Dirichlet boundary conditions is more complicated, especially in the case 
of the mixed MAC and Fortin discretization of the compressible Navier–Stokes 
equations. Complex boundaries present further challenges even in the deterministic 
setting. We will explore the issues associated will fluctuations at physical boundaries 
in future publications. 

One motivation for the development of numerical methods for the LLNS equa­
tions is for their use in multialgorithm hybrids. One emerging paradigm in the 
modeling and simulation of multiscale problems is multialgorithm refinement 
(MAR). MAR is a general simulation approach that combines two or more algo­
rithms, each of which is appropriate for a different scale regime. MAR schemes 
typically couple structurally different computational schemes such as particle-based 
molecular simulations with continuum partial differential equation (PDE) solvers. 
The general idea is to perform detailed calculations using an accurate but expensive 
algorithm in a small region (or for a short time), and couple this computation to 
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a simpler, less expensive method applied to the rest. The major difficulty is in 
constructing hybrid is that particle and continuum methods treat thermal noise 
(fluctuations) in completely different ways. The challenge is to ensure that the 
numerical coupling of the particle and continuum computations is self-consistent, 
stable, and most importantly, does not adversely impact the underlying physics. 
These problems become particularly acute when one wants to accurately capture 
the physical fluctuations at micro- and mesoscopic scales. The correct treatment 
of boundary conditions in stochastic PDE schemes is particularly difficult yet 
crucial in hybrid schemes since the coupling of the two algorithms is essentially a 
dynamic, two-way boundary condition. Recent work by Tysanner et al. [62], Foo 
et al. [12], Williams et al. [64] and Donev et al. [25] has demonstrated the need to 
model fluctuations at the continuum level in hybrid continuum / particle approaches, 
however, a seamless coupling has yet to be developed. 

In this paper we consider the fully compressible LLNS system, for many of 
the phenomena of interest the fluid flow aspects occur at very low Mach numbers. 
Another topic of future work for stochastic PDE schemes is to construct a low Mach 
number fluctuating hydrodynamics algorithm. A number of researchers have consid­
ered extended versions of the incompressible Navier–Stokes equations that include 
a stochastic stress tensor [56; 61; 8]. This type of model does introduce fluctuations 
into the Navier–Stokes equations and is applicable in some settings, such as in 
modeling simple Brownian motion. However, as pointed out by Zaitsev and Shliomis 
[66], the incompressible approximation introduces fictitious correlations between 
the velocity components of the fluid. Furthermore, this type of approach does not 
capture the full range of fluctuations in the compressible equations. In particular, 
adding a stochastic stress into the incompressible Navier–Stokes equations creates 
fluctuations in velocity but does not reproduce the large scale and slow fluctuations 
in density and temperature, which persist even in the incompressible limit. We plan 
to investigate alternative formulations that can capture more of the features of the 
fluctuating hydrodynamics while still exploiting the separation of scales inherent 
in low Mach number flows. We also note that although the theoretical importance 
of distinguishing between the incompressible approximation and the low Mach 
number limit is well established for fluctuating hydrodynamics [14; 67], numerical 
algorithms for the latter have yet to be developed. 

Appendix: Semi-implicit Crank–Nicolson method 

When sound is included in the fluctuating hydrodynamic equations implicit methods 
are not really beneficial since the large sound speed limits the time step. However, 
for the pure stochastic diffusion/heat equation or advection-diffusion equations 
with a small advection speed the time step may become strongly limited by the 
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diffusive CFL limit, especially for small cells. In such cases an implicit method 
can be used to lift the diffusive stability restriction on the time step. For example, 
the second-order (in both space and time) Crank–Nicolson semi-implicit scheme 
for the stochastic heat equation entails solving the linear system 

n+1 n+1 n+1 n+1u j − 
µ t 

(u j−1 − 2u j + u j+1)2 x2 

t1/2 
n n n n

= u j + 
µ t 

(u j−1 − 2u j + u j+1) + 2µ (W n 
j+1/2 − W j 

n 
−1/2), (A.1)

x3/22 x2 

which is tridiagonal except at periodic boundaries. 
The analysis carried out above for explicit schemes can easily be extended to 

implicit methods since in Fourier space different wavevectors again decouple and 
the above iteration becomes a scalar linear equation for ûn+1 that can trivially be k 
solved. Firstly, it is observed that the small time step limit is the same regardless of 
the semi-implicit treatment, specifically, the same discrete fluctuation-dissipation 
condition (31) applies. Remarkably, for the Crank–Nicolson iteration (A.1) it is 
found that the discrete static structure factor is independent of the time step, Sk = 1 
for all β. The dynamic structure factor, however, has the same spatial discretization 
errors (48) as for the Euler scheme even in the limit β → 0. Furthermore, as 
expected, the dynamics is not accurate for large β and the time step cannot be 
enlarged much beyond the diffusive stability limit related to the smallest length-scale 
at which one wishes to correctly resolve the dynamics of the fluctuations. 

If advection is included as well and also discretized semi-implicitly, the method 
again gives perfect structure factors, Sk = 1 identically, and is unconditionally 
stable. If only diffusion is handled semi-implicitly but advection is handled with 
a predictor-corrector approach, then it turns out that the optimal method is to not 
include a stochastic flux in the predictor step, giving the same leading-order error 
term as PC-2RNG in (55) when |r | > 0, but giving a perfect Sk = 1 when r = 0. 
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