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Fluctuating Hydrodynamics in a Dilute Gas 

M. Malek Mansour, (a) Alejandro L. Garcia, <a> George C. Lie, and Enrico Clementi 
IBM Corporation, Kingston, New York 12401 

(Received 26 June 1986) 

Hydrodynamic fluctuations in a dilute gas subjected to a constant heat flux are studied by both a com
puter simulation and the Landau-Lifshitz formalism. The latter explicitly incorporates the boundary 
conditions of the finite system, thus permitting quantitative comparison with the former. Good agree
ment is demonstrated. 

PACS numbers: 47.90.+a, 05.40.+j, 05.70.Ln 

Fluctuating hydrodynamics is a stochastic formulation 
of standard fluid mechanics. 1 Spontaneous fluctuations 
of hydrodynamic variables are introduced into the trans
port equations by the addition of random components to 
the pressure and heat fluxes. Since these fluxes are not 
conserved quantities, the correlations between the ran
dom components are expected to be short ranged and 
short lived so that at hydrodynamic scales they are as
sumed to be Dirac-delta correlated. Their strengths are 
then chosen to yield the correct equilibrium thermo
dynamic fluctuations as derived from the Gibbs distribu
tion. Nowadays there are various ways to derive the 
Landau-Lifshitz fluctuating hydrodynamics and there is 
general agreement about its validity, at least in near
equilibrium situations. 2 

Extension of the theory to nonequilibrium systems 
leads to predictions of the asymmetry of the Brillouin 
lines in a liquid subjected to a constant heat flux. 3- 6 Ki
netic theory provides further support for these predic
tions. 7•8 Although these theoretical results are in agree
ment with light-scattering experiments, 9•10 the impor
tance of the nonlinearities 11 and the influence of the 
boundaries 12 remain under discussion (see also the work 
of Tremblay 13 ). In any case, the question arises as to 
the applicability of the fluctuating-hydrodynamics for
malism to systems under strong nonequilibrium con
straints. One way to address these questions is through 
particle simulations. 

In this article we study a dilute hard-sphere gas 
bounded by two parallel plates located at y =0 andy= L, 

aSp/at=- apo8t·/ay, 

a81· a 4 a11o a8t· asyy
po-- =-R-(To8p+po8T) +-------,

at ay 3 ay ay ay 

3 a8T 3 aTo asv a [ aTo 

using both the fluctuating-hydrodynamics formalism and 
a Boltzmann Monte Carlo particle simulation. The 
plates act as infinite reservoirs so that by fixing their 
temperatures one can impose the desired temperature 
gradient across the system. As can be checked easily 
from the macroscopic hydrodynamic equations, the heat 
flux in the stationary state is constant and the velocity is 
zero [note that there is no instability because we do not 
include external fields (gravity) in our formulation 141. 
To study the fluctuations, we first linearize the fluctuat
ing-hydrodynamics equations around the macroscopic 
stationary state. Since we are mainly interested in the 
influence of nonequilibrium constraints and since the 
particle simulations with which we compare our results 
employ periodic boundary conditions in the x and z 
directions, we shall limit ourselves to reduced quantities, 
defined as 

8A(y)=:..!_ (Lxdx (L,dz8A(x,y,z), (I)
S Jo Jo 

where A is any dynamical variable and S=LxLz is the 
wall cross section (note that the reduced variables are in 
fact the zero-wave-vector values of the "parallel" 
Fourier components of the dynamical variables). It is 
easy to check that the reduced equations for the x and z 
components of the velocity fluctuations decouple from 
the rest and are not influenced by the constraint. We 
will therefore concentrate our attention on the remaining 
equations for the reduced mass density 8p, the y com
ponent of velocity &•, and the temperature 8T, which 
turn out to be 

(2) 

(3) 

a8T] agy
2 poRfu = - 2 Rpo8t•ay- Poay + ay 8KfJY + Ko---ay - ay , (4) 

where the subscript 0 indicates local macroscopic quantities, R the Boltzmann constant divided by the mass, Tlo the 
shear viscosity, Kothe thermal conductivity, and Po the pressure. Syy and gy are the random components of the pressure 
and heat fluxes, respectively, with the following covariances 1: 

(sy,y (y, t )sy,y (y ',t ')) = f kaTo(17o/S)8(y- y ')8(t- t '), (Sa) 

(gy (y ,t )gy (y ',t ')) = 2kaT6(Ko/S)8(y- y ')8(t- t '), <sy,y (y ,t )gy (y ', t ')) =0. (5b,c) 
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In writing Eqs. (2)- (4) we have made use of the closure 
relations for a dilute gas, P(p, T) = RpT and 
e (p, T) = 3pRTI 2 where e is the internal energy density. 
If the force between the particles is purely repulsive and 
obeys a power law, then the transport coefficients are 
only functions of temperature as 15 T/o = T/c T8 and 
~eo=~ecTS, so that in Eq. (4) we can set 8~e=a~eo8TITo. 
For a hard-sphere gas, the exponent a is t and, from 
Chapman-Enskog theory, ICciT/c ==!SRI 4. 

There remains the problem of specifying the boundary 
conditions for Eqs. (2)- (4). If we assume that the state 
of the walls is statistically independent with respect to 
the system, then the boundary conditions for STare 

8T(y =O,t) =8T(y =L,t) =0. (6) 

The boundary conditions for &• follow from the conser
vation of the total particle number; the continuity equa
tion yields 

po(y) &• (y) Iboundaries= 0. (7) 

This completes our specification of the boundary condi
tions. 

It may seem strange that we do not have to specify 
any boundary conditions for op. From a physical point 
of view, this comes from the fact that the state of the 
wall can only constrain the temperature and velocity of 
the gas at the wall, whereas the behavior of the density 
close to the wall is entirely determined by the internal 
dynamics of the system. From the mathematical point of 
view, it can be shown that for any given initial condition 
8p(y,O), 8u(y,O), 8T(y,O), the boundary conditions for 
ou and 8T are sufficient to specify completely the solu
tion of the system. 16 

Because the coefficients and the noise are both space 
dependent and because we are dealing with a finite sys
tem, it is no longer possible to use elementary transform 
methods to solve the above fluctuating-hydrodynamics 
equations (for large enough systems, an expansion in the 
wave number of the gradient can still be used 4•17 ). An 
alternative approach would be a direct computer simula
tion of the Langevin equations (2)- (4). This is a useful 
method in the study of fluctuating-hydrodynamics equa
tions in two or three dimensions. 18 Here, instead, we 
construct the evolution equations for the correlation 
functions and numerically solve these equations by relax
ation. 19 The first step in this approach is the evaluation 
of the static correlation functions, which can then be 
used to compute the dynamical correlation functions as 
an initial value problem. In this short Letter we deal 
only the static correlation functions. 

To proceed further, we appeal to a very useful identity 
of the theory of stochastic processes 20; namely, given 
that 

dc;/dt=fJc~o ... ,c,.)+F;(t), i=l,2, ... ,n, (Sa) 

where the f;'s are arbitrary analytic functions of c;'s, and 

F; (t )'s are multi-Gaussian white-noise processes with co
variances 

(F;(t )F/t ')} =Qu8(t- t '), (8b) 

then 

{ t Qu, t = t ', 
(8c)(c;(t)F1(t'):: O, 1 < t'. 

For finite n, this identity is easily proved by writing the 
Fokker-Planck equation corresponding to (Sa) and from 
it deriving the second-moment equations. A comparison 
with the second-moment equations derived directly from 
(Sa) then leads to the relation (8c). These relations 
remain valid for n----+ oo although, from a strictly 
mathematical point of view, some special care is needed 
in the continuum case. Using the reiation (8c), one can 
derive the evolution equations for the equal-time correla
tion functions. If one discretizes the spatial derivatives, 
the steady-state solution may then be obtained by relaxa
tion methods. 

The primary purpose of this work is to compare the 
predictions of the fluctuating-hydrodynamics theory with 
particle-simulation results (the nonequilibrium effects we 
are considering are too subtle to be readily studied by 
laboratory experiments). Molecular-dynamics simula
tions prove to be too slow and have, thus far, yielded only 
qualitative results. 21 We rely, instead, on results ob
tained by a Boltzmann Monte Carlo simulation original
ly developed for rarefied gas studies by Bird 22 (some lim
itations of this method are discussed by Meiburg 23 ). We 
have considered a system containing 20000 particles be
tween two thermal plates 50 mean free paths (A.) apart 
and held at different temperatures. Here we report the 
results for a temperature gradient of 0.04° per mean free 
path. Distances and velocities are scaled by A. and the 
most probable speed, (2k 8 TIm) 112, respectively; the 

FIG. I. Comparison of the temperature-temperature spatial 
correlation functions obtained from the fluctuating-hydro
dynamics formalism (solid curve) and Boltzmann Monte Carlo 
particle simulation. Note that the local equilibrium delta
function contribution has been removed. 
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FIG. 2. Comparison of the density-velocity spatial correla
tion functions obtained from the fluctuating-hydrodynamics 
formalism (solid curve) and Boltzmann Monte Carlo particle 
simulation. 

mass is set equal to 1 and k B to t (see the work of Gar
cia 24 for details). The statistical error is estimated to be 
about 10% for the temperature autocorrelation function 
(Fig. 1) and less than 5% for the other correlation func
tions (Figs. 2 and 3). The local equilibrium contribu
tions to the correlation functions are removed and, as a 
result, larger errors are to be expected at the central 
peak. We note that there are no free parameters in the 
analysis; the solution of the correlation-function equa
tions is entirely specified once the simulation parameters 
are given. These are, in the reduced units, T(y = 0) = 1, 
T(y=L)=3, and 77c=5tr 112peq/16, where Peq is N/L. 
Because of a small slip in the temperature profile, 
T(y=L) is set equal to 2.95 in the hydrodynamic equa
tions (2)- (4). 

The program was run in parallel on two FPS264 array 
processors attached to the 1CAP2 system at IBM 
Kingston for 2x 10 5 collisions per article. Figure 1 
shows the temperature-temperature static correlation 
function which is clearly long ranged. Despite some sta
tistical scatter, the simulation results show quite good 
agreement with the fluctuating-hydrodynamics results. 
The nonequilibrium contribution to the global tempera
ture fluctuation (defined as the space average of the stat 
ic temperature autocorrelation function) is found to be 
proportional to the square of the temperature gradient. 
Further studies with different system sizes indicate that 
for fixed temperature gradient it increases with the 
length of the system. These observations are in agree
ment with previous work on model systems. 25 In Figs. 2 
and 3, we depict the density-velocity and density-density 
static correlation functions, respectively. Because of the 
conservation of the total mass, the static density auto
correlation function is strictly negative; its space integral 
compensates exactly for the local equilibrium contribu
tion. Both curves show much better agreement with the 
fluctuating-hydrodynamics predictions. Similar agree
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FIG. 3. Comparison of the density-density spatial correla
tion functions obtained from the fluctuating-hydrodynamics 
formalism (solid curve) and Boltzmann Monte Carlo particle 
simulation. Note that the local equilibrium delta-function con
tribution has been removed. 

ment is found for all the static correlation functions in
vestigated. For completeness, we are also studying the 
dynamic correlation functions and are experimenting 
with molecular-dynamics simulations for dense systems 
using more realistic interaction potentials. 

Our present observations suggest that the fluctuating
hydrodynamics equations are valid at length scales of a 
few mean free paths even in the presence of strong non
equilibrium constraints, at least for a dilute gas (see also 
Alder and Wainwright 26 ). Had the data shown other
wise then a strictly microscopic formulation in kinetic 
theory would have been the only recourse. We consider 
this a fortunate development which will encourage future 
work in this direction. For instance, recent large-scale 
molecular-dynamics results demonstrate the feasibility of 
the observation of macroscopic hydrodynamic phenome
na such as vortex formation and shedding past an obsta
cle23·27·28 in particle simulations. The next major step, of 
course, will be the study of fluctuations near hydro
dynamic instabilities by computer simulations. Our re
sults indicate that fluctuating hydrodynamics provides a 
promising way to tackle this problem, at least before 
and, probably, close to the instability. 14 

The authors wish to thank Prof. G. Nicolis, Prof. 
I. Prigogine, Dr. L. Hannon, Dr. F. Baras, Dr. J. W. 
Turner, and Dr. M. Mareschal for their stimulating dis
cussions and helpful suggestions. Two of us (A.G. and 
M.M.) also wish to thank the Computational Support 
staff, particularly Dr. R. Caltabiano and Dr. M. Russo, 
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