
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Publications Accounting and Finance

January 2014

The Impact of Software Testing Governance Choices The Impact of Software Testing Governance Choices

Xihui Zhang
University of North Alabama

Colin Onita
University of Akron

Jasbir Dhaliwal
University of Memphis, jdhaliwl@memphis.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/acc_fin_pub

 Part of the Management Information Systems Commons

Recommended Citation Recommended Citation
Xihui Zhang, Colin Onita, and Jasbir Dhaliwal. "The Impact of Software Testing Governance Choices"
Journal of Organizational and End User Computing 26.1 (2014): 66-85. https://doi.org/10.4018/
joeuc.2014010104

This Article is brought to you for free and open access by the Accounting and Finance at SJSU ScholarWorks. It has
been accepted for inclusion in Faculty Publications by an authorized administrator of SJSU ScholarWorks. For
more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/acc_fin_pub
https://scholarworks.sjsu.edu/acc_fin
https://scholarworks.sjsu.edu/acc_fin_pub?utm_source=scholarworks.sjsu.edu%2Facc_fin_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/636?utm_source=scholarworks.sjsu.edu%2Facc_fin_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.4018/joeuc.2014010104
https://doi.org/10.4018/joeuc.2014010104
mailto:scholarworks@sjsu.edu

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014 67

development in the form of software develop-
ment lifecycles which recognized testing as a
distinct sequential stage after coding. This led
to the growth of software testing as a distinct
profession and science – and the emergence of
software development and testing integration as
a crucial organizational IT governance challenge
(Zhang et al., 2010). Recent advances in agile
methods for both software development and
testing (Crispin & Gregory, 2009; Highsmith
& Cookburn, 2001; Lee, 2008) have added
increased impetus to the need for resolving
this challenge. The fact that the proportion
of total IT acquisition expenditures that are
spent on software testing is going up, because
of the increased complexity, application inter-
connectivity, global-scale, and real-time nature
of modern business systems, also calls for an
increased focus on this issue as a manage-
rial and theoretical phenomenon in software
engineering.

Given the dearth of empirical studies that
have explored this phenomenon to provide
guidance for industrial practices, software
organizations are using a wide diversity of
approaches (which are often contradictory) to
cope while continuing to make the case that it
is a critical area of concern. Consider the fol-
lowing two examples:

1. 	 Software Testers at Microsoft Corpora-
tion: (a) are not part of a distinct organi-
zational unit for testing, (b) report to the
same executives as developers, and (c) are
matched to particular developers in agile
development teams (Page et al., 2008).

2. 	 Software Testers at FedEx IT Services:
(a) are part of a distinct organizational unit
for testing, (b) report to a different executive
than developers, and (c) are not matched
to particular developers (Miller, 2009).

While both organizations are known for
their innovativeness in the software engineer-
ing of business systems, they obviously are
using completely contradictory IT governance
methods for integrating development and test-
ing. This paper investigates the underlying

effectiveness of such IT governance practices
for software testing by empirically exploring the
organizational, group, and individual impacts
of strategic, tactical, and operational software
testing governance mechanisms.

The two specific research questions driving
this research are:

1. 	 What are the key components of a
framework that can guide IT governance
decisions pertaining to the integration of
software development with testing?

2. 	 What are the empirical impacts of various
IT governance mechanisms on organiza-
tional, group, and individual level variables
pertaining to the integration of software
development with testing?

The paper proceeds as follows. The next
section tackles the first research question and
develops a framework that captures the key
dimensions of software testing governance by
drawing on the prior literature on both software
engineering and IT management. The section
after then describes an empirical study that was
undertaken to investigate aspects of the frame-
work. This is followed by a section that details
our research findings. The section after that not
only explores the implications of our findings
in relation to both industry best practices and
theory development, but also recognizes the
limitations of our approach while providing
pointers for future research. Finally, the last
section provides an overall conclusion.

THEORETICAL DEVELOPMENT

The objective of this study is to examine the
impact of the governance of software testing on
a set of dependent variables. Specifically, this
study explores the impact of three governance
mechanisms: the existence of a distinct corpo-
rate testing unit, developers and testers reporting
to different executives, and one-to-one match-
ing between developers and testers, which are
governance mechanisms identified at strategic,
tactical, and operational levels, respectively.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

68 Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014

The dependent variables too can be classified
into three major categories: organizational,
group, and individual impacts. Organizational
impacts are represented by software qual-
ity, value of testing, and development/testing
alignment. Group impacts are represented by
strategy alignment, capability alignment, and
social systems of knowing. Individual impacts
are represented by trust between developer and
tester, partnership between developer and tester,
and job satisfaction. These dependent variables
are chosen because they are closely related to
the context of software development and testing.

Guided by theory and past research, a
framework is proposed which asserts that the
existence of a distinct corporate testing unit,
developers and testers reporting to different
executives, and one-to-one matching between
developers and testers will have significant
impact on a set of dependent variables (see
Figure 1). To simplify the data analysis process,
we tested three separate models, each with only
one independent variable and the same set of

the dependent variables. We provide theoretical
support for the hypothesized relationships in
the following sections.

Relating IT Governance to
Software Testing Governance

Weill and Ross (2004) have demonstrated the
criticality of IT governance by showing that
firms with better than average governance earn
at least 20 percent higher return on assets than
organizations with weaker governance. This
suggests that it may be worthwhile for software
engineering executives to carefully consider
a governance perspective to integrating the
software development and testing functions.

The literature on IT governance yields sev-
eral nuanced and related definitions that can be
applied to the case of the role of development
and testing in software development. Gener-
ally, IT governance comprises the leadership,
organizational structures and processes that
ensure that the organization’s IT sustains and

Figure 1. A framework for software testing governance

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014 69

extends the organization’s strategy and objec-
tives (ITGI, 2003; Van Grembergen, 2002).
Applying this definition to the case of the
integration of development and testing func-
tions in software development, we can define
software testing governance as involving the
leadership, organizational and integrative pro-
cesses that ensure the successful implementation
of software development strategy. Software
testing governance needs to be differentiated
from day-to-day software testing management
that focuses on what specific software testing
decisions are being made. Rather, software
testing governance is the set of decisions about
who makes software testing decisions and how
these decisions are made (Weill, 2004). In other
words, it prescribes the structures and processes
through which the organization’s testing objec-
tives are set, and defines the means for attaining
those objectives and monitoring performance.

The IT governance literature emphasizes
the importance of the relationship/overlap be-
tween corporate/enterprise governance and IT
governance and builds upon the former (Luft-
man & Brier, 1999; Sambamurthy & Zmud,
1999; Weill, 2004). Similarly, our approach
involves defining and thinking about software
testing governance using the IT governance
literature as the base for theory development. As
such, software testing governance represents the
enterprise’s software engineering management
system through which its portfolio of software
development and testing efforts are directed
and controlled. In essence, software testing
governance can therefore be viewed as the
distribution of software testing decision-making
rights and responsibilities among software
engineering stakeholders, and the procedures
and mechanisms for making and monitoring
strategic decisions regarding software testing.

Given that the key issue in software test-
ing governance pertains to its integration with
software development, it is also important to
consider the relationship between governance
and strategic alignment. Webb et al. (2006) have
taken such an approach to try amalgamating
the range of nuanced definitions for IT gover-
nance by proposing the following definition:

“IT governance is the strategic alignment of
IT with the business such that maximum busi-
ness value is achieved through the development
and maintenance of effective IT control and
accountability, performance management, and
risk management” (p. 7). Using this approach,
software testing governance can be viewed as the
strategic integration of testing with development
to ensure that the value (quality) in software
development can be maximized through the
implementation and maintenance of effective
control and accountability, performance man-
agement, and risk management.

Borrowing from prior IT governance stud-
ies by Peterson (2003), Peterson et al. (2002),
Weill and Ross (2004), and Van Grembergen
et al. (2003), software testing governance can
be deployed using a mixture of various struc-
tures, processes, and relational mechanisms.
Petersen (2004) relates these to capabilities in
governance and provides examples of structural
capabilities, process capabilities, and relational
capabilities. De Haes and Van Grembergen
(2008, 2009) also utilize this categorization
comprising structures, processes, and relational
mechanisms for governance. In our view, this
categorization can be transposed on the three
levels of the organizational management: stra-
tegic, tactical, and operational. In our model
for software testing governance (see Figure
1), structural mechanisms are represented at
the strategic level, process mechanisms are
represented at the tactical level, and relational
mechanisms are represented at the operational
level. Thus, strategic structures in software
testing governance pertain to institutional issues
relating to organizational design that specify
the precise formal organizational role of the
testing group. Similarly, tactical processes in
software testing governance specify controlling,
coordinating, and reporting guidelines between
testing and development groups. Operational
relational mechanisms in software testing gov-
ernance, however, clarify the participative and
collaborative relationships between developers
and testers as they work together in software
engineering. Relational mechanisms are vital
in this software testing governance framework

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

70 Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014

as they dictate the informal day-to-day working
interactions between developers and testers,
even when the appropriate formal strategic and
tactical structures and processes are in place
(Callahan & Keyes, 2003; Keill et al., 2002;
Weill & Broadbent, 1998).

Three Levels of Software
Testing Governance

Strategic Structures for Software
Testing Governance

Prior literature on formal structures for govern-
ing software testing is largely non-existent.
However, various aspects can be culled from
the IT governance literature as being pertinent
to the integration of software testing and de-
velopment. These include: the existence of a
distinct organizational unit for software test-
ing, its placing in the organizational hierarchy,
formalized strategic steering committees for
software engineering management, formal
structures for measuring and managing stra-
tegic alignment between distinct but related
organizational units, and formalized high-level
participation on executive committees (De Haes
& Van Grembergen, 2008, 2009). Amongst these
considerations, the most significant pertains to
the existence of a distinct organizational unit
for software testing (Miller, 2009). It can be
argued that the institutionalization of such a
distinct testing unit facilitates formal planning
and control governance of software testing. It
also promotes the growth of professionalism
and identity for the testing group and clarifies
the specific focal points for strategic deci-
sion making pertaining to budgets, resources,
methodologies, and strategic scope of testing.
The existence of a distinct organizational unit
also facilitates the measurement of return-on-
investment and value metrics pertaining to the
contribution of the unit at a strategic level. It
also provides software testers the opportunity
to provide input into strategic organizational
deliberations that have the potential of impacting
them. The existence of a distinct testing unit also
provides the basis for strategic considerations

pertaining to centralized, decentralized, and fed-
erated governance mechanisms (Sambamurthy
& Zmud, 1999) as part of strategic analysis.

Tactical Processes for Software
Testing Governance

There is also a dearth of studies that have
focused on software testing governance at this
level. The general IT governance literature
identifies reporting structures, service level
agreements, the use of methodologies such as
balanced scorecards and COBIT (a framework
for IT management and IT governance), and
charge-back arrangements as being pertinent
(De Haes & Van Grembergen, 2008, 2009).
Amongst these, relative reporting structures
for development and testing, use of agile
versus lifecycle software engineering meth-
odologies, and charge-back arrangements for
software testing can be identified as being the
most relevant to the integration of software
development and testing. Developers report-
ing to a different manager than testers can be
expected to create significant integration and
alignment issues as compared to the case where
they report to the same manager. The use of
agile methodologies (Crispin & Gregory, 2009;
Highsmith & Cookburn, 2001; Lee, 2008) for
software development is generally associated
with having developers and testers report to the
same executive such as at Microsoft Corpora-
tion (Page et al., 2008). This is because agile
processes necessitate frequent and intensive
collaboration between developers and testers
working together in “scrums” whose work is
coordinated in prescribed “sprints” (Larman
& Vodde, 2008). Organizations subscribing to
the use of systems development lifecycle meth-
odologies can generally be expected to opt for
reporting processes where developers report to
different managers than testers. The structured
stages of the lifecycle, whereby a testing phase
generally follows a coding/development phase,
facilitate this as prescribed by Teo and King’s
(1999) notion of sequential integration. Given
that units of code are passed over to testers by
developers as formalized process handoffs, the

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014 71

two related activities can be managed using
separate reporting mechanisms. Given that
the role of the testing function is to verify and
validate the work of developers by providing
feedback about defects and bugs that are found
in testing, chargeback processes, whereby test-
ing costs are “charged” back to development
groups, also represent a key governance aspect
at this level.

Operational Relational Mechanisms
for Software Testing Governance

Significant literature exists in relation to the
operational governing mechanisms for software
testing. Most of this relates to the measurement
and management of conflict between developers
and testers (Cohen et al., 2004; Pettichord, 2000;
Zhang et al., 2008; Zhang et al., 2013). In addi-
tion to this, pertinent aspects that can be culled
from the IT governance literature (Dhaliwal et
al., 2011; De Haes & Van Grembergen, 2008,
2009; Petersen, 2004) and applied to our context
include job rotation, co-location, cross training,
knowledge management, as well as formal and
informal interactions between developers and
testers. Given the relative roles that developers
and testers play in software engineering, these
can be viewed as being sub-aspects of a higher
level construct that can be termed: one-to-one
matching between particular developers and
testers. A specific tester working on a stable
basis to provide defect and quality feedback
to a particular developer can be expected over
time to yield defined impacts.

Three Levels of Impacts of
Software Testing Governance

Following the literature, we chose salient
dependent variables that are important in the
day-to-day as well as the long-term manage-
ment of software development organizations,
and which are influenced by software testing
governance choices. Specifically, our study
includes constructs such as partnership that were
deemed by Preston and Karahanna (2009) and
Luftman and Kempaiah (2007) to be important

components of a good IT strategy. Partnership
measures the rapport between sub-units and
their interaction including issues of trust, shared
goals, and values. Value of testing (Luftman &
Kempaiah, 2007) deals with perceptions of the
benefits of interaction as well as the metrics
used to quantify the performance output of a
sub-unit and its relative contribution to the other
sub-unit’s output.

Alignment is another important concept
that has been studied in IS literature (Henderson
& Venkatraman, 1993; Luftman & Kempaiah
2007; Preston & Krahanna, 2009) and is also
important in our list of dependent variables.
Henderson and Venkatraman (1993) indentify
two main components of alignment – strategy
alignment and capability alignment, which we
measure as alignment between two individual
subunits of the IT department (i.e., develop-
ment and testing subunits). Following Preston
and Karahanna (2009), our paper uses social
systems of knowing – defined as the informal
interaction between individuals or groups of
software developers and testers – as a salient
variable that can be influenced by governance
choices.

Clearly, the choices for software testing
governance can have impacts on an organiza-
tion as a whole (e.g., software development
organizations), groups (e.g., development
groups and testing groups), and individuals (e.g.,
developers and testers). As such, we categorize
the dependent variables representing impacts of
the choice of software testing governance into
three levels, including organizational, group,
and individual (see Figure 1). The dependent
variables that represent organizational impacts
include: software quality, value of testing, and
development/testing alignment. The dependent
variables that represent group impacts include:
strategy alignment, capability alignment, and
social systems of knowing. The dependent
variables that represent individual impacts
include: trust between developer and tester,
partnership between developer and tester, and
job satisfaction.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

72 Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014

Organizational Impacts

For the organizational impacts, we investigate
three salient outcomes of governance choices:
software quality, value of testing, and devel-
opment/testing alignment. First we look at
the overall software quality as an important
organizational outcome. The quality of software
developed has important implications to the
success of a software development organization.
We posit that all three independent variables
(i.e., the existence of a distinct corporate testing
unit, developers and testers reporting to different
executives, and one-to-one matching between
developers and testers) will positively influence
the quality of the software developed. Having
a distinct corporate testing unit allows the test-
ing unit to provide a more cogent and efficient
testing strategy and implementation than when
testing is only a small part of the development
(Miller, 2009). Zhang et al. (2010) pointed out
three important advantages with the existence of
a distinct corporate testing unit: (1) testers will
focus on testing; (2) testers will feel less pressure
to ship; and (3) testers will provide “an objec-
tive look at the software being tested” (Craig
& Jaskiel, p. 297). Myers (2004) argues that “a
programming organization should not test its
own programs” (p. 16) because development
unit and testing unit have distinct objectives.
Similarly, developers and testers reporting to
different executives creates a stronger testing
unit that is better able to both act as a valida-
tion entity as well as an improvement entity
for the software developed. Finally, having
one-to-one matching between developers and
testers “facilitates good communication and
free flow of information” (Zhang et al., 2010,
p. 4); it also has been shown to improve the
quality of software by providing immediate
and personalized feedback about a piece of
software (Page et al., 2008).

H1a: The existence of a distinct corporate unit
for software testing will positively influ-
ence the quality of software developed.

H2a: Developers and testers reporting to dif-
ferent executives will positively influence
the quality of software developed.

H3a: One-to-one matching between developers
and testers will positively influence the
quality of software developed.

The second organizational impact inves-
tigated is the perceived value of testing in the
organization (Luftman & Kempaiah, 2007). It
is easy to see how both of a distinct corporate
testing unit and developers and testers report-
ing to different executives would improve the
perceived value of testing to the organization.
Having a clear delineation of departments and
responsibility allows the organization to both
clearly perceive and quantify the outputs and
benefits of testing to the organization. It also
allows testing to have a more coherent view of
itself and to be more in control of its strategies
and capabilities. One-to-one matching pairs
up individual developers with individual tes-
ters and thus leads to the creation of personal
rapport and relationships between testers and
developers that lead to a better perception of
testers in software development and in the
overall organization.

H1b: The existence of a distinct corporate unit
for software testing will positively influ-
ence organizational understanding of the
value provided by testing.

H2b: Developers and testers reporting to dif-
ferent executives will positively influence
organizational understanding of the value
provided by testing.

H3b: One-to-one matching between develop-
ers and testers will positively influence
organizational understanding of the value
provided by testing.

The third organizational impact inves-
tigated pertains to the overall alignment
(Henderson & Venkatraman, 1993; Luftman
& Kempaiah, 2007; Preston & Karahanna,
2009) between the development and testing
units. All three independent variables positively
impact the alignment between the software
development and testing subunits. The first
two variables impact alignment by providing an
independent scaffold on which both testing and

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014 73

development can build their strategies. Since
both units are independent of each other, they
can build internally the specific capabilities
that are required to enact their stated strate-
gies. Also, since both units are sovereign,
independent units, they can interact on similar
terms and reach a common understanding of
software creation goals and strategies. One-
to-one matching also leads to better alignment
between development and testing due to the
increased communication and rapport between
individual developers and testers. Since they
are in frequent communication and interaction,
individual developers and testers are more likely
to create a common language and understanding
of their jobs (Preston & Karahanna, 2009) as
well as be able to know the needs of the other
party better.

H1c: The existence of a distinct corporate unit
for software testing will positively influ-
ence development/testing alignment.

H2c: Developers and testers reporting to dif-
ferent executives will positively influence
development/testing alignment.

H3c: One-to-one matching between develop-
ers and testers will positively influence
development/testing alignment.

Group Impacts

For the group impacts, we investigate three
salient outcomes of governance choices:
strategy alignment, capability alignment, and
social systems of knowing. As part of alignment
between developers and testers, we investigate
both strategy and capability alignment (Hender-
son & Venkatraman 1993) of the development
and testing groups. These two types of align-
ment pertain to the strategies and capabilities
of each individual group (development and
testing) and how the group strategy and ca-
pabilities is in alignment or harmony with its
counterpart group’s strategy and capabilities.
Having a distinct testing group and a distinct
reporting structure will enable both testing and
development to create their own individual
strategies as well as internally coherent ways

of implementing said strategies by building
internal capabilities, deploying the right tools,
and employing the correct processes. All these,
however, will make it more difficult to achieve
either strategy or capability alignment between
development and testing groups. One-to-one
matching, on the other hand, will improve both
the strategy and capability alignment between
development and testing groups by creating a
common language, rapport, and understand-
ing between individual testers and developers
(Preston & Karahanna, 2009).

H1d: The existence of a distinct corporate
unit for software testing will negatively
influence strategy alignment between
developers and testers.

H2d: Developers and testers reporting to dif-
ferent executives will negatively influence
strategy alignment between developers
and testers.

H3d: One-to-one matching between developers
and testers will positively influence strategy
alignment between developers and testers.

H1e: The existence of a distinct corporate
unit for software testing will negatively
influence capability alignment between
developers and testers.

H2e: Developers and testers reporting to dif-
ferent executives will negatively influence
capability alignment between developers
and testers.

H3e: One-to-one matching between develop-
ers and testers will positively influence
capability alignment between developers
and testers.

Social systems of knowing (Preston &
Karahanna, 2009) are also influenced by soft-
ware testing governance choices. Having a
distinct testing unit and reporting to different
executives will decrease the level of informal
interaction between developers and testers,
negatively influencing the levels of social sys-
tems of knowing. On the other hand, one-to-one
matching will positively influence the level of
social systems of knowing between developers

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

74 Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014

and testers since they have a closer and more
personal interaction.

H1f: The existence of a distinct corporate unit
for software testing will negatively influ-
ence social systems of knowing between
developers and testers.

H2f: Developers and testers reporting to dif-
ferent executives will negatively influence
social systems of knowing between devel-
opers and testers.

H3f: One-to-one matching between developers
and testers will positively influence social
systems of knowing between developers
and testers.

Individual Impacts

For the individual impacts, we investigate
three salient outcomes of governance choices:
trust between developer and tester, partnership
between developer and tester, and job satisfac-
tion. Having a distinct corporate testing unit
and having developers and testers reporting to
different executives would lower the interaction
frequency and intensity between developers and
testers. As developers and testers are working
in different units and reporting to different
executives, individual communication and in-
teraction has a more formal structure and will
have to navigate through multiple levels of the
two departments. This would lower the level
of trust and partnership between developer and
tester. However, this would increase the level of
job satisfaction for both developers and testers
because both would feel their importance to
the organization as they have distinct units and
report to different executives.

One-to-one matching between developer
and tester, on the other hand, would increase
the interaction frequency and intensity between
developers and testers and would be beneficial
to both the level of trust and partnership between
developer and tester. Since individual develop-
ers and individual testers are paired up for the
duration of a project, they become closer to each
other. This increases the inherent partnership
in the pair and would also increase their level
of job satisfaction.

H1g: The existence of a distinct corporate unit
for software testing will negatively influ-
ence level of trust between developers
and testers.

H2g: Developers and testers reporting to dif-
ferent executives will negatively influence
level of trust between developers and
testers.

H3g: One-to-one matching between developers
and testers will positively influence level
of trust between developers and testers.

H1h: The existence of a distinct corporate
unit for software testing will negatively
influence partnership between developers
and testers.

H2h: Developers and testers reporting to dif-
ferent executives will negatively influence
partnership between developers and testers.

H3h: One-to-one matching between develop-
ers and testers will positively influence
partnership between developers and testers.

H1i: The existence of a distinct corporate unit
for software testing will negatively influ-
ence job satisfaction.

H2i: Developers and testers reporting to dif-
ferent executives will negatively influence
job satisfaction.

H3i: One-to-one matching between developers
and testers will positively influence job
satisfaction.

RESEARCH METHODOLOGY

Measurement Items

All measurement items for both independent
variables and dependent variables were either
adapted from existing scales or derived from
prior literature. The preliminary instrument
was pilot tested for appropriateness and clarity,
following Churchill (1979). Specifically, the
existence of a distinct corporate testing unit
was measured by one item: Software testing
represented an identifiable and distinct organi-
zational unit. Developers and testers reporting to
different executives was measured by one item:
Developers reported to a different executive than
testers. The existence of one-to-one matching

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014 75

between developers and testers was measured
by one item: Testers were largely assigned to
support particular developers. Respondents
were asked to score these three measurement
items on 7-point Likert-type scales anchored at
(1) = strongly agree and (7) strongly disagree.

Software quality was measured using a
six-item scale (see Table 1 for the exact mea-
surement items, same below) adapted from
scales developed and validated by Barki and
Hartwick (2001), measuring six dimensions of
the construct: functionality, reliability, usability,
efficiency, maintainability, and portability. This
adapted six-item scale is in accordance with
software quality measurement scales recom-
mended by Issac et al. (2003) and Ortega et
al. (2003). Respondents were asked to score
the measurement items on 7-point Likert-type
scales anchored at (1) = not at all and (7) =
definitely. A seven-item scale was created for
the measurement of the construct of value of
testing, based on Luftman and Kepaiah’s (2007)
framework.

The constructs of development/testing
alignment (3 items), strategy alignment (3
items), and capability alignment (3 items) were
adapted and expanded from Preston and Kara-
hanna (2009) and Henderson and Venkatraman
(1993). Items for the measurement of social
systems of knowing (3 items) were adapted from
Preston and Karahanna (2009). Respondents
were asked to score the measurement items
on 7-point Likert-type scales anchored at (1)
= strongly agree and (7) = strongly disagree.

Trust between developer and tester was
measured using a four-item scale adapted
from scales developed and validated by Simon
and Peterson (2000) and Peterson and Behfar
(2003), measuring four aspects of the construct:
expectations of truthfulness, certainty of trust,
integrity, and living up to one’s word. Respon-
dents were asked to score the measurement items
on 7-point Likert-type scales anchored at (1)
= always and (7) = never. Based on Luftman
and Kepaiah’s (2007) framework, a four-item
scale was created for the measurement of the
construct of partnership between developer and
tester. Job satisfaction was measured using a

five-item scale adapted from scales developed
and validated by Wright and Cropanzano (1998),
measuring five dimensions of the construct:
degree of satisfaction with the work itself,
degree of satisfaction with co-workers, degree
of satisfaction with the way being supervised,
degree of satisfaction with opportunities for
promotion, and degree of satisfaction with pay
and benefits. Respondents were asked to score
the measurement items on 7-point Likert-type
scales anchored at (1) = strongly agree and (7)
= strongly disagree.

Data Collection

An online survey instrument was then devel-
oped, and the survey link was distributed by
individual emails to software development
professionals. We used “Request for Research
Assistance” as the subject for the soliciting
emails. In the body of the email, we provided
information about the purpose of our study.
We also assured recipients that their responses
would be kept completely confidential and that
there would not be a way for us to link their
responses back to them or to their organizations.
The respondents were offered as an incentive
a summary report of the survey results if re-
quested. A second email, serving as a reminder,
was sent three weeks after the first one.

We obtained a total of 1836 unique names
and their corresponding emails from three ma-
jor sources: a database provided by a software
testing research center, an online directory
of software testers and consultants, and the
SourceForge.net portal. All in all, 196 people
(10.68%) responded to the online survey. The
majority of the respondents were employees
of US based organizations with a significant
software development and testing employee
base (over 140 of the obtained responses).
The remainder of the respondents came from
the open source portal – SourceForge.net.
There is no significant difference between the
responses of respondents from SourceForge
and the responses of respondents from regular
US based organizations. Among them, 46.4%
identified themselves as developers, another

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

76 Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014

42.3% identified themselves as testers, and the
remaining 11.2% identified themselves as other
software development professionals. Responses
were removed from the final data set if (1) they
were not from developers or testers, or (2) they

contained over 60% of missing values. As a
result, a total of 159 responses were included
in our data analysis: 80 were from developers,
and 79 were from testers.

Table 1. Constructs and measurement items

CONSTRUCT MEASUREMENT ITEMS

Distinct Testing Unit Software testing represented an identifiable and distinct organizational unit

Reporting Structure Developers reported to a different executive than testers

One-to-One Matching Testers were largely assigned to support particular developers

Software Quality • The software developed is reliable (it is always up and running, runs without errors, and does what
it is supposed to do).
• It is easy to tell whether the software is functioning correctly.
• The software can easily be modified to meet changing user requirements.
• The software is easy to maintain.
• The software is easy to use.
• The software performs its functions quickly.

Value of Testing • There are established testing metrics for demonstrating the value of testing to the organization.
• There are established development metrics to demonstrate the value of development to the
organization.
• The organization uses balanced measurements that are understood and accepted by both
development and testing, to measure their relative contributions.
• There are explicit service level agreements in place for assessing the contribution of testing to
software development.
• There are explicit benchmarking standards available for assessing the contribution of the testing
group.
• There are formal assessments and reviews conducted for evaluating the success of testing efforts.
• Continuous improvement processes exist for advancing testing efforts.

Development/Testing Alignment • The software testing strategy is congruent with the software development strategy in your
organization.
• Decisions in test planning are tightly linked to decisions in development planning.
• Our testing and development strategy are closely aligned.

Strategy Alignment • The scope of the development group is tightly linked with that of the testing group.
• The governance of the development group is in harmony with that of the testing group.
• The resources of the development group are aligned with those of the testing group.

Capability Alignment • The software testing processes is congruent with the software development strategy in your
organization.
• Our testing infrastructure is tightly integrated with development infrastructure.
• Our testing and development capabilities are closely aligned.

Social Systems of Knowing • Developers have regular informal contact with testers.
• Developers regularly socialize with testers outside of the work setting (social gatherings, golf,
tennis, etc.).
• Developers have regular informal exchanges with testers.

Trust between Developer and Tester • To what extent were developers and testers truthful to each other?
• To what extent could developers and testers trust each other?
• To what extent did developers and testers show integrity in their interactions?
• To what extent could developers and testers count on the other to live up to their word?

Partnership between Developer
and Tester

• The testing leadership plays a direct role in IS development planning.
• Testing and development rewards/penalties are based on shared goals and risk factors.
• There is a high level of trust between testing and development.
• Development and testing commonly partner to sponsor and champion IS initiatives.

Job Satisfaction • I am satisfied with the work that I do in my job.
• I am satisfied with my coworkers.
• I am satisfied with the way I am supervised.
• I am satisfied with opportunities for promotion in my job.
• I am satisfied with my pay and benefits.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014 77

Demographics of the Respondents

Demographics of the respondents assessed
include: gender, education, years of job related
work experience, years with current software
development and testing organization, and gross
annual income (see Table 2). The ratio of male
respondents (67.92%) and female respondents
(32.08%) was roughly 2:1. More than 80% of the
respondents had a bachelor’s degree (43.40%)
or a master’s degree (38.99%) as their highest
degree. More than half of them (54.09%) had
over 10 years work experience related to their
current job, and more than half of them (51.57%)
had spent 1 to 5 years with their current software
development and testing organization. About
79.25% of the respondents had a gross annual
income in the range of $50,000 - $100,000.

DATA ANALYSIS AND FINDINGS

Data Transformation

Before analyzing the data, we transformed all
the data items to simplify data analysis and
results interpretation. Specifically, we created
three new data items (DTU, RS, and OM) from
the original three data items for the independent
variables, including the existence of a distinct
corporate testing unit, developers and testers re-
porting to different executives, and the existence
of one-to-one matching between developers and
testers, respectively. For each new data item,
we assigned 1 to it if the value associated with
the original data item is 1, 2, or 3; we assigned
2 to it if the value associated with the original
data item is 5, 6, or 7; and we assigned 3 to it
if the value associated with the original data
item is 4. These formed three groups: group 1,
group 2, and group 3. Data items in group 1 and
group 2 were used in the data analysis process,
and those in group 3 were not used.

For the dependent variables, the transfor-
mation was straightforward. New data items
were created, and each had a value that was a
simple summation of the values of its associated
original data items. For instance, the value of

JS (job satisfaction) equals to JS1 + JS2 + JS3
+ JS4 + JS5.

Data Analysis

Three independent-samples t tests were
performed using SPSS v. 17 for Windows.
“Exclude cases listwise” was used for missing
values. For each t test, the test variables were
the dependent variables, and the grouping
variables were DTU, RS, and OM, respectively.
Grouping variables were considered to have
made a significant difference in test variables
if the p-value (strength of significance) was
.05 or less (a lower p-value indicates a stronger
level of difference). The primary goal herein
was to determine whether each of the three
independent variables, i.e., the existence of a
distinct corporate testing unit, developers and
testers reporting to different executives, and
the existence of one-to-one matching between
developers and testers, influences the dependent
variables. We used Cronbach’s alpha to show
good reliability (above .7, Nunnally, 1978)
for all the constructs used in this paper (Job
Satisfaction .71; Software Quality .89; Trust
.92; Developer Tester Alignment .91; Social
Systems of Knowing .80; Value of Testing
.89; Partnership .70; Strategic Alignment .89;
Capability Alignment .86).

Results

The Existence of a Distinct
Corporate Testing Unit

The results of the independent samples t test
using the existence of a distinct corporate
testing unit (DTU) as the grouping variable
are presented in Table 3. There are 138 data
points: 118 in group 1 and 20 in group 2. The
value of “software quality” reported in group
1 is significantly (p = .034) higher than that
of group 2. The value of “value of testing”
reported in group 1 is (almost) significantly (p
= .054) lower than that of group 2. The value
of “development/testing alignment” reported in
group 1 is significantly (p = .002) lower than
that of group 2.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

78 Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014

These results suggest that the formalization
of a distinct corporate unit for software testing
(group 1) improves: (1) the quality of software
developed, (2) organizational understanding of
value provided by testing, and (3) development/
testing alignment.

Developers and Testers Reporting
to Different Executives

The results of the independent samples t test
using developers and testers reporting to differ-
ent executives (RS) as the grouping variable are

presented in Table 3. There are 144 data points:
104 in group 1 and 40 in group 2. The value
of “strategy alignment” perceived in group 1
is significantly (p = .008) higher than that of
group 2. The value of “capability alignment”
perceived in group 1 is significantly (p = .009)
higher than that of group 2. The value of “social
systems of knowing” perceived in group 1 is
significantly (p = .003) higher than that of group
2. The value of “trust between developer and
tester” perceived in group 1 is significantly (p
= .012) higher than that of group 2.

Table 2. Demographics of the respondents (N = 159)

CATEGORY VALUE FREQUENCY PERCENTAGE

Gender
Male 108 67.92%

Female 51 32.08%

Education

HS diploma 10 6.29%

Associate’s degree 12 7.55%

Bachelor’s degree 69 43.40%

Master’s degree 62 38.99%

Doctoral degree 6 3.77%

Years of job related work experience

Less than 1 year 2 1.26%

1 to 3 years 15 9.43%

3 to 5 years 11 6.92%

5 to 7 years 18 11.32%

7 to 10 years 27 16.98%

Over 10 years 86 54.09%

Years with current software development and
testing organization

Less than 1 year 8 5.03%

1 to 3 years 39 24.53%

3 to 5 years 43 27.04%

5 to 7 years 21 13.21%

7 to 10 years 22 13.84%

Over 10 years 26 16.35%

Gross annual income

Under $25,000 9 5.66%

$25,000 to $50,000 10 6.29%

$50,000 to $75,000 57 35.85%

$75,000 to $100,000 69 43.40%

$100,000 to $125,000 11 6.92%

Over $125,000 3 1.88%

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014 79

The above results suggest that developers
and testers reporting to different executives
(group 1) leads to: (1) reduced strategy align-
ment, (2) reduced capability alignment, (3)
reduced social systems of knowing, and (4)
reduced trust between developers and testers.

The Existence of One-to-
One Matching Between
Developers and Testers

The results of the independent samples t test
using the existence of one-to-one matching
between developers and testers (OM) as the
grouping variable are also presented in Table
3. There are 130 data points: 40 in group 1 and
90 in group 2. The value of “software quality”
reported in group 1 is significantly (p = .036)
higher than that of group 2. The value of “job
satisfaction” reported in group 1 is significantly
(p = .010) lower than that of group 2.

The above results suggest that one-to-
one matching between developers and testers
(group 1) improves: (1) the quality of software
developed, and (2) job satisfaction.

Hypothesis Tests

The hypotheses were assessed by examining
t-values and p-values generated from the three
independent-samples t tests. The hypothesis test
results are summarized in Table 4. Hypotheses
H1a, H1b, H1c, H2d, H2e, H2f, H2g, H3a, and
H3i are supported, and the remaining hypotheses
are not supported. Of all the 27 hypotheses, 9
hypotheses are supported, and 18 hypotheses
are not supported. We think the fact that the
majority of our hypotheses are not supported
is because the scope of the impact of the three
independent variables (i.e., the existence of a
distinct corporate testing unit, developers and
testers reporting to different executives, and
one-to-one matching between developers and
testers) on the three level of dependent vari-
ables (i.e., organizational level, group level,
and individual level). If our model and data
were perfect, we could argue for the following:
Whether or not to have a distinct corporate test-
ing unit is a strategic decision, and this decision
will have significant impact on the dependent

Table 3. Independent samples tests with DTU, RS, and OM (Note: Numbers in bold represent
significant relationships; numbers in italics represent t values; Numbers in parentheses represent
p values)

INDEPENDENT VARIABLE

DEPENDENT VARIABLE Distinct Testing
Unit

Reporting
Structure

One to one
Matching

Organizational Impacts

Software Quality 2.138 (.034) -.484 (.629) 2.118 (.036)

Value of Testing -1.942 (.054) -1.171 (.244) .359 (.720)

Development/Testing Alignment -3.153 (.002) .996 (.321) -.684 (.495)

Group Impacts

Strategy Alignment -1.686 (.095) 2.716 (.008) -.940 (.350)

Capability Alignment -.212 (.833) 2.643 (.009) .376 (.707)

Social Systems of Knowing -1.159 (.249) 2.993 (.003) -.465 (.643)

Individual Impacts

Trust between Developer and Tester -.484 (.629) 2.554 (.012) 1.036 (.302)

Partnership between Developer and
Tester

-.762 (.447) 1.110 (.269) -1.797 (.075)

Job Satisfaction -.202 (.840) -.259 (.796) -2.626 (.010)

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

80 Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014

variables at the organizational level but not on
those at the group level or the individual level.
Similarly, whether or not to require developers
and testers to report to different executives is
a tactical decision, and this decision will have
significant impact on the dependent variables
at the group level, but not on those at the or-
ganizational level or the individual level. And
finally, whether or not to match developers and
testers one-to-one is an operational decision,
and this decision will have significant impact on
the dependent variables at the individual level,
but not on those at the organizational level or
the group level.

DISCUSSION

Implications of Findings

Our research complements current governance
research by focusing attention on a somewhat
overlooked aspect of the implications of high
level governance choices regarding software
development and testing departments on the
result of the software development and testing
process, as well as on the internal interactions
between software developers and testers. This
paper offers insights on how governance choices
regarding the departmental make-up, reporting
structure, and the internal software development
and testing team composition impact the quality
of the software produced, job satisfaction, align-
ment between software developers and testers
as well as the personal relationship between
developers and testers. These components have
been looked at before, but not in the context of
the software development and testing depart-
ments. Some of the variables investigated by this
research are peculiar to software development
and testing departments (one to one testing,
independent testing unit, software quality, etc.);
and this paper breaks ground in showing that
governance choices can have significant impacts
on the quality of the output and relationships in
software development and testing departments.

CIOs and senior IT executives who man-
age software development have to make three
important governance choices. At the strategic

level, a decision has to be made about whether
to create a distinct organizational unit for test-
ing. At the tactical level, a decision has to be
made about whether to let testers report to the
same executive as developers. At the operational
level, a decision has to be made about whether
to closely match individual testers to designated
developers.

Among these three governance choices,
the first is of the most significance and should
be the focus of governance deliberations. This
is because this governance choice has signifi-
cant organizational impacts such as increased
software quality, increased organizational un-
derstanding of value provided by testing, and
increased alignment between development and
testing. Putting testers in a distinct organiza-
tional unit provides a host of positive impacts
and has no significant detrimental effects on
our investigated outcome variables.

Similarly, IT leaders may want to prioritize
one-to-one matching between developers and
testers in their governance choices because
it also yields a variety of positive impacts, at
both organizational and individual levels. These
benefits include increased software quality and
increased job satisfaction.

IT leaders who are structuring reporting
mechanisms for testers and developers need to
understand that having them report to different
executives has multiple negative consequences
such as decreased strategy alignment, decreased
capability alignment, decreased social systems
of knowing, and decreased trust between de-
velopers and testers.

A key theoretical implication of our result
is that the goals of the organization should
drive governance design choices. For instance,
if the particular goal is to improve software
quality, then the focus should be on setting up
distinct testing units and one-to-one matching
mechanisms as against decisions pertaining to
the reporting structure.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014 81

Table 4. Summary of hypothesis tests

HYPOTHESIS T-VALUE P-VALUE SUPPORT FOR
HYPOTHESIS

H1a: The existence of a distinct corporate unit for
software testing will positively influence the quality of
software developed.

2.138 .034 Supported

H1b: The existence of a distinct corporate unit for
software testing will positively influence organizational
understanding of the value provided by testing.

-1.942 .054 Supported

H1c: The existence of a distinct corporate unit for
software testing will positively influence development/
testing alignment.

-3.153 .002 Supported

H1d: The existence of a distinct corporate unit for
software testing will negatively influence strategy
alignment between developers and testers.

-1.686 .095 Not Supported

H1e: The existence of a distinct corporate unit for
software testing will negatively influence capability
alignment between developers and testers.

-.212 .833 Not supported

H1f: The existence of a distinct corporate unit for
software testing will negatively influence social systems
of knowing between developers and testers.

-1.159 .249 Not supported

H1g: The existence of a distinct corporate unit for
software testing will negatively influence level of trust
between developers and testers.

-.484 .629 Not supported

H1h: The existence of a distinct corporate unit for
software testing will negatively influence partnership
between developers and testers.

-.762 .447 Not supported

H1i: The existence of a distinct corporate unit
for software testing will negatively influence job
satisfaction.

-.202 .840 Not supported

H2a: Developers and testers reporting to different
executives will positively influence the quality of
software developed.

-.484 .629 Not supported

H2b: Developers and testers reporting to different
executives will positively influence organizational
understanding of the value provided by testing.

-1.171 .244 Not Supported

H2c: Developers and testers reporting to different
executives will positively influence development/testing
alignment.

.996 .321 Not supported

H2d: Developers and testers reporting to different
executives will negatively influence strategy alignment
between developers and testers.

2.716 .008 Supported

H2e: Developers and testers reporting to different
executives will negatively influence capability alignment
between developers and testers.

2.643 .009 Supported

H2f: Developers and testers reporting to different
executives will negatively influence social systems of
knowing between developers and testers.

2.993 .003 Supported

continued on following page

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

82 Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014

Limitations and Suggestions
for Future Research

This study has several limitations. First, each of
the three independent variables was measured
by a single item. This can be troublesome in
survey research such as ours. Future research is
thus encouraged to develop and validate multi-
item scales for these constructs. For example,
further refinement of the one-to-one matching

construct between developers and testers is
a viable area for new and follow-up studies.
Second, software quality was measured by a
survey of software developers and testers. It is
understandable that there may be a difference
between software quality perceived by devel-
opers and testers and that perceived by end
users. Future research can focus on end users
to measure the perceptions of software quality.

HYPOTHESIS T-VALUE P-VALUE SUPPORT FOR
HYPOTHESIS

H2g: Developers and testers reporting to different
executives will negatively influence level of trust
between developers and testers.

2.554 .012 Supported

H2h: Developers and testers reporting to different
executives will negatively influence partnership between
developers and testers.

1.110 .269 Not supported

H2i: Developers and testers reporting to different
executives will negatively influence job satisfaction.

-.259 .796 Not supported

H3a: One-to-one matching between developers and
testers will positively influence the quality of software
developed.

2.118 .036 Supported

H3b: One-to-one matching between developers
and testers will positively influence organizational
understanding of the value provided by testing.

.359 .720 Not supported

H3c: One-to-one matching between developers and
testers will positively influence development/testing
alignment.

-.684 .495 Not supported

H3d: One-to-one matching between developers and
testers will positively influence strategy alignment
between developers and testers.

-.940 .350 Not supported

H3e: One-to-one matching between developers and
testers will positively influence capability alignment
between developers and testers.

.376 .707 Not supported

H3f: One-to-one matching between developers and
testers will positively influence social systems of
knowing between developers and testers.

-.465 .643 Not supported

H3g: One-to-one matching between developers and
testers will positively influence level of trust between
developers and testers.

1.036 .302 Not supported

H3h: One-to-one matching between developers and
testers will positively influence partnership between
developers and testers.

-1.797 .075 Not Supported

H3i: One-to-one matching between developers and
testers will positively influence job satisfaction.

-2.626 .010 Supported

Table 4. Continued

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014 83

Several other directions for future research
can also be suggested. First, other researchers
may want to explore our constructs in other
contexts besides those that drove our study.
Second, future studies may want to focus on
directly integrating some of the significant
relationships identified in this paper into action-
able contingency theories. Third, future research
can also attempt to triangulate our findings by
conducting focused qualitative studies to add
another level of validation. Fourth, future work
can further refine our framework by including
additional theoretically driven antecedents and
outcomes. Fifth, future research can investigate
whether the organization type and the choices
the organization makes regarding their software
and testing units moderate any of our proposed
relationships.

CONCLUSION

This study investigates the influence of soft-
ware testing governance choices on a set of
dependent variables that represent impacts at
the organizational, group, and individual levels.
A key conclusion arising from our study is that
software testing governance design is a complex
task involving the consideration of a broad array
of strategic, tactical, and operational choices
and a diverse set of organizational, group, and
individual impacts. This suggests that context-
driven contingency theories may be more ap-
propriate than singular theoretic formulations
that focus on narrow imperatives. Our study
helps focus managerial attention on the pertinent
contextual impacts and relative balance between
governance decisional choices. Specifically, our
results suggest that, to maximize the benefits
resulted from the software testing governance
choices, software development organizations
should do the following: (1) create a distinct
organizational unit for testers, (2) let both
development and testing groups report to the
same executive, and (3) emphasize one-to-one
matching between developers and testers.

REFERENCES

Barki, H., & Hartwick, J. (2001). Interpersonal
conflict and its management in information system
development. Management Information Systems
Quarterly, 25(2), 195–228. doi:10.2307/3250929

Callahan, J., & Keyes, D. (2003). The evolution of
IT governance at NB power. In W. Van Grembergen
(Ed.), Strategies for information technology gover-
nance. Hershey, PA: IGI Global. doi:10.4018/978-
1-59140-140-7.ch013

Churchill, G. A. (1979). A paradigm for develop-
ing better measures of marketing constructs. JMR,
Journal of Marketing Research, 16(1), 64–73.
doi:10.2307/3150876

Cohen, C. F., Birkin, S. J., Garfield, M. J., & Webb,
H. W. (2004). Management conflict in software
testing. Communications of the ACM, 47(1), 76–81.
doi:10.1145/962081.962083

Craig, R. D., & Jaskiel, S. P. (2002). Systematic
software testing. Norwood, MA: Artech House Pub-
lishers.

Crispin, L., & Gregory, J. (2009). Agile testing: A
practical guide for testers and agile teams. Boston,
MA: Addison-Wesley.

De Haes, S., & Van Grembergen, W. (2008). An
exploratory study into the design of an IT gover-
nance minimum baseline through Delphi research.
Communications of the Association for Information
Systems, 22, 443–458.

De Haes, S., & Van Grembergen, W. (2009). An
exploratory study into IT governance implemen-
tations and its impact on business/IT alignment.
Information Systems Management, 26(2), 123–137.
doi:10.1080/10580530902794786

Dhaliwal, J., Onita, C., Poston, R., & Zhang, X.
(2011). Alignment within the software development
unit: Assessing structural and relational dimen-
sions between developers and testers. The Journal
of Strategic Information Systems, 20(4), 323–342.
doi:10.1016/j.jsis.2011.03.001

Henderson, J. C., & Venkatraman, N. (1993). Stra-
tegic alignment: Leveraging information technology
for transforming organizations. IBM Systems Journal,
32(1), 4–16. doi:10.1147/sj.382.0472

Highsmith, J., & Cockburn, A. (2001). Agile software
development: The business of innovation. IEEE
Computer, 34(9), 120–122. doi:10.1109/2.947100

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

84 Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014

Issac, G., Rajendran, C., & Anantharaman, R. N.
(2003). Determinants of software quality: Customer’s
perspective. TQM & Business Excellence, 14(9),
1053–1070. doi:10.1080/1478336032000090950

ITGI. (2003). Board briefing on IT governance (2nd
ed.). Retrieved from http://www.itgi.org

Jehn, K. A., & Mannix, E. A. (2001). The dynamic
nature of conflict: A longitudinal study of intragroup
conflict and group performance. Academy of Manage-
ment Journal, 44(2), 238–251. doi:10.2307/3069453

Keill, M., Tiwana, A., & Bush, A. (2002). Recon-
ciling user and project manager perceptions of IT
project risk: A Delphi study. Information Systems
Journal, 12(2), 103–119. doi:10.1046/j.1365-
2575.2002.00121.x

Larman, C., & Vodde, B. (2008). Scaling lean & agile
development: Thinking and organizational tools for
large-scale scrum. Boston, MA: Addison-Wesley.

Lee, E. C. (2008). Forming to performing: Transi-
tioning large-scale project into agile. Proceedings of
AGILE 2008, Toronto, Canada (pp. 106-111).

Luftman, J., & Brier, T. (1999). Achieving and sus-
taining business-IT alignment. California Manage-
ment Review, 42(1), 109–122. doi:10.2307/41166021

Luftman, J., & Kempaiah, R. (2007). An update on
business-IT alignment: “A line” has been drawn.
MIS Quarterly Executive, 6(3), 165–177.

Miller, D. (2009). Keynote speech: Innovations and
best practices in software quality assurance. The
Malaysian Software Testing Board (MSTB) Software
Testing Conference (SOFTEC 2009), Kuala Lumpur,
Malaysia.

Myers, G. J. (2004). The art of software testing (T.
Badgett, T. M. Thomas, & C. Sandler, Eds.). 2nd
ed.). Hoboken, NJ: John Wiley & Sons.

Ortega, M., Pérez, M., & Rojas, T. (2003). Construc-
tion of a systemic quality model for evaluating a
software product. Software Quality Journal, 11(3),
219–242. doi:10.1023/A:1025166710988

Page, A., Johnston, K., & Rollison, B. J. (2008).
How we test software at Microsoft. Redmond, WA:
Microsoft Press.

Peterson, R. (2003). Information strategies and tac-
tics for information technology governance. In W.
Van Grembergen (Ed.), Strategies for information
technology governance. Hershey, PA: IGI Global.
doi:10.4018/978-1-59140-140-7.ch002

Peterson, R. (2004). Crafting information technol-
ogy governance. Information Systems Management,
21(4), 7–22. doi:10.1201/1078/44705.21.4.200409
01/84183.2

Peterson, R., Parker, M. M., & Ribbers, P. (2002,
December 15–18). Information technology gover-
nance processes under environmental dynamism:
Investigating competing theories of decision making
and knowledge sharing. In Proceedings of the 23th
International Conference on Information Systems
(ICIS), Barcelona, Spain.

Peterson, R. S., & Behfar, K. J. (2003). The dy-
namic relationship between performance feedback,
trust, and conflict in groups: A longitudinal study.
Organizational Behavior and Human Decision
Processes, 92(1), 102–112. doi:10.1016/S0749-
5978(03)00090-6

Pettichord, B. (2000). Testers and developers think
differently: Understanding and utilizing the diverse
traits of key players on your team. Software Testing
& Quality Engineering, 2(1), 42–45.

Preston, D. S., & Karahanna, E. (2009). Antecedents
of IS strategic alignment: A nomological Network.
Information Systems Research, 20(2), 159–179.
doi:10.1287/isre.1070.0159

Royce, W. W. (1970). Managing the development
of large software systems. In Proceedings of IEEE
WESCON (WESCON 1970), Los Angeles, CA (pp.
1-9).

Sambamurthy, V., & Zmud, R. W. (1999). Arrange-
ments for information technology governance: A
theory of multiple contingencies. Management
Information Systems Quarterly, 23(2), 261–290.
doi:10.2307/249754

Simons, T. L., & Peterson, R. S. (2000). Task con-
flict and relationship conflict in top management
teams: The pivotal role of intragroup trust. The
Journal of Applied Psychology, 85(1), 102–111.
doi:10.1037/0021-9010.85.1.102 PMID:10740960

Teo, T. S. H., & King, W. (1999). An empirical study
of the impacts of integrating business planning and
information systems planning. European Journal of
Information Systems, 8(3), 200–210. doi:10.1057/
palgrave.ejis.3000334

Van Grembergen, W. (2002, January 7-10). Intro-
duction to the minitrack: IT governance and its
mechanisms. In Proceedings of the 35th Hawaii In-
ternational Conference on System Sciences (HICSS),
Big Island, HI.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Organizational and End User Computing, 26(1), 66-85, January-March 2014 85

Van Grembergen, W., De Haes, S., & Guldentops, E.
(2003). Structures, processes and relational mecha-
nisms for IT governance. In Van Grembergen (Ed.),
Strategies for information technology governance.
Hershey, PA: IGI Global.

Webb, P., Pollard, C., & Ridley, G. (2006, January
4-7). Attempting to define IT governance: Wisdom or
folly? In Proceedings of the 39th Hawaii International
Conference on Systems Sciences (HICSS), Kauai, HI.

Weill, P., & Broadbent (1998). Leveraging the new
infrastructure: How market leaders capitalize on
information technology. Boston, MA: Harvard Busi-
ness School Press.

Weill, P. (2004). Don’t just lead govern: How top-
performing firms govern IT. MIS Quarterly Execu-
tive, 3(1), 1–17.

Weill, P., & Ross, J. (2004). IT governance: How top
performers manage IT decision rights for superior
results. Boston, MA: Harvard Business School Press.

Wright, T. A., & Cropanzano, R. (1998). Emotional
exhaustion as a predictor of job performance and vol-
untary turnover. The Journal of Applied Psychology,
83(3), 486–493. doi:10.1037/0021-9010.83.3.486
PMID:9648526

Zhang, X., Dhaliwal, J. S., & Gillenson, M. L. (2010).
Organizing software testing for improved quality
and satisfaction. Journal of Information Technology
Management, 21(4), 1–12.

Zhang, X., Dhaliwal, J. S., Gillenson, M. L., &
Moeller, G. (2008). Sources of conflict between
developers and testers in software development. In
Proceedings of 14th Americas Conference on Infor-
mation Systems (AMCIS 2008), Toronto, Canada
(Paper 313, pp. 1-12).

Zhang, X., Dhaliwal, J. S., Gillenson, M. L., &
Stafford, T. F. (2013). The impact of conflict judg-
ments between developers and testers in software
development. Journal of Database Management,
24(4), 26-50.

Zhang, X., Hu, T., Dai, H., & Li, X. (2010). Soft-
ware development methodologies, trends and
implications: A testing centric view. Information
Technology Journal, 9(8), 1747–1753. doi:10.3923/
itj.2010.1747.1753

Xihui Zhang is an Associate Professor of Computer Information Systems in the College of Busi-
ness of the University of North Alabama. He earned a Ph.D. in Business Administration with a
concentration in Management Information Systems from the University of Memphis. His teach-
ing and research interests include the human, social, and organizational aspects of Information
Systems. He has published in such leading journals as the Journal of Strategic Information
Systems, Information & Management, and Journal of Database Management.

Colin G. Onita is an Assistant Professor of Accounting Information Systems in the George
Daverio School of Accountancy at the University of Akron. His research deals with IS strategic
and tactical alignment, online social networks, IS services evaluation, and medical information
source choice and usage issues. He holds a Ph.D. in Business Administration with a concentra-
tion in Management Information Systems from the University of Memphis.

Jasbir S. Dhaliwal is Larry W. Papasan Professor of Information Systems at the University of
Memphis where he also serves as Associate Dean for Research and Academic Programs. He
is the founding Director of the Systems Testing Excellence Program at the FedEx Institute of
Technology whose mission is to advance the science of testing through cutting-edge research to
provide a stronger theoretical base for industry best-practices. He holds a Ph.D. from the Uni-
versity of British Columbia and has prior academic experience from universities in Singapore,
Canada, and Norway.

	The Impact of Software Testing Governance Choices
	Recommended Citation

	tmp.1690490887.pdf.LOpWe

