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Hydrodynamic description of the adiabatic piston 

M. Malek Mansour,1 Alejandro L. Garcia,2 and F. Baras3 

1Universite Libre de Bruxelles, 1050 Brussels, Belgium
 
2Department of Physics, San Jose State University, San Jose, California, USA
 

3Université de Bourgogne, LRRS, F-21078 Dijon Cedex, France
 
(Received 20 July 2005; published 18 January 2006; publisher error corrected 19 January 2006) 

A closed macroscopic equation for the motion of the two-dimensional adiabatic piston is derived from 
standard hydrodynamics. It predicts a damped oscillatory motion of the piston towards a final rest position, 
which depends on the initial state. In the limit of large piston mass, the solution of this equation is in 
quantitative agreement with the results obtained from both hard disk molecular dynamics and hydrodynamics. 
The explicit forms of the basic characteristics of the piston’s dynamics, such as the period of oscillations and 
the relaxation time, are derived. The limitations of the theory’s validity, in terms of the main system param
eters, are established. 

DOI: 10.1103/PhysRevE.73.016121 PACS number(s): 05.70.Ln, 05.40.-a 

I. INTRODUCTION 

Consider an isolated cylinder with two compartments, 
separated by a piston. The piston is free to move without 
friction along the axis of the cylinder and it has a zero heat 
conductivity, hence its designation as the adiabatic piston. 
This construction, first introduced by Callen [1], became 
widely known after Feynman discussed it in his famous lec
ture series [2]. Since then it has attracted considerable atten
tion [3–5]. For a sufficiently large piston mass, the following 
scenario describes the evolution of the system [6,7]. Starting 
from a nonequilibrium configuration (i.e., different pressures 
in each compartment) the piston performs a damped oscilla
tory motion. The oscillations eventually die out and the sys
tem reaches an intermediate state of “mechanical equilib
rium,” with equal pressure on each side of the piston, but 
different densities and temperatures (see Fig. 1). On a second 
(much longer) time scale, a slow relaxation towards the “full 
thermodynamic equilibrium” state with equal temperatures 
and densities takes place (Fig. 2). 

This construction is interesting for two reasons. First, the 
second stage of the relaxation (e.g., t>5X105 in Fig. 2) 
provides a microscopic example of a so-called Brownian 
motor [8,9]: the fluctuations of the momentum exchanges 
between piston and particles establish a microscopic “ther
mal” contact between the two compartments. As a result, a 
slow effective heat transfer and a concomitant systematic 
motion of the piston appears, until eventually full thermody
namic equilibrium is reached. Both compartments are then at 
equilibrium, with the same temperature and pressure. 

Second, there is an apparent paradox regarding the ther
modynamic limit, N→o, V→o, N /V=n <o, where N rep
resents the total number of particles, V the volume of the 
cylinder, and n the global number density of the fluid. The 
piston motion arises from a pressure difference !P exerted 
by the fluid on each side of it. The resulting acceleration ap is 
then given by ap =!PS / M, where M and S denote the piston 
mass and surface, respectively. In the thermodynamic limit, 
the behavior of the piston greatly depends on how we take 
this limit at the piston level. The natural way is to fix once 
and for all the ratio M /S (i.e., fixed piston thickness) and to 

consider the limit M → o, S→ o with finite, nonzero piston 
acceleration ap, so that the first stage of the evolution re
mains essentially unchanged. The piston thus eventually 
reaches the mechanical equilibrium state where each com
partment is practically at thermodynamic equilibrium with 
different temperatures and densities. It then follows from ba
sic principles of equilibrium statistical mechanics that inten
sive state variables such as temperature, pressure, and den
sity tend to their (most probable) macroscopic values in the 
thermodynamic limit, i.e., their fluctuations vanish [10]. As  a  
result the microscopic “thermal” contact between the two 
compartments and the resulting heat transfer also vanish. 
This in turn implies that the second stage of the relaxation 
simply disappears so that the intermediate mechanical equi
librium state becomes the genuine final equilibrium state of 
the system (MD simulations illustrating this behavior are 
presented in Sec. II, Fig. 3). As noticed by several authors 
[11–13], the application of the maximum entropy criterion to 
predict this equilibrium state subsequently runs into trouble 
if the thermodynamic limit is taken prior to the t→o limit. 
The physical reason appears to be the degeneracy of the me
chanical equilibrium state: any state with the two compart
ments separately at equilibrium, with the same pressure and 
the piston at rest, is a possible equilibrium state. Equality of 
temperatures need not be achieved, because of the adiabatic 
property of the piston, leading to the paradoxical conclusion 
that in the thermodynamic limit the final state is not unique. 

FIG. 1. Piston position versus time, obtained from MD simula
tions. Piston mass is M = 512 where particle mass, m, is taken as 
unity; other parameters are as in Fig. 5. 
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FIG. 2. Same as Fig. 1, but extended fivefold in time. 

Our interest in this paper is mainly with respect to this last 
issue. We first reiterate that the above-mentioned paradox is 
directly related to the order in which the limits are taken, so 
that it has to be put on a purely mathematical ground. Here 
we focus only on actual physical systems where the system 
size, although arbitrarily large, remains nevertheless finite. 
But even in this case the problem is not solved completely. In 
fact, it is clear that in the limit of a large piston mass, the 
much slower Brownian motor regime is practically elimi
nated. But then the resulting degeneracy of the mechanical 
equilibrium state raises the question as to whether it can be 
predicted from the initial state by a macroscopic theory. 

In contrast to most previous theoretical approaches based 
on kinetic theory (e.g., [4,14 –17]), we investigate this ques
tion by means of standard hydrodynamics. A further distinc
tion is that practically all the earlier numerical studies were 
based on point particle (collisionless) gases [5,6] while here 
we use full molecular dynamics (MD) simulations of hard 
disk fluids [7,18]. A detailed comparison of these micro
scopic simulations with hydrodynamics predictions will be 
presented in the next section. The results are used as a guide
line to build a simple macroscopic theory with progressively 
increasing levels of sophistication (Secs. III and IV), leading 
finally to a closed piston equation of motion [18] (Sec. V). 
We will then show that this equation describes very accu
rately the motion of a heavy piston from an arbitrary initial 
state up to the final mechanical equilibrium state. This in turn 
allows us to express the limitations of the theory’s validity 
and the main characteristics of the piston dynamics, such as 
the period of oscillations, the relaxation time, and so forth, in 
terms of the basic parameters of the system (Sec. VI). Fi
nally, a summary of the work, with its advantages and weak
nesses, will be presented in Sec. VII where some perspec
tives for future work are also discussed. 

II. MOLECULAR DYNAMICS VERSUS
 
HYDRODYNAMICS
 

We consider a two-dimensional fluid composed of N hard 
disks of diameter d and mass m. The disks are separated in 

FIG. 3. Hard disk molecular dynamic setup. 

FIG. 4. Piston position, normalized by Lx, versus time for in
creasing values of M. The other parameters are Lx =4800, n 
=0.002 778, with M /Ly =4/3,  Xp(0)=Lx / 5 and vp(0) =0.  

two groups of N / 2 particles each, left (L) and right (R) of the 
piston. They are enclosed in a rectangular box of surface S 
=Lx XLy (Lx �Ly) oriented along the x and y axes (see Fig. 
3). To simplify the discussion, lengths and masses will be 
scaled by the disk diameter d and mass m, respectively, i.e., 
d=m = 1. Similarly, by an appropriate scaling of time and 
energy, the equilibrium temperature and the Boltzmann’s 
constant are set to unity. Initially, the piston is at rest, located 
at position Xp(0)=Lx / 5, and both compartments are in equi
librium with same temperature TL(t=0)=TR(t=0)=T0 =1  (in 
system units). Note that due to this asymmetric initial posi
tion, the initial pressures left and right are not equal. 

We have performed extensive MD simulations for differ
ent values of the main parameters (piston mass M, system 
width Ly, total number of hard disks N, etc). The system 
length and the number density are fixed to Lx =4800 and n 
=1/360  =0.002 778. Note that for such a low number den
sity the fluid behaves basically as a Boltzmann gas. An en
semble average over different realizations (i.e., different 
simulation runs) leads to the “macroscopic” quantities of in
terest, namely the fluid state variables, as well as the piston 
position Xp(t) and velocity vp(t). These results are then com
pared with the corresponding hydrodynamic predictions. In 
this section the ratio of piston mass to system width is al
ways M /Ly =4/3,  with a piston mass ranging from M =16  
(Ly =12, N=160) to M =8192 (Ly =6144, N=81 920). 

For the chosen set of parameters, a detailed numerical 
analysis shows that the separation between the short- and 
long-time regimes, corresponding respectively to the relax
ation to the “mechanical” and “full thermodynamic” equilib
rium states, becomes apparent for a piston mass of about 
M = 256. This is illustrated in Fig. 4 where the piston posi
tion versus time is shown for increasing values of M. As can 
be seen, for M =16 there is no separation between short- and 
long-time regimes; the piston oscillates and smoothly relaxes 
to the final thermodynamic equilibrium state (Xp /Lx =0.5). 
Increasing the mass by a factor of four (M =64) does not 
change the situation much, except that the relaxation time is 
now significantly larger. Another fourfold increase (to M 
=256) is required before the expected time separation re
gimes become apparent. The last curve (dashed line) corre
sponds to M =8192, which well approximates the behavior of 
the system in the thermodynamic limit (M →o, Ly → o, N 
→o with M /Ly =4/3  and  N /LxLy =n=0.002 778). In this 
case the piston undergoes a damped oscillatory motion and 
quite rapidly reaches the “mechanical” equilibrium state. Its 
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trajectory then remains perfectly flat (to within the statistical 
errors) for the rest of time presented in the figure. Of course 
this behavior lasts only for a finite period of time, typically 
of the order of the time scale shown in the figure (t=2 
X105). In general, no matter how massive the piston, there 
always exists a sufficiently long time scale after which the 
system will eventually reach its full thermodynamic equilib
rium state. As we already pointed out in the Introduction, the 
intermediate mechanical equilibrium state can be considered 
as the genuine final equilibrium state of the system only in 
the thermodynamic limit, provided that this limit is taken 
prior to the limit t→o. Note that for sufficiently large mass 
(M >256), the first stage of the piston’s motion becomes 
practically independent of its mass, mainly because the ratio 
M /Ly is kept constant. Other cases will be considered in the 
next section. 

The (left and right) hydrodynamic equations, correspond
ing to the above microscopic setup, read [19] 

ap 
= −  V · (pv) , (1)

at 

av 
p = −  p(v · V)v − VP − V · c , (2)

at 

aT aP avi
pcv = −  pcvv · VT − T( ) V · v + V · (K V T) − (i,j ,

at aT p axj 

(3) 

where p is the mass density, P is the hydrostatic pressure, cv 
is the constant-volume specific heat, and c is the two-
dimensional stress tensor: 

avi av j
(i,j = −  7( + − oi,j V · v) − roi,j V · v , (4)

axj axi 

where 7 and r are the shear and bulk viscosities, respec
tively. The boundary conditions are those of thermally iso
lated stress-free rigid walls in the x direction (direction of the 
piston motion) and periodic in the y direction. In particular, 

vx(x = Xp) = vp, vx(x = 0) = vx(x = Lx) = 0  ,  

aT aT =  = 0  .  (5)
ax axx=X x=0,Lp x 

Note that the particle flux, and thus the associated linear 
momentum and energy fluxes, must vanish at the fluid-piston 
boundaries. 

To solve the hydrodynamic equations, we still need the 
equation of state and the explicit form of transport coeffi
cients. As is well known, for hard disks fluids the equation of 
state is is well approximated by [20] 

P = nkBT (n) (6) 

with

FIG. 5. Piston position, normalized by Lx, versus time for M 
=64. The other parameters are Lx =4800, Ly =48, n= 0.002 778, 
Xp(0)=Lx / 5 and vp(0) =0.  

1 +  12n2/128 
 (n) = , (7)

(1 −  1n/4)2 

where n is the number density (recall that the disk diameter d 
is set to unity in system units). Note that the results presented 
in this article are for a dilute gas (n=1/360) for which  
=1. As for the transport coefficients, we rely on their 
Enskog expressions [20]: 

2 
7 = 0.2555n[1mkB(1 +  + 0.43651ng2)[T , (8)

1ng2 

2r = 0.159213/2n g2
[T , (9) 

3/2[1 3 2 
K = 1.029nkB /m( + + 0.43591ng2)[T ,

2 1ng2 

(10) 

where g2 is the pair correlation function at contact: 

1 − 7n1/64 
g2 = (11)

(1 −  n1/4)2 . 

Finally, Newton’s equation of motion for the piston reads 

d2Xp xx − PR 
xx)x=XM = Ly(PL , (12)

pdt2 

where Pxx = P− (7+r)avx /ax is the pressure tensor, con
tracted in the x direction. We note that the hydrodynamic 
equations, and thus the piston equation of motion, are 
uniquely specified without any adjustable parameter. We now 
compare the numerical solution of these equations with the 
result obtained through the corresponding MD simulation. 

We first consider a relatively small piston mass M =64  
(with Ly =48). Figure 5 shows the (ensemble) average piston 
position versus time. For this relatively small mass there is 
no clear separation between the short- and long-time regimes 
(cf. Fig. 4). Nevertheless, hydrodynamics and MD are in 
quantitative agreement for the first two or three oscillations, 
with deviations increasing at longer times. The same behav
ior is observed for the average temperatures and densities on 
each side of the piston (see Fig. 6). 

The situation is somehow different for the piston velocity, 
where very good quantitative agreement between MD and 
hydrodynamics is observed for a span of many oscillations 
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FIG. 6. Left and right temperature profiles versus time. Param
eters are as in Fig. 5. 

(cf. Fig. 7). This result, at first unexpected, is related to the 
fact that the degeneracy of states, which occurs at the ther
modynamic limit, concerns mainly the final piston position 
but not its final velocity, which is simply zero. For finite 
piston mass, the piston velocity does not vanish at the inter
mediate quasi-equilibrium state; it nevertheless becomes ex
tremely small so that the actual discrepancy with MD re
mains within the estimated statistical errors (about 1%). 
What is perhaps more striking is the behavior of the average 
fluid pressure. As can be seen in Fig. 8, surprisingly good 
quantitative agreement is found even for a piston mass as 
small as M =1  (Ly =48, N=640). So far, we have no convinc
ing argument to explain this observation. 

As we have shown above, for the set of parameters that 
we have adopted, the separation between the short- and long
time regimes becomes apparent for larger piston mass start
ing at about M =256. As a consequence, the agreement be
tween hydrodynamics and MD improves dramatically as 
soon as M >256. This is illustrated in Fig. 9 where quanti
tative agreement is demonstrated for a piston mass M = 512. 
For instance, the discrepancy remains below 3%, long after 
the mechanical equilibrium state has been reached (t=1.5 
X105), and drops below the estimated statistical errors 
(about 1%) for M =1024. These observations lead us to the 
first major conclusion of this work. While hydrodynamics 
cannot describe the details of the very long time scale re
gime, dominated by the fluctuation-driven heat transfer by 
the piston’s Brownian motion, it quite accurately predicts the 
damped oscillatory motion leading to the mechanical equi
librium state. This in turn suggests that a simple macroscopic 
theoretical description must be possible in the limit of a large 
piston mass. We now set up such a description at progres
sively increasing levels of sophistication. 

III. A SIMPLE HYDRODYNAMIC THEORY 

The equation (12) shows that the motion of the piston is 
expected to be notably slow in the limit of large ratio M /Ly, 

FIG. 8. Left pressure profile for M =1. The other parameters are 
as in Fig. 5. 

in which case one can reasonably assume that each compart
ment undergoes an (quasi-static) adiabatic transformation. 

yFor the case of a dilute gas, this implies that PVy= P0V0
=const, where y is the ratio of the constant-pressure and 
constant-volume specific heats, cp /cv, and the subscript “0” 
refers to initial values at t=0. On the other hand, VL(t) 
=Xp(t)Ly and VR(t)= [Lx −Xp(t)]Ly, where the subscripts “L” 
and “R” refer to the left and right compartments, respec
tively. Neglecting all possible dissipative processes, the 
Newtonian equation of motion for the piston reads 

d2Xp 1−y CL CRM = Ly(PL − PR) = L ( − ) , (13)y ydt2 X (Lx − Xp)yp 

ywhere the C (left and right) is a constant given by C= P0V0. 
This is a closed piston equation of motion that has been 
already obtained on the basis of dynamical systems theory 
[14]. Simple kinetic theory, based on Maxwellian point-
particle (i.e., collisionless) gases, leads basically to the same 
result [15–17]. For the case of a dilute two-dimensional gas 
under consideration here, we have y=2 and P0V0 
=NkBT0 / 2 so that 

2d2Xp vth Xp(0) Lx − Xp(0)M = mN − , (14)( )2 )2dt2 2 X (Lx − Xpp 

where vth = (kBT0 /m)1/2 is the thermal velocity (equal to 1 in 
system units). It has been shown recently that the solution of 
(14) is in poor agreement with MD simulations [18]. Our 
main purpose in this article is to set up an improved theory, 
based on hydrodynamics, that includes the effect of dissipa
tive processes as well. 

In deriving the result (13), we have implicitly assumed 
that the left and right pressure difference accelerates only the 
piston and not the embedded fluid. This in turn implies that 

FIG. 7. Piston velocity versus time. Parameters are as in Fig. FIG. 9. Piston position, normalized by Lx, versus time for 
5. M =512. The other parameters are as in Fig. 4. 
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the fluid velocity remains identically zero in the course of 
time, if initially so. However, the velocity of the fluid layer 
in direct contact with the piston is obviously equal to the 
velocity of the piston, while remaining zero for the fluid 
layers at the opposite, outer boundaries. Hence, instead of 
assuming zero fluid velocity throughout the system, a less 
restrictive assumption is to consider a linear fluid velocity 
profile along the x direction: 

x Lx − x 
vL(x,t) = vp(t) , vR(x,t) = vp(t) , (15)

Xp(t) Lx − Xp(t) 

where vL and vR represent the x component of the fluid ve
locity in the left and right compartments, respectively, and 
vp =dXp /dt is the piston velocity. The y component of the 
fluid velocity is not affected by the piston’s motion so that it 
remains zero if initially so. This in turn implies that the hy
drodynamical variables remain functions of one spatial coor
dinate only (coordinate x). To obtain the appropriate piston 
equation of motion we now solve the hydrodynamic equa
tions, it being understood that the assumption (15) replaces 
the momentum equation (2). 

Inserting (15) into the continuity equation (1), we  
first prove (see Appendix A) that the density remains 
homogeneous, if initially so, its explicit expression being 
given by 

mN mN 
pL(t) = , pR(t) = . (16)

2LyXp 2Ly(Lx − Xp) 

Using this result and the energy conservation principle, we 
next derive (see Appendix B) the general form of the piston 
equation of motion: 

¯ ¯ 
ˆ d2Xp f fL R¯ ¯M = Ly(PL − PR) − Lyvp + , (17)( )

dt2 Xp (Lx − Xp) 

where P̄ and f̄ are the spatially averaged hydrostatic pres
sure P and viscosity coefficient f=r+7, respectively, and 

mN
M̂ = M(1 +  ) (18)

3M 

is a “renormalized” piston mass. As mentioned above, in this 
paper we restrict ourselves to the case of hard disk fluids for 
which the hydrostatic pressure is a linear function of the 

temperature [cf. Eq. (6)]. As a result, P̄(p ,T)= P(p , ̄T) and 

the space-averaged temperature T̄ is precisely the “homoge
neous” temperature that we used in the simple adiabatic 
theory (13). 

However, unless we neglect the dissipative processes, the 
equation of motion (17) remains coupled to the temperature 

¯equation (3), since we do not yet have an explicit form of T
in terms of piston position and velocity. To solve this prob
lem, we need an additional assumption regarding the viscos
ity coefficient f. In general, transport coefficients are taken 
to be constant since their dependence on state variables is 
weak (e.g., for a Boltzmann gas fa[T). Numerical solution 
of the hydrodynamic equations (1)–(3) fully support this ap
proximation, the discrepancies remaining always below 3%. 

FIG. 10. Piston position obtained from MD and the numerical 
solution of Eqs. (17) and (19), for M = 2048. The other parameters 
are N=640, Lx = 4800, Ly =48, Xp(0) =Lx / 5, and vp(0) =0.  

However, for the sake of generality, here we shall adopt the 
less restrictive assumption that the viscosity coefficient de
pends only on the “global” space averaged state variables, 

i.e., f=f(p , ̄T). Within this rather weak assumption, we 
prove in Appendix C that, as with density, the temperature 
remains homogeneous over time, if initially so, and obeys 
[cf. Eq. (C9) in Appendix C] 

aTL vp 2Ly fL 2= −  LTL + v (19)pat Xp kBN Xp 

with a similar expression for the right compartment. Note 
that the function (n)= (n(Xp)) is defined in (7) and 
fL =f(pL ,TL), where we have dropped the “bar” notation 
since temperature remains homogeneous. 

The hydrodynamic problem is now reduced to a set of 
three coupled ordinary differential equations: the piston 
equation of motion (17) and the (left, right) temperature 
equations (19). To check the validity of this simplified 
theory, we consider a whole new set of MD simulations with 
Ly =48, N=640 hard disks, Lx = 4800 (as before 
n=0.002 778), and a piston mass ranging from M =64  to  
M =8192. Unlike the MD simulations presented in Sec. II, 
here the system width Ly and the number of particles N are 
fixed, so that the piston motion gradually slows down as we 
consider increasing values of M, allowing comparison with 
the theory. Note that the relatively small number of particles 
(N= 640) allows one to consider a large number of sample 
paths (typically of the order of 105) within reasonable com
putational time, lowering significantly the statistical error. 

As seen in Fig. 10, where the piston position versus time 
is shown, excellent agreement is observed between MD and 
the corresponding numerical solution of Eqs. (17) and (19), 
even for the relatively moderate piston mass of M =2048. 
Specifically, the observed amplitude discrepancy remains be
low 1% after 15 periods of oscillations, with a corresponding 
phase shift discrepancy of about 0.3%. Unfortunately, an 
analytical treatment appears to be extremely difficult without 
further simplifications. This issue will be addressed in the 
next section. 

IV. THE IDEAL GAS LIMIT 

Consider the temperature equation (19). To obtain a 
closed piston equation of motion, one has to express the (left 
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and right) temperature in terms of piston position and veloc
ity. This, however, proves to be extremely difficult mainly 
because of the (nonlinear) state dependence of the viscosity 
coefficient that appears in the viscous heating term [the for
mal solution is given in Appendix C, Eq. (C10)]. On the 
other hand, in the limit of large piston mass, the piston ve
locity becomes quite small (recall that the system width and 
the number of particles are fixed). The viscous heating term 
can thus be neglected since it is proportional to the square of 
the velocity gradient. This approximation is further justified 
in view of the fact that the viscous heating term is also in
versely proportional to the total number of particles N, which 
is usually quite large. Within this restriction, one can easily 
show that (cf. Appendix C): 

−<(t)T(t) = T0e (20) 

with 

Xp(t) ˆ (r)
<(t) = f dr , (21) 

rXp(0) 

where the function (n)= (n(Xp))= ˆ (Xp) is defined in (7) 
and the subscript “0” refers to initial values at t=0. The 
equation of state (6) then implies 

Xp(0) ˆ 
−<(t)P(t) = P0 e . (22)

Xp(t) ˆ 
0 

Inserting (20) and (22) into (17) leads to a closed piston 
equation of motion. 

For a dilute two-dimensional gas, as considered here, 
=1 so  

Xp(t)
<(t) = ln  . (23)

Xp(0) 

The temperature (20) and pressure (22) thus read 
2Xp(0) Xp(0)T(t) = T0 , P(t) = P0( ) (24)

Xp(t) Xp(t) 

so that 

Xp(t)T(t) = const, X2(t)P(t) = const . (25)p 

Since y=2, this latter result implies that PVy=const. We thus 
arrive at the conclusion that the system (piston + gas) under
goes an adiabatic transformation despite the presence of dis
sipative damping terms appearing in the pressure tensor [cf. 
Eq. (17)]. It should however be realized that this property is 
a direct consequence of neglecting the viscous heating term 
in the temperature equation [cf. Eq. (C10) in Appendix C]. 

It is instructive to analyze first the case of an idealized 
system, ignoring dissipative processes. In this case, the equa
tion (17) becomes identical to the equation (14) obtained 
from the simple adiabatic theory, but with the replacement of 

ˆthe piston mass M by M = M +mN / 3. The fact that the pres
sure difference across the piston also induces an acceleration 
of the fluid thus results in a mere renormalization of the 
piston mass. While this correction becomes vanishingly 
small in the limit of large M, it gives a dramatic improve-

FIG. 11. Piston position versus time for M =2048. The dotted 
line represents MD results, the dashed line the simple adiabatic 
theory, Eq. (14), and the full line the improved adiabatic theory 
predictions. The other parameters are as in Fig. 10. 

ment over the simple theory, Eq. (14), for moderate values of 
M. This is illustrated in Fig. 11 where the piston position 
versus time for M = 2048 is shown. Clearly the profile based 
on the simple adiabatic theory becomes significantly out of 
phase with respect to MD results after only two oscillations. 
This is not the case for the improved adiabatic theory where 
perfectly synchronized oscillations are observed even after 
seven oscillations. 

The relevance of the improved theory is further high
lighted by computing explicitly the piston’s period of oscil
lation. Upon introducing dimensionless variables xp(t) 
=Xp(t) /LX, x0 =Xp(0) / LX, and 

(
M
)1/2mN 

T = t 
vth , (26)[2Lx ˆ 

Eq. (17) becomes [recall that vth = (kBT0 /m)1/2 is the thermal 
velocity] 

d2xp x0 1 −  x0 = − (27)2dT2 x (1 −  xp)2 
p 

subject to initial conditions xp =x0 and dxp /dT=0  at  T=0.  
This equation is identical to the Newton equation for a par
ticle (the piston) of unit mass in a force field, derived from 
the potential 

x0 1 −  x0U(xp) = + . (28)
xp 1 −  xp 

Conservation of total energy implies 

21 dxp(
T
) + U(xp) = U(x0) = 2  .  (29)

2 d

The exact time-dependent solution of (27) can be found by 
integration of the energy equation (29) in terms of elliptic 
functions. In particular, the (scaled) period Tp of the piston 
oscillations, for x0 = 1 , reads 5 

1/2 dx 
Tp = [2f = 1.456 . (30)[U(x0) − U(x)x0 

Figure 12 clearly shows that the estimated period of oscilla
tions, obtained from MD simulations, approaches quite rap
idly the corresponding theoretical value as the piston mass 
increases. For instance, the discrepancy is about 0.7% for 
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FIG. 12. The estimated (scaled) period of oscillations of the 
piston versus M for x0 = 1 . The statistical errors are about 2%. The 5 
dashed straight line represents the corresponding adiabatic approxi
mation, Eq. (30). The other parameters are as in Fig. 10. 

M =2048, far below the estimated statistical errors (about 
2%). Note that Eq. (14), based on the simple adiabatic 
theory, leads to a discrepancy of about 6%, which is nearly 
ten times worse than the improved adiabatic theory. 

Furthermore, we observe that the “kinetic energy” in (29) 
vanishes at xp =x0, as required by the initial condition, but 
also at xp = 1 , implying that the extreme position reached by 2 
the piston, in an ideal system, is the middle of the system. 
Now, since the principal effect of viscous dissipation is to 
slow the piston’s motion, we arrive at the conclusion that the 
piston will never cross the middle of system, independently 
of the parameter values and of its initial position. This some
how unexpected prediction is nicely confirmed by MD simu
lation results presented in Fig. 13. 

Finally, even though the above improved adiabatic theory 
does not include dissipation, one expects that the “final” po
sition of mechanical equilibrium, xeq, will correspond to the 
minimum of U(x), namely 

x0 − [x0(1 −  x0) xeq = . (31)
2x0 − 1  

Again this is (for large mass) in perfect agreement with MD. 
For example, for x0 = 1 and M =2048, the estimated (me5 
chanical) equilibrium position from MD is 0.34 ± .02, while 
the result (31) predicts xeq = 3 

1 . 

V. INCLUDING DISSIPATION 

In a dilute gas, the bulk viscosity coefficient r=0 and the 
shear viscosity coefficient 7 is independent of the density, 
but depends on temperature as [cf. Eq. (8)]: 

FIG. 13. The piston first extreme position versus M for x0 = 5 
1 . 

Estimated statistical errors are about 1%. The other parameters are 
as in Fig. 10. 

1 [mkB7 = 7 [T, 7 . (32)0 0 = 
2d 1 

Inserting this result into (17) and using relations (24), one 
finds the following dimensionless closed piston equation of 
motion: 

1/2 (1 −  x0)1/2d2xp x0 1 −  x0 dxp x0 = − − f , (33)
dT2 x2 (1 −  xp)2 dT x3/2 + 

(1 −  xp)3/2 
p 

( 
p 

)
where 

1/2 1/22 Ly 2m 
f = 70Ly = (34)( ) ( )

M̂ NkB 
2d 1M̂ N 

is a dimensionless friction coefficient. For M =2048, the nu
merical solution of this equation has an amplitude discrep
ancy, compared with MD simulation results, of about 6% 
after 15 periods of oscillation (recall that it was below 1% 
for the general theory presented in Sec. III, Fig. 10). The 
discrepancy, however, drops to about 2% for M =4096 and to 
less than 1% for M =8192. We thus conclude that, for suffi
ciently large piston mass, Eq. (33) describes correctly the 
piston motion from an arbitrary initial position x0 to the cor
responding mechanical equilibrium rest position xeq, given 
by (31). 

Unfortunately, an analytical treatment of Eq. (33) appears 
to be quite difficult in view of the highly nonlinear character 
of the viscous damping term. Further simplifications can be 
achieved provided we restrict ourselves to initial piston po
sitions x0 close to the thermodynamic equilibrium position of 
1 . Recalling that x0 <xeq '

1 [cf. Eq. (31)], one may linearize 2 2 
xp around xeq in Eq. (33), obtaining the following damped 
harmonic oscillator equation of motion (see also Ref. [13]): 

d2xp dxp+ 2{ + w2(xp ) = 0  (35)
dT2 dT 0 − xeq

with 
1/2 (1 −  x0)1/2f x0{ = = 2f + O„(x0 − 1/2)2… (36)( 3/2 + 

)3/2 )2 x (1 −  xeqeq 

and 

2 2x0
w = = 16  +  O„(x0 − 1/2)4… . (37)0 x3 (1 −  xeq)eq 

The solution of (35) reads 

xp(T) = A exp(− {T)cos(wT + ) , (38) 
2)1/2where w= (w2 −{ is the angular frequency, A= (x00 

−xeq) / cos( ), and tan( ) =−{ /w. The period Th of oscilla
tions is thus given by 

21 21 1 
Th = = = . (39)2)1/2(w2 − { w 20 0 

To check the validity of (35), we consider another set of 
microscopic simulations, with the same parameter values as 
before, except that the initial piston position is now set to 
x0 =2/5  (instead of 1 / 5). In Fig. 14 we compare the density 
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FIG. 14. The left and right density profiles versus (scaled) time, 
for M =1024 and x0 =2/5.  The  other parameters are as in Fig. 10. 

as a function of time, as obtained from MD, with its corre
sponding harmonic approximation, based on (38). Surpris
ingly, a quite good quantitative agreement is observed al
ready for M =1024 where the period of oscillations, 
estimated from MD simulations, is about 1.556 ± 0.030, 
whereas (39) gives 1.57, a discrepancy of less than 1.5%. 
However, this discrepancy does not improve for larger piston 
mass. Detailed numerical analysis shows that the validity of 
the harmonic approximation is basically controlled by the 
proximity of the initial piston position to the thermodynamic 
equilibrium position (middle of the system), provided M 
�512. Nevertheless, this approximation proves to be quite 
useful in providing explicit expressions for the main charac
teristics of the piston dynamics. 

VI. VALIDITY OF THE SIMPLE THEORY 

The greater the mass of the piston, the slower its motion. 
From this intuitive observation, we derived a simple theory 
that accurately describes the dynamics of the system, pro
vided that the piston mass is sufficiently large. Yet so far we 
have not specified what is meant by the criterion of a “suf
ficiently large” piston mass. Large compared to what? How 
do the other parameters of the system, such as the system 
dimension Lx X Ly or the fluid mass mN, influence the valid
ity of the theory? To answer these questions, we need to 
determine the characteristics of the piston’s dynamics, such 
as the period of oscillations, the relaxation time, and so forth, 
in terms of the basic parameters of the system. 

We first consider the period of oscillations and notice that 
its value, obtained in MD simulations, varies only from 1.45 
to 1.60 (in dimensionless units) for a broad range of piston 
mass (64' M ' 8192) and for widely separated initial posi
tions (x0 =0.2 or x0 =0.4). The harmonic value Th =1 /2  
=1.57 thus provides a relatively good estimate of the 
oscillation period. Switching back to the original time 
variable (i.e., T→ t), the piston’s period of oscillations is 
[cf. Eq. (26)]: 

( )1/2ˆ1[2 M
tp = Lx . (40)

2vth mN 

Recall that vth = (kBT0 /m)1/2 is the thermal velocity (equal to 
1 in system units). 

FIG. 15. The piston period of oscillations versus mass, scaled 

either by (M /mN)1/2 (dashed line) or by (M̂ /mN)1/2 (solid line), for 
an initial piston position x0 = 1 . The other parameters are as in Fig. 5 
10. 

and not as M1/2. For sufficiently large piston mass, as com
pared to the fluid mass, these scalings are equivalent, but 
when the two masses are of the same order of magnitude we 
have the opportunity to determine whether the renormaliza
tion of the piston mass is a spurious artifact of the linear fluid 
velocity assumption, or if it has a fundamental, physical ori
gin. Detailed MD simulations clearly indicate the latter. This 
is shown in Fig. 15 where the period of oscillations, scaled 

ˆ /mN)1/2either by (M /mN)1/2 or by (M , versus M, is depicted 
for x0 =0.2. As can be seen, both sets converge to a constant 
value, as the piston mass is increased, but the latter con
verges much faster than the former. Furthermore, for large M 
(M >2048), the measured value of the period is about 9904, 
whereas the harmonic approximation (40) gives 10 663, a 
discrepancy close to 7%. This result clearly confirms the 
validity of (40) since the MD simulations were done for an 
initial piston position of x0 =0.2, for which the harmonic ap
proximation is not accurate. 

The situation is quite similar for the relaxation time {−1 

[cf. Eq. (36)] where, upon switching back to the original time 
variable, one gets 

[1 M̂ d( )trelax = C Lx . (41)
vth mLy 

The numerical constant C depends weakly on the initial pis
ton position x0 and it is practically independent of M. For 
instance, C(x0 =0.4)=0.50 whereas C(x0 =0.2)=0.51. Note 
that (41) implies that if the ratio M /Ly is constant, then the 
relaxation time is nearly independent of the piston’s mass. As 
shown in Sec. II, this prediction is nicely confirmed by MD 
simulations for M > 256 [cf. Fig. 4]. Note that a similar re
laxation time was predicted by Crosignani and Di Porto [13] 
for a piston embedded in a point-particle (collisionless) fluid 
maintained in a Maxwellian thermal equilibrium state. 

Another interesting quantity is the maximum piston 
speed, which is reached at about the first quarter period of 
oscillation, after the piston is released. The corresponding 
piston position is the mechanical equilibrium position xeq. 
Neglecting viscous dissipation, relation (29) gives (in the 
original space and time variables) 

1/2mN
lvplmax = vth

[2 −  U(xeq) . (42)( 
M
)ˆ 

Interestingly, for fixed N and Lx the period scales as the This implies that, in ideal systems, the maximum speed of a 
square root of the renormalized piston mass, (M +mN /3)1/2, massive piston is proportional to the square root of the ratio 
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FIG. 16. The piston maximum speed lvplmax versus mass, scaled 

either by (mN / M)1/2 (dashed line) or by (mN / M̂ )1/2 (solid line), for 
an initial piston position x0 = 1 . The other parameters are as in Fig. 5 
10. 

of the fluid mass and the (renormalized) piston mass, the 
proportionality factor being only a function of the piston’s 
initial position x0 [cf. Eq. (31)]. Detailed MD simulations 
confirm this conclusion as shown in Fig. 16 where the maxi-

by (mN / M)1/2mum piston speed, scaled either or by 
ˆ )1/2(mN / M , versus M, is presented for x0 = 0.2. As the piston 

mass is increased both sets of data converge to a constant 
value but here again the rate of convergence of the latter data 
set, using the renormalized mass M̂ , is much faster than for 
the set scaled by M. Furthermore, the measured maximum 
piston speed for the largest piston mass (M =8192) is about 
0.446, as compared with the ideal system approximation (42) 
prediction of 0.447. 

There is a simple explanation for this remarkable agree
ment: The MD simulations, presented in Fig. 16, were per
formed for fixed system width (Ly =48). In this scenario the 
relaxation time increases linearly with piston mass [cf. Eq. 
(41)], diminishing significantly the effect of viscous damping 
on the early stage dynamics (e.g., t< tp). Therefore, in this 
initial stage, the system behaves essentially as if it were an 
ideal system, for which (42) is exact. For this very same 
reason, the discrepancy with the theory increases with Ly, 
reaching a value of about 7% when the relaxation time be
comes comparable to the period of oscillations. Nevertheless, 
since the principal effect of viscous dissipation is to slow the 
piston’s motion, its maximum velocity is bounded by the 
corresponding ideal system limit, given by Eq. (42). The 
general result is thus obtained upon replacing the equality 
sign in Eq. (42) by a bounding inequality sign (i.e., by “'”). 
Note that in all cases the maximum piston speed remains 

1/2well below the sound speed, [ykBT0 /m=y vth, so shock 
waves are not produced by the piston’s motion [22]. 

Relations (40)–(42) completely characterize the piston dy
namics. Although their explicit form has been derived di
rectly from the (damped) harmonic approximation, detailed 
MD simulations show that, for sufficiently large piston mass, 
they give the correct functional form over a broad range of 
system parameters, including the piston’s initial position x0 
(cf. Figs. 15 and 16). Recalling that, in system units, the 
thermal velocity, the particles’ mass, and their diameter are 
all set to unity (i.e., vth =d=m=1), one may summarize our 
basic results as 

−1/2
M̂(
Mf 
)lvplmax , (44) 

Lxtrelax M̂ , (45)
Ly 

where Mf =mN is the fluid mass (recall that M̂ = M +mN /3). 
For completeness, we also note that the piston cannot cross 
the thermodynamic equilibrium position (in our case, the 
middle of the system), regardless of its initial position, pro
vided its initial velocity is zero; this result was proven is Sec. 
IV (cf. Fig. 13). 

The results derived above are quite helpful for under
standing the characteristics of the piston dynamics in terms 
of the main system parameters. But they are not sufficient for 
establishing the limit of the validity of our simple theory. 
This issue can be addressed indirectly by the following argu
ment. The theory rests on one major assumption: the linearity 
of the fluid velocity profile. As we have shown, this assump
tion, in turn, implies that the state of the fluid remains ho
mogeneous. On the other hand, the piston’s motion generates 
inhomogeneous hydrodynamic modes that propagate through 
the fluid, eventually damping out by viscous dissipation. For 
a closed, near equilibrium system of length L, the relaxation 
times of these inhomogeneous modes are of the order of [21] 

k212feq 
−1 

Tk = ( ) , k =  1,  2,  . . .  .  (46)
L2peq 

One can thus expect that the system remains homogeneous if 
the relaxation time of the slowest (k=1) inhomogeneous 
mode does not exceed the half-period of the piston oscilla
tions, given by Eq. (40). Noticing that near equilibrium the 
compartment length is about Lx / 2, the required condition 
reads 

feq 41
2 −1 1[2 M̂ 1/2( ) Lx( ) (47)2 < . 

peq Lx 4vth mN 

For a dilute Boltzmann gas, f=7 [cf. Eq. (32)], so that this 
relation leads to 

M 1 2 2 2 d2+ > 
15 Lxneq . (48)

mN 3 

For the MD simulation parameters (neq = 0.002 778, Lx 
=4800, N=640, d=1), one gets M >530, which is quite 
close to the result that we obtained in the corresponding 
microscopic simulation. We thus conclude that this simple 
argument, based on the separation of time scales for inertial 
versus viscous processes, yields a good estimate for the limit 
of validity of our theory. 

VII. CONCLUDING REMARKS 

In this paper we have analyzed the dynamics of the adia

( )1/2 batic piston using both microscopic molecular dynamics 
M̂ (MD) simulations and the standard hydrodynamic theory. For tp Lx , (43)
Mf a sufficiently large piston mass, the dynamics splits in two 
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well-separated time regimes. Starting from a nonequilibrium 
configuration (i.e., different pressures in each compartment) 
the piston performs a damped oscillatory motion reaching, in 
the first time regime, an intermediate state of “mechanical 
equilibrium” with the same pressure but different densities 
and temperatures in each compartment. In the second (much 
longer) time regime, which is dominated by the fluctuation-
driven heat transfer by the piston, a slow relaxation brings 
the system to the thermodynamic equilibrium state with 
equal temperatures and densities. While hydrodynamics is 
unable to describe the piston dynamics in the long time re
gime, it quite accurately predicts all the details of the first 
time regime, as demonstrated by the excellent agreement 
with MD simulations, even for relatively small piston mass 
(about a third of the fluid mass). 

At first sight, the formulation of an equation of motion for 
a massive piston seems simple. Since the motion of the pis
ton slows down as its mass, M, is increased, it is reasonable 
to assume that, in the limit of large M, each compartment 
undergoes an (quasi-static) adiabatic transformation. On the 
basis of this idea, a macroscopic theory leading to a simple 
closed piston equation of motion was derived earlier 
[14,17,18]. This theory, however, neglects completely the 
motion of the embedded fluid and the associated dissipative 
processes. Consequently, its predictions are in poor agree
ment with molecular simulations. 

Instead of imposing a zero fluid velocity throughout the 
system, a less restrictive assumption is to consider a linear 
fluid velocity profile. With this assumption, and neglecting 
the spatial dependence of the viscosity coefficient, we have 
shown that the fluid density and temperature of each com
partment remains homogeneous in the course of time, if ini
tially so. The hydrodynamic equations then reduce to a set of 
three coupled ordinary differential equations that lead to 
quantitative agreement with MD even when the piston mass 
is comparable to the fluid mass. 

For larger piston mass (about eight times the fluid mass), 
the viscous heating term in the temperature equation may be 
neglected. With this approximation, we finally derived a 
closed piston equation of motion that remains valid from an 
arbitrary initial state up to the final mechanical rest state. 
Once more, the validity of this simple equation is fully con
firmed through extensive MD simulations. Note that for ini
tial piston positions sufficiently close to the equilibrium 
state, this equation reduces straightforwardly to a damped 
harmonic oscillator equation [cf. Eq. (35)]. 

The main advantage of the (damped) harmonic approxi
mation is that it allows us to express the basic characteristics 
of the piston dynamics, such as the period of oscillations, the 
maximum piston velocity, and the relaxation time, in terms 
of the main system parameters [cf. relations (40)–(42)]. Re
markably, detailed MD simulations show that, for large 
enough piston mass, these relations feature the correct func
tional form over a broad range of system parameters, includ
ing the piston’s initial position x0, their validity being only 
limited by the validity of hydrodynamic description [cf. re
lations (43)–(45)]. One may also recall one last interesting 
result which concerns the extreme position reached by the 
piston. As proven in Sec. III, this quantity is bounded by the 
thermodynamic equilibrium position, i.e., the piston can 

never cross the thermodynamic equilibrium position (in our 
case, the middle of the system), regardless of its initial posi
tion, provided its initial velocity is zero. 

The success of the theory presented here for the adiabatic 
piston is yet another confirmation of the robustness of hydro
dynamics. As demonstrated by laboratory experiments and 
molecular simulations [23–25], hydrodynamics remains 
valid for astronomically large nonequilibrium constraints. 
Breakdown occurs, however, when the length or time scale 
of the problem becomes comparable to the molecular (mean 
free path or time) scale (e.g., [26–28]). Hydrodynamics re
mains valid since we consider physical scales, for both pis
ton and fluid, that are much larger than the molecular scale. 
This point raises a related question: What is the limit of 
validity of the present theory in terms of the main system 
parameters? As mentioned above, the theory, derived from 
hydrodynamics, rests on one major assumption: the linearity 
of the fluid velocity profile. This assumption, in turn, implies 
that the scalar hydrodynamic variables (i.e., density and tem
perature) remain homogeneous in the course of time, if ini
tially so. Such a homogeneous behavior is expected to occur 
if the relaxation time of the slowest inhomogeneous hydro
dynamic mode, generated by the piston motion, does not 
exceed half of the period of oscillations. This general argu
ment leads to an inequality, imposing a limiting value for the 
ratio of the piston to fluid mass above which the theory is 
expected to be valid. The predicted value for this ratio is in 
good agreement with all our observations in MD simulations. 

It is important to recall that the present theory’s derivation 
rests mainly on physical arguments. More precisely, we 
started with an assumption, examined the consequences of 
this assumption, and then derived the physical conditions 
under which those consequences are expected to be valid. Of 
course, we have used extensive MD simulations to check, 
step by step, all the details of the theory. Nevertheless, no 
matter how plausible, we do not yet have a mathematical 
proof of the validity of our main assumption, i.e., the linear 
fluid velocity profile assumption. A complete mathematical 
justification of this assumption requires an appropriate 
asymptotic expansion of the hydrodynamic equations in the 
limit of large piston mass. So far, we have not been able to 
achieve this goal with the required mathematical rigor. 

Finally, one may ask whether the present theory can be 
extended to include the long-time scale relaxation toward 
thermodynamic equilibrium. The dynamics of that regime 
are dominated by the fluctuation-driven heat transfer due to 
the piston’s Brownian motion. While there is no fluctuation 
source in conventional hydrodynamics, the question arises as 
to whether Landau-Lifshitz fluctuating hydrodynamics [19] 
could be used to describe this regime. At present, we do not 
have a clear answer to this question. The fluctuating hydro
dynamic equations are much more difficult to handle analyti
cally than their deterministic forms, but numerical tech
niques are known [29]. The main difficulty with this 
approach is the numerical instability that occurs if energy 
conservation is not rigorously imposed in the scheme de
signed to integrate the fluctuating hydrodynamic equations 
(recall that the global system is thermally isolated). This 
problem proves to be quite delicate to handle, mainly be
cause of the moving boundary conditions, but work in this 
direction is in progress. 
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APPENDIX A 

We start with the continuity equation (1), focusing first on 
the left compartment. Using the explicit form of the velocity 

2Xp(t)Ly 

(15), one finds 

apL 

at 
= −  pL 

vp 

Xp 
− vp . 

x apL 

Xp ax 
(A1) 

Let 

pL(x,t) = 
mN 

p̂L(x,t) . (A2) 

Clearly, 

Xp(t)1 
p̂L(x,t)dx = 1  ,  (A3)

(t)fXp 0 

which simply expresses the conservation of the fluid mass in 
the left compartment. Inserting (A2) into (A1), one gets 

ap̂L(x,t) x ap̂L= −  vp . (A4) 
at Xp ax 

The general solution of this equation reads (recall that vp 
= dXp /dt) 

x 
p̂L(x,t) = F( ) , (A5)

Xp(t) 

where F is an arbitrary function satisfying initial and bound
ary conditions. In particular, since initially the system is ho
mogeneous, 

x 
p̂L(x,t = 0) = F( ) = const , (A6)

Xp(0) 

which, using the mass conservation relation (A3), implies 
that 

p̂L(x,t) = 1  .  (A7) 

Straightforward calculations lead to the same conclusion for 
the right compartment, so 

mN mN 
pL(t) = , pR(t) = . (A8)

2LyXp(t) 2Ly[Lx − Xp(t)] 

We thus conclude that at this level of approximation (linear 
velocity profile) the density of the fluid remains homoge
neous in time, if initially so. 

APPENDIX B 

The total energy of the system reads 

PHYSICAL REVIEW E 73, 016121 (2006) 

X Lp x1 12 2E = Lyf ( pLvL + pLeL)dx + Lyf ( pRvR + pReR)dx 
2 20 Xp 

1 2+ Mv , (B1)p2 

where pe is the internal energy density of the fluid. Since the 
total energy is conserved, its time derivative is zero. Using 
the explicit expressions of velocity (15) and density (16) to 
evaluate the integral over the space of the fluid kinetic en
ergy, one finds 

Xp Lxa mN dvp0 =  Ly (f pLeLdx + f 
p 

pReRdx) + (M + )vp . 
at 3 dt0 X

(B2) 

Using the thermodynamic relation 

aP dp
de = cvdT + [P − T( ) ] 2 , (B3) 

aT pp

one obtains from (1) and (3) 
2ape a a a a av 

= −  vpe − P v + K T + f( ) , (B4) 
at ax ax ax ax ax 

where f =r+7. Given the boundary conditions (5), it then 
follows that 

a Xp Xp af pLeLdx = vppLeLlx=X + f (pLeL)dx , 
pat at0 0 

2vp¯ ¯=−  PLvp + fL (B5)
Xp 

whereas 

Lx La x af pReRdx = − vppReRlx=X + f (pReR)dx 
pat atXp Xp 

2vp¯ ¯ = +  PRvp + fR , (B6)
Lx − Xp 

¯ ¯where P and f stand for the space average of P and f, 
respectively. Inserting (B5) and (B6) into (B2), one readily 
finds 

¯ ¯mN dvp f fL R¯ ¯M(1 +  ) = Ly(PL − PR) − Lyvp( + ) . 
3M dt Xp (Lx − Xp) 

(B7) 

APPENDIX C 

We start with the hydrodynamic equation for temperature 
(3) and recall that the density is homogeneous but remains a 
function of time through the piston position Xp(t) [cf. Eq. 
(16)]. One may thus write the function (n), defined in (7), 
as (n)= ˆ (Xp). Furthermore, as discussed in Sec. III, the 
transport coefficients are assumed to depend only on the 
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“global” space averaged state variables, and not on their lo
cal values. To avoid cumbersome notations, we shall write 
them as a function of time, using their very same symbols. 

For instance, f=f(p(t) , ̄T(t))=f(t), where T̄(t) stands for 
the spatial average (homogeneous) temperature. 

Using the explicit form of the velocity (15) and density 
(16) and noticing that for a two-dimensional Enskog gas cv 
= kB / m, the temperature equation for the left compartment 
(we drop the subscript “L”) reads 

aT vp a vp 2Ly a a f(t) 2= −  x T − T ˆ (Xp) + (Xp K T + v ) .pat Xp ax Xp kBN ax ax Xp 

(C1) 

To solve this equation, we first define the function < as 

Xp(t) ˆ (r)
<(t) = f dr (C2) 

rXp(0) 

so that <(t=0)=0. We next introduce the auxiliary function 
o(x , t), 

t2Ly f(t')−<(t) <(t')T(x,t) = e (o(x,t) + f dt' v2(t')e ) .pkBN 0 Xp(t') 

(C3) 

Obviously, o(x , t) obeys the same initial and boundary con
ditions as T(x , t), i.e., 

ao ao
o(x,t = 0) = T0, ( ) = ( ) = 0  .  (C4) 

ax axx=0 x=Xp(t) 

Inserting (C3) into (C1), one readily finds 

ao vp a 2Ly a a 
= −  x o + Xp K o . (C5) 

at Xp ax kBN ax ax 

We finally proceed to the change of variable 

x 
t = , 0  ' t ' 1.  (C6)

Xp(t) 

Using the chain rule, and recalling that vp =dXp /dt, one ob
tains 

ao(t,t) 2Ly a K a 
= o(t,t) (C7) 

at kBN at Xp(t) at 

with initial and boundary conditions [cf. Eq. (C4)] 

ao(t,t) ao(t,t)
o(t,t = 0) = T0, ( ) = ( ) = 0  .  

at att=0 t=1 

(C8) 

The result (C7) shows that o obeys a heat equation in an 
adiabatically closed vessel. Therefore, if o is uniform ini
tially, then it remains so in the course of time. In particular, if 
o(t=0) = T0, then o(t)=T0, for all time. 

We thus arrive at the conclusion that, within the linear 
velocity assumption, both the density and the temperature 
(and thus the pressure) remain spatially homogeneous in the 
course of time, if initially so. In particular, the temperature 
equation takes the following simple form 

aT 2Ly f(t)= −  T 
vp ˆ (Xp) + v2 

p . (C9) 
at Xp kBN Xp 

Replacing o(x , t) by T0 in the relation (C3), one obtains 
t 

−<(t) 2Ly f(t') <(t')T(x,t) = e T0 + dt' v2(t')e .( f )pkBN 0 Xp(t') 

(C10) 

Since f(t) =f(T(t)), this expression is just a convenient way 
of writing the equation (C9). On the other hand, the last term 
in (C10) represents the viscous heating effect and can be 
neglected for the case of a large piston mass since it is pro
portional to the square of the piston velocity. With this as
sumption, 

−<(t)T(t) = T0e . (C11) 
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