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Abstract
The speech medium is more than an audio conveyance of word strings. It contains meta 
information  about  the  content  of  the  speech.  The  prosody  of  speech,  pauses  and 
intonation,  adds  an  extra  dimension of  diagnostic  information about  the  quality of  a 
speaker's  answers,  suggesting  an  important  avenue  of  research  for  spoken  dialogue 
tutoring systems. Tutoring systems that are sensitive to such cues may employ different 
tutoring strategies based on detected student uncertainty, and they may be able to perform 
more precise assessment of the area of student difficulty. However, properly identifying 
the cues can be challenging, typically requiring thousands of hand labeled utterances for 
training  in  machine  learning.  This  study proposes  and  explores  means  of  exploiting 
alternate automatically generated information, utterance correctness and the amount of 
practice a student has had, as indicators of student uncertainty. It finds correlations with 
various prosodic features and these automatic indicators and compares the result with a 
small set of annotated utterances, and finally demonstrates a Bayesian classifier based on 
correctness scores as class labels.
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INTRODUCTION

Objectives & Summary of Contributions

This work has both immediate and long term objectives. 

The primary objective is to construct a classifier for spoken language that can assess the 
speaker's degree of confidence about the content of his speech. The first portion of the 
work is, thus, directed at identifying the features of speech that are most likely to be 
helpful for such a classifier. The investigative tools and techniques employed for this first 
portion  are  consistent  with  traditional  statistical  exploratory  analysis  and  hypothesis 
testing. The later portion then puts these finding to work by implementing a Bayesian 
classifier that demonstrates to what extent these statistically significant features can be 
relied upon to classify utterances. 

The longer term objective deals with improving the effectiveness of educational software, 
and finding ways that a speaker confidence classifier can be put to use. More specifically, 
this longer term objective involves identifying applications for the classifier in assessing 
student  performance  and  tailoring  automatically  delivered  educational  material  more 
closely to student competency and emotional state. Thus, while the majority of the work 
deals most directly with the business of the analysis of language and the design of a 
classifier, much discussion contained here is dedicated directly to the larger objective of 
improving the state of the art in educational software. However, while applications are 
discussed, the actual integration of the classifier into a live system falls outside the scope 
of this project.

The main innovations of the work involve the use of automatically verified measures of 
speaker  confidence for  both statistical  analysis  and machine learning,  with secondary 
innovations in tailoring a Bayesian classifier to the particular problem. More specifically, 
while  prior  work  has  already identified  the  prosodic  patterns  of  various  phenomena 
related to speaker confidence, this previous work has generally required masses of hand 
labeled data. This work first verifies that the prosodic features that were relevant for the 
hand labeled data remain significant for mechanically generated labels, and then proceeds 
to build and assess the effectiveness of a classifier based on these features.

Motivation & Background

One-on-one  dialogue  between  student  and  tutor  affords  particular  opportunities  and 
advantages for enhancing student learning beyond more traditional classroom activities, 
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sometimes by as much as two standard deviations (Bloom, 1984).  Typically, however, 
resources limit a teacher's ability to devote one-on-one time for adapting material directly 
to  individual  student  needs,  and  computers  may  be  employed.  Educational  software 
incorporating student modeling techniques (Conati et al., 2002; Rosé et al., 2001; Evans 
& Michael 2006) can adapt material to student performance over the course of a session, 
using a technique known as macro-adaptation (Shute,  1993).  This allows a system to 
home in on and address more directly individual student needs within a single session. 
Furthermore, if a spoken dialogue interface is employed, still more opportunities arise.

Some intelligent tutoring systems such as Andes employ a strictly graphical interface 
(Conati et al., 2002). However, a speech interface may sometimes offer a more natural 
method of delivering learning material and for testing its assimilation (Pon-Barry et al., 
2004; Litman & Silliman, 2004). In such cases, student speech may contain far more 
information than would normally be discernible from the literal transcription, possibly 
containing information on the student's emotional or cognitive state (Ang et al., 2002; 
Berthold  &  Jameson,  1999).  Specifically,  it  may  be  possible  to  detect  the  relative 
confidence or uncertainty of the student in delivering a given utterance (Forbes-Riley & 
Litman, 2007; Pon-Barry et al., 2006). The addition of this dimension to tutoring system 
input offers opportunities for enhancements in at least two areas.

● Student performance assessment: It may be possible to exploit the additional 
information  for  greater  precision  in  assessing  the  area  of  student  difficulty. 
Students may signal uncertainty localized to specific items within an utterance by, 
for instance, pausing just prior to the item or terminating it with a rising tone. 
Furthermore, even if the location of the cue does not clearly mark the source of 
confusion, the system can ask questions designed for homing in on it.  In such 
cases,  even  when  a  student's  response  is  perfectly  correct,  the  additional 
information about student uncertainty may cue an instructor that the student may 
benefit from further instruction in this area.

● Selection of appropriate tutoring tactics: Besides pinpointing the exact item of 
difficulty, such information also serves in assessing the student's emotional state. 
This has important implications for the appropriateness of a given pedagogical 
tactic, as tactics that are appropriate for less confident students may not be for 
more  confident  students  and vice  versa.  Tactics  such  as  model,  scaffold,  fade 
(Collins et al., 1989) rely implicitly on such assessments. Moreover, an automated 
tutor can be designed to respond in such a way as to increase student persistence 
in the face of waning confidence (Aist et al., 2002). It is worth noting that human 
tutors have been observed to give different responses based on student uncertainty 
(Forbes-Riley & Litman, 2007). 

2



Thus, a tutoring system capable of identifying uncertainty in the student’s speech could 
give  feedback,  offer  hints,  ask leading questions,   prompt for  further  explanation,  or 
employ other  pedagogical  tactics  for  identifying  the  source  of  student  confusion  and 
resolving it.

This paper pursues this avenue of investigation, examining audio data recorded in the 
course of experiments with Voice-Enabled DCTrain (Peters et al., 2004), an intelligent 
tutoring and spoken dialogue system designed for training US Navy personnel as Damage 
Control Assistants. This work attempts to answer the question of whether this system or 
other similar systems might be enhanced to exploit prosody for adapting to student state. 
The goal  for  this  work  is  to  highlight  automatically  extractable  features  that  interact 
closely  with  speaker  uncertainty,  thus  facilitating  machine  learning  approaches  to 
automatic classification.

The  direct  modeling  approach  (Shriberg  &  Stolcke,  2004)  to  this  would  involve 
annotating  utterances  with  a  listener's  assessment  of  speaker  emotional  state  (e.g. 
questioning, hesitant, neutral), followed by an application of machine learning techniques 
to  automatically  map  these  high-level  annotations  to  prosodic  features  that  can  be 
extracted automatically from utterance audio recordings. However, it can be difficult for 
listeners to identify emotional state, and the number of very clear examples may be so 
few as to lack a representative sample, leading to overfitting in any machine learning 
approach (Tan et al., 2006). Furthermore, generating such annotations is both expensive 
and error prone. Any means of automating or semi-automating the process of generating 
or verifying the annotations would be valuable.

The problem can be explored via two alternative automatically generated proxy measures 
of uncertainty. First, experience in doing a task usually leads to increased confidence. 
Thus, the number of times a student has performed a task can provide some information 
about whether the student's utterances are likely to be confident or not. Later,  this claim 
is substantiated with the Voice-Enabled DCTrain corpus by showing that students do, in 
fact, improve with practice. Second, increased competence leads to increased confidence. 
More  specifically,  a  student's  utterances  should  exhibit  greater  confidence  when  the 
student has mastered the material sufficiently to consistently score well, a phenomenon 
that  has  been  observed  in  related  work  (Forbes-Riley  &  Litman,  2007).  Of  course, 
features  that  correlate  with  both  the  amount  of  practice  a  student  has  had  and  the 
correctness of his utterances are even more likely to be useful indicators of uncertainty.

The literature suggests  six features as likely candidates for  automatically extractable 
confidence indicators: pause rate, speech rate, pitch rise, mean pitch, mean intensity, and 
the  amount  of  speech production.  Pause rate,  speech rate,  the  change in  pitch at  the 
termination of phrases and utterances, and the mean intensity of utterances have all been 
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used in automatically classifying dialogue acts (Shriberg et al., 1998), and pitch rise and 
pause  rate,  in  particular,  were  both  found  to  be  highly  useful  in  classifying  yes-no 
questions,  which may bear a resemblance to uncertain statements. Furthermore, pitch, 
intensity, and speech rate have been used in distinguishing uncertainty from confidence 
and frustration (Zhang et al., 2003). In addition, pause rate and speech rate are useful 
indicators  of  cognitive  load  (Berthold  &  Jameson,  1999;  Clark  &  Fox  Tree,  2002). 
Because cognitive load speaks directly to the difficulty of the student's task, it  seems 
reasonable  that  easier  tasks  would  be  more  likely  to  induce  confidence  in  speakers. 
Finally, Core et. al. (2003) demonstrate that the amount of speech production correlates 
with student learning gains,  and so this can be considered another feature potentially 
relating to confidence.

Subsequent  sections  define  these  features  in  detail;  describe  the  corpus  to  be  used; 
describe the approach and methods for finding prosodic patterns of uncertainty; discuss 
the  correlations  found in  the  data;  discuss  the  methods  and the  relationship between 
correctness,  practice,  and  confidence;  discuss  the  architecture  of  the  naïve  Bayesian 
classifier; evaluate the performance of the classifier; and conclude with a summary of the 
contributions made with this work and suggestions for further exploration.

FEATURE DEFINITIONS

This section provides definitions of the automatically extractable features. For many of 
the  features  (pitch  information,  intensity  and  speech  rate)  phrase  and  utterance 
measurements are normalized by the student's mean values. This is generally in keeping 
with other work in prosodic analysis (Shriberg et al., 1998; Zhang et al., 2003), and it 
allows  the  capture  of  speakers'  deviations  from their  own  mean  performance.  Praat 
(Boersma  &  Weeninck.  1996)  can  then  be  employed  to  extract  pitch  and  energy 
information as per (Huang et al., 2006). Word alignment information is obtained via a 
preprocessing  pass  with  the  Sphinx  2v0.5  recognizer  (Huang et  al.,  1993),  using  the 
“Communicator”  acoustic  models  (Bennett  & Rudnicky,  2002).  Wherever  the  text  of 
utterances  is  required,  transcriptions  rather  than  the  Automatic  Speech  Recognition 
(ASR) hypotheses are used in order to get the clearest look at the prosodic phenomena, 
although a fully automated system could use the ASR hypothesis.1

Pause Rate: Here, pauses are defined as silences in duration exceeding some threshold 
between bounding words, as distinct from periods of silence at the beginning or ending of 
utterances. That is, each pair of adjacent words contributes one opportunity for a pause, 
and the duration of whatever silence there may be between words determines if a pause 
is,  in fact, present.  The silence threshold employed in the experiments for identifying 

1 The Nuance recognizer has an average word error rate of 5.7% for this corpus.
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pauses was set at 200 ms, as per (Müller et al., 2001; Berthold & Jameson, 1999). This 
threshold serves to cover potential measurement error in the alignment timings and may 
otherwise ensure a certain degree of significance to the pause.  In addition, for the Voice-
Enabled DCTrain corpus, silences in excess of 900 ms were used to automatically end-
point utterances when the ASR recorded the wave files. Thus, all silences between words 
measured between 0.2 and 0.9 seconds in duration identify a pause. The pause rate of an 
utterance or phrase is defined as the total number of pauses measured per the number of 
pause  opportunities.  For  example,  an  utterance  of  five  words  contains  four  pause 
opportunities. Thus, if one pause were observed, the pause rate for the entire utterance 
would be 0.25.

Speech Rate: To approximate speech rate,  mean word durations are tracked for each 
student, eliminating any periods of silence from consideration. Then, to determine the 
speech rate of a given word sequence as spoken by a particular student, the duration of 
each word instance within the sequence is divided by the corresponding student's mean 
duration for that word. By this method, a normalized word duration is obtained for each 
word instance,  and from this  an  average  of  these  over  all  the  word  instances  in  the 
sequence to get a measure for the entire sequence. Hence, an average normalized word 
duration of 1.3 implies that words within the utterance were on average 30% longer in 
duration then normal for the given subject. The additional refinement is made by tracking 
the  durations  of  phrase  terminal  words  separately,  so  that  phrase  terminal  words  are 
normalized by the average duration of the particular word as it occurs in the terminal 
position.  This  resolves  a  potential  problem where utterances containing more phrases 
may tend to longer average word durations simply because of the well known tendency in 
English  to  prolong  phrase  and  utterance  final  words  (Wightman  et  al.,  1992).  This 
normalized word duration feature, where terminal words are normalized by their mean 
terminal position and all other words are normalized by their non-terminal duration, is 
referred to as word_dur_norm_avg_phrase_aware. The normalized word durations can 
then be converted into the reciprocal normalized speech rate value: 

speech_rate = 1 / word_dur_norm_avg_phrase_aware.

Pitch-Rise: The feature used to measure pitch rise is the relative change in average pitch 
between the last two 200 ms segments preceding a word ending. That is, as defined by 
(Shriberg et al, 1998),

rel_f0_diff = end_f0_mean / pen_f0_mean.

Here,  end_f0_mean  is  the  average  pitch  in  the  last  200 ms and pen_f0_mean  is  the 
average pitch in the penultimate 200 ms segment. Also in keeping with Shriberg et al. 
(1998), rel_f0_diff is normalized by the subject mean over all utterances to get the feature 
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refer to in this paper as rel_f0_diff_normal.

Mean Pitch: In addition to pitch rise, the mean f0 values of utterances are also examined, 
again normalized by subject mean across all utterances. This value is measured from the 
portions  of  utterances  excluding  silences,  as  periods  of  silence  would  skew  f0 
measurements toward zero and potentially confound mean f0 values with the proportion 
of pauses.

Intensity: To test the supposition that more confident utterances, spoken with greater 
authority,  may have greater  overall  intensity,  the  energy of  utterances  and phrases  is 
measured. The intensity of an utterance is defined as mean decibels normalized by the 
subject’s  average  intensity  over  all  utterances,  intensity_db_normal.  Note  that  this 
normalization  serves  two  purposes.  First,  as  with  pitch  and  speech  rate  information, 
normalization allows a clearer focus on the primary interest of the speaker's deviation 
from their own average intensity. Also, and just as importantly, it accounts for utterance 
recording  circumstances  such  as  microphone  distance,  room  acoustics,  and  volume 
settings. So as not to confound this measure with utterances containing long periods of 
silence, again, all periods of silence are excluded from the computed average.

Speech Production: Though not strictly prosody, the amount of speech production is a 
useful complement to prosody. Other work has found correlations between amount of 
speech production and student learning gains (Core et al., 2003), as students that produce 
more utterances and longer utterances generally learn more during tutoring sessions, and 
the possibility of a similar relationship with student confidence is explored here. It may 
be  that  the  student,  sensing  his  mastery  of  the  material,  gains  confidence,  and  this 
increasing confidence leads to more speech production. Specifically, we may expect that 
more confident students may issue longer and more ambitious utterances. Thus, a look at 
utterance  lengths  may  be  enlightening.  This  can  generally  be  measured  in  terms  of 
number of words per utterance. Alternatively, it may be profitable to examine the number 
of phrases contained within an utterance.

Intuitively,  one  may  expect  pauses,  word-durations,  and  pitch-rises  to  decrease  with 
student confidence, while intensity and the amount of speech production should increase. 
These features are considered for entire utterances as well as localized to particular words 
or phrases. Tying features to particular phrases or words allows the test of the claim that 
prosody can be exploited for greater precision in identifying areas of student difficulty. 

THE VOICE-ENABLED DCTRAIN CORPUS

DCTrain is a training system designed to simulate realistic conditions aboard a US Navy 
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ship  for  training  Navy  personnel  (Damage  Control  Assistants)  in  coordinating  ship 
damage control (Bulitko & Wilkins, 1999). To more closely approximate the true-to-life 
spoken command style, DCTrain was retrofitted with a speech interface (Peters et al., 
2004). The research documented here is built on data collected in the course of three 
different experiments with Voice-Enabled DCTrain. The first two took place during 2004 
with  subjects  drawn  from the  Stanford  University  student  population.  The  third  was 
conducted in 2005 with students from the US Naval Academy, Annapolis.

The entire corpus consists of 283 subjects and 17,1292 utterances. The 252 
subjects and 3,483 utterances judged for correctness are a subset of the corpus.

Table 1: Corpus Summary Statistics

Spring 2004 - 
Stanford

Summer 2004 - 
Stanford

Winter 2005 - 
USNA

Total

Words 23822 29400 46050 99272

Utterances 4503 5504 7122 17129

Corrected 
Utterances

716 1129 1638 3483

Subjects 33 44 205 283

Corrected 
Subjects

32 43 177 252

Language Description and Correctness Ratings

The DCTrain simulator allows students to experience damage control scenarios on a US 
Naval ship, where the student plays the role of a damage control officer. The majority of 
student utterances consist of orders to repair teams in various areas of the ship and use a 
fairly  specialized  subset  of  English  grammar  and  vocabulary.  The  result  of  this 
specialization is that word order and the number of words is held relatively constant, 
thereby reducing the number of variables necessary for consideration and facilitating a 

2 These 17,129 utterances comprise roughly 60% of a larger corpus, and are those for which it was easiest 
to recover forced alignment information.
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more detailed focus on prosody.

Utterances judged for correctness are of two types, as exemplified by the following two 
transcripts:

repair two investigate compartment two tac two two zero tac four tac alpha (1)
Repair Two, investigate compartment 2-220-4-A.

repair three dca set fire boundary primary forward two zero zero (2)
Repair Three, D.C.A., set fire boundary primary forward 200.

Commands of type (1) identify a repair team and compartment, while those of type (2) 
may or may not identify a repair team but always identify the boundary to set in order to 
contain a crisis such as a fire or flood. The information critical to the correctness scores 
are underlined for emphasis. The correctness of type (1) utterances depends upon whether 
the specified compartment falls within the jurisdiction of the specified repair team. In this 
particular instance, the student addresses repair team two, ordering them to investigate 
the compartment with designator “2-220-4-A”. Note the use of the US Navy alphabet 
letter  “alpha”  for  “A”.  The correctness  of  utterances  of  type  (2),  on the  other  hand, 
depends  on the  appropriateness  of  the  boundary to  the  location of  the  crisis.  In  this 
instance, the student has ordered repair team three to set a boundary against fire spread, 
with  designator  “primary forward  200.”  Whether  this  is  the  correct  boundary or  not 
depends on whether it is either immediately (or one boundary removed) aft or fore of the 
compartment or compartments containing the crisis. These two particular utterances types 
are  singled  out  simply  because  they  can  be  judged  for  correctness  independent  of 
dialogue context.  That is,  they are self-contained, each containing all  the information 
necessary for assessing correctness.

It  is  important to  note that these two utterance types constitute a sizable but  definite 
minority of utterances, about 20% of the corpus. There are other actions that the student 
may take which DCTrain scores but that no attempt is made here to score. Furthermore, 
as demonstrated in (2) it is common for repair team addresses to appear in utterances 
without  accompanying  compartment  designator.  Thus,  by  limiting  investigations  to 
utterances with both compartment and repair team, correctness is gathered for only some 
31% of the utterances containing repair teams. Also, the measure used in this work for 
boundary phrase correctness is less precise than the one DCTrain uses, since there can be 
multiple compartments involved in a scenario as a whole,  while only some subset of 
these are active at any given moment, and each boundary is checked against the union of 
correct boundary sets for all compartments active in a given experiment, while DCTrain 
checks  only  against  the  potentially  much  more  precise  set  of  boundaries  for 
compartments  currently  active  at  the  time  of  the  order.  As  a  matter  of  convenience, 
because the correctness information was not readily transferable from DCTrain logs to 
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the corpus of utterances, this approximation was used as a starting point3.

METHODOLOGY: PRACTICE, CORRECTNESS, AND CONFIDENCE

The  corpus  contains  three  different  human-annotated  labels  for  uncertainty:  hesitant, 
question-rise, and uncertain. The annotators were allowed to use any of these labels freely 
and were  not  required to  identify  confident  utterances.  T-tests  find  highly significant 
differences in mean pause rate and normalized word durations for hesitant utterances as 
compared to other utterances (at the p < 0.001 level for each), where hesitant speech 
contains  both  more  pauses  and  words  of  longer  duration  (Figure  1).  For  utterances 
marked as containing a question-rise,  a higher mean value is found for the pitch-rise 
feature,  rel_f0_diff_normal  (p  < 0.001),  as shown in Figure 2.   However,  the corpus 
contains  only  some  23  “hesitant”  annotated  utterances,  21  “question-rise”  annotated 
utterances,  and 67 “unsure” annotations,  totaling 111 out  of 17,129 utterances.  Small 
sample size leads both to larger variances and reduced accuracy in estimating population 
statistics. Thus, the smallness of the sample of uncertain utterances  not only makes it 
unlikely that the sample represents the full range of behaviors but also generally reduces 

the accuracy of statistical  measurement.  Nevertheless,  this sample does provide some 
support for the hypotheses.

3 DCTrain has its own representation of the correctness of utterances, but there are potential problems in 
relying on logs for this info. First, speech recognition errors may mean DCTrain is not interpreting the 
utterance correctly. Second, DCTrain allows a command to be built up over the course of several 
dialogue turns, filling in missing parameters each turn. It only assesses correctness when the command 
is complete. The nature of prosody in multi-turn commands could easily be quite different. Third, 
DCTrain could not completely solve boundary correctness because if several fires are burning, DCTrain 
only matches boundary commands to its set of needed boundaries, and does not represent which 
boundaries are intended for which fire.

9
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It seems, however, that there may be many more examples of uncertainty in the corpus 
than the annotations alone indicate. Any annotations for uncertainty must necessarily be 
based on annotator perception, and it can be difficult for annotators to correctly identify 
the actual state of the subject. 

One important source of difficulty resides in the fact that some of the prosodic features 
considered  for  classifying  uncertainty  may  be  voluntary,  and,  thus,  may  not  always 
coincide with the speaker's confidence state. Filled pauses, for instance, used to announce 
forthcoming speech delays,  possibly due  to  cognitive  load,  are  one  example  of  such 
voluntary expressions  of  speaker  self-assessment  (Clark  & Fox Tree,  2002).  Speaker 
choice in issuing such signals is governed by many factors, one of which is the perceived 
nature and role of the interlocutor (Shechtman & Horowitz, 2003; Reeves & Nass, 1996). 
If  the  subject  perceives  the  system  strictly  as  a  machine,  voluntary  expression  of 
uncertainty  may  not  be  present  at  all  (Shechtman  &  Horowitz,  2003).  Alternately, 
according to the argument of Reeves and Nass, even if the students were to interact with 
the system as they would with humans, the perceived social role assumed by the system 
would shape student interactions accordingly. In this case, the simulated entities in the 
damage control scenario are mostly subordinate officers, and student utterances are less 
likely to contain signals of uncertainty.

While these factors make it difficult for annotators to diagnose uncertainty they do not 
indicate whether or not  students themselves are confident.  That is,  there may yet be 
many instances of uncertainty that are not reflected in the annotations, and, owing to the 
difficulty  of  the  diagnosis,  there  may  even  be  cases  of  misidentified  uncertainty. 
Therefore, the annotations are supplemented by other measurable phenomena that serve 
as proxy measures of uncertainty.

Correctness & Confidence

One means of approximating uncertainty annotations is  to  rely on correctness scores, 
which  in  the  Voice-Enabled  DCTrain  corpus  are  automatically  scored.  Research  has 
shown that, while correctness is not identical with confidence, the two are closely tied 
(Forbes-Riley & Litman, 2007). Intuitively, this makes sense, in that students should be 
confident of successfully completing easier tasks,  and easier tasks will  also generally 
receive higher correctness scores. Nevertheless,  students may be mistaken about what 
they know, leading to overconfidence or under-confidence, and they may make correct 
guesses  that  outstrip  their  true  understanding.  That  is,  students  may  be  correct  yet 
uncertain, or they may be incorrect but still confident. These issues introduce noise into 
the  approximation,  but  the  greater  numbers  of  utterances  with  scores  are  a  helpful 
addition  to  the  study  of  the  prosody  of  uncertainty.  Thus,  t-tests  are  performed  for 
measuring  the  significance  of  mean  differences  between  correct  and  incorrect 
utterances/phrases to parallel tests for confidence vs. uncertainty.
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Increasing Confidence with Practice

Another  automatically  measurable  indicator  of  student  confidence  is  the  amount  of 
practice a student has had. The time the subject has spent in practice with the tutor is 
measured by the number of utterances or phrases the student has produced just prior to 
and  including  the  utterance  under  consideration.  This  chronological  ranking  allows 
averaging across subjects for each given utterance/phrase number, potentially revealing 
trends over time. Then, to supply some quantitative measure of the strength of any such 
trends,  p-values are computed for two-tailed Pearson correlation for linear regression. 
Relationships are not expected to necessarily be linear, but the correlations can indicate 
generally increasing or decreasing trends.

The idea that confidence increases with utterance or phrase number is an assumption that 
merits closer inspection4. While it seems natural to assume most students will gradually 
become  more  comfortable,  we  first  examine  the  relationship  between  chronological 
ranking of utterances and other factors that may either contribute to or be the result of 
improving  student  confidence.  Specifically,  relationships  are  sought  with  regard  to 
disfluencies  such as  word fragments  and broken-off  utterances,  phenomena that  have 
been  commonly  cited  as  relating  to  cognitive  load  (Berthold  &  Jameson,  1999). 
Generally, student confidence in some sense speaks to the ease or difficulty of the task at 
hand, and cognitive load is a closely related factor. Similarly, a search is conducted for 
prosodic  features  that  may occur  in  conjunction  with  correct  or  incorrect  utterances, 
another indicator of the general difficulty of the task. We also take a look at the other less 
directly related phenomena of speech recognition problems (word error rate and rejection 
rate). 

Other work has found correlations between recognition problems and unusually fast or 
slow speech, out of vocabulary words,  and speaker self-repairs related to disfluencies 
(Shinozaki  &  Furui,  2001;  and  Shinozaki  &  Furui,  2002;  Hirschberg  et  al.,  2004). 
Furthermore, others have observed relationships between the heightened emotional state 
of the speaker (such as frustration) and speech recognition problems (Rotaru & Litman, 
2006). While frustration may or may not relate to disfluencies, its presence or absence 
speaks  to  the  smoothness  of  student  interaction  with  the  system.  In  general,  speech 
recognition performance seems closely related to the quality of speech production and to 
4 The reasonableness of the assumption depends on the dynamics of the interaction between the system 

and the student. It has been observed that users can enter into negative cycles of interaction, where 
recognition failures, for instance, may prompt the user to alter his speaking manner in such a way that it 
may be even harder to automatically recognize, resulting in even worse recognition performance (Soltau 
& Waibel, 1998). In such a scenario, confidence may very well never come to be the dominant factor in 
the user's experience. However, negative dynamics of this sort would be expected to exhibit symptoms 
such as increasing disfluencies, poorer recognition performance, and generally poorer student 
performance. Thus, we first look at these symptoms, including other signs of improvement or problems, 
such as cognitive load, correctness ratings, and utterance lengths.
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the general  smoothness of the interaction between the speaker  and the system. Thus, 
declining rejection counts and Word Error Rate may point to a general improvement in 
user experience and an increasing sense of confidence. The data examined here supports 
these findings (Figures 3 and 4),  with significant differences between the mean word 
error rate for hesitant and non-hesitant utterances (p<0.001) and the mean number of 
recognition failures for utterances marked with a question-rise as compared to all other 
utterances  (p<0.005),  as  computed  via  t-tests.  In  both  cases,  the  uncertainty  marked 
utterance was much more likely to be associated with a speech recognition problem.

In  fact,  averaged  over  all  subjects  in  the  data,  it  is  observed  that  disfluencies  and 
recognition problems decrease over time (Figure 5). Furthermore, student responses to 
simulated casualties are more consistently correct, for both boundary phrases and repair 
team addresses (Figure 6). 

From (Figure 7) it can also be observed that the student's rate of speaking increases (word 
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Figure 5: Confidence Indicators vs. Time Figure 6: Correctness vs. Time
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Figure 3: ASR Problems & Hesitancy Figure 4: ASR Problems & Question-rise
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durations get shorter over time) while pauses  (marked or unmarked by “uh” or “um”) 
grow less frequent, both phenomena cited as signs of decreasing cognitive load (Berthold 
& Jameson, 1999). Moreover, there is a significant increase in the number of boundary 
phrases students typically incorporate into a single utterance. This kind of increase in 
speech  production  has  been  noted  to  often  accompany  learning  gains  in  student 
interactions with tutors (Core et al, 2003), and seems likely to correspond to increasing 
student confidence. Furthermore, we observe the uncertainty annotations decreasing in 
frequency over time. All of these combined factors argue strongly that student confidence 
does indeed increase with time spent practicing with the system.

Note that most of the disfluency measures presented are automatically detectable. They 
include the rate at which a subject tends to break off in the middle of boundary phrases, 
repair  teams,  and  compartment  phrases.  Broken-off  utterances  can  be  identified  by 
looking at the constituent phrases and matching phrase beginnings to the following string 
of words. If phrase terminating words are not matched, the utterance is marked as having 
been broken off.5 Rejections occur as a result of very low acoustic likelihood measures, 
as judged by the speech recognizer. Word Error Rate (WER), on the other hand, requires 
a  gold  standard  transcription  for  comparison,  but  these  scores  can  be  crudely 
approximated by confidence scores from the speech recognizer. Much better than this, 
however, is to employ prosody to improve on the simple acoustic likelihood (Hirschberg 
et al., 2004). Using this approach to approximate WER, only word fragments cannot be 
easily automatically detected.

5 This method seemed sufficient for our purposes. While it allows for utterances that are not necessarily 
“broken-off” to be labeled as such, these cases were generally due to the presence of some other 
disfluency type.
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Furthermore, the confidence indicators, including correctness ratings but excluding the 
annotations themselves, are all automatically detected. So, these features can be extended 
from this statistical analysis to an automatic classifier that can then be incorporated into a 
tutoring system.

RESULTS

Amount of Production

Core et al. (2003) show that student dialogue contributions as measured in words closely 
relate to learning gains. The data bears these findings out, with regard to the number of 
words  per  utterance,  but  the  relationship  manifests  differently  for  the  two  different 
utterance types  at  the  focus  on  of  this  work.  Specifically,  it  is  found that  utterances 
containing  boundary  phrases  grow  in  length  with  practice  and  experience,  while 
utterances containing repair-team/compartment pairs grow shorter.  The density of the 
student's  delivery  of  the  necessary  information  seems  to  be  the  more  fundamental 
measure of student competence than raw word counts.
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Figure 7: Disfluencies vs. Time
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When a casualty such as a fire occurs, one of the steps in controlling the fire is to set 
boundaries to contain the damage. There are four boundaries for each compartment: two 
aft-ward and two forward of the compartment. The student is to set all four boundaries 
but is permitted to specify them in any order, and any number at a time. That is, students 
may specify all  four  in  the  same utterance,  or  break them up into  smaller  sets  over 
successive utterances. Thus, there is some variability in the number of utterances that 
seems related to the student's familiarity with the task and general sense of confidence. 
We observe  that  the  number  of  boundary phrases  within  an  utterance  increases  with 
practice (p < 0.001) and with utterance correctness (p < 0.001), as shown in Figure 8. 
These correlations strongly suggest phrase counts as a measure of confidence, and this 
paper refers to the count of information items per utterance as the “informativeness” of 
the utterance, where the more informative  an utterance is, the more confident it appears.

Since  repair-team/compartment  utterances  are  more  constrained  in  the  number  of 
information items that can be delivered per utterance, just one pair per utterance, the 
related concept of “conciseness” is found to be of greater utility. Here, the conciseness of 
an utterance is defined as the fewness of words used to deliver the necessary information. 
Thus, while there is no observable relationship with correctness, one may see from Figure 
9 a significant decrease in the number of words in repair team addresses with practice (p 
< 0.001). Repair team addresses may consist of simply two words such as “repair three” 
or, at the other extreme, they may consist of as many as six words as in “net eighty to 
repair team three,” where the “net eighty to” and the “team” are two different optional 
additions that students drop over time. Thus, while boundary utterances grow in length on 
average,  repair  team/compartment  utterances  actually  shorten.  That  is,  utterances  get 
more dense and information rich with experience.
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Figure 8: Number of Boundary Phrases vs. 
Correctness
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Figure 9: Optional Words in Repair Team 
Address vs. Time
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Students also demonstrate increasing competence by the manner in which they organize 
the information. Figure 10 shows that students tend to organize boundary phrases into 
sets of one, two, or four, with single-phrase utterances gradually decreasing in relative 
frequency over time even as the relative frequency of two- and four-phrase utterances 
increases.  The  physical  layout  of  boundaries  symmetrically  about  the  compartment 
suggests a natural segmentation, and students gravitate toward this organization as they 
gain  experience.  On  the  other  hand,  we  observe  that  three-phrase  utterances  remain 
relatively rare throughout, at about 1% of all boundary utterances. Furthermore, while 
informativeness  still  has  an  effect,  since  three  phrase  utterances  are  generally  more 
correct than single phrase utterances, they are less likely to be correct than either two or 
four phrase utterances. Thus, the relationship between the number of boundary phrases in 
the utterance and student competence is not a linear one, but the logical organization of 
the  utterance can be used in combination with phrase counts  for  greater  accuracy in 
assessing confidence state.
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Figure 10: boundary Phrases in Utterances vs. Time
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Pauses

Intuitively, one expects more pauses to indicate less confident speech, and this intuition is 
supported  both  by  the  data  and  the  literature  on  cognitive  load,  with  one  critical 
difference:  while  pauses  within phrases do seem to decrease with confidence,  pauses 
before phrases have the opposite relationship. That is, as depicted in Figures 12 and 13, 
pauses within boundary phrases decrease with practice (p < 0.05) and correctness (p < 
0.001).  However,  students  actually  pause  more  with  time  at  the  grammatical  points 
marking the beginning of boundary phrases (p <0.05) and compartment  phrases (p < 
0.01), and more for correct boundary phrases (p < 0.05).  The patterns correlated with 
correctness for boundary phrases are consistent with the observations for compartment 
phrases but with less significant trends (i.e., p > 0.05). Thus, it seems that ungrammatical 
pauses  do  in  fact  indicate  problems,  while  grammatical  pauses  indicate  either  more 
careful planning of answers or greater fluency with the language. 

We also  observe  from Figure  13  that  pauses  are  much more  frequent  before  critical 
sections of phrases,  possibly allowing for the diagnosis  of  critical  areas of difficulty. 
More specifically, while the difference between correct and incorrect utterances is less 
clear here, students still pause more frequently before the frame number of a boundary 
phrase  identifier  than  elsewhere  in  the  phrase  (p  <  0.001).  These  critical  areas  are 
explained  by  the  fact  that  compartment  boundaries  are  aligned  with  frame  divisions 
within the ship, and the correct boundary  can usually be ascertained directly from the 
frame number associated with the particular compartment. Thus, determining the frame 
number of the boundary is most of the task of determining the boundary in its entirety.
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Figure 12: Boundary Phrase Pauses vs. Time
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Figure 11: Compartment Phrase Pauses vs. 
Time
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Word Durations/Speech Rate

Speech rate information is very similar to the pause rate information, where faster speech 
corresponds to greater competence. One difference, however, is that the duration of the 
key words of the boundary phrase are much more significant than the pauses preceding 
the key words,  which were not  found statistically significant.  Over  time,  speech rate 
increases (see Figures 14 and 15) for both compartment (p < 0.001) and boundary phrase 
frame numbers (p < 0.005). Also, speech rate increases with correctness (Figure 16) for 
boundary phrase frame numbers (p < 0.001). Thus, word durations may serve better in 
pinpointing the exact place of difficulty within phrases. Otherwise, we observe essentially 
the same trends, where speech is generally faster (normalized word durations are shorter) 
within correct boundary phrases (p < 0.001) and speech rate also increases with practice 
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Figure 13: Pauses in Boundary Phrases vs. 
Correctness

Figure 15: Compartment Phrase Word 
Duration vs. Time
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Figure 14: Boundary Phrase Word Durations 
vs. Time
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(p < 0.001) for both boundary phrases and compartment phrases. It seems that speech rate 
is largely useful as a parallel measure of the phrase-internal pause rate. 

Pitch Rise and Mean F0

Interestingly,  it  is  observed  that  within  the  corpus  the  much  lower  than  average 
normalized pitch measures corresponds to the less confident phrases. Like speech rate, it 
offers  some  useful  information  for  identifying  critical  areas  of  difficulty  within 
utterances. Specifically, Figure 17 shows that the compartment usage type letter6 has a 

6. Note that the compartment letter is canonically expressed using the US Navy alphabet, and may require 
that the student either exercise his memory or consult a reference card to recall the correct word: “quebec” 
for “q”, for instance.
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Figure 17: Compartment Phrase Mean F0 vs. 
Correctness

Figure 18: Compartment Phrase Mean F0  vs. 
Time

Figure 16: Boundary Phrase Word Durations vs. Correctness
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closer to average normalized pitch for correct repair-team/compartment utterances (p < 
0.05). Within compartment phrases in general (Figures 17 and 18), f0 rises with both 
correctness and time (p < 0.05 for both). It is perhaps worth noting that while most of the 
other features considered here are generally less significant for the compartment phrases 
than for boundary phrases; we observe the opposite effect with pitch information.

We can also observe, that the pitch rise feature, rel_f0_diff_normal, tends to fall more 
over time for the final word of repair team addresses (p < 0.01). However, somewhat less 
intuitively, rel_f0_diff_normal rises increasingly more often with time at the beginning of 
confident phrases (p < 0.05 for boundary phrases, p < 0.01 for compartment phrases), 
producing a higher overall mean f0.

Intensity

Like f0, an overall higher intensity within phrases seems to indicate greater confidence, 
as  students  speak  more  loudly  over  time  and  with  more  correctness.  However,  the 
correlations seem generally more significant for intensity than for the f0 measurements. 
Figures 19, 20, and 21 all show that with practice, students generally speak more loudly 
(p < 0.001) for compartment and boundary phrases as well as repair team addresses. We 

also observe especially significant differences for key words within phrases. Specifically, 
for boundary frame number, we observe higher intensity for correct phrases (at the p < 
0.001 level) and increases with practice at the p < 0.01 level. For compartment usage type 
letter, similar correlations with correctness (p < 0.01) and practice (p < 0.001) are seen. 
Similar differences are shown for correctness (Figure 22), as correct phrases tend to have 
greater intensity. This correlation between higher intensity and confidence may point to 
the use of a sort of “command voice,” as students role play issuing orders. Alternatively, 
it may simply indicate that less confident speech is quieter, particularly surrounding the 
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Figure 20: Compartment Phrase Intensity vs. 
Time
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Figure 19: Boundary Phrase Intensity vs. Time
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items of least confidence.

FROM FEATURES TO CLASSIFIER

Naïve Bayesian Overview

The statistical trends relating the various prosodic features of a phrase to its correctness 
score can be exploited in building a classifier. This section describes the naïve Bayesian 
classifier employed for this purpose, roughly following the standard formulation for a 
binary classifier but with some important deviations.

Each  phrase  can  be  represented  as  a  vector  of  numeric  values  specifying  the  pitch, 
intensity, pause rate and so on, and the phrase's associated correctness score can be used 
as a class label of either Correct or Incorrect.

Y =〈Y 1 ,Y 2 , ...Y n〉
C∈{Correct , Incorrect }

The posterior probability of a class given the data can be computed using Bayes' Theorem 
by multiplying the likelihood by the ratio of priors. 

P C∣Y =P Y∣C  P C /P Y 

Thus, the best class label can be simply defined as the one with the highest probability 
given the data (i.e., the phrase's feature vector). Furthermore, since there are only two 
possible classes to consider, a mathematical simplification can be made by computing the 
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Figure 22: Intensity vs. CorrectnessFigure 21: Repair Team Intensity vs. Time
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ratio of posteriors and comparing the result with 1.
P Correct∣Y 

P  Incorrect∣Y 
= P Y∣Correct P Correct 

P Y∣Incorrect P  Incorrect

classifier Y ={
P Correct∣Y 
P  Incorrect∣Y 

1 :Correct ,

P Correct∣Y 
P  Incorrect∣Y 

1 : Incorrect ,

otherwise: Indeterminate
}

The third case, that of equal posterior estimates for both classes, rarely occurs in practice. 
However, an error margin may be chosen so that instead of testing equivalence with 1, a 
test is made for inclusion within some interval about 1. The size of the interval may be 
adjusted to increase confidence in the classifications falling outside the indeterminate set, 
so that the least likely estimates are subsumed in some third set of indeterminate phrases. 
Note that when defining the interval, one cannot simply employ a linear ε-interval, since 
the ratio results in a non-linear relationship with the two probabilities, and would result in 
skewing the indeterminate set toward the class represented in the denominator. However, 
this can be remedied by either inverting the ratio for values above 1.0 and testing the 
inverted ratio for inclusion in a linear ε-interval, or, equivalently, all probabilities can be 
converted to log probabilities.

Even after converting to log probabilities, however, it is still possible that the density of 
phrases may differ on either side of the center. This argues for a separate ɛ value for the 
positive and negative log probability ratios, resulting in the following modified test.

classifier Y ={logP Correct∣Y 
P  Incorrect∣Y  ε0 :Correct ,

logP Correct∣Y 
P  Incorrect∣Y  −ε1: Incorrect ,

otherwise : Indeterminate
}

One way of determining appropriate values for the epsilons is to rank the phrases by their 
probability ratios and then set the epsilons such that it excludes some percentage of the 
least authoritative judgments. The two epsilons may be set according to separate criteria 
if the cost of an erroneous judgment is different for the two phrase labels, or alternatively 
the center can be moved from 1.0. However, for the experiments discussed in this paper 
the center ratio was left at 1.0 and the epsilons were always adjusted to exclude an equal 
proportion of the positive and negative judgments.
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The prior probability of a given class can be estimated directly from the data by simply 
counting the number of phrases with a given label divided by the total number of phrases. 
Also, in the case of discrete valued features, the likelihood of the data given a particular 
class can be estimated by counting the number of records with a given value and dividing 
that by the total number of instances of the class.

P C = n C 

∑
c∈{Correct , Incorrect }

n c 

P Y∣C = n Y ∧C 
n C 

Computing P(Y|C), the joint conditional probability of the features in the Y vector given 
the class label, is not trivial. However, it can be simply approximated by using the strong 
independence assumption central to the naïve Bayesian classifier. 

P Y∣C =∏
i=1

n

P Y i∣C 

Note that while it unlikely that independence genuinely holds in the data, a rough 
approximation can still be made using this assumption. Error is introduced into the output 
to the extent that the data violates independence. Such violations occur regularly in 
applications, but the approach is surprisingly robust, and the performance is often still 
acceptable.

Correctness History and Practice as Additional Features

In addition to the prosodic and speech production features mentioned thus far, the amount 
of practice and the history of right answers can be employed by the classifier. The amount 
of  practice  as  measured  for  the  previous  statistical  analysis  can  simply  be  added  as 
another  dimension  in  the  feature  vector.  Correctness  itself  cannot  be  employed  as  a 
feature, since it is being used as a class label. However, it is reasonable to assume that the 
history of correct answers for a given phrase type, up to but excluding the correctness of 
the current phrase, is related to the phrase's own correctness score, if not identical. There 
is a considerable literature on modeling student mastery by correctness history. However, 
as a very simple measure, a count of the number of correct phrases occurring within the n 
preceding phrases can be maintained. Some exploration can be employed to determine 
the optimal size of the window into the correctness history, and in particular it was found 
through experimentation (discussed in detail later in the “History Tuning” section) that a 
four phrase window worked best for repair-compartment utterances while a two phrase 
history worked best for boundary phrases.

This measure is relatively crude, and the reader is referred to (Conati et al, 2002) for just 
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one  example  of  a  better  approach.  The  primary  objective  here,  however,  is  a  basic 
demonstration of how correctness histories and prosodic information can be combined in 
complementary fashion. The crude n-phrase window suffices for this purpose but more 
effective approaches will likely lead to better results than those reported here.

Discretization, PDE, and Expected Distributions

The probability density estimator (PDE) employed for the conditional probability of the 
data (P(Y|C)) that has been described only works for discrete data. However, most of the 
prosodic features are actually continuous, not discrete at all. Thus, the PDE requires the 
integration of discretization logic. One method of doing this is to simply split the range of 
possible values into equal intervals. However, this can lead to overfitting, and may also 
result in loss of information when the granularity of the interval is too crude to capture 
the true picture of the data.

Alternatively,  the  discrete  data  PDE can be  replaced with  an  estimator  based  on  the 
assumption  that  the  data  should  fit  some  idealized  distribution,  such  as  the  normal 
distribution.  Then,  this  idealized  distribution  can  be  employed  to  directly  compute  a 
probability of a given data point, given parameters such as the mean value and variance 
given the class label.  This second approach results  in less chance for overfitting,  but 
dependence on possibly overly strong assumptions may also lead to a poor approximation 
of the data.

As a compromise, the data may be discretized in such a way that that the distribution 
matches some looser but still sufficiently general assumption, guarding both against the 
overfitting-prone purely data driven approach and the potential for poor approximation 
due to invalid assumptions.

Casual  inspection  of  the  proportion  of  correct  phrases  plotted  against  our  prosodic 
features reveals that many follow a common pattern, with a rise to some peak and then a 
decline.  This  pattern can be captured by a  simple discretization algorithm even as  it 
approximates  the  contours  of  the  data.  First,  sort  the  phrases  by  the  feature  to  be 
discretized.  Second,  divide  the  sorted  list  of  phrases  into  bins  of  equal  numbers  of 
phrases. Determine the bin of maximal concentration of correct phrases. Using this as a 
maximum,  then  merge  consecutive  bins  such  that  their  correctness  concentration 
monotonically increases to this maximum and then monotonically declines after it. This 
algorithm  then  produces  a  curve  somewhat  resembling  a  normal  curve,  but  with 
considerable flexibility for variation. Pseudo-code for the algorithm is displayed below.
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Figures 23 and 24 illustrate the effect of the algorithm on the subject normalized intensity 
values of boundary phrases. Figure 23 shows that results of the algorithm after step 2, 
where the phrases have been sorted by intensity and divided into bins of equal numbers 
of phrases.7 It appears from this graph that correctness rises sharply to peak somewhere 
around a normalized value of 1.0, or exactly when intensity reaches the student's mean 
intensity level, and then slowly declines at higher intensity levels. After running the entire 
algorithm, shown in Figure 24, it can be seen that the algorithm successfully finds and 
preserves the rise, peak, and decline while discretizing into only five bins.

7 For this experiment, 20 bins were used for the initial step, resulting in bins of about 125 phrases each 
for the boundary phrases and 95 phrases each for the repair-compartment utterances.
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 1 Sort phrases into non-descending order by the given feature.
 2 Divide phrases into bins of equal numbers of consecutive phrases.
 3 Determine the bin with the maximal concentration of Correct class.

 3.1 Find local optima by identifying all bins whose concentrations are greater 
than the combined concentrations of all lesser and greater valued bins.

 3.2 Make the local optima of most extreme concentration the global maximum.
 4 Proceeding from the first bin to the bin of optimal concentration, merge 

consecutive bins until a monotonically increasing function of concentration 
values is formed. 
 4.1 Whenever a bin with a smaller concentration is found, merge it with the 

preceding bin.
 4.2 If the newly formed bin has a smaller concentration than its preceding bin, 

merge them. Repeat this step until no more merges occur. 
 4.3 Proceed to the next bin and repeat from step 4.1 until reaching the 

optimum.
 5 Proceeding from the bin of optimal concentration to the last bin in the sorted 

list, merge consecutive bins to form a monotonically non-increasing function of 
concentration. (Symmetric with step 4)

Pseudo-code for Discretization Algorithm



The algorithm is integral to the probability density estimation step and is essentially a 
variety of clustering algorithm, which exploits class labels in an attempt to maximize the 
difference in phrase concentrations between clusters. Making use of the labels is only 
valid since it is fully integrated into the PDE and trained and tested along with the rest of 
the classifier. That is, the bins must be defined by value ranges discovered according to 
the discretization algorithm during training, ranges that can then be used for assigning a 
data point to its respective bin.

It  should  be noted that  there are  many different  ways to discretize  the data and this 
section  only described  one  possible  approach,  a  relatively  simple  approach  that  was 
found  at  least  somewhat  effective  for  the  task  at  hand.  However,  a  more  thorough 
investigation should involve a more systematic comparison of different schemes.

Correctness as Confidence Class and the Neutral Set

In the discussion of using correctness for finding relationships with confidence, several 
issues  were  noted  that  may partially  obscure  the  relationship.  These  issues  must,  of 
course, also be acknowledged when employing correctness as confidence class labels. 
Specifically, noise is introduced by the fact that, with respect to any voluntary uncertainty 
cues, student confidence is tied to correctness only in as far as the student has an accurate 
understanding of his own correctness. Noise is further introduced by utterances exhibiting 
uncertainty  regarding  non-correctness  based  issues,  such  as  a  student  exhibiting 
uncertainty as to whether the ASR is likely to correctly recognize his current utterance. 
Furthermore,  there  may be  other  emotions  that  correspond  with  correctness  such  as 
waxing  and  waning  enthusiasm  or  frustration,  which  may  complicate  relationships 
between prosody and correctness.  These noise  factors all  put an upper  bound on the 
performance of the correctness based classifier.

26

Figure 23: Boundary Intensity vs. Correctness Figure 24: Discretized Boundary Intensity



Nevertheless, certain advantages may potentially outweigh these limitations. In domains 
where correctness can be automatically determined, significant costs  can be saved by 
forgoing expensive hand generation of confidence labels. Furthermore, such automated 
methods may be less prone to subjective judgments, as they must be based strictly on 
machine  verifiable  standards  applied  uniformly  across  all  subjects  and  utterances, 
potentially mitigating human prejudice. Finally, unlike annotations, machine generated 
labels can be generated on the fly, allowing the classifier to adapt to new users during a 
single  session,  potentially  improving  classifier  performance  beyond what  is  currently 
possible with hand generated class labels.

Some of these drawbacks may be at least partially overcome by the introduction of a 
neutrality  set,  defined  by  the  ε-interval  about  log  probability  ratio  0  mentioned 
previously. By setting the ε-interval, a minimum authority can be specified for classifier 
output. If a the probability ratio falls within the interval, the classifier instead outputs an 
indeterminacy flag. Seeing this flag, a tutoring system can refrain from acting on these 
unlikely guesses. It seems unnecessarily restrictive to force a tutoring system to treat all 
utterances as either confident or uncertain, as many utterances may be neither, perhaps 
more accurately characterized as neutral. These utterances would likely fall within the set 
of  utterances  of  indeterminate  classification  in  the  binary  classifier,  and  may  be 
effectively modeled by carefully adjusting the ε values. Thus, the following discussion of 
classifier  performance  examines  the  success  rate  of  the  classifier  as  measured  with 
various settings of the  ε threshold.

CLASSIFIER PERFORMANCE

Students generally perform quite well on the two tasks examined. For boundary phrases, 
students produce the correct information about 78.9% of the time, while for compartment 
phrases they perform at about 59.5% correctness. These define the prior probabilities of 
the classifier on the two different phrase types. The task of the classifier is to improve 
upon these prior probabilities using the likelihood of the data given the class label.

Using 10 fold cross validation testing, the classifier accurately classifies 79.9% of the 
boundary phrases (barely higher than the prior probability alone) and 69.8% of the repair-
compartment phrases. To better evaluate performance it is useful to consider the accuracy 
of the classifier for each of the different class labels as well  as the overall  accuracy. 
Accuracy given that the phrase is correct is commonly referred to as the sensitivity or the 
true  positive  rate  (tp  rate).  Accuracy given that  the  phrase  is  incorrect  is  commonly 
referred to as the specificity or true negative rate (tn rate). Finally, the false positive rate 
is  simply  the  complement  of  the  tn  rate  probability,  and  Receiver  Operating 
Characteristic (ROC) graphs can be used to compare the tn rate and fp rate of different 
classifiers.
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tp rate= TP
TPFN

tnrate= TN
TNFP

fp rate= FP
TNFP

=1−tn rate

accuracy= TPTN
TPFNTNFP

Figures 25 an 26 illustrate with ROC graphs the performance of the classifier using three 
different feature sets: the prosodic and speech production features, the history features, 
and the combination of these two different feature sets. This type of graph plots the true 
positive rate versus the false positive rate, where the ideal classifier maximizes the true 
positive  rate  while  simultaneously   minimizing  the  false  positive  rate.  Thus,  the 
performance of the ideal classifier would appear at the top left corner, where the tp rate is 
1.0 and the fp rate is 0.0. The diagonal line portrays the family of random classifiers. For 
instance,  the  random  classifier  that  labels  the  same  proportion  of  correct  boundary 
phrases  to  incorrect  boundary phrases  as  seen in the  data  would  have true  and false 
positive  rates  both  of  0.789.  On the  other  hand,  a  classifier  that  uses  only the  prior 
probabilities to decide deterministically would always label phrases as correct, producing 
true and false positive rates of 1.0, a degenerate random classifier that labels a phrases as 
“correct” with probability 1.0.

For boundary phrases, the combined classifier has a true positive rate of 0.904 and a false 
positive rate of 0.521, defining a point well above diagonal. It  is clear,  then, that the 
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Figure 25: Boundary Phrase Classifier TP Rate 
vs. FP Rate (ɛ = 0)
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Figure 26: Repair-Compartment Classifier TP 
Rate vs. FP Rate (ɛ = 0)
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combined set of features provides a considerable amount of information beyond the basic 
prior  probability of  a  phrase  being correct.  All  three  feature  sets  classify well  above 
random,  distinguishing  themselves  primarily  in  how  well  they  classify  the  incorrect 
phrases, with history outperforming prosody with a true negative rates of 0.059 vs. 0.315. 
While prosody alone does a relatively poor job of identifying the incorrect phrases, it 
outperforms history on the correct phrases with a true positive rate of 0.988 versus the 
0.917 of the history based classifier.  Figure 26 shows similar performance for repair-
compartment utterances, with the principle difference being that the true negative and 
false positive rates are more closely balanced, though “correct” labels are still slightly 
favored by all three feature sets. Also, in the case of the repair-compartment utterances 
prosody actually does a better job of classifying the “incorrect” phrases than history does. 
What is most important to note, however, is that for both phrase types the combined 
classifier significantly outperforms both smaller feature sets, demonstrating the utility of 
prosody as an aid in improving the accuracy of a correctness history only based model.

It is also instructive to examine the change in classifier performance given various neutral 
set sizes. Figures 27 and 28 show ROC graphs with points plotted for epsilon factors at 
steps of 10% from a neutral set size of 0% up to 90%, where only the most authoritative 
tenth of the classifications are retained for evaluation. The arrows show the direction of 
motion  as  the  ɛ thresholds  are  gradually  increased.  As  expected,  they  all  gradually 
improve in performance, as the number of false positives decrease considerably even as 
the already fairly high true positive rate improves.

Another means of measuring performance is to look at the overall accuracy (or success 
rate) of the classifier.  Figures 29 and 30 illustrate how the accuracy numbers for the 
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Figure 27: Boundary Phrase Classifier ROC 
Graph for Various ɛ Values
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Figure 28: Repair-Compartment Phrase 
Classifier ROC Graph for Various ɛ Values
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different feature sets improve as more of the classifiers' least authoritative judgments are 
discarded. As a point of reference, the x-axis is set at the level of the prior probability, 
since in some sense the classifier should outperform a simplistic classifier that employs a 
prior only decision rule. Such a classifier would correspond to the situation where the 
likelihood of the phrase is exactly the same for each class, so that the ratio of conditional 
probabilities simplifies to the ratio of priors.

P Correct∣Y 
P  Incorrect∣Y 

= P Y∣Correct P Correct 
P Y∣Incorrect P  Incorrect

= P Correct 
P  Incorrect 

That is, the classifier should exceed 78.9% for the boundary phrases, and 59.5% for the 
repair-compartment utterances. Figures 29 and 30 both show that the classifier does, in 
fact, improve on these baselines with a 79.9% accuracy for the boundary phrases and a 
69.8% accuracy for the repair-compartment utterances. While in the case of the boundary 
phrases it is only a marginal improvement, the margin widens rapidly as the  ɛ values 
grow stricter and a larger percentage of the least authoritative judgments are discarded. 
Thus, when only 30% of the judgments are discarded, the combined boundary classifier 
achieves an accuracy of 86.0%. After 60% are discarded, accuracy climbs to 90.7%, and 
so on. The prior of 59.5% for the repair-compartment phrases is easier to exceed, and 
consequently  the  gap  is  considerably  larger,  however,  the  smaller  prior  also  lowers 
overall performance to some extent. Thus, after 30%  of the least authoritative judgments 
are  discarded,  the  classifier  achieves  a  74.1%  accuracy,  and  after  another  30%  is 
discarded it climbs to 78.2%, finally peaking at about 84.9% when all but the top 10% of 
the most authoritative judgments have been discarded. It is interesting to note that while 
we observed that the true negative rates are quite different for the prosody and combined 
feature sets, the overall accuracy is remarkably similar. In fact, for both phrase types, 
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Figure 29: Boundary Classifier Accuracy vs. 
Neutral Set Size
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Figure 30: Repair-Compartment Classifier vs. 
Neutral Set Size
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prosody exceeds the history only classifier and is nearly as good as the combined feature 
set.

While the difference in performance levels differs by about 10 percentage points for the 
two phrases,  the  vastly  different  priors  accounts  for  this  difference.  To illustrate  this 
point,  it  is  instructive  to  run  the  classifier  on  balanced  data  sets  where  the  prior 
probability of a correct phrase is exactly the same as that of an incorrect phrase. This 
artificial restriction can easily be enforced by randomly removing correct phrases until 
their number exactly matches that of the incorrect phrases. Figures 31 and 32 illustrate 
this situation, paralleling figures 29 and 30 for balanced data sets.

With balanced data, the two classifiers perform more similarly at an absolute level, both 
starting at about 70%, though the boundary classifier peaks somewhat higher at 92.4% 
compared to the 82.6% of the repair-compartment classifier. Aside from illustrating the 
impact of the prior probabilities, these performance levels further demonstrate the utility 
of the prosodic feature set, since even in the case where the prior probability offers no 
information, the prosody only classifier performs at a relatively decent level. 

History Tuning

The size of the history window is one area for potential fine tuning. On the one hand, 
more history means it  is  possible to observe and make more accurate predictions for 
students with consistent track records. That is, a student that answered correctly for the 
last three times is more likely than not to answer the next correctly as well. On the other 
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Figure 31: Boundary Classifier vs. Neutral Set 
Size (Balanced Data Set)
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Figure 32: Repair-Compartment Classifier vs. 
Neutral Set Size (Balanced Data Set)
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hand, a very long history window is more likely to include older information that may no 
longer be relevant to the current task.8

The repair-compartment and boundary phrases effectively demonstrate both principles. 
For boundary phrases, increases in history length beyond the last two phrases only results 
in  degrading  performance.  Similarly,  so  long  as  the  neutral  set  is  empty,  classifier 
performance consistently worsens as the window is lengthened. However, performance 
increases more rapidly with increasing neutral set size with longer history windows.

The  reason  for  the  observed  difference  in  history  based  classifier  performance  for 
boundary phrases and repair-compartment phrases is not obvious, but it seems likely that 
it  is  related  to  the  nature  of  the  tasks  involved in  DCTrain.  For  repair-compartment 
phrases, it is very likely that the same repair team and compartment pair will be used in 
successive commands as the student works through the sequence of tasks required for 
investigating, isolating, and minimizing the damage in a given compartment. As a result, 
the student gets several practice opportunities for the same repair team-compartment pair. 
However, while boundaries do come in sets of four, and the history feature includes some 
of the boundaries of the same set, each boundary-compartment pair itself generally only 
occurs once as part of one step among various other quite different tasks. It is possible 
that this is why history has less bearing on the boundary setting task.

The ɛ vs. accuracy graphs for history are observably less continuous than those for the 
combined  or  prosody  only  classifiers.  This  is  an  artifact  of  the  discreteness  of  the 
probability distribution of the history feature itself. Consider a history window of one, for 

8 A different method of tracking correctness history might allow the weighting of older answers less 
heavily than the more recent answers, allowing a compromise between the more information/relevance 
of information trade off. This may have been worth exploring given more time.
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Figure 33: Boundary History Classifier vs. 
Neutral Set Size

Figure 34: Repair-Compartment History 
Classifier vs. Neutral Set Size
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instance.  With  information  only  about  whether  the  previous  phrase  was  correct  or 
incorrect, the probability density estimator can only assume two possible different values. 
Thus, wherever the ɛ value is set, it can only break the data at one location, and if the ɛ 
value is set lower than that point, the same value is achieved as if it were zero. Similarly, 
if  it  is set higher than that point,  the effect is the same as it being set at exactly the 
breaking point. In general, with a binary correctness score, histories of length n produce 
probability functions of  2n different values with  2n  - 1 possible breaking points. This 
effect can be observed from figures 33 and 34 in that shorter histories tend to produce 
flatter curves with fewer breaks, although it is somewhat obscured by the addition of the 
practice feature (which results in a more continuous curve).

The natural consequence is that finer grained ɛ tuning demands longer histories. Hand in 
hand with this consequence, effective use of very small (or large) ɛ values also require 
longer histories. At the same time, one should be aware that a longer history does not 
always  result  in  improved  performance,  depending  on  the  nature  of  the  task  being 
modeled.

For all discussions outside this section, the classifier histories were set at two for the 
boundary phrases and four for repair-compartment phrases.

FEATURE RANKING

In  previous  sections the  effect  of  prosody and history were examined separately and 
compared. However,  using the balanced data sets  and the naïve Bayesian model it  is 
possible to break the model down into its individual constituent features as a means of 
examining  and  ranking  their  individual  effects.  Figure  35  shows  the  ranking  of  the 
important features for the repair-compartment phrases while Figure 36 shows a similar 
feature ranking for the boundary phrases. Whereas comparison of means revealed fewer 
significant  features  for  repair-compartment  phrases  than  for  boundary  phrases,  they 
proved sufficient for a modestly successful classifier. For both phrase types, correctness 
history  appears  the  single  most  effective  measure  for  predicting  future  student 
performance. However, it was shown that the combined prosodic features can rival this 
effectiveness, and even when considered separately they each exhibit better than random 
performance.
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CONCLUSIONS AND FUTURE WORK

This work finds both patterns for indicating confidence state and for locating precise 
items of difficulty within utterances. More pauses before phrases and fewer pauses within 
phrases, faster speech rate, higher overall intensity and pitch, and falling pitch at the end 
of phrases all seem to indicate confidence. For precise identification of items of difficulty, 
these numbers suggest that words articulated with lower intensity, longer durations, and 
lower f0 are likely to contain the problem. Furthermore, it was observed that pauses are 
more frequent before portions of phrases that require the most work, perhaps helping to 
direct attention to the key areas of utterances to analyze with the aid of other features.

Also, utterance length and structure can be very informative, with attention given to how 
densely  the  speaker  presents  information,  since  concise,  information-rich  utterances 
convey the  strongest  impression  of  mastery  of  the  material.  Furthermore,  competent 
utterances are not only concise and informative but also tend to be organized in logical, 
clear  ways. In  the  Voice-Enabled DCTrain  corpus,  for  instance,  it  was  observed  that 
students are allowed the flexibility of dividing the four required boundary phrases into as 
many  utterances  as  they  choose.  This  organizational  choice  provides  more  valuable 
diagnostic information than would be available if they were constrained to present all 
information items either individually,  one per  utterance,  or all  at  once.  Furthermore, 
students may include optional information, as in the case of the “net eighty” in repair 
team addresses,  and  this  provides  yet  more  diagnostic  information.  Leveraging  such 
information about the student's organizational choices requires analysis of the domain, 
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Figure 35: Repair-Compartment Individual 
Feature Effectiveness

Figure 36: Boundary Individual Feature 
Effectiveness



and may be facilitated by a careful design of the language interface.

Aside from these findings, one key contribution of this work is the proposal of using 
automatically extractable measurements of correctness and amount of practice in order to 
measure confidence. They were employed not only for statistical analysis, but also for 
bootstrapping machine learning of student confidence, replacing manual annotations for 
supervised learning and automatic classification.

Further work might include exploring alternative classification algorithms. In particular, 
the  independence  assumption  of  the  naïve  Bayesian  approach  very  likely  degrades 
performance. While the robustness of the naïve Bayesian approach prevents it from being 
overwhelmed with error, the statistical analysis nevertheless demonstrated a violation of 
the independence assumption, particularly between the history and prosodic features. As 
a result, while the approximation appears sufficiently valid for the modest performance 
described  in  this  work,  dependencies  between  features  suggests  relaxing  the  strong 
independence assumption. Instead, perhaps a Bayesian net scheme for computing joint 
probability distributions for multiple simultaneous features would be beneficial.

In addition, the relationship between correctness and student confidence merits  closer 
examination. On the surface level, there is no obvious relationship between correctness 
and  prosody,  since  correctness  itself  is  not  an  emotional  state,  nor  a  nuance  of 
communication made through intonation and pausing. Considering this, it is intriguing to 
observe  the  considerable  effectiveness  of  a  classifier  based  solely  on  prosody, 
demonstrating  that  the  correctness  of  an  utterance  may  often  be  judged  relatively 
accurately without knowing anything of the content of the utterance.

Furthermore, confidence is only one among many possible affective factors relating to 
correctness. A more careful factoring of phenomena with a correspondingly more specific 
prosodic  characterization  of  each  would  likely  yield  stronger  performance.  Careful 
experiment design and corpus annotation could assist in this work. 

Yet another area for potential improvement of the system comes in the treatment of the 
different phrases as completely different types of data. While the classifiers featured in 
this paper benefit somewhat from special tailoring to the individual characteristics of the 
two  different  student  tasks,  it  may  be  possible  that  commonalities  and  relationships 
between  the  two  tasks  could  be  exploited  for  improved  classifier  performance.  For 
instance,  it  was  observed  that  the  different  phrases  exhibited  somewhat  different 
phenomena relating to correctness and practice, but commonalities were also uncovered 
in the analysis.  A more subtle  analysis  may uncover  a  more general explanation that 
could predict both the similarities and differences. In such a case, it might be possible that 
a classifier could train on all phrase types simultaneously, obviating the need for separate 
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classifiers for each, producing a single classifier that can benefit from the larger training 
set produced by the pooling of the different phrases.
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