
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2008

DNA Fragment Assembly Algorithms: Toward a Solution for Long DNA Fragment Assembly Algorithms: Toward a Solution for Long

Repeats Repeats

Ching Li
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Li, Ching, "DNA Fragment Assembly Algorithms: Toward a Solution for Long Repeats" (2008). Master's
Projects. 98.
DOI: https://doi.org/10.31979/etd.fmj6-8gzv
https://scholarworks.sjsu.edu/etd_projects/98

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/98?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

DNA FRAGMENT ASSEMBLY ALGORITHMS:

TOWARDS A SOLUTION FOR LONG REPEATS

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Ching Chia Li

May 2008

 i

© 2008

Ching Chia Li

ALL RIGHTS RESERVED

 ii

 APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

 __

 Dr. Sami Khuri

 __

 Dr. Teng Moh

 __

 Natalia Khuri

 Lecturer, Department of Computer Science

 APPROVED FOR THE UNIVERSITY

 __

iii

ABSTRACT

DNA FRAGMENT ASSEMBLY ALGORITHMS:
TOWARDS A SOLUTION FOR LONG REPEATS

by Ching Chia Li

In this work, we describe our efforts to seek optimal solutions for the DNA Fragment

Assembly Problem in terms of assembly accuracy and runtime efficiency. The main obstacles for

the DNA Fragment Assembly are analyzed. After reviewing various advanced algorithms

adopted by some assemblers in the bioinformatics industry, this work explores the feasibility of

assembling fragments for a target sequence containing perfect long repeats, which is deemed

theoretically impossible without tedious finishing reaction experiments. Innovative algorithms

incorporating statistical analysis proposed in this work make the restoration of DNA sequences

containing long perfect repeats an attainable goal.

 iv

 v

Contents

1. INTRODUCTION .. 1

2. BACKGROUND ... 1

3. PROBLEM DEFINITION .. 3

4. SOLUTION ... 9

4.1 Traditional Algorithms ... 9

4.1.1 Overlap Measurement .. 9

4.1.2 Layout Determination .. 12

4.1.3 Consensus Sequence Construction .. 14

4.2 Euler Algorithms ... 16

4.2.1 Error Statistics ... 16

4.2.2 Error Correction ... 18

4.2.3 Correction Limitation .. 22

4.2.4 Euler Superpath ... 24

4.3 Proposing Improvements on Euler Algorithms .. 30

4.3.1 Traversal Approach for Euler Superpath ... 30

4.3.2 Statistical Analysis for Perfect Long Repeat Assembly .. 33

4.3.3 Postponed Error Correction ... 37

4.4 Existing GA for DNA Fragment Assembly ... 39

4.5 New GA for Fragment Coverage Restoration ... 42

4.5.1 Solution Generation ... 42

4.5.2 Fitness Function ... 43

 v

4.5.3 Operations .. 44

4.6 Combining Euler and Genetic Algorithms .. 46

5. FRAGMENT ASSEMBLER DESIGN AND IMPLEMENTATION 48

5.1 An Illustrative Example .. 48

5.2 Complexity Analysis .. 61

5.3 Program Architecture ... 62

5.4 Database Schema ... 64

6. TEST AND RESULT .. 66

7. CONCLUSION ... 67

8. FUTURE RESEARCH .. 69

REFERENCES ... 70

APPENDIX LOGIC OF KEY ASSEMBLY MODULES 72

A.1 de Bruijn Graph Creation ... 72

A.2 Estimating the Length of Target Sequence .. 74

A.3 Euler Path Traversal .. 75

A.4 Coverage Restoration ... 77

A.5 Selecting the Best Fragment for Alignment ... 79

1. Introduction

The Human Genome Project aims to identify the exact sequence of nucleotide

base pairs for the entire human genome. The Human genome contains about three billion

nucleotide base pairs; however, current technologies usually sequence DNA fragments

shorter than 1000 bases [1]. Large DNA sequences are always cut into small fragments

for analysis and then assembled together to restore the original sequence. Thus, the

bioinformatics industry needs efficient algorithms for the precise assembly of long DNA

sequences from DNA fragments that are shorter than 1000 bases.

2. Background

 DNA sequences, determining protein synthesis of biological entities, are

important for scientists to understand the functioning of various organisms. Long and

complicated as they are, all DNA sequences consist of four nucleotides – A (adenine), T

(thymine), C (cytosine), and G (guanine), which are termed “bases” [1]. In 1982,

Frederick Sanger led a group of scientists to sequence the 48,000 base-pairs long genome

of a virus, Bacteriophage lambda, utilizing the DNA whole genome shotgun sequencing

method [2]. Since then, the DNA whole genome shotgun sequencing method continues to

evolve in terms of scalability, accuracy, and robustness. In 2001, the initial human

genome sequencing of three and a half billion base-pairs was accomplished by this

method. Improvements in DNA fragment assembly algorithms contribute significantly to

the success of the shotgun sequencing method.

1

Figure 1: DNA Sequencing Process

Though there are variations in the actual implementation of shotgun

sequencing, they all follow a similar procedure:

1. Target sequence cloning – multiple copies of a DNA sequence under

analysis are created.

2. For DNA fragment creation, each copy of the target sequence is fractured

randomly with sonication or nebulation; fragments that are too long or

too short are removed due to DNA sequence analysis performance

concerns; statistically, fragment length has a normal distribution of about

10% variance after screening.

3. DNA sequence analysis on fragments, where fragments are inserted into

engineered viruses to form vectors and a sequencing reaction is

2

performed in the vectors to produce a fragment read ranging from 300 to

900 bases long.

4. DNA fragment assembly – computational algorithms and expert

knowledge are applied to put pieces of fragments back to a consensus

sequence [3].

The more efficient and accurate the computational algorithm, the less

intervention is required by biologists for DNA fragment assembly, and consequently the

more efficient the DNA fragment assembly can be. Thus, the continuous improvement of

DNA fragment assembly algorithm is crucial for biologists to study large scale DNA

sequences efficiently.

3. Problem Definition

 DNA fragment assembly reconstructs the original DNA sequence from a

large number of fragments that are several hundred bases long. To accomplish this goal,

all DNA fragment assembly algorithms need to overcome the following challenges:

Unknown orientation

 Given the dual helix structure of DNA, each fragment can come from either

strand of the helix structure. Thus, as we determine the fragment layout, we need to

consider the reverse complement of each fragment, which essentially doubles our

assembling efforts. A (adenine) complements T (thymine), while C (cytosine)

complements G (guanine), and vice versa. To get the reverse complement of a fragment,

we first reverse the fragment sequence; for example, the reverse of fragment ATGCTA is

3

ATCGTA; then taking the complement for each nucleotide base in the sequence, we have

TAGCAT [1]. Essentially, the DNA fragment assembly results in two DNA base

sequences complementing each other, each stands for one strand of the original DNA

sequence.

 Read Orientation Assembly

 ATGCTA --- TAGCAT ------------------

 CATTGCC --------- CATTGCC ----------

 AATGC --------GCATT ----------------

 TGCCGTAG ----------------TGCCGTAG---

Figure 2: Calculating reverse complement of DNA fragments

Base-calling errors or sequencing errors

 The technical constraint of analyzing less than one kbps sequences at a time

is actually due to various read errors, since most sequence results longer than one kbps

are filled with errors and therefore have to be discarded. Due to a complicated sequencing

process, the DNA fragments are contaminated with base errors: Dideoxynucleotide

(ddNTPs) are used to randomly fracture long DNA chains; however, the fluorescent

signal, which tags ddNTPs, is weakened by the geometric distribution of concentration;

in addition, molecules diffuse in the gel as they are read – longer fragment reads cause

more molecules in the fragment diffuses; thus data quality at the end of fragments is

usually inferior, while DNA polymerase (DNA copying enzyme affected by temperature)

4

and sequencing reactions may hide some low quality data in the middle of high quality

regions. The assumption of a uniform moving speed when reading a DNA sequence is

also error prone, because various DNA strands often move on the gel at different speeds.

Contamination and undiscovered vectors are two additional common factors causing

errors [4].

 There are four different types of sequencing errors – Substitution (one base is

reported as another base), Deletion (bases are not reported at all), Insertion (irrelevant

bases are reported), and Ambiguity (uncertainty about the exact base). Table 1 lists the

IUPAC Ambiguity codes for DNA sequence analysis [5].

Figure 3: Chemical structure of ddNTP used to fracture DNA sequence

IUPAC Code Meaning Complement
A A T
C C G
G G C

T/U T A
M A or C K
R A or G Y

W A or T W
S C or G S
Y C or T R
K G or T M
V A or C or G B
H A or C or T D
D A or G or T H
B C or G or T V
N G or A or T or C N

 Table 1: IUPAC code meanings and complements

Figure 4 demonstrates how errors hinder fragment assembly.

5

Genome sequence:
 Repeat Repeat
 CTTCGCGTCATCATCACTTGAGTCATCATCACCTCGGA
 Sequence reads in the correct layout:
 CTTCGCGTCATCATCA
 TCATCATCACTTGA
 CTTGAGTCATCATCA
 TCATCATCACCTCGGA
 Fragments including some sequencing errors:
 CTTCGCGTCATCATCA
 TCATCATCAC*TTG*A
 CTT*GAGTCATCATCA
 TCATCATCACCTCGGA

Figure 4: Assembly errors caused fragment errors

Repeated regions

 DNA sequences may contain many repeats. There are identical repeats as

well as repeats with only slight differences. Repeats are difficult to resolve because there

are multiple ways of joining related fragments together. Figure 5 provides a simple

illustration of how repeats can cause assembly errors:

Genome sequence:
 Repeat Repeat
 CTTCGCGTCATCATCATCACTTGAGTCATCATCATCACCTCGGA

Sequence reads in the correct layout:
 CTTCGCGTCATCATCA
 TCATCATCACTTGA
 CTTGAGTCATCATCA
 TCATCATCACCTCGGA
Wrong layout:

CTTCGCGTCATCATCA
 TCATCATCACTTGA
 CTTGAGTCATCATCA

 TCATCATCACCTCGGA

Figure 5: Assemble errors caused by repeats

The complexity of repeats actually goes much further. The length of repeats
6

varies greatly and can be interspersed in numerous genomic locations or linked closely

together. For instance, a trypsinogen gene has a five-fold repeat as long as four kbp with

3-5% variations among each fold. Three folds of the repeat locate so closely together that

they confuse assembly algorithms with potential errors. Given the technology constraint

of sequencing fragments shorter than one kbp, assembling long perfect repeats is deemed

unsolvable [6]. The second half of our work is dedicated to developing algorithms that

incorporate statistical analysis to put together the correct assembly for fragments

containing long repeats.

Incomplete coverage

 Given a target sequence of length L and N fragments of average length r, the

genome coverage C = N· r/L. There is a tradeoff between high coverage to ensure original

DNA sequence cover probability and the computational complexity of the fragment

assembler. Though no high coverage ensures the complete covering of target sequence

due to the random fracturing process, coverage of eight to ten are preferred in common

practice. For example, to get 10X coverage in a sequence of length 125 kb, we need

2,604 random fragments read with an average length of 480 bases:

2604 · 480/ 125,000 = 10. Because of the double helix DNA structure, we need to

consider the reverse complement of each fragment [6].

Random creation of DNA fragments can lead to the situation where the

coverage is insufficient to assemble all fragments to a consensus sequence and instead

result in several long fragments. In Figure 6, judgments have to be made to determine the

assembly orders of two contigs (long partially assembled DNA fragments).

7

Figure 6: Failure to restore the target sequence due to no fragment coverage on some [22]

In summary, we define the DNA fragment assembly problem as the

following: given a collection of fragment reads F={fi }R
i=1 that are sequences over

∑={A,C,G,T}, find the optimal superstring S, such that each fi or its reverse

complement, after a minimum number of mutations (insertion, substitution, or deletion of

some nucleotide bases), is a substring of S. There can be multiple optimal superstrings for

a unique collection of fragments.

8

4. Solution

In the past decade, a number of excellent DNA fragment assemblers emerged

applying various algorithms. Some of the most well-known assemblers are Phrap[7],

TIGR[8], CAP3[9], and EULER[10]. There are weaknesses even for the best assemblers

– failing to handle repeats longer than fragment reads, generating too many contigs,

assembling results shorter than the target sequence, and slow assembly speed. Aiming at

improving these weaknesses, we have explored three types of algorithms – traditional

''overlap–layout–consensus'' algorithm, Euler algorithms, and genetic algorithms to solve

the DNA Fragment Assembly problem.

4.1 Traditional Algorithms

 Most DNA Fragment Assembly algorithms have three key modules: The

Overlap module measures the degree of overlapping among fragments; The Layout

module determines the blueprint to join fragments one after another according to the

overlapping degrees among fragments; The Consensus module forms the consensus

sequence according to the layout blueprint [11].

4.1.1 Overlap Measurement

Applying the traditional ''overlap–layout–consensus'' algorithm, we will first

measure the feasibility of assembling every possible pair of the fragments with dynamic

programming. There are four types of overlaps to consider, as illustrated in Figure 7.

9

Type 1: Read A ahead of Read B Type 2: Read A contains Read B
 Read A Read A
 Read B Read B

Type 3: Read B ahead of Read A Type 4: Read B contains Read A
 Read A Read A
 Read B Read B

Figure 7: Four types of fragment overlapping

 A commonly used dynamic programming algorithm for overlap pattern

matching is String Alignment. String Alignment computes the similarity of two strings

according to a predefined “alignment” function that provides a positive score on match

but negative scores on insertion, deletion, and substitution. The final score for aligning

two strings is deduced by gradually increasing the prefixes of the two strings and

computing the scores of prefixes step by step. Scores in each step are reused in the next

immediate step, so a matrix with the width of one string's length plus one, and the height

of the other string's length plus one is required to hold the alignment scores of all prefixes

of the two strings. A high alignment score indicates close similarity of two strings. The

algorithm's complexity is O(nm), where n and m are the length of two strings

respectively. In addition, it consumes O(nm) memory space due to the matrix caching

prefixes alignment scores [12]. For k fragments inputs with average size m, the

complexity for overlap pattern matching is O(k2m2). Figure 8 illustrates the steps and

functions used to align two strings ACGTCGTC and TCGTCTT.

10

i \ j - T C G T C T T
- 0 -2 -4 4 -6-6 -8-8 -10-10 -12-12 -14 -14
A -2 -1 -3 -5 -7 -9 -11 -13
C -4 -3 0 -2 -4 -6 -8 -10
G -6 -5 -2 1 -1 -3 -5 -7
T -8 -5 -4 -1 2 0 -2 -4
C -10 -7 -4 -3 0 3 1 -1
G -12 -9 -6 -3 -2 1 2 0
T -14 -11 -8 -5 -2 -1 2 3
C -16 -13 -10 -7 -4 -1 0 1

 Aligning S1 = ACGTCGTC and S2 = TCGTCTT

Dynamic string alignment
⎪
⎩

⎪
⎨

⎧

−+−
−+−

+−−
=

])[,()1,(
)],[(),1(

])[],[()1,1(
max),(

2

1

21

jSvjiA
iSvjiA

jSiSvjiA
jiA

 The score function may be
⎪
⎩

⎪
⎨

⎧

−=−=−
≠−
=+

=
][][2
][][1
][][1

])[],[(

21

21

21

21

jSoriSif
jSiSifif
jSiSifif

jSiSv

 We obtain:
 T C G T C – T T
 A C G T C G T C
 Score -1+1+1+1+1-2+1-1=+1

Figure 8: A dynamic programming example to align two strings

Based on the dynamic programming algorithm for string alignment, a variety

of improvements can be made: TIGR assembler computes the k-tuples in common

between each pair of fragments; Myers combines suffix and indexes in sequence database

for fast retrieval of similar fragments; Phrap and ARACHNE [13] use various flavors of

common subsequence identification algorithms to rule out obviously unmatched fragment

pairs before applying time consuming dynamic algorithms for detail alignments. AMASS

11

represents fragments with multiple sub-string patterns called probes and performs pattern

matching on probes rather than on the whole fragment to accomplish superior speed [14].

4.1.2 Layout Determination

 According to the measurement result, we determine the basic layout of the

fragments. This is the most challenging step because it is hindered by issues of errors,

repeats, and insufficient coverage. Numerous creative methodologies, ranging from

greedy algorithms to graph theory algorithm, have been applied to seek optimal solutions

at this step.

 The DNA Fragment Assembly problem can be reduced to Shortest Common

Superstring Problem (SCS), in which case we attempt to find the shortest DNA sequence

that contains all the DNA fragments. Gallant et al. proved that SCS is NP-complete [15].

In other words, we can only apply some heuristic methods to find a close to optimal

solution in an acceptable amount of time. Greedy algorithm was firstly introduced by

Staden in 1979 to iteratively assemble fragments with maximum overlaps to one DNA

sequence [16]. The worst result for superstring computation is about twice as long as

optimal superstring [17].

 In reality, the shortest super string for fragment inputs is not the target DNA

sequence, which we are looking for due to read errors, repeat regions, and orientation

issues. A better model for DNA Fragment Assembly might be Sequence Reconstruction:

for a set of fragments fi Є F with error rate ε Є [0,1], find the shortest superstring S

satisfying the condition – min{d(Ssub, fi), d(Ssub, fi')}≤ ε |Ssub|, where fragment fi' is the

reverse complement of fragment fi and d(Ssub, fi) is the minimum edit distance between
12

subsequence of S and fragment fi computed with dynamic programming similar to the

string alignment algorithm. Sequence Reconstruction is also proven to be NP-complete

[1]. A robust approach to tackle NP-Complete problems is genetic programming, which

we elaborate in a later section.

 In addition to string processing algorithms, graph theory might be an

alternative to assist DNA Fragment Assembly. We can model DNA Fragment Assembly

with weighted graphs where each vertex stands for a fragment and each edge stands for

overlap between the two fragments. The Hamiltonian path that traverses each vertex once

provides us with important insight for assembling the fragments. The graph of Figure 9 is

a simplified illustration on reducing Fragment Assembly to the Traveling Salesman

problem: for fragment set V = {GTG, TGA, GAT, ATG, TGC, GCT, CTG, TGG}

finding the path sequence that visits each vertex once yields S=GTGATGCTGG, a

minimum superstring for the fragment set. Although the Traveling Salesman Problem is

NP-Complete [1], due to its long history in math and computer science there are many

studies finding close to optimal solutions; thus, a lot of techniques tackling TSP can be

revised to apply to DNA Fragment Assembly. Euler algorithms are innovative

approaches that convert DNA Fragment Assembly to Euler Path Finding on a de Bruijn

graph [9]. We have dedicated most of the research project to applying Euler graph theory

on DNA Fragment Assembly.

13

Figure 9: Hamiltonian path solution for DNA Fragment Assembly Problem [1]

4.1.3 Consensus Sequence Construction

Creating a consensus sequence is the final step. Resolving repeats intermixed

with errors is the main issue challenging assembly algorithms at this stage. Phrap

generates consensus sequence in a greedy approach according to its proprietary LLR-

score order [7]. Phrap incorporates error probability to fragment alignment dynamic

programming. In practice, errors in fragments are independent from each other, implying

that fragments do not have errors at the same position of a sequence. In other words,

given sufficient coverage, most fragment errors can be corrected by the majority rule.

Celera Assembler masks repeats to avoid confusion and leaves repeats unassembled.

Some repeats are already known from experience [1]. Those repeats are assembled based

on the former understanding of repeats. TIGR, CAP3, and ARACHNE assemblers

compute distance constraints between two ends of fragments by using the majority rule to

assist pairwise ordering. Most assemblers cannot reconstruct fragments back to one

unique consensus sequence at the end for sophisticated genome sequencing projects;

14

instead, several long contigs are returned for users to do the rest of the finishing work.

Even for fragment inputs free of errors, most assemblers still make assembling errors:

Phrap, CAP3, and TIGR assemblers make five, four, and two errors respectively when

assembling error-free Neisseria meningitidis1 genome fragments [11].

1 Neisseria meningitidis is a kind of bacterium playing a role in meningitis.

15

http://en.wikipedia.org/wiki/Bacterium
http://en.wikipedia.org/wiki/Meningitis

4.2 Euler Algorithms

EULER algorithms for DNA Fragment Assembly, developed by Pevzner et

al., completely abandon the traditional overlap-layout-consensus methodology. EULER

algorithms are innovative in the sense that they cut the existing DNA fragments into even

smaller pieces of regular size to transform the NP-Hard Fragment Layout issue to a

polynomial time solvable Euler Path Discovery problem. Moreover, EULER algorithms

surpass other DNA fragment assembly algorithms in error correction and repeat

resolution – they can correct up to 97% of the errors and resolve all repeats that are not

longer than fragment length. There are two main modules for Euler algorithms – Error

Correction and Euler Superpath Resolution [18].

4.2.1 Error Statistics

Before we discuss error correction, we need to elaborate on the general error

patterns in fragments to be assembled. Usually, the average error rate is known before

fragment assembly and should be less than 10%. It is a common practice to discard

fragments containing errors exceeding a certain error rate. Errors are independent of one

another: different fragments covering the same range of a sequence have errors at

different positions. For example, in Figure 10 three fragments cover AACTGCCTTAG

while containing errors at different positions.

 CGTCAA?TGCCTTAGGCTA
 ATCGTCAACTACCTTAG
 AACTGCC TAGGCTACA

Figure 10: Independent nature of fragment errors

16

Given average fragment length m, target sequence length L, and coverage c,

there should be cL/m fragments in the fragment set. The possibility for one out of L

positions to be randomly selected as the beginning of a fragment is p = c/m. For a

position to be covered by a fragment, any of the inclusive m positions before the position

can be selected as the starting position of the fragment. To have x coverage on a position,

x of the m positions must be selected as the beginning of fragment. This infers a binomial

distribution for the probability of the number of times that a position covered by fragment

reads [2]:

P{C = x} = () () xmx mcmc
x
m −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
/1/

Equation 1 Possibility calculation for fragment coverage equal some number on a certain location

The possibility of a position covered by less than or equal to x fragments:

P{C ≤ x} = () ()∑
=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛x

k

kmk mcmc
k
m

0
/1/

Equation 2 Possibility calculation for fragment coverage no more than x on a target DNA sequence

For fragments with an average size larger than one hundred, we may

approximate a binomial distribution using a normal distribution with expected value µ(x)

= c and standard deviation)/1()/1)(/(mccmcmcm −=−=σ according to the

Central Limit Theorem. A key property of the normal distribution is that about 68% of

the values should be in the range [µ-σ, µ+σ] and about 95% of the values should be in the

range [µ-2σ, µ+2σ] according to Empirical Rule. For a normal distribution, the possibility

17

of having a value 2σ less than the expected value is about 2.5%. Given a set of fragments

with average length 800, coverage ten, the expected multiplicity (the number of

occurrences in the fragment set) of a tuple is ten, and)800/101(10 −=σ ≈ 3.4. Thus,

the possibility for a tuple to have multiplicity of three or less is about 2.5%. In other

words, we are 97.5% confident that a tuple with multiplicity of three or less is caused by

errors [19].

Figure 11: Normal distribution curve [19]

4.2.2 Error Correction

The Euler Algorithm exploits the fact that errors occur at different positions

to perform error correction of the fragments. Euler Error Correction starts by chopping all

fragments to much smaller tuples. For example, all possible 8-tuples of

attcggctccgtgcttacatg is given by:

18

Gl = {
attcggct
 ttcggctc
 tcggctcc
 cggctccg
 ggctccgt
 gctccgtg
 ctccgtgc
 tccgtgct
 ccgtgctt
 cgtgctta
 gtgcttac
 tgcttaca
 gcttacat
 cttacatg

 }

 Creation of tuples from fragments adopts a sliding window approach with the

window width equal to the tuple size. The amount of tuples for a fragment set without

errors can be associated linearly to the length of the target sequence (L) covered by the

fragment set. Besides, there is an inverse relation between the proportion of repeats on

the target sequence and the number of different tuples.

Due to high coverage, fragments overlap with each other. Normally each

tuple appears in multiple fragments. We use multiplicity of a tuple to refer to the number

of the tuple’s occurrences in a fragment set. For a fragment set having coverage ten on

the target sequence, the expected multiplicity of an ordinary tuple is ten. If there is no

error, the multiplicity of an ordinary tuple is expected to be the same as the coverage. For

tuples on repeat regions, the multiplicity can jump to two or more times of the coverage

depending on the frequency of repeats. Due to the randomness of fragment creation, the

possibility of a tuple with only multiplicity of two or less is very small.

19

We call the tuples with low multiplicity weak and the tuples with high

multiplicity solid. Knowing that most weak tuples are caused by errors, we can then

associate each weak tuple with one of the solid tuples and correct the errors accordingly.

An error in a fragment usually causes l weak l-tuples and an additional l weak l-tuples in

the reverse complement fragment. For an error located at d bases away from the fragment

boundary, where d < l, there will be 2d weak tuples created by the error [20]. Figure 12

illustrates how an error results in weak tuples generated by the sliding window approach.

 Figure 12: Weak tuples generated by an error on a fragment and its reverse complement [18]

We define the relationship between two tuples as neighbors if we can change

one to another with one mutation. We call a tuple orphan if the tuple meets the following

three conditions:

(i) Multiplicity smaller than a pre-set threshold. For our former example

of a fragment set with average size 800 bases and coverage ten, we

may set the threshold to three to ensure the 97.5% confidence on

error detection.

20

(ii) The tuple has a unique neighbor.

(iii) The tuple’s neighbor is solid. The process of error correction consists

in changing an orphan to its unique solid neighbor.

The example below demonstrates the steps of substitution error correction. In

a fragment set that has ten fragments covering the region ggctccgtgctt, one fragment has

an error at the fourth position changing base t to c. The rest nine fragments that are

correct in the region will generate solid tuples with a multiplicity of nine on the left,

while the fragment with error at the fourth position might create weak tuples on the right.

By mutating the orphans to their corresponding solid neighbor, we correct the error in the

weak tuples as well as the fragment. The fragments that are correct in one region might

have errors in other regions. On the other hand, the fragment that has error in one region

might be correct in other region. Taking advantage of the independent nature of fragment

errors, Euler assembler can correct errors by majority rule.

GGCTCCGTGCTT GGCCCCGTGCTT
 (Original) (Substitution error)
 {GGCTCCGT {GGCCCCGT
 GCTCCGTG GCCCCGTG
 CTCCGTGC CCCCGTGC
 TCCGTGCT CCCGTGCT
 CCGTGCTT} CCGTGCTT}

 Figure 13: Associating weak tuples with their solid neighbor to correct a substitution error

Correcting insertion and deletion errors is slightly more complicated than

correcting substitution errors. In Figure 14, the fragment on the right has an insertion

error at the fifth position. Such an error causes a series of weak tuples without neighbors

except the last one. Paying attention to this special pattern helps us detect and correct

21

insertion errors.

GGCTCCGTGCTT GGCTACCGTGCTT
 (Original) (Insertion error)
 {GGCTCCGT {GGCTACCG
 GCTCCGTG GCTACCGT
 CTCCGTGC CTACCGTGC
 TCCGTGCT TACCGTGCT
 CCGTGCTT} ACCGTGCT
 CCGTGCTT}

 Figure 14: Associating a weak tuple with a solid neighbor to correct an insertion error

A similar method can be applied for correcting deletion error.

GGCTCAGTGCTT GGCTAGTGCTT
(Original) (Deletion error)
{GGCTCAGT {GGCTAGTG
 GCTCAGTG GCTAGTGC
 CTCAGTGC CTAGTGCT
 TCAGTGCT TAGTGCTT}
 CAGTGCTT}

 Figure 15: Associating a weak tuple with a solid neighbor to correct a deletion error

4.2.3 Correction Limitation

The selection of l value or tuple size depends on several factors: appearance

of short local repeats, distance between errors, and runtime efficiency for neighbor

discovery. If the tuple size falls close to the size of local repeats, we might encounter

many weak tuples with more than one neighbor because one copy of repeats might differ

slightly from another copy. This issue will confuse the assembly algorithm for the right

way to correct the error. If the distance of two errors in one fragment is smaller than l,

some weak tuples caused by the errors cannot be associated with a solid neighbor that is

one mutation away; the complexity of screening a tuple’s neighbor is O(lG) where l is the

22

tuple size and G is the target sequence length. Given a large G for a complicated

assembly project, a slight increment of tuple size causes the screening runtime to become

significantly longer.

 The Euler Error Correction methodology can incorrectly change correct

fragments on the low coverage range of the target sequence. The Euler Assembler uses

parameter Δ, defining the maximum number of errors in a fragment, as a threshold to

prevent the Euler Error Correction removing the difference in repeats [20]. However, this

can cause the situation in Figure 16 to be overlooked. In Figure 16, a fragment covering

the key information connecting two closely spaced contigs is prone to be eliminated in

insertion error correction.

 Figure 16: Low coverage on a position due to random fragment generation

……...ATCGACCATCGGACTGCACAAGT…

The possibility of observing only one coverage at a base position for a fragment

set with average length five hundred and coverage eight, is

P{C=1}= ≈ 2.25 · 10-3. The possibility of observing x bases

with one coverage consecutively is (2.25 · 10-3)x, which decreases exponentially as x

increases. Thus, most of the 2% correct fragment reads with low coverage are on

() () 15001 500/81500/8
1

500 −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

23

individual base positions situated randomly across the target sequence. The threshold

parameter Δ can hardly protect them from false Error Correction. The negative effect

caused by the erroneous correction is that more contigs appear at the end of assembly.

In spite of the drawbacks of introducing small amount of new errors, Euler Error

Correction is verified to be a superior method for error elimination in practical

sequencing projects. In the case of Neisseria meningitidis fragment assembly, 234,410

errors were corrected with the side effect of 1,452 new errors. Differentiating tuples of

multiplicity less than three as orphans is effective for error detection based on

experiments [18].

4.2.4 Euler Superpath

Given a set of l-tuples Sl = {s1,...,sn}, we can construct a de Bruijn graph by using

each tuple in set Sl as a directed edge. This edge runs from the first (l-1) tuple of the l-

tuple as source vertex to the last l-1 tuple as destination vertex. More precisely, for each

l-tuple as an edge in the de Bruijn graph, we define two l-1 tuples as vertices, the first l-1

nucleotide string as the source and the last l-1 nucleotide string as the destination. For

sequence ATGCTTGCGTGCA, if the edges are 3-tuples, the vertices will be all the 2-

tuples. Edge set Sl={ATG, TGC, GCT, CTT, TTG, GCG, CGT, GTG, GCA}. Vertex set

Sl-1={AT,TG,GC,CT,TT,CG,GT,CA}. Consequently, we have the de Bruijn graph as

illustrated by Figure 17.

24

Figure 17: de Bruijn graph of the DNA sequence ATGCTTGCGTGCA

The problem of finding the consensus sequence for DNA fragment assembly is

converted to the problem of looking for an Euler path that traverses the edges in a de

Bruijn graph. Euler paths can be found in polynomial time of the number of edges.

However, there is one more condition for the Euler path of consensus sequence to satisfy:

the Euler path must contain all the fragment reads as subpaths. Such an Euler path is

called Euler Superpath. The Euler Assembler developed by Pezner et al. performs graph

system transformation to achieve the goal of finding the Euler Superpath according to the

rule that two graph systems, identified by a graph and a path set, are equivalent if there is

a one to one correspondence between graph G and path set P of the first system, and

graph G’ and path set P’ of the second system. Through a series of transformations (G,P)

→ (G1,P1) → ... → (Gk,Pk), a new graph system is achieved where every edge in the

graph Gk is a path in the path set Pk. As a result, finding the Euler path in the last graph

system is the same as finding the Euler Superpath in the original de Bruijn graph system

[18]. The following rules are applied to ensure equivalent transformations.

25

Direct Transformation: Let x = (vin, vmid) and y = (vmid, vout) be two adjacent edges in

graph G and let Px,y be the set of all paths that include edges x and y. A new edge z

=(vin,vout) can be used to replace edges x and y in the graph G as well as the path set P,

resulting in an equivalent system graph G1 and path set P1. In Figure 18, P→x stands for

the set of all paths that end at edge x; Py→ stands for the set of all paths that start with

edge y; Px,y stands for the set of all paths that traverse through edge x and edge y.

Px,y

Vin Vmi Vout

P→x Py→

Vin

Vmi

Vout

P→x

z

Px,y

x y

Py→

 Figure 18: Replacing edges x and y with z by Direct Transformation

26

Branch Transformation:

 Figure 19: Path subset consistency to determine path replacement by Branch Transformation

When there is one incoming edge x but two outgoing edges y1 and y2 from

vmid to vout1 and vout2, we cannot replace x in every path ending at x with z = (vin, vout1) as

an equivalent transformation. Instead, we must first define path subset Px,y1 as all paths

containing edge x and y1 and path subset Px,y2 as all paths containing edge x and y2.

Whether to replace x with z or not for a Path p→x ending at x depends on whether Path

p→x is consistent with subset Px,y1 or subset Px,y2. Two paths are consistent with one

another if they can be joined together without generating a branch. Path 2 is consistent

with Path 3 but inconsistent with Path 1 due to the branch at vertex v in Figure 20.

Vin Vmid

Vout1

Vout2

Vin Vmid

Vout2

Vout1

Px,y1

P→x

z

y2

y1 x

P→x

x

 ???
 y2

Px,y1
Py1→

Py1→

Figure 20: Path 2 consistent with Path 3 but inconsistent with Path 1

27

A path p→x is consistent with path set Px,y1 if p→x is consistent with every path

in Px,y1 and then we can replace edge x in path p→x with z. There are three possible results

for the consistency check on two branches:

1. p→x consistent with either Px,y1 or Px,y2

2. p→x consistent with both Px,y1 and Px,y2

3. p→x consistent with neither Px,y1 nor Px,y2

Result 1 allows us to relate p→x to either Px,y1 or Px,y2 for an equivalent

transformation. Result 2 indicates that path p→x does not provide us any valuable

information for assembling unless we can extend p→x with another path(s) so that the new

path can be related to either Px,y1 or Px,y2. Result 3 indicates that there is an error in P→x

that should be corrected.

In Figure 21, Path 2 is too short to tell us anything valuable since it is

consistent with both Path 1 and Path 3, unless we can merge Path 4 with Path 2 to

achieve the green dash Path 5 that is consistent with only Path 3.

Figure 21: Associating Path 2, 3, and 4 to determine path consistency

In Figure 22, due to an insertion error in fragment read #3, Path3 representing
28

the fragment cannot be related to either Path 1 or Path 2.

Figure 22: Fragment error leads to inconsistent Path 3

Compared to traditional pairwise overlap method, path system transformation

is a powerful method to resolve repeats for fragment assembly: for a target sequence

AGTTATCGCGCGAACTAAGGCC covered by three fragments ATCGCGCGAA,

AGTTATCGCG, CGCGAACTAAGGCC, the traditional method might assemble

AGTTATCGCG and CGCGAACTAAGGCC first with a greedy approach to get

AGTTATCGCGAACTAAGGCC and we lose the subsequence ATCGCGCGAA which

contains three occurrences (and not two) of CG. Alternatively, the initial graph system

for a de Bruijn graph with 5-tuples edge and three fragment reads can be illustrated by

Figure 23:

AGTT→GTTA→TTAT→TATC→ATCG →TCGC→CGCG GCGC

 GCGA→CGAA→GAAC→AACT→ACTA→CTAA→TAAG→AAGG→AGGC

 Figure 23: de Bruijn graph generated by the three fragments containing repeats

Most transformations are straightforward until there is a branch selection in

front of CGCG where it can move forward to GCGA or GCGC. We have an equivalent

graph system given in Figure 24:

29

AGTTATCGCG GCGC

 GCGA→CGAA→GAAC→AACT→ACTA→CTAA→TAAG→AAGG→AGGC→GGCC

Figure 24: Direct Transformation before encountering branches at the repeat location

In addition, the path AGTTATCGCG is consistent with both

ATCGCGCGAA and CGCGAACTAAGGCC, until we merge ATCGCGCGAA and

CGCGAACTAAGGCC to be ATCGCGCGAACTAAGGCC to resolve the double edge

between de Bruijn vertices CGCG and GCGC:

AGTTATCGCG→ATCGCGCGAACTAAGGCC

Figure 25: Delayed Branch Transformation resolves the repeats

Through this process, we get the final sequence: AGTTATCGCGCGAACTAAGGCC

4.3 Proposing Improvements on Euler Algorithms

In our approach, unlike the Euler Assembler that starts with error correction,

our algorithm performs error correction on the fly when needed during the traversal of the

graph. In other words, we postpone error correction and perform it only in need to

achieve better runtime efficiency. Our algorithm also tackles very long repeats, which is

achieved by incorporating statistical analysis in the Euler path traversals.

4.3.1 Traversal Approach for Euler Superpath

Given a set of fragments, we would like to reconstruct the target DNA. As is

done in the Euler Assembler, we construct all 20-tuples from all the fragments.

Conceptually, we have a graph whose edges are the 20-tuple sequences and the vertices

are the 19-tuple sequences.

30

Instead of using the graph system transformation approach to discover the

Euler Superpath, we traverse the de Bruijn graph according to fragment reads so that the

traversed path contains all fragment reads as subpaths. The steps to discover the Euler

Superpath are as follows:

1. Start traversal from a vertex v that does not have a predecessor; a regular

expression checks edges to find a list of such vertices. Each vertex with no

predecessor represents the beginning of a contig or an island in the de Bruijn

graph. Traversal continues until encountering a vertex that has more than one

outgoing edges available (branches) or a vertex that has no way out (end of the

contig). Due to repeats, an edge can be traversed multiple times.

2. There can be at most four choices in front of a branch vertex – A, T, C, and G.

When we encounter branches, we retrieve the fragment path subsets for each

branch, which consist of all fragments for each of the choices. We relate our

traversed path to branch path subsets and select the option whose path subset is

consistent with our traversed path.

For example, given three fragments for coverage one without error:

(1) AAGACGTAGA
(2) CTGACA
(3) CGTAGACT

 We can construct the de Bruijn graph shown Figure 26.

31

TG CT

GA AC CA

CG GT

AG AA

TA

AAG AGA GAC GCA

ACT

CTG

TGA

TAG ACG

CGT GTA

Figure 26: de Bruijn graph for target sequence AAGACGTAGACTGACA

We start the traversal with vertex AA and reach vertex AC, which

corresponds to sequence AAGAC. From vertex AC we have three choices. At this

point we compare AAGAC to all three fragments. Because AAGAC is the prefix

of the first fragment, which is the one we choose. The next character in the first

fragment is G, consequently, the traversal now visits vertex CG. Traversal

continues until we reach the ending node CA and we get the target sequence

AAGACGTAGACTGACA.

3. Allowing traversal of an edge more than once can make the traversal end up in an

infinite circle. An ending circle in de Bruijn graph represents an ending repeat for

a sequence. To find out how many times we want to traverse the circle, we resort

to the fragment that contains the largest amount of repeats, or better still the

statistical analysis approach discussed later in this paper.

As we traverse the graph of Figure 27 and encounter AG for the second

time, we know it might be an ending cycle. Then we query all the fragments

32

containing the AG node and compare the fragments with existing traversed paths

to get the longest extension from the fragments. For example, we have

AAGACGTA and if the longest fragment extension for AG repeat is

GACGTAAGACGTAAGACGTA; by comparing our traversed path with the

fragment we know the ending cycle must be traversed one more time.

Figure 27: Same de Bruijn graph for sequences GACGTAAGACGTA and

GACGTAAGACGTAAGACGTA

GA AC

CG GT

AG AA

TA

AAG AGA GAC

TAG ACG

CGT GTA

4.3.2 Statistical Analysis for Perfect Long Repeat Assembly

Perfect long repeats are identical repeats longer than maximum fragment

reads (~1000 b). Using the traditional fragment overlapping approach or the Euler graph

system transformation for the Euler Superpath cannot restore them because all copies of

repeats will be collapsed to one.

Statistical analysis can provide us valuable insight to restore the target

sequence containing perfect long repeats. In the error correction section, we calculated

that the possibility for a tuple to have a multiplicity of three or less is about 2.5%, given a

set of fragments with average length 800 and coverage ten. Because the normal

distribution for binomial statistic approximation is a symmetrical bell shape, we can
33

deduce that under the same circumstances, the probability for a normal tuple to have a

multiplicity of eighteen or more, which is 2σ larger than the expected value, is also about

2.5%. In other words, there is a 97.5% probability that the tuple is a two-fold repeat. For

a tuple on a two-fold repeat, the expected multiplicity is twenty since the coverage is

twenty due to the repeat and standard deviation)800/201(20 −=σ ≈ 4.5. Therefore for

a tuple of multiplicity over twenty five, we are 84% sure that it is a three-fold repeat [19].

Applying the same rule, tuples with multiplicity over thirty six and forty seven are likely

to be a four-fold and five-fold repeats respectively. Based on the statistics, we tag each

edge in the de Bruijn graph with a “best traversal amount”. It would be best for our Euler

Superpath to traverse an edge as many times as the “best traversal amount” tagged to the

edge. There is a two-fold long perfect repeat intermixed with short repeats in the

following target sequence: AA GACGTAGACT GACGTAGACT GACA. Given

sufficiently random fragment coverage, we should have the de Bruijn table augmented

with a “best traversal amount” for each edge as shown in Figure 28:

TG CT

GA AC CA

CG GT

AG AA

TA

AAG 1 AGA 3 GAC 5 GCA 1

ACT 2

CTG 2

TGA 2

TAG 2 ACG 2

CGT 2 GTA 2

 Figure 28: de Bruijn graph supplemented with “best traversal amount” by statistical analysis

34

Our Euler Assembler can traverse the de Bruijn graph containing long perfect

repeats by applying the following steps:

1. Start traversal from a vertex v that does not have a predecessor and count

the number of traversals on each edge

2. Resolve branch confusion according to consistency among traversed path

and fragment subset on each branch. Long perfect repeats have exactly

the same long repeats, so there should be no change on fragment subset

consistency.

3. If there is more than one choice consistent with existing traversed path at

a branch due to the confusion of perfect long repeat, randomly select one

choice to continue traversal.

4. Stop the traversal at a node that has no edge out or the outgoing edges

have been traversed “best traversal amount” of times.

5. For edges not traversed by sufficient amount of times according to “best

traversal amount”, backtrack to the nearest branch and redo branch

selection to traverse those edges to meet “best traversal amount”

requirement.

6. Resolving ending perfect long repeat is straightforward – traversing edges

in the cycle up to “best traversal amount” of times. The target sequence

for the de Bruijn graph in Figure 29 is AAGACGTAGACGTAGAC for a

two and a half folds perfect long ending repeat.

35

GA AC

CG GT

AG AA

TA

AAG 1 AGA 3 GAC 3

TAG 2 ACG 2

CGT 2 GTA 2

Figure 29: de Bruijn with statistical data uniquely determine target sequence

For the example in Figure 28, if the traversal by mistake goes by AAGACA,

our algorithm will backtrack to the last branch, at AAGAC, to redo the decision, because

a few edges are unvisited. The existing traversal on the last node CA does not need to be

abandoned, because the traversal still needs to go to CA after satisfying the “best

traversal amount” for some other edges. As a result, we can still get the following target

sequence containing perfect long repeat.

AA GAC|GTAGACT GACGTAGACT GAC|A2

The target DNA sequence, AAGACGTAGACTGACAGACTGACC has

more complicated long repeats with slight differences among them, so the order of long

repeat matters. The fragment reads do not give us any clues on which one goes first,

because each of the repeats is longer than any fragment. In the Genetic Algorithm

section, we explore the problem of deciding the order of long repeats with slight

2 Note: GACGTAGACT is long repeat not covered by any fragment, but GACGTA ahead of GACT should

hopefully be covered by some fragments.

36

differences, which is a common challenge for assembling target sequence containing

ALU repeats [8].

4.3.3 Postponed Error Correction

An important reason to perform error correction before assembly is that errors

will cause large quantity of false tuples that are translated to edges in a de Bruijn graph.

These false edges interfere with the Euler Superpath discovery at the assembly step. For a

sequencing project of 20% repeat rate, 4% error rate, using tuple size of twenty, the

quantity of solid and weak tuples are comparable to each other. Consequently, finding an

Euler path for the de Bruijn graph will be a serious problem because of the large amount

of false edges.

However, error correction can introduce new errors as we have discussed

previously. Also, the process of finding a unique neighbor for an orphan is time

consuming. Despite of the up to 97% success rate correcting error, we suggest postponing

the error correction process until it is necessary. We can drop all weak tuples from the de

Bruijn graph to attain a graph that is as clear as the graph after error correction.

Essentially for de Bruijn graph, Euler Error Correction removes all weak tuples and

increases the multiplicity of relevant solid tuples by one. For solid tuples, increasing

multiplicity by one does not make sense. For graph system transformation, the resolution

of each edge requires fragment set consistency check. This is another reason to have an

almost error free fragment set, because fragments need to be retrieved frequently at every

transformation. On the other hand, with the new traversal approach, the only time for

37

fragments referencing is to decide which branch to continue traversal. We can safely

ignore the potential errors implied by low multiplicity until the traversal encounters two

or more branches. Solving errors at location near branches are safer, because branches

imply repeats. In Figure 17, edge TGC is in front of three branches, indicating TGC will

be repeated three times. The fragment coverage at repeat region is twice or more than the

average coverage, though we still need threshold parameter Δ to retain the difference

with repeat with low coverage. Statistically, 2.5% of the weak tuples are from the low

coverage region due to random fragment generation. By limiting our error correction only

to fragments necessary for traversal, we protect fragments of low coverage

38

4.4 Existing GA for DNA Fragment Assembly

Genetic algorithms are heuristic techniques that can be used to tackle the DNA

Fragment Assembly problem. General steps applying genetic algorithm are as following:

1. The algorithm randomly generates a pool of solutions.

2. It screens for superior solutions with a fitness function.

3. Mutation and crossover operations are performed on good solutions to create

next generation solutions.

It is believed that solutions evolve better for the DNA Fragment Assembly

problem from one generation to the next. Having a random initial population, an

appropriate fitness function, and suitable mutation and crossover operations allow the

genetic algorithm to converge to good solutions for the DNA Fragment Assembly

problem.

Each fragment is represented by a number or ID. A solution for fragment

assembly is represented by a permutation of the fragment number. The fitness function in

Equation 3 was used for most genetic algorithms for DNA fragment assembly [21]:

∑
−

=
+

=
2

0
]1[],[

)(1
n

i
ifif

wIF
 (Equation 3)

where wf[i],f[i+1] is the pairwise overlap strength of fragment i and i+1. Overlap strength

can be computed with dynamic programming for minimum edit distance, string

alignment, or shortest common superstring of the two fragments. The obvious problems

for the fitness function are errors and repeats. Moreover, a pair with best overlapping

scores might not be a pair contributing to the assembly most: for example fragment pair
39

ATTGCTCGCT and TGCTCGCTAA scores better than fragment pair ATTGCTCGCT and

TCGCTAACCGTA, but the former pair indeed is closer to the optimal fragment assembly

solution. Due to its efficiency and adequacy, this fitness function continues to be used. It

takes O(n) time to evaluate each individual solution for fragment set of size n [22].

 In Equation 4, the fitness function extends the previous fitness function by

adding a penalty to solutions that separate overlapping fragments distantly. The cost of

the addition increases the complexity to O(n2) for each solution evaluation, while it still

fails to address the fundamental loopholes mentioned previously.

∑∑ −=][],[*||)(2 jfifwjiIF
(Equation 4)

Two types of operations are used to evolve solutions from one generation to another –

Crossover and Mutation.

 For crossover, the genetic algorithm exchanges small portions between two

solutions to encourage good partial solutions to flourish in different individuals. The

example in Figure 30 illustrates order crossover for two assembly solutions at seventh

position. The first two positions are changed correspondingly since Fragment 7 is moved

to the crossover section; Fragment 1 is pushed up and Fragment 5 is added to the front.

17 8364 | 295
 51 8364 972

64 5381 | 972
Figure 30: Crossover for two solutions of DNA fragment assembly

40

 Edge-recombination crossover better suits DNA Fragment assembly by

preserving valuable adjacencies. Given the same two parent solutions above, we can

deduce an adjacency list for edge-recombination:

Fragment Adjacent Fragments
1 7,8,9
2 4,9,7

 3 8,6,5,8
 4 6,2,6,5
5 9,4,3
6 3,4,4

 7 1,8,9,2
 8 7,3,3,1
 9 2,5,1,7

 Figure 31: Edge-recombination crossover to preserve fragment adjacency

The recombination starts from the Fragment 1, and then takes Fragment 8 due

to its shared adjacency Fragment 3. Following Fragment 3 is Fragment 6 for shared

adjacency Fragment 4. Fragment 2 is the next to select because it has more unselected

adjacency. Applying the same rule the rest of the solution is Fragment 9, Fragment 7, and

lastly Fragment 5. 18364975 is the resulting edge-recombination crossover child. For

fragments with equivalent qualification during crossover process, arbitrary selection can

be made. To explore nearby search space, the mutation performs elemental changes on an

individual solution. Some previously eliminated solutions could be restored to the

solution pool to contribute to further solution generation. Three kinds of mutations can be

applied for fragment assembly solutions:

1. Swapping fragment number at two random positions in a solution. For example,

swapping the first and the last fragments for solution 18364975 produces

58364971.

2. Swapping two adjacent fragments in a solution to achieve better fitness score.

3. Randomly selecting two fragments and moving one next to another for a better

fitness score [23].

41

4.5 New GA for Fragment Coverage Restoration

 We would like to propose a new genetic algorithm aiming at restoring all m

layers of fragments given a fragment set with coverage m. Our genetic algorithm

completely abandons the overlapping method to connect two or more fragments together.

Instead, we think fragments should be concatenated to one another, because during

random fragment creation multiple copies of the target sequence are randomly cut to

fragments without any overlapping among fragments from the same copy.

4.5.1 Solution Generation

For a fragment set of size n and coverage m, a quick solution is to retrieve

n/m fragments from the fragment set and concatenate the fragments in a certain order to

form a superstring. Given a fragment set, we should be able to know the total nucleotide

bases in it as well as the coverage. We can estimate the target sequence length by

dividing the total nucleotide bases by the coverage. The length of a proposed sequence

solution should have less than 10% difference from the estimated length.

The solution generation does not need to be random: we can start with a long

fragment because we want to select a good successor and predecessor. For a fragment set

with high coverage especially at repeat region, we might frequently have to decide which

fragment to choose as next successor or predecessor from several candidates while only

one is from the same layer as the current fragment. Also, we need to take into

consideration that some nucleotide bases might be missing.

42

 ATCGGACTGACACACACAGCCTTAGGACTCG
CGGTCAGATCGGACTGACACA
(current fragment) CACAGCCTTAGGACTCG (alternatives)
 CAGCCTTAGGACTCG
 CACACAGCCTTAGGACTCG
 GCCTTAGGACTCG

Figure 32: Solution generations by hints from overlapping fragments

4.5.2 Fitness Function

The fitness function lays fragments on a specific position of the proposed

solution to restore all layers of coverage. Repeats covered by fragments read will be

resolved during fragment layout determination, because only one layout is correct to

restore all fragments layers covering the repeat region. The complexity is still O(n) for

individual solution fitness evaluation because all it does is to find the suitable position on

the solution superstring according to pattern matching between solid tuple representations

for fragments and a proposed sequence solution. The fitness function is capable of

dealing with most errors and repeats. Meanwhile, the fitness function rewards good

partial solutions to approach fragment assembly solution quickly.

Several merits of the innovative fitness function deserve further elaboration:

the goal of the fitness function is to restore the original m coverage; laying out a fragment

according to a proposed solution is to find a location to place the fragment on the

proposed solution. If the proposed solution is correct, all fragments are placed in the

correct location on the solution. Consequently, the fitness function must be able to restore

all m layers of fragments covering the target sequence. For each of the m layers, there is

no overlapping at all; thus, during restoration of coverage, no fragment are overlapped –

43

we only permutate the fragments to form layers of coverage. The same rule applies to the

creation of the solution superstring; the new fitness function here is even capable of

solving long perfect repeats.

4.5.3 Operations

Any operation must maintain the integrity of fragments. Because each

solution is only using a subset of all available fragments, two solutions for crossover

might be totally different from one another, which makes exchanging small portions

among solutions straightforward.

17 8364 | 295
 17 gchij 972
 ef gchij | klm
Figure 33: Crossover on solutions not sharing fragments

For two solutions sharing the same fragments affected by the crossover, the

affected position(s) should perform the crossover too.

17 8364 | 29i
 17 gchij 97m
 ef gchij | klm
Figure 34: Crossover on solutions sharing fragments

Some regions of the solution might be capable of restoring all m layers of

fragment, so the partial solution of those regions should certainly be retained with Edge-

recombination crossover. During fitness measurement, we can use the adjacency between

two fragments according to the number of fragment layers that the fitness function can

restore on top of the region.

 Six kinds of mutations can be applied for fragment assembly solutions:

44

1. Swapping fragments at two random positions in a solution.

2. Swapping two adjacent fragments in a solution to achieve better layer

 restoration.

3. Randomly selecting two fragments and moving one next to the other for a

better fitness score.

4. Replacing a certain fragment in the solution with another fragment in the

fragment set.

5. Replacing a certain fragment with its reverse complement.

The frequency of performing crossover and mutation are controlled by the

crossover rate and the mutation rate, respectively. Setting a high rate for these operations

might overlook good solutions distancing the final regression of genetic algorithm away

from optimal solution. On the contrary, low operation rates slow down the progress of a

genetic algorithm towards optimal solution leading to runtime inefficiency. A wise design

for genetic algorithm is setting variable operation rates – a high rate at the beginning

when solutions are far from being optimal, and a low rate at the end to fine tune final

solutions.

45

4.6 Combining Euler and Genetic Algorithms

Using the genetic algorithm alone to figure out the blueprint of target

sequence to restore all layers of coverage can be time consuming. On the other hand,

Euler algorithms assemble most of the fragments correctly in polynomial time, though

they cannot determine the order of long perfect repeats with slight differences. We can

base our genetic algorithm’s coverage restoration on de Bruijn graph. Combining these

two algorithms can help us achieve more efficient runtime and assembly results that are

closer to optimal.

Our Euler Genetic Hybrid algorithm starts from generating a de Bruijn graph

with all solid tuples from the fragment set including original fragments and their reverse

complements. Then, statistical analysis is performed on tuple multiplicity to drop the

tuples with low multiplicity. Next, path traversal starts from the head of each contig,

which is a head tuple of a fragment with no predecessor in the de Bruijn graph. Coverage

restoration begins where Euler Path Traversal encounters branches or more than one

option to continue. Traversal or the assembly process terminates when the expected

length is met or no more fragments can be used for coverage restoration. In summary, our

algorithm has the following modules:

1. de Bruijn graph generation

2. Target sequence length estimation

3. Euler Path traversal on solid de Bruijn tuples

46

4. Coverage Restoration

5. Termination

Coverage restoration can help us decide the order of long perfect repeats

containing slight differences, because only one order of the long repeat can ensure

fragments adjacency match for all layers. If we change the order of long repeat with

slight difference in Figure 35, the fragments at the end will have to switch position with

fragments at the front as well, which breaks the fragment adjacency among layers.

 ATTCGGTGCAAACTACAGCTAAGGGCTTATTCGGTGCAAACTTCGGCTAAGGGCTT
Figure 30: Determining the order of long repeats by adjacency

47

5. Fragment Assembler Design and Implementation

5.1 An Illustrative Example

Given an original sequence,

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaaatacta

Figure 36 shows the fragments to assemble with coverage of five and fragment IDs

starting from 0 according to the order we read from file:

 Fragment FragmentID

gctagctgcaagtcagttactgagttaagtta 0

ttatttagttaatactttaacaatattat 1

tacggtatttaaaaaatacta 2

gctagctgcaagtcagttaactgagttaagttagtattta 3

gttaatacttttaacaatattattaaggtattttaaaaaatacta 4

gctagctgcagtcagttaactgagttaa 5

gttattatttagttaattactttta 6

acaatattattaaggtatttaaaaatacta 7

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt 8

ttaacaatattattaaggtatttaaaaaatacta 9

gctagctgcaag 10

tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa 11

ggtatttaaaaaatacta 12

Figure 36: Fragment set for Assembly

Fragments are read into the Fragment table with an ID as the primary key and the

fragments themselves as the index. Our assembly program chops the fragments into

tuples of length 15 with a sliding window approach as shown in Figure 37:

48

gctagctgcaagtcagttactgagttaagtta ->

gctagctgcaagtca, ctagctgcaagtcag, tagctgcaagtcagt, agctgcaagtcagtt, gctgcaagtcagtta,

ctgcaagtcagttac, tgcaagtcagttact, gcaagtcagttactg, caagtcagttactga, aagtcagttactgag,

agtcagttactgagt, gtcagttactgagtt,

tcagttactgagtta, cagttactgagttaa, agttactgagttaag, gttactgagttaagt, ttactgagttaagtt,

tactgagttaagtta

Figure 37: Retrieving tuples from a fragment with the sliding window approach

All the tuples are input to a MySQL database with the following fields:

• multiplicity (the number of occurrences in the fragment set)

• the fragment IDs of the fragments containing the tuple

• TupleID starting from 0 according to the order each tuple is read

• PredecessorIDs as the immediate tuple ahead of the current tuple

• SuccessorIDs as the immediate tuple behind the current tuple

TupleID Tuple Multiplicity FragmentIDs PredecessorIDs SuccessorIDs

0 gctagctgcaagtca 3 0,3,8 1,1,122

1 ctagctgcaagtcag 2 0,3 0,0 2,2

2 tagctgcaagtcagt 2 0,3 1,1 3,3

3 agctgcaagtcagtt 2 0,3 2,2 4,4

4 gctgcaagtcagtta 2 0,3 3,3 5,40

5 ctgcaagtcagttac 1 0 4 6

6 tgcaagtcagttact 1 0 5 7

7 gcaagtcagttactg 1 0 6 8

8 caagtcagttactga 1 0 7 9

9 aagtcagttactgag 1 0 8 10

10 agtcagttactgagt 1 0 9 11

11 gtcagttactgagtt 1 0 10 12

12 tcagttactgagtta 1 0 11 13

49

TupleID Tuple Multiplicity FragmentIDs PredecessorIDs SuccessorIDs

13 cagttactgagttaa 1 0 12 14

14 agttactgagttaag 1 0 13 15

15 gttactgagttaagt 1 0 14 16

16 ttactgagttaagtt 1 0 15 17

17 tactgagttaagtta 1 0 16

18 ttatttagttaatac 3 1,8,11 ,147,147 19,19,19

19 tatttagttaatact 3 1,8,11 18,18,18 20,20,20

20 atttagttaatactt 3 1,8,11 19,19,19 21,21

21 tttagttaatacttt 2 1,11 20,20 22,150

22 ttagttaatacttta 1 1 21 23

23 tagttaatactttaa 1 1 22 24

24 agttaatactttaac 1 1 23 25

25 gttaatactttaaca 1 1 24 26

26 ttaatactttaacaa 1 1 25 27

27 taatactttaacaat 1 1 26 28

28 aatactttaacaata 1 1 27 29

29 atactttaacaatat 1 1 28 30

30 tactttaacaatatt 1 1 29 31

31 actttaacaatatta 1 1 30 32

32 ctttaacaatattat 1 1 31

33 tacggtatttaaaaa 1 2 34

34 acggtatttaaaaaa 1 2 33 35

35 cggtatttaaaaaat 1 2 34 36

36 ggtatttaaaaaata 3 2,9,12 35,149 37,37,37

37 gtatttaaaaaatac 3 2,9,12 36,36,36 38,38,38

38 tatttaaaaaatact 3 2,9,12 37,37,37 39,39,39

39 atttaaaaaatacta 3 2,9,12 38,38,38

40 ctgcaagtcagttaa 1 3 4 41

41 tgcaagtcagttaac 1 3 40 42

42 gcaagtcagttaact 1 3 41 43

43 caagtcagttaactg 1 3 42 44

44 aagtcagttaactga 1 3 43 45

50

TupleID Tuple Multiplicity FragmentIDs PredecessorIDs SuccessorIDs

45 agtcagttaactgag 2 3,5 44,100 46,46

46 gtcagttaactgagt 2 3,5 45,45 47,47

47 tcagttaactgagtt 3 3,5,11 46,46 48,48,48

48 cagttaactgagtta 3 3,5,11 47,47,47 49,49,49

49 agttaactgagttaa 3 3,5,11 48,48,48 50,50

50 gttaactgagttaag 2 3,11 49,49 51,51

51 ttaactgagttaagt 3 3,8,11 50,136,50 52,52,52

52 taactgagttaagtt 3 3,8,11 51,51,51 53,53,53

53 aactgagttaagtta 3 3,8,11 52,52,52 54,137,137

54 actgagttaagttag 1 3 53 55

55 ctgagttaagttagt 1 3 54 56

56 tgagttaagttagta 1 3 55 57

57 gagttaagttagtat 1 3 56 58

58 agttaagttagtatt 1 3 57 59

59 gttaagttagtattt 1 3 58 60

60 ttaagttagtattta 1 3 59

61 gttaatacttttaac 2 4,11 ,152 62,62

62 ttaatacttttaaca 2 4,11 61,61 63,63

63 taatacttttaacaa 2 4,11 62,62 64,64

64 aatacttttaacaat 2 4,11 63,63 65,65

65 atacttttaacaata 2 4,11 64,64 66,66

66 tacttttaacaatat 2 4,11 65,65 67,67

67 acttttaacaatatt 2 4,11 66,66 68,68

68 cttttaacaatatta 2 4,11 67,67 69,69

69 ttttaacaatattat 2 4,11 68,68 70,70

70 tttaacaatattatt 2 4,11 69,69 71,71

71 ttaacaatattatta 3 4,9,11 70,70 72,72,72

72 taacaatattattaa 3 4,9,11 71,71,71 73,73

73 aacaatattattaag 2 4,9 72,72 74,74

74 acaatattattaagg 3 4,7,9 73,73 75,75,75

75 caatattattaaggt 3 4,7,9 74,74,74 76,76,76

76 aatattattaaggta 3 4,7,9 75,75,75 77,77,77

51

TupleID Tuple Multiplicity FragmentIDs PredecessorIDs SuccessorIDs

77 atattattaaggtat 3 4,7,9 76,76,76 78,78,78

78 tattattaaggtatt 3 4,7,9 77,77,77 79,79,79

79 attattaaggtattt 3 4,7,9 78,78,78 80,112,112

80 ttattaaggtatttt 1 4 79 81

81 tattaaggtatttta 1 4 80 82

82 attaaggtattttaa 1 4 81 83

83 ttaaggtattttaaa 1 4 82 84

84 taaggtattttaaaa 1 4 83 85

85 aaggtattttaaaaa 1 4 84 86

86 aggtattttaaaaaa 1 4 85 87

87 ggtattttaaaaaat 1 4 86 88

88 gtattttaaaaaata 1 4 87 89

89 tattttaaaaaatac 1 4 88 90

90 attttaaaaaatact 1 4 89 91

91 ttttaaaaaatacta 1 4 90

92 gctagctgcagtcag 1 5 93

93 ctagctgcagtcagt 1 5 92 94

94 tagctgcagtcagtt 1 5 93 95

95 agctgcagtcagtta 1 5 94 96

96 gctgcagtcagttaa 1 5 95 97

97 ctgcagtcagttaac 1 5 96 98

98 tgcagtcagttaact 1 5 97 99

99 gcagtcagttaactg 1 5 98 100

100 cagtcagttaactga 1 5 99 45

101 gttattatttagtta 3 6,8,11 ,146,146 102,102,102

102 ttattatttagttaa 3 6,8,11 101,101,101 103,103,103

103 tattatttagttaat 3 6,8,11 102,102,102 104,147,147

104 attatttagttaatt 1 6 103 105

105 ttatttagttaatta 1 6 104 106

106 tatttagttaattac 1 6 105 107

107 atttagttaattact 1 6 106 108

108 tttagttaattactt 1 6 107 109

52

109 ttagttaattacttt 1 6 108 110

110 tagttaattactttt 1 6 109 111

111 agttaattactttta 1 6 110

112 ttattaaggtattta 2 7,9 79,79 113,113

113 tattaaggtatttaa 2 7,9 112,112 114,114

114 attaaggtatttaaa 2 7,9 113,113 115,115

115 ttaaggtatttaaaa 2 7,9 114,114 116,116

116 taaggtatttaaaaa 2 7,9 115,115 117,148

117 aaggtatttaaaaat 1 7 116 118

118 aggtatttaaaaata 1 7 117 119

119 ggtatttaaaaatac 1 7 118 120

120 gtatttaaaaatact 1 7 119 121

121 tatttaaaaatacta 1 7 120

122 ctagctgcaagtcat 1 8 0 123

123 tagctgcaagtcatt 1 8 122 124

124 agctgcaagtcattt 1 8 123 125

125 gctgcaagtcattta 1 8 124 126

126 ctgcaagtcatttaa 1 8 125 127

127 tgcaagtcatttaac 1 8 126 128

128 gcaagtcatttaact 1 8 127 129

129 caagtcatttaactg 1 8 128 130

130 aagtcatttaactga 1 8 129 131

131 agtcatttaactgag 1 8 130 132

132 gtcatttaactgagt 1 8 131 133

133 tcatttaactgagtt 1 8 132 134

134 catttaactgagtta 1 8 133 135

135 atttaactgagttaa 1 8 134 136

136 tttaactgagttaag 1 8 135 51

137 actgagttaagttat 2 8,11 53,53 138,138

138 ctgagttaagttatt 2 8,11 137,137 139,139

139 tgagttaagttatta 2 8,11 138,138 140,140

140 gagttaagttattat 2 8,11 139,139 141,141

141 agttaagttattatt 2 8,11 140,140 142,142

53

TupleID Tuple Multiplicity FragmentIDs PredecessorIDs SuccessorIDs

142 gttaagttattattt 2 8,11 141,141 143,143

143 ttaagttattattta 2 8,11 142,142 144,144

144 taagttattatttag 2 8,11 143,143 145,145

145 aagttattatttagt 2 8,11 144,144 146,146

146 agttattatttagtt 2 8,11 145,145 101,101

147 attatttagttaata 2 8,11 103,103 18,18

148 aaggtatttaaaaaa 1 9 116 149

149 aggtatttaaaaaat 1 9 148 36

150 ttagttaatactttt 1 11 21 151

151 tagttaatactttta 1 11 150 152

152 agttaatacttttaa 1 11 151 61

Figure 38: de Bruijn Tuples generated from the give fragment set

Before traversal starts, the assembler has a rough estimation of target

sequence length by the following procedure:

1. Adding up the sum of all fragment lengths in the fragment table

2. Dividing the sum by two for reverse complement

3. Dividing the output of the previous step by coverage.

In the illustrative example, there is no reverse complement. The sum of all

fragment lengths is 419, which is divided by the coverage five to get estimated sequence

length eighty three. The terminating condition would be

1. Traversed path is longer than 105% of estimated length (eighty-six for our

example)

2. Cannot resolve branch at a certain position

3. Traversed path longer than restored coverage at all layers. For coverage

of five, there are five layers to restore.

54

Euler path traversal starts with the Tuple field that has no Predecessor field

and a Multiplicity field larger than one as a solid tuple. In our example, traversal starts at

Tuple 0 – gctagctgcaagtca. From the database, the assembler knows immediately the next

tuple is either Tuple 1 or Tuple 122, so traversal encounters a branch to resolve.

However, Tuple 122 has a multiplicity of one that indicates most likely it is caused by

error. Traversal continues on Tuple 1 – gctagctgcaagtcag. Traversal is straightforward

until the assembler arrives at Tuple 4, gctagctgcaagtcagtta, where the successor can be

either Tuple 5 or Tuple 40, both with a multiplicity of one. At this location, coverage

restoration starts.

For coverage restoration, the assembler begins with tuple gctagctgcaagtca to

withdraw fragments – Fragment 0, Fragment 3, and Fragment 8 in the Fragment Table –

containing the beginning tuple. The assembler applies the dynamic string alignment

algorithm to align the existing traversed path with the three fragments as shown in Figure

39.

gctagctgcaagtcagtta Traversed Path

gctagctgcaagtcagttactgagttaagtta Fragment 0 at Coverage Layer 1

gctagctgcaagtcagttaactgagttaagttagtattta Fragment 3 at Coverage Layer 2

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Fragment 8 at Coverage Layer 3

 Figure 39: Initial coverage restoration

By the majority rule, the assembler moves on to ctgcaagtcagttaa or Tuple 40

for the next tuple. The successor of Tuple 40 is Tuple 41, which is another weak tuple, so

the assembler refers to the restored coverage layers to decide the next tuple. Again with

the majority rule, Tuple 41 is the right choice. Traversal continues until Tuple 53,

55

gctagctgcaagtcagttaactgagtta, where traversal jumps to Tuple 137 because Tuple 54 is

weak. Continuing from Tuple 137 to Tuple 146, the path is

gctagctgcaagtcagttaactgagttaagttattatttagtt. At tuple 147, traversal goes to Tuple 101,

Tuple 102, Tuple 103, Tuple 147, Tuple 18, Tuple 19, Tuple 20, and Tuple 21

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt, where the successor can be Tuple 22

or Tuple 150. Here coverage restoration starts again. Restoration starts from the first

layer, beginning with tuple gctagctgcaagtcagtta, and three fragments available for

alignment as shown in Figure 40:

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt Traversed path Length 51
gctagctgcaagtcagttactgagttaagtta Fragment 0 Length 32

gctagctgcaagtcagttaactgagttaagttagtattta Fragment 3 Length 40

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Fragment 8 Length 50

Figure 40: Available fragments for restoration at the beginning of Layer 1

The assembler aligns each of these fragments with the traversed path. The

traversed path is significantly longer than Fragment 0, so the assembler uses the

beginning portion of the traversed path – the first thirty-eight nucleotides for alignment or

length of Fragment 0 plus six. Because there are six more nucleotides in the traversed

path, the actual alignment score for Fragment 0 should be six insertion-scores less than

the alignment-score of the first thirty-eight nucleotides of the traversed path and

Fragment 0. The six extra nucleotides are to tolerate some insertions for the fragment.

The error rate of alignment is the sum of insertion (excluding the extra length), deletion

for alignment, and the difference between fragment and traverse path divided by the

fragment length. The assembler does not use a fragment for restoration at a layer position

56

if the error rate is two times higher than the overall error rate in a fragment set. This logic

is to prevent long fragments from achieving a high score by length in spite of errors.

gctagctgcaagtcagtta ctgagttaagtta Fragment 0
gctagctgcaagtcagttaactgagttaagttattatt beginning of traversed path
gctagctgcaagtcagttaactgagttaagttagtattta Fragment 3

gctagctgcaagtcagttaactgagttaagttattatttagttaata beginning of traversed path

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Fragment 8

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt traversed path

Figure 40: Aligning fragments with traversed path

Among the fragments that are suitable for coverage restoration at a layer

position, the fragment with highest score is selected. The traversed path is most likely to

be correct because the assembler only traverses solid tuples or resolves branches by

majority rule. So, for Layer 1, Fragment 8 has the highest score. The fragment selection

for coverage restoration is based on the indexed tuple. After aligning Fragment 8 at Layer

1, there is only one nucleotide left that is shorter than a tuple, so restoration stops at the

fiftieth nucleotide for Layer 1. Note that the Fragment table has a Consumed field to

record whether a fragment’s position has been determined, with 1 for permanently

determined and 2 for temporarily determined. Fragment 8 is marked Consumed=1, so that

future restoration cannot use this fragment. For Layer 2, restoration stops after the

alignment of Fragment 3. For Layer 3, after the alignment of Fragment 0 the restoration

continues with Tuple 18 ttatttagttaatac.

From the de Bruijn table, Fragment 1, Fragment 8, and Fragment 11 contain

Tuple 18. The assembler retrieves Fragment 1, Fragment 8, and Fragment 11 to align

57

with the rest of the traversed path ttatttagttaatacttt at Layer 3.

gctagctgcaagtcagtta ctgagttaagtta
gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt

ttatttagttaatacttt Remain of traversed path

ttatttagttaatactttaacaatattat Fragment 1

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Fragment 8

tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa Fragment 11

Figure 41: Aligning fragments with partial traversed path

 For the alignment, the Fragment length is much longer than the rest of the

path, so the assembler aligns the beginning of the Fragment with the rest of the traversed

path. For Fragments 8 and Fragments 11, Tuple 18 is in the middle of the fragments.

Fragments 8 and Fragments 11 cannot be used for Layer 3 restoration because by

definition, a layer excludes overlap. Thus Fragment 1 is used for coverage restoration at

Layer 3 following Fragment 0. Restoration at Layer 3 stops because the length of Layer 3

is longer than the traversed path. Fragment 1 is marked Consumed = 2 because it is

temporarily aligned at the current position – as the traversed path extends later on, there

can be other suitable fragments to align at the current position of Fragment 1 at Layer 3.

The current restoration is shown in Figure 42:

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt Traversed Path

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Layer 1

gctagctgcaagtcagttaactgagttaagttagtattta Layer 2

gctagctgcaagtcagtta ctgagttaagttattatttagttaatactttaacaatattat Layer 3

 Figure 42: Coverage restoration for the first three layers

There are five layers for a fragment set of coverage five. For the fourth layer,

there are no more fragments containing first tuple gctagctgcaagtca, so the assembler tries

58

the next tuple in the traversed path in a slide window approach until there are fragments

with Consumed=0. At Tuple 45 or agtcagttaactgag, Fragment 5 is an available fragment

for Layer 4. Restoration continues at Layer 4, on Tuple 101 or gttattatttagtta, with

available Fragment 6 and Fragment 11. Fragment 6 is temporarily selected for Layer 4.

Similarly for Layer 5 restoration, the restoration of all five layers is shown in Figure 43:

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt Traversed Path
gctagctgc agtcagttaactgagttaa Layer 4
gttattatttagttaattactttta Fragment 6

tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa Fragment 11

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt Traversed Path
gctagctgc agtcagttaactgagttaagttattatttagttaatactttta Layer 4

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt Traversed Path

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Layer 1

gctagctgcaagtcagttaactgagttaagttagtattta Layer 2

gctagctgcaagtcagtta ctgagttaagttattatttagttaatactttaacaatattat Layer 3
gctagctgc agtcagttaactgagttaagttattatttagttaatactttta Layer 4

tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa Layer 5

Figure 43: Coverage restoration for all five layers

From the restored layers, the assembler moves to Tuple 150 or ttagttaatactttt. Due to the

weak multiplicity of Tuple 151 and Tuple 152, the assembler continues to rely on

restoration for path traversal until Tuple 61.Traversal continues until Tuple 116, where

the traversed path is

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaa

59

Restoration starts again. Each time restoration starts, the assembler sets fragments with

Consumed = 2 back to 0 because those fragments are partially aligned with traversed path

and might be adjusted to another position for better alignment with a longer traversed

path. Figure 44 shows the beginning of restoration with temporarily aligned fragments in

last restoration removed and a longer traversed path:

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaa

 Traversed Path

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Layer 1

gctagctgcaagtcagttaactgagttaagttagtattta Layer 2

gctagctgcaagtcagtta ctgagttaagtta Layer 3
gctagctgc agtcagttaactgagttaa Layer 4

 Layer 5

Figure 44: Continue restoration with temporarily aligned fragment removed

Following the same logic, the restoration ends as shown in Figure 45.

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaa

 Traversed Path

gctagctgcaagtcatttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaaatacta

 Layer 1

gctagctgcaagtcagttaactgagttaagttagtatttagttaatacttttaacaatattattaaggtatttaaaaaatacta

 Layer 2

gctagctgcaagtcagtta ctgagttaagttattatttagttaatacttt aacaatattat
 Layer 3
gctagctgc agtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaatacta

 Layer 4
 tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa

 Layer 5

Figure 45: Coverage restoration for a longer traversed path

60

Again, by majority rule traversal continues on Tuple 148, Tuple 149, Tuple 36, Tuple 37,

Tuple 38, and finally ends at Tuple 39.

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaaatacta

This is an exact match for the original sequence.

5.3 Complexity Analysis

We define n as the total amount of nucleotide bases in the fragment set. The

runtime complexity for the insertion of fragments into the fragment table is O(2In+Kn).

For each fragment, the corresponding reverse complement is calculated for insertion as

well. K is the time constant for reverse complement calculation. I is the time constant for

database insertion. The creation of the de Bruijn table is O(Mn), where M is the time

constant for seeking predecessors and successors of a tuple. Fragment table has fragment

ID as the primary key. De Bruijn table has the TupleID as primary key and Tuple as

index. Before insertion of a tuple, existence of the tuple is checked: if the tuple exists,

update; otherwise insert. The dynamic fragment alignment algorithm has O(L2n), where

L is the average fragment length. Thus the overall runtime complexity is O(n). The space

requirement for the assembler is also O(n).

61

5.4 Program Architecture

All core operations are programmed in C to achieve good runtime

efficiency and then encapsulated with C++ classes for an object-oriented design. The

MySQL DBMS is used for data storage. The development platform is Visual C++ .NET

Windows XP because of the debugging aid of runtime checking.

Figure 46: Deployment diagram for implemented assembler

There are three C++ classes for assembly algorithm implementation:

MySQL_Processor, FragmentReader, and Restorer. The MySQL_Processor class

encapsulates all operations required to communicate with the MySQL database. The

FragmentReader class imports fragments from an input file, calculates the reverse

62

complement of each fragment, and creates the fragment table and the de Bruijn table. The

Restorer class traverses the Euler path and restores fragment coverage.

Figure 47: Class diagram for implemented assembler

63

5.5 Database Schema

The Fragment Table has three columns – FragmentID, Fragment, and

Consumed. Fragment ID starts with 0, fragments with even-numbered IDs are original

fragments from an input file. A fragment with an odd-numbered ID is the reverse

complement of the fragment with an even-numbered ID immediately preceding the odd

number. For example, a fragment with ID 0 and a fragment with ID 1 are the reverse

complements of each another. The Consumed column signals the state of a fragment in

coverage restoration: 0 for available to use, 1 for permanent used for restoration, and 2

temporarily used for restoration.

FragmentID
(Type:int)
(Primary Key)

Fragment
(Type: varchar)
(Secondary Key)

Consumed
(Type: int)

… … …
 Table 2: Fragment Table structure

The deBruijn Table contains all solid tuples generated by fragments with the

sliding window approach. An ID is associated with each Tuple for fragment encoding.

The Multiplicity field records the number of occurrences of a tuple in the fragment set for

statistical analysis. Tuples with Multiplicity less than a threshold are not traversed by the

Euler path. The FragmentIDs column of a tuple concatenates all fragment IDs of the

fragment that contains the tuple. FragmentIDs column speeds up fragment layout during

coverage restoration –relevant fragments containing a tuple can be retrieved quickly.

PredecessorIDs column concatenates Tuple IDs preceding a tuple. SuccessorIDs column

concatenates TupleIDs following a tuple.

64

Tuple ID
(Type:int,
Secondary
Key)

Tuple
(Type: 20-
character-
string)
(Primary
Key)

Multiplicity
(Type:int)

FragmentIDs
(Type:
varchar)
(Foreign keys
separated by
‘,’)

PredecessorIDs
(Type: varchar)

SuccessorIDs
(Type:
varchar)

… … … … … …
Table 3: deBruijn Table structure

Figure 52 illustrates the entity relationship between de Bruijn table and Fragment table.

Fragment contains Tuple

fragment fragmentID

fragmentIDs tuple

TupleID

Multiplicity

PredecessorIDs

SuccessorIDs

Consumed

Figure 48: Entity-relationship models between deBruijnTable and FragmentTable

65

6. Test and Result

The assembly program has been tested with a section of the TIGR_GMG

sequence modified that contains a two-fold long repeat. Each fold is about 1600 bases

long with slight differences among the folds. The original sequence is 3275 bases long.

The sequence is then mutated with GenFrag to have 1.98% error rate and the coverage of

ten. The output of the assembly is a sequence 3264 nucleotide-bases long.

Only four mistakes were found in the output:

1. One insertion of twenty nucleotide bases

2. Two deletion of fifteen nucleotide bases

3. One deletion of one nucleotide base.

The test is performed on a computer equipped with Intel® Core 2 Duo CPU

2.00 GHz and 1.99 GB of RAM. It takes fifty minutes to load the 30K fragment set into

the MySQL database. On the other hand, it takes only five minutes to finish Euler path

traversal and Coverage Restoration for the DNA fragment assembly.

66

7. Conclusion

DNA Fragment Assembly is a key process for DNA sequencing. Due to

current technical limitations, a long target DNA sequence is cloned into multiple copies.

These copies need to be randomly fractured to fragments less than 1000 nucleotide bases

in length. After analysis on individual fragments, all fragment reads need to be assembled

together to rebuild the original target sequence. DNA Fragment Assembly algorithms

have to overcome several challenges to correctly rebuild the original target sequence

from fragments – DNA double helix structure, sequencing errors, repeats, and insufficient

coverage. All existing DNA Fragment Assembly algorithms are hindered by these

challenges. In particular, repeats longer than fragment lengths are nearly impossible to

assemble correctly with current assembly algorithms. Tedious finishing reaction

experiments have to be carried out to manually restore target DNA sequences at regions

containing those long repeats. Hence, there is still considerable need for improvements of

repeat resolution, error correction, and runtime efficiency on DNA Fragment Assembly.

Aiming at improving DNA Fragment Assembly performance in these areas,

we propose a number of enhancements for the Euler Assembler developed by Pevzner et

al.:

1. Traversal approach for Euler Superpath discovery,

2. Statistical Analysis for error and repeat detection,

3. Perfect long repeats fragment assembly.

 In addition, we provide an innovative genetic algorithm to restore the

67

coverage of fragments on target sequence. Our genetic algorithm forms solutions with a

portion of fragments covering the target sequence as blueprints to restore the coverage of

all fragments. Fast pattern matching techniques are applied to evaluate the fitness of a

solution. The genetic algorithm determines the sequence order among copies of long

repeats with slight differences, because only one order is correct to restore all layers of

fragments covering the repeat region. We combine our enhanced Euler algorithms and

the genetic algorithm to ensure runtime efficiency. This solution is close to optimal.

Future research might address the issue of load time, platform independence, and

scalability.

68

8. Future Research

The following steps might improve upon our work:

1. Improve loading time. Loading time is the bottleneck of our assembler, though the

runtime complexity is O(n). The assembler communicates with the MySQL database

through direct C API call. We can consider using Oracle SQL loader or writing SQL

scripts to further speed up the process of fragment input and tuple initialization.

2. Linux instead of XP for better performance. Initially the assembler is designed for

the Linux platform. However, the gcc compiler on the Linux platform does not have

runtime memory infringement checking. There were a number of memory

infringement bugs in the assembler causing assembly result inconsistency. Visual

C++ .NET compiler was then used on Windows platform to debug the assembler for

the memory infringement issue. The runtime memory checking feature of Visual

C++ .NET compiler significantly slows down the execution of Visual C++

application. Due to time constraint, no final testing has been done on the Linux

platform. Based on experience, on the Linux platform the assembler can load data to

database two to three times faster than Windows platform.

3. Larger test data set. Scalability is important for DNA Fragment Assembly. In theory

our assembler is highly scalable since the overall runtime complexity is O(n). The

theoretical runtime analysis needs to be verified by thorough testing with large data

set.

69

References:

[1] Tammi, M. T. (2003). The Principles of Shotgun Sequencing and Automated
Fragment Assembly. Aug 11, 2007, http://web.cgb.ki.se/student/sfa.pdf

[2] The Wellcome Trust Sanger Institute. (Sep 21, 2005).

Jan 12, 2008, http://www.sanger.ac.uk/Info/Intro/sanger.shtml

[3] Li, L., & Khuri, S. (2004, Jun.) A Comparison of DNA Fragment Assembly

Algorithms. Proceedings of the 2004 International Conference on Mathematics and
Engineering Techniques in Medicine and Biological Sciences, 329-335.

[4] Muluykov, Z., & Pevzner, P.A. (2002). EULER-PCR: finishing experiments for

repeat resolution in DNA sequencing. Pacific Symposium on Biocomputing, 199-
210.

[5] Smith, J. (Aug 2, 2007). IUPAC Table, Jan 13, 2008,

http://droog.gs.washington.edu/parc/images/iupac.html

[6] Luque, G., & Alba, E. (2005). Metaheuristics for the DNA Fragment Assembly

Problem. International Journal of Computational Intelligence Research, 1(2), 98–
108.

[7] Green, P. (1998). Phrap Documentation, Dec 12. 2007,

http://www.phrap.org/phredphrapconsed.html

[8] Sutton, G. G. et al., (1995) TIGR Assembler: A New Tool for Assembling Large

Shotgun Sequencing Projects. Genome Science and Technology, 1, 9-19.

[9] Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program.

Genome Res., 9, 868-877.

[10] Pevzner, P. A., Tang, H., & Waterman, M.S., (2001). A New Approach to Fragment

Assembly in DNA Sequencing. Proceedings of the 5th Annual International
Conference on Computational Molecular Biology, 256-267.

[11] Myers, G. (1999, May). Whole-Genome DNA Sequencing. Computing in Science &

Engineering, 33 – 43.

[12] Khuri, S. (2007, Jan). CS255 Design and Analysis of Algorithms Lecture note,

Computer Science Department San Jose State University

70

http://web.cgb.ki.se/student/sfa.pdf
http://www.sanger.ac.uk/Info/Intro/sanger.shtml
http://droog.gs.washington.edu/parc/images/iupac.html

[13] Batzoglou, S., Jaffe, D. B., Stanley, K., Butler, J., & Lander, E. S. (2002).
ARACHNE : a whole-genome shotgun assembler. Genome Research, 12, 177-189.

[14] Kim, S., & Segre, A. M., (1999). AMASS : A Structured Pattern Matching

Approach to Shotgun Sequence Assembly. Journal of Computational Biology, 6 (4)

[15] Gallant, J., Maier, D., & Storer, J., (1980). On finding minimal length superstrings.

Journal of Computer and System Sciences, 20, 50–58.

[16] Staden, R. (1979). A strategy of DNA sequencing employing computer programs.

Nucleic Acids Res., 6, 2601–2610.

[17] Myers, E. (1995). A sublinear algorithm for approximate keyword matching.

Algorithmica, 12 (4–5), 345–374.

[18] Pevzner, P. A., Tang, H., & Waterman M. S. (2001). An Eulerian path approach to

DNA fragment assembly. Proceedings of the National Academy of Sciences, 98,
9748-9753.

[19] Dennis, D. W., William, M., & Richard L. S. (2002). Mathematical Statistics with

Applications 6th edition, 348. Thomson.

[20] Pevzner, P. A., & Tang, H. (2001). Fragment assembly with double-barreled data.

Bioinformatics. Proceedings of ISMB, 225-33.

[21] Parsons, R., Forrest, S., and Burks, C. (1995). Genetic Algorithms, Operators, and

DNA Fragment Assembly. Machine Learning, 1-24.

[22] Kikuchi, S., & Chakraborty, G. (2006, July). Heuristically Tuned GA to Solve

Genome Fragment Assembly Problem. Proceedings of IEEE World Congress on
Computational Intelligence - Conference on Evolutionary Computation, 5640-5647.

[23] Parsons, R., & Johnson, M. E. (1995) DNA sequence assembly and genetic

algorithms new results and puzzling insights. Proc Int Conf Intell Syst Mol Biol, (3),
277-84.

71

Appendix Logic of Key Assembly Modules

A.1 de Bruijn Graph Creation

Figure 49: Activity diagram for de Bruijn graph creation

void FragmentReader::insertFragmentToDeBruijnTable(char *fragment, int fragmentID)
{

char query[1000];
char insertStatement[1000];
int i;
int frag_size = 0;
int predecessorID = -1;
int successorID;
int currentID;

frag_size = strlen(fragment);
int insertLength = frag_size - TUPLE_SIZE;
currentID = getTupleIDinFragment(fragment);
successorID = getTupleIDinFragment(fragment+1);

for (i = 0; i <= insertLength; i++)
{

dbInsertBuffer[0] = (char *)calloc(TUPLE_SIZE+1, sizeof(char));
strncpy(dbInsertBuffer[0], fragment+i, TUPLE_SIZE);

if (currentID < 0)
{

if(i == insertLength)

72

{

 sprintf(insertStatement, "insert into deBruijnTable (TupleID, Tuple,
Multiplicity, FragmentIDs, BestTraversalAmount, TraversedAmount, PredecessorIDs,
SuccessorIDs) values(%d, '%s', 1, '%d', 0, 0, '%d', '')", tupleID, dbInsertBuffer[0],
fragmentID, predecessorID);

}
else if(i == 0)
{

if (successorID < 0)
 sprintf(insertStatement, "insert into deBruijnTable (TupleID, Tuple,
Multiplicity, FragmentIDs, BestTraversalAmount, TraversedAmount, PredecessorIDs,
SuccessorIDs) values(%d, '%s', 1, '%d', 0, 0, '', '%d')", tupleID, dbInsertBuffer[0],
fragmentID, tupleID+1);
 else
 sprintf(insertStatement, "insert into deBruijnTable (TupleID, Tuple,
Multiplicity, FragmentIDs, BestTraversalAmount, TraversedAmount, PredecessorIDs,
SuccessorIDs) values(%d, '%s', 1, '%d', 0, 0, '', '%d')", tupleID, dbInsertBuffer[0],
fragmentID, successorID);
 }
 else

{
 if (successorID < 0)
 sprintf(insertStatement, "insert into deBruijnTable (TupleID, Tuple,
Multiplicity, FragmentIDs, BestTraversalAmount, TraversedAmount, PredecessorIDs,
SuccessorIDs) values(%d, '%s', 1, '%d', 0, 0, '%d', '%d')", tupleID, dbInsertBuffer[0],
fragmentID, predecessorID, tupleID+1);
 else
 sprintf(insertStatement, "insert into deBruijnTable (TupleID, Tuple,
Multiplicity, FragmentIDs, BestTraversalAmount, TraversedAmount, PredecessorIDs,
SuccessorIDs) values(%d, '%s', 1, '%d', 0, 0, '%d', '%d')", tupleID, dbInsertBuffer[0],
fragmentID, predecessorID, successorID);
 }

 mysql_processor.updateTable(insertStatement);
 tupleID++;
 }
 else
 {
 //deBruijn fragment already exist, update...;
 if(i == insertLength)
 {
 sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1,
FragmentIDs=concat(FragmentIDs,',%d'), PredecessorIDs=concat(PredecessorIDs,',%d')
where TupleID=%d", fragmentID, predecessorID, currentID);
 }
 else if(i == 0)
 {
 if (successorID < 0)
 sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1,
FragmentIDs=concat(FragmentIDs,',%d'), SuccessorIDs=concat(SuccessorIDs,',%d') where
TupleID=%d", fragmentID, tupleID, currentID);
 else
 sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1,
FragmentIDs=concat(FragmentIDs,',%d'), SuccessorIDs=concat(SuccessorIDs,',%d') where
TupleID=%d", fragmentID, successorID, currentID);
 }
 else
 {
 if (successorID < 0)
 sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1,
FragmentIDs=concat(FragmentIDs,',%d'), PredecessorIDs=concat(PredecessorIDs,',%d'),
SuccessorIDs=concat(SuccessorIDs,',%d') where TupleID=%d", fragmentID, predecessorID,
tupleID, currentID);
 else
 sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1,
FragmentIDs=concat(FragmentIDs,',%d'), PredecessorIDs=concat(PredecessorIDs,',%d'),
SuccessorIDs=concat(SuccessorIDs,',%d') where TupleID=%d", fragmentID, predecessorID,
successorID, currentID);

73

 }

 mysql_processor.updateTable(query);
 }

 free(dbInsertBuffer[0]);

 predecessorID = currentID;
 if(predecessorID < 0) //predecessorID cannot be absent in the middle of the
loop
 {
 predecessorID = tupleID - 1;
 }
 currentID = successorID;
 successorID = getTupleIDinFragment(fragment+i+2);
 }
}

 Code Listing 1: Fragment insertion to database

A.2 Estimating the Length of Target Sequence

int Restorer::calculateTargetLength()
{

int charAmt = 0;
int **lenResult;
char charLenQuery[500];
int fragmentAmount;
int tmp;
int **amtResult;
char *fragAmtQuery = "select count(*) from fragmenttable";

amtResult = mysql_processor.queryIntFromDB(fragAmtQuery, &tmp);
fragmentAmount = *amtResult[0];
free(amtResult);
for (int i = 0; i < fragmentAmount; i++)
{

 sprintf(charLenQuery, "select CHAR_LENGTH(Fragment) from fragmenttable where
FragmentID = %d", i);
 lenResult = mysql_processor.queryIntFromDB(charLenQuery, &tmp);
 charAmt = charAmt + (*lenResult[0]);
 }

 int targetLength = charAmt/(2*10);

 return targetLength;
}

 Code Listing 2: Target sequence length estimation

74

A.3 Euler Path Traversal

Figure 50: Activity diagram for Euler Path Traversal

75

void Restorer::traverseAndRestore(DEBRUIJN_ROW *edge, int coverage)
{

char *nextEdgeRegexp = (char *)calloc(TUPLE_SIZE+1, sizeof(char));
char *currentEdge = (char *)calloc(TUPLE_SIZE+1, sizeof(char));
int targetLength = calculateTargetLength();
fprintf(stdout, "\n targetLength is %d \n", targetLength);
DEBRUIJN_ROW **pRowResult = NULL;
int edgeAmount;
char updateQuery[500];
int bDone = 0;

strcpy(currentEdge, edge->Tuple);
strcpy(pPath, edge->Tuple);
pathLength = TUPLE_SIZE;
sprintf(updateQuery, "update deBruijnTable set TraversedAmount=TraversedAmount+1
where Tuple='%s'", currentEdge);
mysql_processor.updateTable(updateQuery);

while(!bDone)
{

pRowResult = getNextEdges(currentEdge, &edgeAmount);

 // more than 1 choice, need to resolve with fragment reads

if (edgeAmount > 1)
{

if(resolveBranches()==0)
 bDone = 1;

}

if (edgeAmount == 1)
{

pPath[pathLength] = pRowResult[0]->Tuple[TUPLE_SIZE-1];
pPath[pathLength+1] = '\0';
pathLength++;
if (pathLength > targetLength)
{

 bDone = 1;
}

}

if (edgeAmount == 0)
{

if (layerSizes[0] > pathLength)
 {

pPath[pathLength] = majorityChar(pathLength);
pathLength++;
pPath[pathLength] = '\0';

 }
 else
 {

if(resolveBranches()==0)
bDone = 1;

 }
}

strcpy(currentEdge, pPath+pathLength-TUPLE_SIZE);
}
outputAndCleanTraversal();

}

 Code Listing 3: Euler path traversal

76

A.4 Coverage Restoration

Figure 51: Activity diagram for Coverage Restoration

77

int Restorer::restoreCoverage()
{

for (int i = 0; i < 10; i++)
{
//trySubPathStartIndex at the beginning is the same as the current coverage layer

length or where a new fragment should be appended to continue fragment restoration
// if no fitting fragment is found, subPathStartIndex will keep increasing until

meeting the expectLength
int trySubPathStartIndex;
trySubPathStartIndex = layerRestoreStarts[i];
// restoration for one layer is done when the actual coveragePathSize of the
layer is longer than the expectLength (the best we can expect)
// or trySubPathStartIndex is longer than the expectLength (cannot continue

trying)
while ((layerSizes[i] < pathLength)&&(trySubPathStartIndex < pathLength))
{

 layerRestoreStarts[i] = layerSizes[i];
 char tryTuple[TUPLE_SIZE+1];
 strncpy(tryTuple, pPath + trySubPathStartIndex, TUPLE_SIZE);
 tryTuple[TUPLE_SIZE]='\0';
 char fragmentIDQuery[500];
 sprintf(fragmentIDQuery, "select FragmentIDs from debruijntable where Tuple =
'%s'", tryTuple);

 int resultSize;
 char **strResults = mysql_processor.queryStrFromDB(fragmentIDQuery,
&resultSize, 1000);
 char fragmentCodeIDQuery[500];
 sprintf(fragmentCodeIDQuery, "select Fragment, FragmentID from fragmenttable
where FragmentID in (%s) and Fragment regexp '^%s.*' and Consumed=0", strResults[0],
tryTuple);
 free(strResults);

 STR_INT **strintResults =
mysql_processor.queryStrIntFromDB(fragmentCodeIDQuery, &resultSize, 1000);
 int alignScore = alignFittestFragment(strintResults, resultSize, i,
trySubPathStartIndex);
 if ((alignScore > 0)&&(layerSizes[i]>trySubPathStartIndex))
 {

trySubPathStartIndex = layerSizes[i]; // need to continue restoration
}

 else
 {

trySubPathStartIndex++; // no matching fragment to restore at the current
position; try next index

 }
}

}

for (int j = 0; j < 10; j++)
{

// as long as 1 layer can be restored to longer than the expect length, restoration
succeeded
 if(layerSizes[j] > pathLength)
 return 1;

}

return 0;
}

Code Listing 4: Restoring coverage before branch selection

78

A.5 Selecting the Best Fragment for Alignment

 Figure 52: Activity diagram for best fragment alignment

alignFittestFragment(STR_INT **strintResults,int strAmount,int coverageLayerIndex,int
subPathStartIndex)
{

for (int i = 0; i < strAmount; i++)
{

if (maxSubPathLength >= fragLength + 6)
{
alignmentLength = fragLength + 6;
strncpy(pSubPath, pPath + subPathStartIndex, alignmentLength);
// if mode == 1, alignment will insert space into only fragment
tmpAlignOutput = alignFragments(pFragment, pSubPath, fragLength, alignmentLength,

&tmpScore, &insertAmount, &agreeAmount, &diffAmount, &removeAmount, diffLocations, 1,
&tmpOffset);

int actualScore = tmpScore - 6 * insertionScore;
if ((checkConsumable(fragLength, insertAmount - 6, agreeAmount, diffAmount,

removeAmount, diffLocations) == 1)&&(actualScore > highestScore))

79

{

 alignmentOutput = tmpAlignOutput;
 bestAlignmentLength = alignmentLength;
 fittestFragmentID = fragmentID;
 exceeded = 0;
 highestScore = actualScore;
 bestIndex = -1;
 bestOffset = tmpOffset;

}
}
else if (maxSubPathLength >= fragLength)
{
alignmentLength = maxSubPathLength;
strncpy(pSubPath, pPath + subPathStartIndex, alignmentLength);
// if mode == 1, alignment will insert space into only fragment
tmpAlignOutput = alignFragments(pFragment, pSubPath, fragLength, alignmentLength,

&tmpScore, &insertAmount, &agreeAmount, &diffAmount, &removeAmount, diffLocations, 1,
&tmpOffset);

int actualScore = tmpScore - 6 * insertionScore;
if ((checkConsumable(fragLength, insertAmount - (maxSubPathLength - fragLength),

agreeAmount, diffAmount, removeAmount, diffLocations) == 1)&&(actualScore >
highestScore))

{
 alignmentOutput = tmpAlignOutput;
 bestAlignmentLength = alignmentLength;
 fittestFragmentID = fragmentID;
 exceeded = 0;
 highestScore = actualScore;
 bestIndex = -1;
 bestOffset = tmpOffset;

}
}
else if (fragLength > maxSubPathLength + 6)
{
alignmentLength = maxSubPathLength + 6;
strncpy(pSubPath, pPath + subPathStartIndex, maxSubPathLength);
strcpy(remain, pFragment+alignmentLength);
// fragment is the blue blueprint in this case -- the key is to make best

alignment and get the char right after the last alignment
// if mode == 0, alignment will insert space into both blueprint and fragment
tmpAlignOutput = alignFragments(pSubPath, pFragment, maxSubPathLength,

alignmentLength, &tmpScore, &insertAmount, &agreeAmount, &diffAmount, &removeAmount,
diffLocations, 0, &tmpOffset);

int actualScore = tmpScore - 6 * insertionScore;
if ((checkConsumable(maxSubPathLength, insertAmount - (fragLength-

maxSubPathLength), agreeAmount, diffAmount, removeAmount, diffLocations) ==
1)&&(actualScore > highestScore))

{
 alignmentOutput = tmpAlignOutput;
 bestAlignmentLength = alignmentLength;
 fittestFragmentID = fragmentID;
 exceeded = 1;
 bestIndex = i;
 strcpy(bestRemain, remain);
 highestScore = actualScore;
 bestOffset = tmpOffset;

}
}
else
{

 alignmentLength = fragLength;
 strncpy(pSubPath, pPath + subPathStartIndex, maxSubPathLength);
 // fragment is the blue blueprint in this case -- the key is to make best
alignment and get the char right after the last alignment
 // if mode == 2, alignment will insert space into only blueprint
 tmpAlignOutput = alignFragments(pSubPath, pFragment, maxSubPathLength,
fragLength, &tmpScore, &insertAmount, &agreeAmount, &diffAmount, &removeAmount,
diffLocations, 0, &tmpOffset);

80

 int actualScore = tmpScore - (fragLength - maxSubPathLength) * insertionScore;
 if ((checkConsumable(maxSubPathLength, insertAmount - (fragLength-
maxSubPathLength), agreeAmount, diffAmount, removeAmount, diffLocations) ==
1)&&(actualScore > highestScore))
 {

alignmentOutput = tmpAlignOutput;
bestAlignmentLength = alignmentLength;
fittestFragmentID = fragmentID;
exceeded = 1;
highestScore = actualScore;
bestIndex = -1;
bestOffset = tmpOffset;

 }
}

}

if(highestScore > 0) // only align fragments that are good match for current
position

{
int indexOfLastChar = bestAlignmentLength-1;
int skipcount = 0;
int insertcount = 0;

 if (exceeded == 0) //pathLength longer than layer length, so space the at the
end of alignment for layer restoration to remove first
 {

while (alignmentOutput[0][indexOfLastChar] == ' ')
{

indexOfLastChar--;
}

for (int k = 0; k <= indexOfLastChar; k++)
{

 pCoverageRestoration[coverageLayerIndex][subPathStartIndex + k] =
alignmentOutput[0][k+bestOffset];

}

char updateQuery[300];
sprintf(updateQuery, "update FragmentTable set Consumed = 1 where

FragmentID = %d", fittestFragmentID);
mysql_processor.updateTable(updateQuery);

 }
 else //layer length is longer than pathLength, layer becomes the blueprint
 {

for (int p = 0; p < maxSubPathLength; p++)
{

if (alignmentOutput[0][p+bestOffset] != ' ')
{

 pCoverageRestoration[coverageLayerIndex][subPathStartIndex + p -
skipcount] = alignmentOutput[1][p+bestOffset];

}
else

 skipcount++;

if (alignmentOutput[1][p+bestOffset] == ' ')
 insertcount++;

}

for (int k = maxSubPathLength; k <= indexOfLastChar+insertcount; k++)
{

pCoverageRestoration[coverageLayerIndex][subPathStartIndex + k -
skipcount] = alignmentOutput[1][k+bestOffset];

}
}

 layerSizes[coverageLayerIndex] = subPathStartIndex + indexOfLastChar + 1 -
skipcount + insertcount;

81

 if (bestIndex >=0)
 {

strcpy(pCoverageRestoration[coverageLayerIndex] +
layerSizes[coverageLayerIndex], bestRemain);

layerSizes[coverageLayerIndex] =
strlen(pCoverageRestoration[coverageLayerIndex]);

 }
}

return highestScore;

}

 Code Listing 5: Selecting the fittest fragment for alignment at a position

82

	DNA Fragment Assembly Algorithms: Toward a Solution for Long Repeats
	Recommended Citation

	introductory (May 13, 2008)
	DNA Fragment Assembly Research Actual (May 10, 2009)
	1. Introduction
	2. Background
	3. Problem Definition
	4. Solution
	4.1 Traditional Algorithms
	4.1.1 Overlap Measurement
	4.1.2 Layout Determination
	4.1.3 Consensus Sequence Construction

	4.2 Euler Algorithms
	4.2.1 Error Statistics
	4.2.2 Error Correction
	4.2.3 Correction Limitation
	4.2.4 Euler Superpath

	4.3 Proposing Improvements on Euler Algorithms
	4.3.1 Traversal Approach for Euler Superpath
	4.3.2 Statistical Analysis for Perfect Long Repeat Assembly
	4.3.3 Postponed Error Correction

	4.4 Existing GA for DNA Fragment Assembly
	4.5 New GA for Fragment Coverage Restoration
	4.5.1 Solution Generation
	4.5.2 Fitness Function
	4.5.3 Operations

	4.6 Combining Euler and Genetic Algorithms
	5.1 An Illustrative Example
	From the restored layers, the assembler moves to Tuple 150 or ttagttaatactttt. Due to the weak multiplicity of Tuple 151 and Tuple 152, the assembler continues to rely on restoration for path traversal until Tuple 61.Traversal continues until Tuple 116, where the traversed path is
	5.3 Complexity Analysis
	5.5 Database Schema

	7. Conclusion
	8. Future Research
	Appendix Logic of Key Assembly Modules
	A.1 de Bruijn Graph Creation
	A.2 Estimating the Length of Target Sequence
	A.3 Euler Path Traversal
	A.4 Coverage Restoration

