
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

2009 

Is Four File Chess a Draw? Is Four File Chess a Draw? 

Michael Karbushev 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Karbushev, Michael, "Is Four File Chess a Draw?" (2009). Master's Projects. 96. 
DOI: https://doi.org/10.31979/etd.uucj-m5ur 
https://scholarworks.sjsu.edu/etd_projects/96 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/96?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F96&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


IS FOUR FILE CHESS A DRAW?

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Michael Y. Karbushev

May 2009



c© 2009

Michael Y. Karbushev

ALL RIGHTS RESERVED



APPROVED FOR THE DEPARTMENT OF

COMPUTER SCIENCE

Dr. David Taylor

Dr. Richard M. Low

Dr. Teng Moh

APPROVED FOR THE UNIVERSITY



ABSTRACT

IS FOUR FILE CHESS A DRAW?

by Michael Y. Karbushev

In this work, we prove that in the game of FOUR FILE Chess, White has at

least a Draw. FOUR FILE is a chess variant proposed by John Selfridge, in which

only the ‘a’, ‘c’, ‘e’, and ‘g’ files are used. All chess rules are as usual, except that all

moves must end on one of these files, and the game starts with the other four files

vacant. Here, we prove that the White has at least a draw, by showing that White

has a strategy to avoid a loss. We also show that Black can avoid a loss for ten out

of eleven starting white moves and outline the steps to complete the proof that the

game of FOUR FILE is a Draw.



TABLE OF CONTENTS

CHAPTER

1 INTRODUCTION 1

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 STRATEGY OVERVIEW 4

2.1 Strategy Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 General Game Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Tractability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Pruning the Game Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Proof Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 FOUR FILE OBSERVATIONS AND DEFINITIONS 11

3.1 General Game Observations . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Draw Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 General Move Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

v



4 BARRIERS 24

4.1 Barrier 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Barrier 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Barrier 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Barrier 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Barrier 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 Barrier 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.7 Barrier 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.8 Other Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.9 No Rook-Capture Barriers . . . . . . . . . . . . . . . . . . . . . . . . 34

4.10 Barriers Needed when Black Moves First . . . . . . . . . . . . . . . . 35

4.11 Avoiding Promotion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 IMPLEMENTATION OVERVIEW 39

5.1 Game Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Custom Moves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Database of Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 IMPLEMENTATION DETAILS 41

6.1 Storage Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Chess Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Defensive Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4 Game Enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.5 Position Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.6 Barrier State Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.7 Tree Pruning Optimizations . . . . . . . . . . . . . . . . . . . . . . . 44

vi



7 RESULTS 46

7.1 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8 FUTURE WORK 48

8.1 Proof Completion for Black . . . . . . . . . . . . . . . . . . . . . . . 48

8.2 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

BIBLIOGRAPHY 50

vii



CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Is FOUR FILE a draw? FOUR FILE is played on a chessboard with the

chess pieces in their usual starting positions, but only on the ‘a’, ‘c’, ‘e’ and ‘g’-

files; i.e., a Rook, a Bishop, a King, a Knight and four pawns on each side shown

in Figure 1.1. The moves are normal chess moves except that play takes place only

on these four files. Because each move ends on one of the files ‘a’, ‘c’, ‘e’ or ‘g’,

pawns cannot capture and there is no castling, but pawn promotion is possible. The

aim is to checkmate your opponent’s King [1]. The question about FOUR FILE is

originally prompted by John Selfridge who specifically asks if the game is a draw.

8 rZbZkZnZ
7 o0o0o0o0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 PZPZPZPZ
1 S0A0J0M0

a b c d e f g h

Figure 1.1: Starting Board



2

1.2 Results

We show that White has a strategy to avoid a loss in FOUR FILE. The idea

behind the proof is that we have a list of positions that are reached in the game

after White’s move; in all such positions White’s King is present, and from any such

position, for all possible Black moves, there exists a move for White which will return

to another position in the list. The list of positions is generated using a specific

strategy for White, described in this paper. Once we have such a list of positions, a

third party can take a list of positions and verify that no matter what move Black

chooses to take; there will be a move for White to end up in one of the listed positions.

Next, we partially show that Black has a strategy to avoid a loss in FOUR

FILE as well. We take the approach of reducing the problem for Black to a solved

problem for White. White and Black are symmetric; hence for the purpose of having

one database and rather than having a separate strategy for Black, we instead continue

to play with a strategy for White but allow Black to move first. We need to consider

eleven possible first moves for Black, and we have complete results for ten out of

eleven.

1.3 Related Work

Although not technically a combinatorial game, the game of FOUR FILE can

be qualified as a “Game of No Chance” [4] and may be analyzed using tools from

combinatorial game theory [3]. A recent celebrated addition to the study of games

of no chance is work done by Jonathan Schaeffer, a computer-games expert at the

University of Alberta in Canada. Dr. Shaeffer proved that the game of checkers is

a draw. The computer proof took 18 years to complete and is one of the longest

running computations in history. [2]



3

We are unaware of any previous results for FOUR FILE.

1.4 Outline

We will discuss the work completed in the following order:

• Describe general approach to solving games

• How to minimize the size of FOUR FILE’s game tree

• High-level description of our strategy

• Chess observations

• Implementation details

• Results

• Future work



4

CHAPTER 2

STRATEGY OVERVIEW

2.1 Strategy Definition

A player’s strategy can be defined in multiple ways. The simplest form is to

have a database of 〈position, move〉 tuples, so that for every position there exists a

move; hence the player always knows what to do. A more sophisticated approach

would be to have rules that cover all possible positions; given a position the game

strategy would be to check if any of these rules apply, then make a move accordingly.

We have many such rules defined for the endgame; the endgame starts after we enter

one of the draw-states (Barrier states) described in a Section 4. Draw-states are an

interemediate result that allows us to divide the proof in two stages.

It is important to note that 〈position, move〉 tuples are not needed for all

possible positions because we control White’s strategy; hence we can avoid some

(most) legal positions. A simple example is if White’s first move is ‘a-pawn’ going

from ‘a2’ to ‘a4’, then we do not have to worry about any positions where ‘a-pawn’ is

at either ‘a2’ or ‘a3’. Another important note is that trying to show that White can

avoid losing does not force us to make an absolute best move for White at all times;

White does not need to force a win, even when possible, and we will sometimes choose

to make sub-optimal moves for White, in order to greatly prune our game tree.

To fully prove that FOUR FILE is a draw, we consider twelve possible starting



5

boards:

• White goes first, all pieces are in their original positions

• We continue with using White’s strategy while the original board is modified

by Black taking one of the following moves:

(1) ‘a7a6’

(2) ‘a7a5’

(3) ‘c7c6’

(4) ‘c7c5’

(5) ‘e7e6’

(6) ‘e7e5’

(7) ‘g7g6’

(8) ‘g7g5’

(9) ‘c8a6’

(10) ‘c8e6’

(11) ‘c8g4’

It should be clear that Black moving first does not alter our result since White

and Black are symmetric.

2.2 General Game Strategies

Let us begin by describing the usual approach one takes to analyze a game.

We assume that the reader is familiar with game trees, minimax search, and the

general concept of board evaluation. These are the standard techniques used by



6

chess, checkers abd other board games playing programs. By searching many moves

ahead in minimax search, a somewhat simplistic board evaluation can lead to an

effective strategy. The deeper the search, the more effective the board evaluation will

be. Powerful computers are required to expertly play a game as complicated as chess.

A perfect strategy would be to search the game from the beginning till the end (end

being defined by a capture of the opposing King, while your King is still there). This

approach would solve the problem, but is intractable.

2.3 Tractability

While the game of FOUR FILE is not nearly as complex as the game of

chess, it is still not tractable in terms of a complete minimax game-tree search from

the starting position. However, given a strategy for White’s first moves, the search

becomes more tractable. Here, White’s strategy will be one which, from the start

of the game, tries to force positions in which the mobility for the board in general

diminishes. This not only prunes the game tree by giving White just one move to

search for these positions, it will also limit the possible moves for Black.

Note that while we are looking for a strategy for White, we do not have to

explore all moves for White; once we have a 〈position, move〉 tuple, that is the only

move that White will take from the given position. As the result, it makes sense

to take certain moves that are not necessarily winning moves, but they are moves

that take us from one non-losing state to another non-losing state and thus decrease

the number of actual positions being explored. Of course, no matter what White’s

strategy is, we have to explore all possible moves for Black, thus the game tree is best

described by Figure 2.1.



7

 

 

B 

W W W W W W 

B B B B B B 

W W W W W W W W W W W W 

0 

 

 

 

 

 

1 

 

 

 

 

 

2 

 

 

 

 

 

 

3 

 

 

 

 

 

 

 

 

4 

 

 

Level: 

W 

Figure 2.1: Game Tree



8

2.4 Pruning the Game Tree

Looking at the tree in Figure 2.1, we can see that even if we explore only one

child for all W (White Nodes), the tree still gets really large. We want to minimize

it further, since a smaller tree will mean a smaller set of states in our final list. To

get the full White’s strategy:

• Run the game simulation to depth 12 by only using custom moves. Basically,

White’s initial game strategy, and all of its initial moves, are calculated by

hand. This is done to significantly reduce the size of the game-tree, both for

the beginning of the game, and for later in the game. The goal here is to

move the game closer to what we call a Barrier state, which can loosely be

described as a position in which Black’s pawns form a barrier which prevent

Black’s other pieces from attacking White.

• Enumerate all Barrier state positions (or families of positions, as many po-

sitions may be part of one Barrier state). Do this by running the program

that enumerates all positions that can be part of the game tree and only store

the moves for positions that can be resolved Barrier rules. Barrier states are

described in Section 4.

• Run the full game simulation. Given a position in which White needs to

move, calculate that move using the following sequence:

(1) If White has a move which can take us to any position closer to the root

of the game-tree such move is taken. Hence, we end up at the higher

level (lower level number) position, which we already know that Black

can force, and all sub-trees for this position must be explored anyway.



9

(2) Regular minimax pruning for win/loss positions, with depths 1, 3, 5, and

7. These searches were optimal given the time it took to run on them

on the computer used. (The iterative deepening is used for efficiency.)

[5]

(3) See if we are in a Barrier that does not require Black’s Rook to be

captured; such states are mentioned in Section 4.9. At this point White

can easily force a draw. If we are, simply follow the rules of such a

Barrier. In FOUR FILE there are two types of barriers: one that does

not allow Black to sacrifice a Rook to get out of it, and the other type

that does. Here we are talking about the first type.

(4) See if there is a move that allows White to capture Black Rook. If White

has a clear rook advantage, it is easier to force a draw.

(5) See if any of the Barriers apply. Here we are looking at all Barriers

(including the ones where Black can sacrifice the Rook). This is exactly

why we first check if Black Rook can be captured.

(6) Try to come back to any of the known states. Do the search to depth 3

and 5. Deeper searches proved to be inefficient.

(7) Try to apply general chess rules that are described in Section 3.4.

(8) Do the move by hand. There is no clear rule that addresses this situation,

and for some limited number of positions, human insight is used to decide

upon the move. This usually happens when both sides are attacking, and

White needs to stay ahead of the pace by one move. (These moves are

then entered into the position database, so the final list will be complete.)

Here, we combine automatic generation of moves for the vast majority

of positions, while still relying on human skills when needed to get a



10

complete strategy for White.

• During the full game simulation, if Black’s move takes the game into a position

closer to the root, again, that branch can be pruned, as it is already explored.

This is strickly an optimization, so that we do not have to make all the

unnecessary checks for White.

2.5 Proof Outline

Before we jump into chess observations and implementation details let us outline

the proof; so the following sections make sense. First, we need to stress the fact that

the search for strategy for each starting position will be done in two steps: every leaf

of the game tree is in a “Barrier” state, and then we continue expanding the game

tree until every leaf is in the database for White.

At the end of first pass we have a database that is full of positions from which

we have an automated way of playing described in Section 4. At the end of the second

pass we have a full database which can be verified simply, without knowing how the

positions were generated.



11

CHAPTER 3

FOUR FILE OBSERVATIONS AND DEFINITIONS

Here, we describe general strategies and observations used in generating our

database. Observations are listed informally and without proof - the final proof is

the complete database of positions.

3.1 General Game Observations

In the following observations, we assume that Black has not promoted a pawn;

hence Black’s Bishop and Knight are the original pieces. (As a side claim, we have

also proved that White, in forcing a draw, can avoid promotion for Black.) Let us

begin by giving an example in Figure 3.1 where having a three-pawn advantage is not

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 bZ0ZkZ0Z
5 o0Z0o0Z0
4 0ZpZ0Z0Z
3 Z0M0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0J0Z0

a b c d e f g h

Figure 3.1: Three pawn advantage neutralized



12

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 m0Z0j0Z0
2 0Z0Z0Z0Z
1 Z0Z0J0Z0

a b c d e f g h

Figure 3.2: Knight Advantage neutralized (Impossible to get to after White’s move!)

enough to promote a single pawn. White Knight controls both ‘a’ and ‘c’ pawns with

the simple ‘c3’Þ‘a4’Þ‘c3’ repetition.

Here are the other basic observations which lay at the core of our definitions of

the Barrier states:

• Cannot checkmate with King and Bishop (King and Bishop vs. King only);

observe the fact that King’s initial position is safe from opposing Bishop, and

it is impossible for Kings to get by each other. Note that Bishop has access

to only quarter of the board’s squares unlike half in a standard chess game.

• Cannot checkmate with King and Knight (King and Knight vs. King only);

again the key is that while its possible to look at the position White King on

‘e1’, Black King on ‘e3’, and Black Knight on ‘c2’. However, the final move

had be for the Knight from ‘a3’, ‘a1’ to ‘c2’; hence the move before that had

to be White King ‘e2’ to ‘e1’. This is impossible!!! Situation is shown in

Figure 3.2. Again note that Knight has access to half of the board’s squares

unlike standard chess where it can reach any square on the board.

• The opponent’s pawn on ‘e-file’ can never be promoted, and it blocks the



13

opponent’s King from playing an aggressive role in the end game; hence,

capturing opponent’s ‘e-pawn’ is not a good idea, unless checkmate is to

follow.

• There are squares on each file, where the opposing pieces (excluding Rook,

or King on file ‘e’) can not capture; pawns cannot ever capture in FOUR

FILE. Example: Black’s pieces can’t reach squares ‘a4’ and ‘a8’, ‘e4’ and

‘e8’, and any black square on files ‘c’ and ‘g’.

• The only way to win is to have your Rook in front of your pawns; otherwise

the game is a draw due to lack of mobility. We explain the idea of Barrier

States more fully in Section 4.

• The ‘e-pawn’ needs to move for the Knight to get involved in the game. If

Black never moves its ‘e-pawn’, the Knight is automatically neutralized and

it makes the goal for White much simpler.

• The board is divided into two halves, just like in a chess game. Long half

‘a’, ‘c’, and ‘e’ files; and short half ‘e’ and ‘g’ files. Note that ‘e’ file is

included in both, since the ‘e-pawn’ is neutralized by the King and cannot be

promoted. A single Knight or Bishop can neutralize all pawns on either half;

hence a 3-pawn advantage may prove to be insufficient to win in some cases.

• The strength of pieces is: Rook, Knight, Bishop, pawn. The Rook is by far

the most powerful piece; neutralizing it early makes it much easier for White

to force a draw or better.



14

8 0ZrZkZ0Z
7 Z0Z0m0Z0
6 bZ0Z0Z0Z
5 o0Z0o0Z0
4 PZpZPZpZ
3 Z0O0Z0O0
2 0Z0Z0Z0Z
1 S0A0J0M0

a b c d e f g h

Figure 3.3: Locked Pawns (all pawns are locked)

3.2 Definitions

In discussing positions, we use the term locked pawns. Locked pawns cannot

move, and prevent Black pieces from offensive attack. There is only one square each

where we lock ‘a-’ and ‘e-’ file pawns, while two different squares each allow us to lock

the ‘c-’ and ‘g-’ file pawns (This is with regards to our strategy. There are actually

other ways to lock Pawns, however this does not happen here due to our strategy.)

Most of the time, we lock pawns with other pawns; but there are cases where this is

done with either Bishop, or Rook, as you can see in Section 4.8.

In Figure 3.3 all pawns are locked; however, in Figure 3.4 only ‘c-’ and ‘e-’

pawns are locked. In our strategy, black ‘a-pawn’ is locked on ‘a5’, black ‘e-pawn’ is

locked on ‘e5’, black ‘g-pawn’ is locked on either ‘g4’, or ‘g6’, and black ‘c-pawn’ is

locked on either ‘c4’, or ‘c6’.

Another important definition is of safe squares. Safe squares are squares where

White pieces are untouchable by Black Knight and Bishop. It’s important to set all

white pawns in safe squares ; so that we can force repetition using only heavy pieces

(Rook, Knight, and Bishop) and Kings. In Figure 3.4 all White Pawns are located

on safe squares - namely: ‘a4’, ‘c3’, ‘e4’, and ‘g3’.



15

8 0ZrZkZ0Z
7 o0Z0m0o0
6 bZpZ0Z0Z
5 Z0A0o0Z0
4 PZ0ZPZ0Z
3 Z0O0Z0O0
2 0Z0Z0Z0Z
1 S0Z0J0M0

a b c d e f g h

Figure 3.4: Locked Pawns (‘c’ and ‘e’ pawns are locked)

3.3 Draw Observations

Our proof involves a large number of positions. We wanted to prune the game

tree whenever possible, to make it tractable, and to decrease the size of our “proof”.

The following situations are the ones where we initially assumed that the game could

stop, before going back to complete the database:

• Black Rook, Bishop, and Knight are captured. None of black pawns may

promote - the corresponding white pawn is still in play. An example is shown

in Figure 3.5.

• Black Rook and Knight are captured. Black Bishop is still in play, however

all white and black pawns (except for ‘e-pawn’) must be locked, so only the

White King (or some other heavy piece is able to move. If extra White pieces

are still in play it means that White may win, but we only care to prove that

White can avoid loss. This is shown in Figure 3.6.

• Black Rook, and Bishop are captured. Black Knight is still in play, and Black

does not have any extra pawns. Also all white pawns are on safe squares and

black ‘e-’pawn is still present and it is locked. If extra White pieces are still



16

8 0Z0ZkZ0Z
7 Z0Z0Z0Z0
6 pZ0ZpZ0Z
5 Z0o0Z0Z0
4 PZ0Z0ZpZ
3 Z0O0Z0O0
2 0Z0Z0Z0Z
1 Z0Z0J0Z0

a b c d e f g h

Figure 3.5: Definite Draw (option 1)

8 0Z0ZkZ0Z
7 Z0Z0Z0Z0
6 bZ0Z0Z0Z
5 o0Z0o0Z0
4 PZ0Z0ZpZ
3 Z0Z0Z0O0
2 0Z0Z0Z0Z
1 Z0Z0J0Z0

a b c d e f g h

Figure 3.6: Definite Draw (option 2)

8 0Z0ZkZ0Z
7 Z0Z0m0Z0
6 0Z0Z0Z0Z
5 o0Z0o0Z0
4 PZ0ZPZ0Z
3 Z0Z0Z0Z0
2 0Z0Z0Z0Z
1 Z0Z0J0Z0

a b c d e f g h

Figure 3.7: Definite Draw (option 3)



17

8 0Z0ZkZ0Z
7 o0Z0m0Z0
6 bZ0ZpZ0Z
5 Z0o0Z0S0
4 NZ0ZPZ0Z
3 Z0Z0Z0O0
2 0ZPZ0Z0Z
1 Z0A0J0Z0

a b c d e f g h

Figure 3.8: Definite Draw (option 4)

in play it means that White may win, or force repetition; but we only care

to prove that White can avoid loss. This is shown in Figure 3.7.

• White has an extra Rook, and we got into this state by getting out of one

of the Barrier states. Basically, Black sacrificed a Rook to take White out

of the Barrier state. This is shown in Figure 3.8. Of key importance here

is that each Barrier state is defined such that either Black cannot get out of

the Barrier state, or if it can, it does so by sacrificing a Rook, but does not

gain any positional advantage for offense in making such a sacrifice. (The

database will be populated with moves for these positions after our main

program run is complete.)

• Rooks are exchanged. Black has an extra pawn, while White has an extra

piece. Example is shown in Figure 3.9. This conclusion follows from the fact

that no square reachable by White Knight may be reached by Black Knight,

and the same holds for Bishops. Hence, one piece may stay still blocking

opponent’s extra pawn; while the other piece is forcing repetition.

• White has an infinite-check capability. White may not have a win, but for



18

8 0Z0ZkZ0Z
7 o0Z0m0o0
6 0Z0ZpZ0Z
5 Z0o0Z0Z0
4 NZ0ZPZ0Z
3 Z0Z0Z0O0
2 0ZPZ0Z0Z
1 Z0A0J0Z0

a b c d e f g h

Figure 3.9: Definite Draw (option 5)

8 0Z0ZkZnZ
7 o0Z0Z0o0
6 0ZRZ0Z0Z
5 Z0Z0o0Z0
4 rZ0ZPZ0Z
3 Z0Z0Z0O0
2 0ZPZKZ0Z
1 Z0A0Z0Z0

a b c d e f g h

Figure 3.10: Definite Draw (option 6)



19

8 0Z0ZkZnZ
7 o0Z0Z0o0
6 0Z0Z0Z0Z
5 Z0Z0o0Z0
4 PZ0Z0Z0Z
3 Z0M0Z0O0
2 0ZPZKZ0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 3.11: Definite Draw (option 7)

every move that Black makes White has some safe move with its Rook to

check Black King. Example is shown in Figure 3.10. This usually requires

Black Bishop to be captured, and Black Knight to be on opposite half of the

board.

• Rooks and Bishops are exchanged; both Knights are still in play. Example is

shown in Figure 3.11. Knights, just like Bishops can’t capture their counter-

part, therefore the repetition is easily achieved. White King has to occupy

‘e2’ square, so it can’t be checkmated by the Black Knight – ‘e2’ is a safe

square in regards to the opposing Knight.

• White has two piece advantage, while Rooks are still in play. Example is

shown in Figure 3.12. Only positions where Black may not capture any of

White’s pieces with its next move, and White may get to a defensive position

where White Bishop is on ‘c1’ and White Knight is on ‘e2’ are used - not all

positions with two-piece advantage.



20

8 0Z0ZkZ0Z
7 o0Z0Z0o0
6 0Z0ZpZrZ
5 Z0o0Z0Z0
4 PZ0Z0Z0Z
3 A0S0Z0O0
2 0ZPZNZ0Z
1 Z0Z0J0Z0

a b c d e f g h

Figure 3.12: Definite Draw (option 8)

3.4 General Move Rules

We will discuss Barriers (end-game definitions) described in Section 4. In this

section we want to mention general rules that our program takes to get to the end-

game. Of course, there are exceptions to these rules; but those are simply done by

hand. Below are listed some of the simple rules that are taken during middle-game.

• Move the King away from possible check. If White King is on ‘e2’ and Black

Bishop is still at large, then move it to ‘e1’. This usually resulted from Black

sacrificing its Rook.

• Capture Black Rook. Most likely moves us to a Barrier state right away.

• Capture Black Bishop on ‘e2’. Could result from a Black Bishop — White

Knight exchange, or simply Black Bishop sacrifice. Therefore the capture

could be made with either Knight or King.

• Lock ‘e-pawn’. Described in Figure 3.13. This satisfies an important condi-

tion of many Barriers. The move is ‘e2e4’.

• Lock ‘g-pawn’. Usually with the move ‘g2g3’.



21

8 0ZrZkZnZ
7 Z0Z0Z0o0
6 bZpZ0Z0Z
5 o0S0o0Z0
4 PZ0Z0Z0Z
3 Z0Z0Z0Z0
2 0ZPZPZPZ
1 Z0A0J0M0

a b c d e f g h

Figure 3.13: Locked e-pawn Rule

• Move White Knight to defensive position on ‘c3’. White needs to have ‘a-

pawn’ on ‘a4’ and ‘e-pawn’ on ‘e4’. White Knight will take a move ‘e2c3’ in

case described in Figure 3.14; but in some cases the move ‘g1e2’ needs to be

made first.

• Capture ‘g-pawn’ with White Rook. White Knight has to be able to assume

a defensive position from the previous rule for this rule to apply; but the

goal is not to allow black ‘g-pawn’ to get to ‘g4’, unless black ‘c-pawn’ is

already on ‘c4’. Both pawns” ‘c4’ and ‘g4’ will block both Black Bishop and

Black Knight from any offensive play. The position we are trying to avoid in

shown in Figure 3.16. On the other hand Figure 3.15 shows the time when

the capture is made.

• Black Knight capture. There are multiple states when this can take place. An

important state is when Black Knight gets to ‘e3’ or ‘a3’, and White Bishop

is on ‘c1’; the capture must take place.

• Move White Bishop to ‘c1’ if it is on ‘a3’ and Black Knight gets to ‘c4’.

• Black Bishop capture with White Rook. There are multiple states when this



22

8 0ZrZkZnZ
7 Z0Z0o0Z0
6 pZ0ZbZpZ
5 Z0o0Z0Z0
4 PZ0ZPZ0Z
3 Z0Z0Z0S0
2 0ZPZNZPZ
1 Z0A0J0Z0

a b c d e f g h

Figure 3.14: White Knight defensive

8 0ZrZkZnZ
7 Z0Z0o0Z0
6 pZ0ZbZ0Z
5 Z0o0Z0o0
4 PZ0ZPZ0Z
3 Z0M0Z0S0
2 0ZPZ0ZPZ
1 Z0A0J0Z0

a b c d e f g h

Figure 3.15: G-pawn capture

8 0ZrZkZnZ
7 Z0Z0o0Z0
6 pZ0ZbZ0Z
5 Z0o0Z0Z0
4 PZ0ZPZpZ
3 Z0Z0Z0S0
2 0ZPZNZPZ
1 Z0A0J0Z0

a b c d e f g h

Figure 3.16: Bad state



23

8 0Z0ZkZ0Z
7 Z0Z0m0Z0
6 pZrZpZ0Z
5 Z0o0Z0o0
4 PZ0ZPZbZ
3 Z0Z0Z0S0
2 0ZPZNZPZ
1 Z0A0J0Z0

a b c d e f g h

Figure 3.17: Black Bishop capture

can happen, but an important one is when black ‘g-pawn’ was not captured

yet, and Back Bishop does not allow this to happen by occupying ‘g4’ square

as shown in Figure 3.17.

• Lock ‘c-pawn’. This happens if Black Bishop was exchanged for White

Knight, and black ‘c-pawn’ got to ‘c4’. This is done by ‘c2c3’ move.



24

CHAPTER 4

BARRIERS

Here, we outline the barrier states. In these states, Black’s pawns prevent Black

from mounting any effective attack. For many barrier states, there is no way out of

the barrier state for Black. For others, Black’s only exit is by sacrificing its Rook,

without enough positional gain to mount an attack on White’s King.

4.1 Barrier 1

In this Barrier the pawns are locked on ‘a-file’ and ‘e-file’. As the result, the

Black Knight is caught behind its own pawns. White Rook controls the ‘c-file’, while

also protecting the pawn on ‘g3’. The only way for Black to get out of this barrier

8 0ZrZkZ0Z
7 Z0o0m0o0
6 bZ0Z0Z0Z
5 o0Z0o0Z0
4 PZ0ZPZ0Z
3 A0S0Z0O0
2 0ZPZ0Z0Z
1 Z0Z0J0M0

a b c d e f g h

Figure 4.1: Barrier 1



25

8 0Z0ZkZnZ
7 o0s0Z0Z0
6 0ZpZ0ZpZ
5 Z0A0o0Z0
4 PZ0ZPZ0Z
3 Z0Z0S0O0
2 bZPZNZ0Z
1 Z0Z0J0Z0

a b c d e f g h

Figure 4.2: Barrier 2

is to sacrifice the Rook on either ‘g3’, ‘e4’, or somewhere on ‘c-file’. Described in

Figure 4.1.

• If Black Rook capture is available - do it!

• In case Black Rook gets to ‘g4’, then White Rook goes to ‘e3’

• In all other cases, White Rook is on ‘c3’

• White has repetition by moving the Knight from ‘g1’ to ‘e2’ and back. If

Black Bishop captures White Knight on ‘e2’, then White King captures Black

Bishop and forces repetition with the King going from ‘e1’ to ‘e2’ and back.

4.2 Barrier 2

In this Barrier the black pawns are locked on ‘c-file’ and ‘e-file’. As the result,

the Black Knight is caught behind its own pawns. The black ‘c-pawn’ is locked by

White Bishop. White Rook protects the pawn on ‘g3’; White Rook can be either

on ‘e3’ or ‘c3’, though it ends up on ‘e3’ once forced Black Rook move to ‘g4’. The

only way for Black to get out of this Barrier is to sacrifice the Rook on ‘g3’ or ‘e4’.

Described in Figure 4.2.



26

8 0Z0ZkZ0Z
7 o0Z0m0Z0
6 bZrZpZ0Z
5 Z0o0Z0Z0
4 PZ0ZPZ0Z
3 Z0M0Z0S0
2 0ZPZ0ZPZ
1 Z0A0J0Z0

a b c d e f g h

Figure 4.3: Barrier 3

• Black Rook capture on ‘g3’ or ‘e4’ is available - do it!

• In case Black Rook gets to ‘g4’, then White Rook goes to ‘e3’.

• White has repetition by moving the Knight from ‘g1’ to ‘e2’ and back. As be-

fore, if Black captures the Knight with its Bishop, then White King captures

Black Bishop and forces repetition by going from ‘e1’ to ‘e2’ and back.

4.3 Barrier 3

In this Barrier the White Knight protects pawns on ‘a4’ and ‘e4’. Black pawn

could be on either ‘c6’, ‘c5’, or ‘c4’ and it blocks the Black Rook from attacking the

White Knight. White Rook controls the ‘g-file’. Black ‘g-pawn’ is captured, so White

Rook has full maneuverability. White Bishop is on ‘c1’, so it protects ‘a3’, ‘e3’ and

‘g5’ squares. Sometimes White Bishop will end up on ‘a3’ - read below. Reader

should make sure to understand exactly why White Knight is safe on ‘c3’.

Black can get out of this Barrier by sacrificing a Rook on ‘a4’, ‘e4’ or ‘g-file’. Also

Black can sacrifice the Black Knight on ‘e5’, which will lead to Black loss. Described

in Figure 4.3.



27

• Capture Black Rook if available. Do this even if it is just an exchange!

• If Black Knight gets to ‘a3’ or ‘e3’ - capture it with the White Bishop.

• If Black Bishop or Knight is unprotected on ‘g4’ - capture it.

• If Black Bishop or Knight is unprotected on ‘g8’ - capture it.

• If Black Knight is unprotected on ‘g6’ - capture it.

• If Black Knight is on ‘c6’, White Rook is on ‘g5’ and White Bishop is on

‘c1’; then move White Bishop to ‘a3’. This is done because we need to keep

the White Rook on ‘g5’ to protect the ‘e5’ square. By the same reasoning, if

White Bishop is on ‘a3’; then move it to ‘c1’. If White Rook is not on ‘g5’,

then move it to ‘g5’ (need to protect ‘e5’ square).

• If Black Knight gets to ‘c4’, and White Bishop is on ‘a3’; then move White

Bishop to ‘c1’. This usually means that Black already sacrificed a Bishop.

• White has repetition by moving the Rook from ‘g3’ to either ‘g5’ or ‘g7’;

since both squares can not be blocked. For these squares to be blocked

either Black Knight or Black Bishop had to be sacrificed; or Black was forced

into checkmate, or repetitive check. The reason is White Bishop on ‘c1’ that

protects the square, so that Black has a Rook exchage at best! As an exercise

the reader can verify that it is impossible to end up with Black Knight on ‘g4’

with Black Bishop on either ‘e6’ or ‘c8’ protecting it; without Black sacrificing

a Rook or worse!



28

8 0Z0ZkZ0Z
7 o0Z0Z0Z0
6 bZnZpZ0Z
5 Z0A0Z0Z0
4 PZ0ZPZpZ
3 Z0Z0Z0O0
2 0ZPZ0Z0Z
1 Z0Z0J0M0

a b c d e f g h

Figure 4.4: Barrier 4

4.4 Barrier 4

In this Barrier the Rooks are exchanged, Black ‘e-pawn’ is present, and Black

has no pawns that can promote. White Bishop and Knight are still present. We

assume that Black Bishop and Knight are still present too; otherwise we are in a

basic draw-state. Described in Figure 4.4.

• Capture Black Knight if available.

• Make a move towards getting White Bishop on ‘c5’ square; from there it can

control Black Knight. Take safe steps to get there. Safe path is from ‘c1’ to

go to ‘a3’ if the opposing Knight is not on ‘c4’; and then ‘c5’. There are other

safe paths from other starting locations, but the idea should be clear.

• White has repetition by moving the Knight from ‘g1’ to ‘e2’ and back. If

Black captures the Knight with its Bishop, then White King captures Black

Bishop and forces repetition by going from ‘e1’ to ‘e2’ and back.



29

8 0Z0ZkZ0Z
7 o0Z0Z0Z0
6 bZnZpZpZ
5 Z0A0Z0Z0
4 PZ0ZPZ0Z
3 Z0Z0Z0Z0
2 0ZPZ0Z0Z
1 Z0Z0J0M0

a b c d e f g h

Figure 4.5: Barrier 5(a)

4.5 Barrier 5

In this Barrier the Rooks are exchanged, black ‘e-pawn’ is present, and Black

has an extra pawn on ‘g-file’ that needs to be controlled. It can only start on ‘g6’ or

‘g7’; as such Rook exchange would take place on ‘g5’. Described in Figure 4.5.

• Make sure that all white pawns are on safe squares.

• Make a move towards getting White Bishop on ‘c5’ square; from there it can

control Black Knight. Take safe steps to get there.

• Take White Knight into ‘e2’Þ‘g3’Þ‘e2’ repetition state. We are always one

move away from this: either ‘g1e2’, or ‘c3e2’.

• If White can capture a black pawn on ‘g3’ - do it! Black moved their pawn

to far.

• If Black Bishop captures the White Knight on ‘e2’, then capture the Black

Bishop with the King.

• If Black Knight is on ‘a3’, or ‘e3’ capture it with the White Bishop. It is safe



30

8 0Z0ZkZ0Z
7 o0Z0Z0Z0
6 0ZpZpZpZ
5 Z0A0Z0Z0
4 PZnZPZ0Z
3 Z0O0Z0Z0
2 0Z0ZKZ0Z
1 Z0Z0Z0Z0

a b c d e f g h

Figure 4.6: Barrier 5(b)

to do, since the furthest the black pawn can be at this point is ‘g4’. White

Bishop has enough time to get back to control its progress.

• After the exchange of Black Bishop and White Knight takes place, White

King is safe at ‘e2’ and White forces repetition by moving its Bishop from

‘c5’ to ‘g1’ and back. Described in Figure 4.6.

4.6 Barrier 6

Another Barrier where Rooks are exchanged. This Barrier is different because

Black ‘e-pawn’ is missing. This is key because if White Knight can not find a safe

place to force repetion, then White may lose. In this Barrier, our strategy forces safe

repetition on ‘c3’Þ‘a4’Þ‘c3’ squares. Figure 4.7 shows the Barrier.

4.7 Barrier 7

This Barrier is actually a setup barrier. From this barrier it is very easy to

transition into many of the Barriers described earlier. The idea is simple, don’t let

Black Rook get out, and force some moves from Black that will eventually force the

draw.



31

8 0Z0ZkZ0Z
7 o0Z0Z0o0
6 bZpZ0Z0Z
5 O0Z0Z0Z0
4 0Z0ZPZ0Z
3 Z0M0Z0Z0
2 0ZPZ0ZPZ
1 Z0Z0J0Z0

a b c d e f g h

Figure 4.7: Barrier 6

8 0ZrZkZnZ
7 Z0Z0o0Z0
6 pZpZ0ZpZ
5 Z0S0Z0Z0
4 PZ0Z0ZbZ
3 Z0Z0Z0Z0
2 0ZPZPZPZ
1 Z0A0J0M0

a b c d e f g h

Figure 4.8: Barrier 7 (White Rook on c5)

8 0Z0ZkZnZ
7 s0o0o0o0
6 0ZRZ0Z0Z
5 o0Z0Z0Z0
4 PZ0Z0ZbZ
3 Z0Z0Z0Z0
2 0ZPZPZPZ
1 Z0A0J0M0

a b c d e f g h

Figure 4.9: Barrier 7 (White Rook on c6)



32

• Moving ‘e-pawn’ before Rook can get out, hence blocking the Knight

• Moving ‘g-pawn’, hence blocking the short half of the board for Black

• Limited mobility results in loss of pieces

If all black pawns are in place, then there is only two ways that Black Rook can

get out. The Barriers in Figure 4.8 and Figure 4.9 describe both situations.

• If White Rook is on ‘c5’ and Black moves the ‘a-pawn’ to ‘a5’, then we need

to consider moving White Rook to ‘c6’, unless black ‘e-pawn’ has moved

• If White Rook is on ‘c6’ and black is moves its Knight to ‘e7’, then White

has to move the Rook to ‘c5’

• Move White Bishop from ‘c1’ to ‘a3’

• Move white ‘e-pawn’ from ‘e2’ to ‘e4’

• Move white ‘g-pawn’ from ‘g2’ to ‘g3’

• Once Black has moved both: ‘e-pawn’ and ‘g-pawn’; White has repetition by

moving the Knight from ‘g1’ to ‘e2’ and back. If Black Bishop captures White

Knight on ‘e2’, then White King captures Black Bishop and forces repetition

with the King going from ‘e1’ to ‘e2’ and back.

4.8 Other Barriers

There is also a big family of Barriers that results from Black’s passive play.

Here are a couple of examples: Figure 4.10 shows the Barrier where ‘c’ and ‘g’ pawns

are locked, and ‘a’ and ‘e’ pawns will get locked once Black decides to move them.

Figure 4.11 shows the Barrier where ‘c’ and ‘e’ pawns are locked by White Bishop

and White Rook, and Black Rook can not get ahead of the pawns blocking it.



33

8 rZ0ZkZ0Z
7 o0Z0m0Z0
6 bZpZpZpZ
5 Z0A0Z0S0
4 PZ0ZPZ0Z
3 Z0Z0Z0Z0
2 0ZPZ0ZPZ
1 Z0Z0J0M0

a b c d e f g h

Figure 4.10: Random Barrier (a)

8 0Z0ZkZ0Z
7 s0Z0m0Z0
6 pZpZbZpZ
5 Z0A0o0Z0
4 PZ0ZRZ0Z
3 Z0Z0O0O0
2 0ZPZ0Z0Z
1 Z0Z0J0M0

a b c d e f g h

Figure 4.11: Random Barrier (b)



34

8 0ZrZkZ0Z
7 Z0Z0m0Z0
6 bZpZ0ZpZ
5 o0Z0o0Z0
4 PZ0ZPZ0Z
3 A0O0S0O0
2 0Z0Z0Z0Z
1 Z0Z0J0M0

a b c d e f g h

Figure 4.12: No Rook Capture in Barrier 1

• If Black Rook capture is available - do it!

• White has repetition by moving the Knight from ‘g1’ to ‘e2’ and back. If

Black captures the Knight with its Bishop, then White King captures Black

Bishop and forces repetition by going from ‘e1’ to ‘e2’.

4.9 No Rook-Capture Barriers

Let us mention the barrier states that will not require Black’s Rook capture

even if such option is available. In these states, Black’s pawns prevent Black Rook’s

mobility. They are used mainly to keep the size of the database down.

• Subset of Barrier 1; in which ‘c’, and ‘g’ pawns for Black are advanced past

their starting positions. Black Rook is hidden behind black pawns. White ‘c-

pawn’ also is advanced, so that it can stop black ‘c-pawn’ progress. Described

in Figure 4.12.

• Subset of Barrier 2; in which ‘g-pawn’ for Black is advanced past its starting

position. Black Rook is hidden behind black pawns. Described in Figure 4.13.



35

8 0Z0ZkZnZ
7 o0s0Z0Z0
6 0ZpZ0ZpZ
5 Z0A0o0Z0
4 PZ0ZPZ0Z
3 Z0Z0S0O0
2 bZPZNZ0Z
1 Z0Z0J0Z0

a b c d e f g h

Figure 4.13: No Rook Capture in Barrier 2

4.10 Barriers Needed when Black Moves First

In this Barrier the pawns are locked on ‘g-file’. White Knight protects pawns

on ‘a-file’ and ‘e-file’. Repetition is accomplished by White Rook, which may be

sacrificed - exchanged for either Black Knight or Black Bishop. The barrier is shown

in Figure 4.14. After the White Rook is sacrificed, then repetition is accomplished

by either White King as shown in Figure 4.15, or by White Bishop as shown in

Figure 4.16.

• If Black Rook capture is available - do it!

• If Black Bishop capture is available on ‘e2’ - do it!

• If Black Knight capture is available on either ‘e3’ or ‘a3’ - do it!

• Do general repetition with White Rook: ‘e3’ ß ‘e2’ ß ‘e3’

• White Rook was exchanged for Black Knight, which means that Black Knight

was captured on ‘e3’ square. If White Bishop is on ‘e3’, then bring it back to

‘c1’ for standard bishop repetition: ‘c1’ ß ‘a3’ ß ‘c1’.



36

8 0Z0ZkZ0Z
7 o0Z0m0Z0
6 bZrZpZ0Z
5 Z0o0Z0Z0
4 PZ0ZPZpZ
3 Z0M0S0O0
2 0ZPZ0Z0Z
1 Z0A0J0Z0

a b c d e f g h

Figure 4.14: White Goes Last (Barrier 1)

8 0Z0ZkZ0Z
7 o0Z0m0Z0
6 0ZrZpZ0Z
5 Z0o0Z0Z0
4 PZ0ZPZpZ
3 Z0M0Z0O0
2 0ZPZKZ0Z
1 Z0A0Z0Z0

a b c d e f g h

Figure 4.15: White Goes Last (Barrier 2)

8 0Z0ZkZ0Z
7 o0Z0Z0Z0
6 bZrZpZ0Z
5 Z0o0Z0Z0
4 PZ0ZPZpZ
3 Z0M0A0O0
2 0ZPZ0Z0Z
1 Z0Z0J0Z0

a b c d e f g h

Figure 4.16: White Goes Last (Barrier 3)



37

8 0Z0ZkZ0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 o0Z0Z0A0
4 PZ0Z0Z0Z
3 Z0Z0Z0Z0
2 0ZpZKZpZ
1 m0Z0Z0M0

a b c d e f g h

Figure 4.17: Avoiding Promotion (a)

• White Rook was exchanged for Black Bishop. Do a repetition with White

King: ‘e2’ ß ‘e1’ ß ‘e2’

4.11 Avoiding Promotion

There are some Barriers that result from very aggressive play by Black, where

Black sacrifices a Bishop for two or three pawns. Here are two examples: Figure 4.17

shows the Barrier where in the endgame we have ‘c’, and ‘g’ pawns for Black in return

for one White Bishop; Figure 4.18 shows the Barrier where in the endgame we have

‘a’, ‘c’, ‘e’, and ‘g’ pawns for Black in return for one White Bishop.

In Figure 4.17 the following rules are followed.

• Capture Black Knight if such a move is available. If Black Knight ends up

on either ‘e1’ or ‘e3’, capture the Black Knight on ‘e3’ with the Bishop.

• White has repetition by moving the Bishop from ‘g5’ to ‘c1’ and back.

In Figure 4.18 the following rules are followed.

• Capture Black Knight if such a move is available. If Black Knight ends up

on either ‘e1’ or ‘e3’, capture the Black Knight on ‘e3’ with the Bishop.



38

8 0Z0ZkZ0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0o0Z0
4 pZpZ0Z0Z
3 m0Z0Z0o0
2 NZ0ZKZ0Z
1 Z0Z0Z0A0

a b c d e f g h

Figure 4.18: Avoiding Promotion (b)

• White has repetition by moving the Knight from ‘a2’ to ‘c1’ and back. There

are other similar cases where the repetition is achieved by moving the Knight

from ‘a4’ to ‘c3’ and back.



39

CHAPTER 5

IMPLEMENTATION OVERVIEW

5.1 Game Simulation

Currently, we have a text version of the game; as well as a GUI version that

never loses for White. The game is played by simply doing a lookup in the database

of known states. The database of known states was populated by doing a full game

search given a known White Strategy.

5.2 Custom Moves

One of the simplest ways to optimize the game tree pruning was to allow the

position enumerator ask the user for a move given a position, if all of hard-coded

rules failed to produce the result. Another reason for doing this was that during the

early stage of the game there were many exceptions, where Black can potentially do

moves that (should) result in a loss for Black. At that point if White takes advantage,

many extra positions will be added to the database, and the game tree will be much

bigger. Taking an early win is not always good for game tree pruning, since the

“less intelligent” moves for White may take the board to positions which need to

be explored anyway. Using custom moves early allowed for more game control by

replacing board evaluation methods with user evaluation, and allowed us to better



40

force the game into the Barrier positions. Here are the first three moves of my

strategy:

(1) “a2a4” - opening for the Rook to get out

(2) • “e2e4” - if Black ‘e-pawn’ is on ‘e5’

• “a1a3” - in all other cases; let the Rook get out

(3) • “e2e4” - if Black ‘e-pawn’ is on ‘e5’

• “a3e3” - if Black ‘e-pawn’ is on ‘e4’

• “g2g3” - if Black ‘g-pawn’ is on ‘g4’

• “a3g3” - if there is a chance to get Black ‘c-pawn’ on ‘c4’ with Black’s

next move, and the ‘c4’ square will be protected by the following move

by either Black Rook, or Black Bishop - there are four cases like that;

the reader should verify for full understanding. First case is when black

‘c-pawn’ is already on ‘c4’; it gets protected by Black Bishop with the

following move.

• “a3c3” in all other cases

5.3 Database of Positions

We use a Hashtable to store 〈position, move〉 tuples for White. The number of

positions can fit in memory, and there are frequent reads and writes; hence writing

this information to disk is highly inefficient. Also, there is no need for permanent

storage since all of positions are re-generated on every run. The key is to make storage

of the board space efficient - we used 22 bytes for single board description - it could

be further improved, but this wasn’t needed.



41

CHAPTER 6

IMPLEMENTATION DETAILS

6.1 Storage Overhead

In this section let us describe the implementation details in our program that

allows us to efficiently check if there is a move for a certain position, or if certain

position has been visited already.

• Hashtable for all positions that we had seen after White has made a move;

if when it is White’s turn there exists a move that will take us to any of the

positions in this Hashtable - we are done. This way we don’t have to keep

track of depth levels - if position is in the Hashtable it has been visited.

• Hashtable for all positions that we had seen after Black has made a move;

if when it is Black’s turn a move is chosen that will take us to any of the

positions in this Hashtable - we are done.

• Dictionary of 〈position, move〉 tuples. It is populated at startup with all of

the existing positions, and whenever our program comes up with a move for

a new position the Dictionary is updated.



42

6.2 Chess Board

Chess Board class contains an instance of every chess piece. All chess pieces

implement the same interface, so that it is easy to do the following.

• Store the state of the board, and allow the user to modify it. This includes

marking pieces as captured, their locations, which side has the next move,

and history of moves taken to get to this position (for debugging purposes).

• Has a method to get all possible moves for a given chess-piece, or a side. We

need this functionality for a complete mini-max search of the tree.

• Checks if current position is a winning / losing position for a given side. This

action can be performed for some fixed depth. The whole tree is enumerated,

no pruning techniques are used here. The board evaluation is to simply check

if the King for a given side is captured.

• Checks the validity of the move proposed

6.3 Defensive Rules

While we have not specified all of the rules that are followed to get the Barrier

states, there are a few key evaluations that should be made every time before the

move is actually chosen. These are the defensive rules that allow us to make sure

that nothing dangerous is about to happen.

• Is White King checked?

• Can White Rook be captured?

• Can White Bishop or Knight be captured?



43

The evaluation is implemented in the straight-forward manner. Simply try all of

Black’s moves and see if any of them results in the board that has one of White’s

heavy pieces missing. These rules are envoked during Barrier play, as well as during

checks for being in the draw state.

6.4 Game Enumeration

Because the number of positions are small enough to fit into memory, a general

Breadth First Search approach was used. The implementation is simple - use two

queues: one for moves to be explored by White’s strategy, and the other to be fully

enumerated by Black. When it is White’s turn to move - the program tries to apply

a strategy to come up with one new position to enumerate for Black. On the other

hand when it is Black’s turn - every move results in the new position being added to

the queue for White (unless that position has already been explored).

6.5 Position Storage

The number of positions is relatively small; hence there is no need to write

data to persistent storage during execution, a simple in-memory data structure will

do. This data structure is to be populated at the startup of the program and to be

updated after each new 〈position, move〉 tuple gets generated.

As an example here is board from Figure 4.3 represented as a string:

“1g3c3c142428c6e7a6756 ” [This is ok because our strategy does not allow for

pawn promotion.]



44

6.6 Barrier State Play

Most of the Barrier play is simply hard-coded. Since every position is repre-

sented as a string, we use simple parsing techniques to see if this string matches rules

for one of the Barrier’s defined. If yes, then the rule is applied, hence resulting in a

new entry in our database.

6.7 Tree Pruning Optimizations

To further prune the game tree, while not adding too many extra positions to

our final list; we are using three basic techniques:

• Check for win to a certain depth. The deeper the search, the longer it takes.

Depth seven proved to be a good balance between strength and speed. We

avoided board evaluation, checking only if a King is captured for victory

(rather than stopping at checkmate one level earlier).

• Capture opponent’s Rook. Capturing Black Rook almost always takes us into

one of the defined Barrier states.

• Check if we can force coming back to a known position within some small

number of moves.

Figure 6.1 displays a position that results in White’s victory within (at most)

7 moves.

(1) g5e5 - c4e6

(2) e5e6 - g8e7

(3) e6e7 - e8e7



45

8 rZ0ZkZnZ
7 Z0o0Z0o0
6 0Z0Z0Z0Z
5 o0Z0o0S0
4 PZbZPZ0Z
3 A0Z0Z0Z0
2 0ZPZ0ZPZ
1 Z0Z0J0M0

a b c d e f g h

Figure 6.1: White forces win in 7 moves

(4) a3e7*



46

CHAPTER 7

RESULTS

7.1 Statistics

We came to the final database in two stages:

• Run the simulation with the Draw Definitions from Section 3.3.

• Using all resulting positions from step 1 - complete the database by using the

rules that play the game to completion starting from any of the positions in

Section 3.3.

In Table 7.1 we show how our table was growing as we explored more and more

of the game of FOUR FILE.

7.2 Verification

We can represent strategy as a Graph, where every node is a position; which

is either a win for White, a stalemate, or for every move that Black may take, there

is a move for White that will take us to another node in the Graph. The current

database has been verified for White to force a draw, and Black to force a draw for

all but one starting move for white [6].



47

Table 7.1: Database growth description

Staring position description Positions added to database

Standard - White moves first 2682885
Black moves first - “g7g5” 1157650
Black moves first - “g7g6” 147103
Black moves first - “a7a6” 216225
Black moves first - “c7c6” 138279
Black moves first - “c8g4” 1818041
Black moves first - “e7e6” 182372
Black moves first - “c8a6” 73114
Black moves first - “c8e6” 60095
Black moves first - “e7e5” 1067253
Black moves first - “c7c5” 148955
Black moves first - “a7a5” INCOMPLETE

Total size of database (excluding duplicates) 7493909



48

CHAPTER 8

FUTURE WORK

8.1 Proof Completion for Black

We are very close to completing the proof for Black, but it may require one

strong assumption to be broken. For Black to force a Draw - it may be necessary

to allow for pawn promotion. Our research shows that there are two cases where we

may have to allow for pawn promotion to complete our database

• Black promotes while Rooks are exchanged and thus promotes to a Rook (if

default promotion to Queen is not allowed - making Queen an invalid piece

in this game) or Queen and can force at least Draw even if White has extra

Bishop or Knight.

• White promotes the next move after Black promotes. Because Rooks are

exchanged White does not have enough material to win and Black forces a

Draw.

Our board definition does not allow for Queen or multiple pieces of the same

kind on the same board; so to complete the proof in this fashion one has to change

the way the board is defined.



49

8.2 Open Problems

The current approach does not try to calculate perfect play for either side. We

can consider that the problem can be solved to four different levels. First, it can be

non-constructively proven that White and Black can avoid losing. Next, the proof

can be constructive, as it is here, giving one such strategy to avoid loss for each side.

A stronger strategy would not only avoid losing, but would also give a strategy for

White which would win whenever possible, that is, if Black ever made a move which

put it into a position in which White could force a win with optimal play, White

would do so. Finally, these strategies could be given for arbitrary starting positions,

including positions that our strategy would never enter, but which are possible. These

positions would be of interest because they would allow a player to start by playing

White, and if they find themselves in a tough situation, they could switch sides with

the computer and continue.



50

BIBLIOGRAPHY

[1] http://www.msri.org/communications/books/
Book42/files/guy.pdf

[2] Jonathan Schaeffer, Checkers Is Solved, Science 14 September 2007, Vol. 317. no.
5844, pp. 1518 - 1522

[3] Elwyn R. Berlekamp, John Horton Conway and Richard K. Guy, Winning Ways
for Your Mathematical Plays, Vol. 1, 2, 3 and 4, Academic Press, 1982.

[4] Richard J. Nowakowski, Games of No Chance, Cambridge University Press, 1996.

[5] Richard Korf, Depth-first iterative-deepening: An optimal admissible tree search,
Artificial Intelligence, Vol. 27, No. 1, pp. 97-109, 1985. Reprinted in Expert
Systems, A Software Methodology for Modern Applications, P.G. Raeth (Ed.),
IEEE Computer Society Press, Washington, 1990.

[6] David Scot Taylor, Personal Communication, 2009


	Is Four File Chess a Draw?
	Recommended Citation

	tmp.1295901364.pdf.fXDat

