San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2008

DNA Fragment Assembly Algorithms: Toward a Solution for Long
Repeats

Ching Li
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

6‘ Part of the Computer Sciences Commons

Recommended Citation

Li, Ching, "DNA Fragment Assembly Algorithms: Toward a Solution for Long Repeats" (2008). Master's
Projects. 98.

DOI: https://doi.org/10.31979/etd.fmj6-8gzv

https://scholarworks.sjsu.edu/etd_projects/98

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/98?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F98&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

DNA FRAGMENT ASSEMBLY ALGORITHMS:

TOWARDS A SOLUTION FOR LONG REPEATS

A Project Report
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Ching Chia Li

May 2008

© 2008
Ching Chia Li

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Sami Khuri

Dr. Teng Moh

Natalia Khuri

Lecturer, Department of Computer Science

APPROVED FOR THE UNIVERSITY

ABSTRACT

DNA FRAGMENT ASSEMBLY ALGORITHMS:
TOWARDS A SOLUTION FOR LONG REPEATS

by Ching Chia Li

In this work, we describe our efforts to seek optimal solutions for the DNA Fragment
Assembly Problem in terms of assembly accuracy and runtime efficiency. The main obstacles for
the DNA Fragment Assembly are analyzed. After reviewing various advanced algorithms
adopted by some assemblers in the bioinformatics industry, this work explores the feasibility of
assembling fragments for a target sequence containing perfect long repeats, which is deemed
theoretically impossible without tedious finishing reaction experiments. Innovative algorithms
incorporating statistical analysis proposed in this work make the restoration of DNA sequences

containing long perfect repeats an attainable goal.

Contents

1. INTRODUGTION ...ttt e e et e e et e e e e aaa e 1
2. BACKGROUND ...ttt e e et e e e e e e ene e eeene 1
3. PROBLEM DEFINITION ...uiiiiiiieieei ettt e e 3
4. SOLUTION ..t e e et e e e et e e e e n e e e ennanns 9
O I Vo [AT AN Fo o] 11 o] o SRS 9
4.1.1 OVErlap MEASUICIMENL.......c.ecvertierieereeteetesteesteeseeseessessaesseesseesseassesseesssesseesseessenssesssessesssesssesssesses 9
4.1.2 Layout DetermiNation..........cccueiierieriieieett e eecestte sttt e et e st e bt e et ebeeneesaeesaeesseenteenseeneeeseesseeneas 12
4.1.3 Consensus Sequence CONSIUCTIONccueruirierieriiertieteeteetesseeseesseesesaesseesseesseeseanseensesssesseesses 14
o LU =T N [o]) g LSRR 16
4.2.1 BITOT SEALISTICS ..vveuiiiiiiiiieiieieiietestene sttt ettt sttt ettt et sttt st ebe oo ae b e s b saeeaeeseennennens 16
4.2.2 BITOT COTTEOIOM. ...c.eutitirtieueeieeitetetente sttt et ettt et sttt s bt ettt esae st besaeebe et e s etenteabesaeeueeaeennennens 18
4.2.3 Correction LIMILATIONc.eeueriiieiiriiieiirteieterteteentct ettt sttt sttt st ve st vttt eae st e enesaeeenen 22
4.2.4 Buler SUPETPANc..oeiiiiiee ettt ettt sttt et neeeneenneas 24
4.3 Proposing Improvements on Euler AIGOFtNMS ... 30
4.3.1 Traversal Approach for Euler Superpath..........cccccoevieiiiiiieiiiiesieeee e 30
4.3.2 Statistical Analysis for Perfect Long Repeat ASsemblycccoovveviieriiiciiiieiieeieieeiceve e 33
4.3.3 PoStPONEd ErrOr COITECTIONevietieiieiieie ettt ettt sttt ettt e ee st s e st e et e e eneeeneesseenneas 37
4.4 Existing GA for DNA Fragment ASSEMDIY ... 39
4.5 New GA for Fragment Coverage ReStOratioN............ccooiiiiiiirie it 42
4.5.1 SOIUtION GENETALIONcueeuiiinieiiieieiirtee ettt ettt sttt st se st e e st e enesaeeenen 42
4.5.2 FItNESS FUNCHOMN. ..ottt sttt enens 43

4.5.3 OPCTALIONS.ecuvieeeieereetieieesieeteetestesttesteesseasseesseesseassesseesseessesssesssesssesseenseesseassesssenseessenssenssessenssens 44

4.6 Combining Euler and Genetic AlGOrithms.........cccooi i 46
5. FRAGMENT ASSEMBLER DESIGN AND IMPLEMENTATIONcc.......... 48
5.1 AN HTUSTFAtiVE EXAMPIE ...t et b ettt b e bbbt sbesbe e enee e 48
5.2 COMPIEXITY ANAIYSIS ...ttt ettt bbbt ae et e b e besb e ek e st ese et et e sbesbesbeeneeneennens 61
5.3 Program AFCRITECTUIEcvciiice ettt e et beebe e e e e et e s e e s bestesbesteeneeneeneens 62
5.4 DAtaDASE SCREMA......ecuiiiiiteirieie bbb bbb bt e bbb 64
6. TEST AND RESULT ... e e 66
7. CONCLUSION ..ot e e e e e e e e aan s 67
8. FUTURE RESEARCH e 69
REFERENGCESo e e e e e et e e e e e aaa s 70
APPENDIX LOGIC OF KEY ASSEMBLY MODULESccooiiiiiiieeeen. 72
A.1 de Bruijnn Graph CreatiOn..........cceceeruieriieiesiesiieteeteetesseeseesesssessesseesseesseessesssesseessesssesssesssesssessees 72
A.2 Estimating the Length of Target SEQUENCE.........ccvevieriieiiieierieeeie ettt 74
A3 Euler Path Traversalcooiioiiiieeeeee ettt ettt sttt sae et e e 75
A4 CoVerage RESTOTATION. ... co.uieuiiiiieitieit ettt ettt ettt ettt ettt st b et e bt et eenteseeesbeenaees 77
A.5 Selecting the Best Fragment for ALIGNMENt..........ocoiiiieiiiiiiiriiese et 79

1. Introduction

The Human Genome Project aims to identify the exact sequence of nucleotide
base pairs for the entire human genome. The Human genome contains about three billion
nucleotide base pairs; however, current technologies usually sequence DNA fragments
shorter than 1000 bases [1]. Large DNA sequences are always cut into small fragments
for analysis and then assembled together to restore the original sequence. Thus, the
bioinformatics industry needs efficient algorithms for the precise assembly of long DNA

sequences from DNA fragments that are shorter than 1000 bases.

2. Background

DNA sequences, determining protein synthesis of biological entities, are
important for scientists to understand the functioning of various organisms. Long and
complicated as they are, all DNA sequences consist of four nucleotides — A (adenine), T
(thymine), C (cytosine), and G (guanine), which are termed “bases” [1]. In 1982,
Frederick Sanger led a group of scientists to sequence the 48,000 base-pairs long genome
of a virus, Bacteriophage lambda, utilizing the DNA whole genome shotgun sequencing
method [2]. Since then, the DNA whole genome shotgun sequencing method continues to
evolve in terms of scalability, accuracy, and robustness. In 2001, the initial human
genome sequencing of three and a half billion base-pairs was accomplished by this
method. Improvements in DNA fragment assembly algorithms contribute significantly to

the success of the shotgun sequencing method.

DNA

l

Replication Shotgun

Produces Fragments CGTACGGTCA TTTGCTGGC TCGGECTAAAGGG

l CGTACG TCARATTTGCTGGCATC GCTRAAAGG

~

4

U)

CGTACGGTCAATTTGC GGCATCGGCTAAAGG

0]

Sequence Fragments CGTACGGTCA TTTGCTGGC TCGGCTAAAGG

l CGTACG TCAATTTGCTGGCATC GCTAAA

GG

D
U)

CGTACGGTCAATTTGC GGCATCGGCTAAAGGG

Reassemble | Dynamic Programming

Genetic Algorithms

Euler Path Traversal

|
| deBruijn Graph Construction |
| |
| |

Statistical Analysis

GTCAATTTGCTGGCATCGGCTAAAGGG

Consensus Sequence CGTACG

Figure 1: DNA Sequencing Process

Though there are variations in the actual implementation of shotgun

sequencing, they all follow a similar procedure:

1. Target sequence cloning — multiple copies of a DNA sequence under
analysis are created.

2. For DNA fragment creation, each copy of the target sequence is fractured
randomly with sonication or nebulation; fragments that are too long or
too short are removed due to DNA sequence analysis performance
concerns; statistically, fragment length has a normal distribution of about

10% variance after screening.
3. DNA sequence analysis on fragments, where fragments are inserted into

engineered viruses to form vectors and a sequencing reaction is

performed in the vectors to produce a fragment read ranging from 300 to
900 bases long.

4. DNA fragment assembly — computational algorithms and expert
knowledge are applied to put pieces of fragments back to a consensus
sequence [3].

The more efficient and accurate the computational algorithm, the less
intervention is required by biologists for DNA fragment assembly, and consequently the
more efficient the DNA fragment assembly can be. Thus, the continuous improvement of
DNA fragment assembly algorithm is crucial for biologists to study large scale DNA

sequences efficiently.

3. Problem Definition

DNA fragment assembly reconstructs the original DNA sequence from a
large number of fragments that are several hundred bases long. To accomplish this goal,
all DNA fragment assembly algorithms need to overcome the following challenges:
Unknown orientation

Given the dual helix structure of DNA, each fragment can come from either
strand of the helix structure. Thus, as we determine the fragment layout, we need to
consider the reverse complement of each fragment, which essentially doubles our
assembling efforts. A (adenine) complements T (thymine), while C (cytosine)
complements G (guanine), and vice versa. To get the reverse complement of a fragment,

we first reverse the fragment sequence; for example, the reverse of fragment ATGCTA is

ATCGTA,; then taking the complement for each nucleotide base in the sequence, we have
TAGCAT [1]. Essentially, the DNA fragment assembly results in two DNA base

sequences complementing each other, each stands for one strand of the original DNA

sequence.
Read Orientation Assembly
ATGCTA «—— - TAGCAT -cmmmmmemeeee
CATTGCC s < — CATTGCC =omommeeev
AATGC D S — GCATT -
TGCCGTAG —> TGCCGTAG---

Figure 2: Calculating reverse complement of DNA fragments

Base-calling errors or sequencing errors

The technical constraint of analyzing less than one kbps sequences at a time
is actually due to various read errors, since most sequence results longer than one kbps
are filled with errors and therefore have to be discarded. Due to a complicated sequencing
process, the DNA fragments are contaminated with base errors: Dideoxynucleotide
(ddNTPs) are used to randomly fracture long DNA chains; however, the fluorescent
signal, which tags ddNTPs, is weakened by the geometric distribution of concentration;
in addition, molecules diffuse in the gel as they are read — longer fragment reads cause
more molecules in the fragment diffuses; thus data quality at the end of fragments is

usually inferior, while DNA polymerase (DNA copying enzyme affected by temperature)

and sequencing reactions may hide some low quality data in the middle of high quality
regions. The assumption of a uniform moving speed when reading a DNA sequence is
also error prone, because various DNA strands often move on the gel at different speeds.
Contamination and undiscovered vectors are two additional common factors causing

errors [4].

P-P-P-OCH; © Base

Figure 3: Chemical structure of ddNTP used to fracture DNA sequence

There are four different types of sequencing errors — Substitution (one base is
reported as another base), Deletion (bases are not reported at all), Insertion (irrelevant
bases are reported), and Ambiguity (uncertainty about the exact base). Table 1 lists the

TUPAC Ambiguity codes for DNA sequence analysis [5].

IUPAC Code Meaning Complement
A
C
G
T
AorC
AorG
AorT
CorG
CorT
GorT
AorCorG
AorCorT
AorGorT
CorGorT
GorAorTorC

2wcm<w<mnggoo>

z|<|z|o|w|z|m|w|=|<| x> ||l =

Table 1: IUPAC code meanings and complements

Figure 4 demonstrates how errors hinder fragment assembly.

Genome sequence:

Repeat Repeat
CTTCGCGTCATCATCACTTGAGTCATCATCACCTCGGA
Sequence reads in the correct layout:
CTTCGCGTCATCATCA

TCATCATCACTTGA

CTTGAGTCATCATCA
TCATCATCACCTCGGA
Fragments including some sequencing errors:
CTTCGCGTCATCATCA
TCATCATCAC*TTG*A
CTT*GAGTCATCATCA
TCATCATCACCTCGGA

Figure 4: Assembly errors caused fragment errors

Repeated regions

DNA sequences may contain many repeats. There are identical repeats as

well as repeats with only slight differences. Repeats are difficult to resolve because there

are multiple ways of joining related fragments together. Figure 5 provides a simple

illustration of how repeats can cause assembly errors:

Genome sequence:
Repeat Repeat
CTTCGCGTCATCATCATCACTTGAGTCATCATCATCACCTCGGA

Sequence reads in the correct layout:
CTTCGCGTCATCATCA
TCATCATCACTTGA
CTTGAGTCATCATCA
TCATCATCACCTCGGA
Wrong layout:
CTTCGCGTCATCATCA
TCATCATCACTTGA
CTTGAGTCATCATCA
TCATCATCACCTCGGA

Figure 5: Assemble errors caused by repeats

The complexity of repeats actually goes much further. The length of repeats

6

varies greatly and can be interspersed in numerous genomic locations or linked closely
together. For instance, a trypsinogen gene has a five-fold repeat as long as four kbp with
3-5% variations among each fold. Three folds of the repeat locate so closely together that
they confuse assembly algorithms with potential errors. Given the technology constraint
of sequencing fragments shorter than one kbp, assembling long perfect repeats is deemed
unsolvable [6]. The second half of our work is dedicated to developing algorithms that
incorporate statistical analysis to put together the correct assembly for fragments
containing long repeats.
Incomplete coverage

Given a target sequence of length L and N fragments of average length r, the
genome coverage C = N- r/L. There is a tradeoff between high coverage to ensure original
DNA sequence cover probability and the computational complexity of the fragment
assembler. Though no high coverage ensures the complete covering of target sequence
due to the random fracturing process, coverage of eight to ten are preferred in common
practice. For example, to get 10X coverage in a sequence of length 125 kb, we need
2,604 random fragments read with an average length of 480 bases:
2604 - 480/ 125,000 = 10. Because of the double helix DNA structure, we need to
consider the reverse complement of each fragment [6].

Random creation of DNA fragments can lead to the situation where the
coverage is insufficient to assemble all fragments to a consensus sequence and instead
result in several long fragments. In Figure 6, judgments have to be made to determine the

assembly orders of two contigs (long partially assembled DNA fragments).

| fragments

?CETC&T! GanTnc TRV
' [facdrrd Errhakcd !
i H] H

v [crcatioal hcidTTdd| ! CCAGA T :
] H H H |
] A H I |
I ATGAAGA | TTC?TGﬂ : + !
: 0 G AC CAGS :
1 | i
[] N T

|

ACCTCAT GAAGATATACCTTC CT GG I GTTGACCAGAT ACGTTAAGGGATC TAGGA

«— config L s contig >

Figure 6: Failure to restore the target sequence due to no fragment coverage on some [22]

In summary, we define the DNA fragment assembly problem as the
following: given a collection of fragment reads F={fi } ;| that are sequences over
> ={A,C,G,T}, find the optimal superstring S, such that each fi or its reverse
complement, after a minimum number of mutations (insertion, substitution, or deletion of
some nucleotide bases), is a substring of S. There can be multiple optimal superstrings for

a unique collection of fragments.

4. Solution

In the past decade, a number of excellent DNA fragment assemblers emerged
applying various algorithms. Some of the most well-known assemblers are Phrap[7],
TIGR[8], CAP3[9], and EULER[10]. There are weaknesses even for the best assemblers
— failing to handle repeats longer than fragment reads, generating too many contigs,
assembling results shorter than the target sequence, and slow assembly speed. Aiming at
improving these weaknesses, we have explored three types of algorithms — traditional
"overlap—layout—consensus" algorithm, Euler algorithms, and genetic algorithms to solve

the DNA Fragment Assembly problem.

4.1 Traditional Algorithms

Most DNA Fragment Assembly algorithms have three key modules: The
Overlap module measures the degree of overlapping among fragments; The Layout
module determines the blueprint to join fragments one after another according to the
overlapping degrees among fragments; The Consensus module forms the consensus

sequence according to the layout blueprint [11].

4.1.1 Overlap Measurement

Applying the traditional "overlap—layout—consensus" algorithm, we will first
measure the feasibility of assembling every possible pair of the fragments with dynamic

programming. There are four types of overlaps to consider, as illustrated in Figure 7.

Type 1: Read A ahead of Read B Type 2: Read A contains Read B
Read A _— Read A
Read B — ReadB ——

Type 3: Read B ahead of Read A Type 4: Read B contains Read A
Read A _— Read A
Read B — Read B

Figure 7: Four types of fragment overlapping

A commonly used dynamic programming algorithm for overlap pattern
matching is String Alignment. String Alignment computes the similarity of two strings
according to a predefined “alignment” function that provides a positive score on match
but negative scores on insertion, deletion, and substitution. The final score for aligning
two strings is deduced by gradually increasing the prefixes of the two strings and
computing the scores of prefixes step by step. Scores in each step are reused in the next
immediate step, so a matrix with the width of one string's length plus one, and the height
of the other string's length plus one is required to hold the alignment scores of all prefixes
of the two strings. A high alignment score indicates close similarity of two strings. The
algorithm's complexity is O(nm), where n and m are the length of two strings
respectively. In addition, it consumes O(nm) memory space due to the matrix caching
prefixes alignment scores [12]. For k fragments inputs with average size m, the
complexity for overlap pattern matching is O(k’m?). Figure 8 illustrates the steps and

functions used to align two strings ACGTCGTC and TCGTCTT.

10

Score

-1+1+1+1+1-2+1-1=+1

—
0
aQ
—
O
—
—

oli=lolloli=lalieRaR
oo
O
A
[\
(=)
to
A

Aligning S| = ACGTCGTC and S, = TCGTCTT

Al -1, j =D +V(§,[i],S,[]])
Dynamic string alignment A(i, j) = max A -1,))+Vv(S,[i],-)

A, J=D+V(=S,[0D

+1 if if S,[11=S,[]]
The score function may be V(S,[i],S,[J]) =< -1 if if S,[i]#S,[]]
-2 if S/[Ji]=-orS,[j]l=-

We obtain:
TCGTC-TT
ACGTCGTC

Figure 8: A dynamic programming example to align two strings

Based on the dynamic programming algorithm for string alignment, a variety

of improvements can be made: TIGR assembler computes the k-tuples in common

between each pair of fragments; Myers combines suffix and indexes in sequence database

for fast retrieval of similar fragments; Phrap and ARACHNE [13] use various flavors of

common subsequence identification algorithms to rule out obviously unmatched fragment

pairs before applying time consuming dynamic algorithms for detail alignments. AMASS

11

represents fragments with multiple sub-string patterns called probes and performs pattern

matching on probes rather than on the whole fragment to accomplish superior speed [14].

4.1.2 Layout Determination

According to the measurement result, we determine the basic layout of the
fragments. This is the most challenging step because it is hindered by issues of errors,
repeats, and insufficient coverage. Numerous creative methodologies, ranging from
greedy algorithms to graph theory algorithm, have been applied to seek optimal solutions
at this step.

The DNA Fragment Assembly problem can be reduced to Shortest Common
Superstring Problem (SCS), in which case we attempt to find the shortest DNA sequence
that contains all the DNA fragments. Gallant et al. proved that SCS is NP-complete [15].
In other words, we can only apply some heuristic methods to find a close to optimal
solution in an acceptable amount of time. Greedy algorithm was firstly introduced by
Staden in 1979 to iteratively assemble fragments with maximum overlaps to one DNA
sequence [16]. The worst result for superstring computation is about twice as long as
optimal superstring [17].

In reality, the shortest super string for fragment inputs is not the target DNA
sequence, which we are looking for due to read errors, repeat regions, and orientation
issues. A better model for DNA Fragment Assembly might be Sequence Reconstruction:
for a set of fragments f; € F with error rate € € [0,1], find the shortest superstring S
satisfying the condition — min{d(Ssy, fi), d(Ssub, fi') } < € [Ssub|, Where fragment f;' is the

reverse complement of fragment f; and d(Sgy, fi) is the minimum edit distance between
12

subsequence of S and fragment f; computed with dynamic programming similar to the
string alignment algorithm. Sequence Reconstruction is also proven to be NP-complete
[1]. A robust approach to tackle NP-Complete problems is genetic programming, which
we elaborate in a later section.

In addition to string processing algorithms, graph theory might be an
alternative to assist DNA Fragment Assembly. We can model DNA Fragment Assembly
with weighted graphs where each vertex stands for a fragment and each edge stands for
overlap between the two fragments. The Hamiltonian path that traverses each vertex once
provides us with important insight for assembling the fragments. The graph of Figure 9 is
a simplified illustration on reducing Fragment Assembly to the Traveling Salesman
problem: for fragment set V = {GTG, TGA, GAT, ATG, TGC, GCT, CTG, TGG}
finding the path sequence that visits each vertex once yields SSGTGATGCTGQG, a
minimum superstring for the fragment set. Although the Traveling Salesman Problem is
NP-Complete [1], due to its long history in math and computer science there are many
studies finding close to optimal solutions; thus, a lot of techniques tackling TSP can be
revised to apply to DNA Fragment Assembly. Euler algorithms are innovative
approaches that convert DNA Fragment Assembly to Euler Path Finding on a de Bruijn
graph [9]. We have dedicated most of the research project to applying Euler graph theory

on DNA Fragment Assembly.

13

GAT

GTG
TGC

TGG

CTG

Figure 9: Hamiltonian path solution for DNA Fragment Assembly Problem [1]

4.1.3 Consensus Sequence Construction

Creating a consensus sequence is the final step. Resolving repeats intermixed
with errors is the main issue challenging assembly algorithms at this stage. Phrap
generates consensus sequence in a greedy approach according to its proprietary LLR-
score order [7]. Phrap incorporates error probability to fragment alignment dynamic
programming. In practice, errors in fragments are independent from each other, implying
that fragments do not have errors at the same position of a sequence. In other words,
given sufficient coverage, most fragment errors can be corrected by the majority rule.
Celera Assembler masks repeats to avoid confusion and leaves repeats unassembled.
Some repeats are already known from experience [1]. Those repeats are assembled based
on the former understanding of repeats. TIGR, CAP3, and ARACHNE assemblers
compute distance constraints between two ends of fragments by using the majority rule to
assist pairwise ordering. Most assemblers cannot reconstruct fragments back to one

unique consensus sequence at the end for sophisticated genome sequencing projects;

14

instead, several long contigs are returned for users to do the rest of the finishing work.
Even for fragment inputs free of errors, most assemblers still make assembling errors:
Phrap, CAP3, and TIGR assemblers make five, four, and two errors respectively when

assembling error-free Neisseria meningitidis' genome fragments [11].

! Neisseria meningitidis is a kind of bacterium playing a role in meningitis.

15

http://en.wikipedia.org/wiki/Bacterium
http://en.wikipedia.org/wiki/Meningitis

4.2 Euler Algorithms

EULER algorithms for DNA Fragment Assembly, developed by Pevzner et
al., completely abandon the traditional overlap-layout-consensus methodology. EULER
algorithms are innovative in the sense that they cut the existing DNA fragments into even
smaller pieces of regular size to transform the NP-Hard Fragment Layout issue to a
polynomial time solvable Euler Path Discovery problem. Moreover, EULER algorithms
surpass other DNA fragment assembly algorithms in error correction and repeat
resolution — they can correct up to 97% of the errors and resolve all repeats that are not
longer than fragment length. There are two main modules for Euler algorithms — Error

Correction and Euler Superpath Resolution [18].

4.2.1 Error Statistics

Before we discuss error correction, we need to elaborate on the general error
patterns in fragments to be assembled. Usually, the average error rate is known before
fragment assembly and should be less than 10%. It is a common practice to discard
fragments containing errors exceeding a certain error rate. Errors are independent of one
another: different fragments covering the same range of a sequence have errors at
different positions. For example, in Figure 10 three fragments cover AACTGCCTTAG

while containing errors at different positions.

CGTCAA?TGCCTTAGGCTA
ATCGTCAACTACCTTAG
AACTGCC TAGGCTACA

Figure 10: Independent nature of fragment errors

16

Given average fragment length m, target sequence length L, and coverage c,
there should be cL/m fragments in the fragment set. The possibility for one out of L
positions to be randomly selected as the beginning of a fragment is p = ¢c/m. For a
position to be covered by a fragment, any of the inclusive m positions before the position
can be selected as the starting position of the fragment. To have X coverage on a position,
X of the m positions must be selected as the beginning of fragment. This infers a binomial
distribution for the probability of the number of times that a position covered by fragment

reads [2]:
m X m-—X
P(C=x! = (XJ(c/m) (1-c/m)

Equation 1 Possibility calculation for fragment coverage equal some number on a certain location

The possibility of a position covered by less than or equal to x fragments:
X

m .
PiCoxi= O) (c/m)(1—c/m)™*

k=0

Equation 2 Possibility calculation for fragment coverage no more than x on a target DNA sequence

For fragments with an average size larger than one hundred, we may

approximate a binomial distribution using a normal distribution with expected value p(X)

= ¢ and standard deviation o = \/m(c /m)(l—-c/m) = \/C(l —c/m) according to the

Central Limit Theorem. A key property of the normal distribution is that about 68% of
the values should be in the range -6, p+c] and about 95% of the values should be in the

range [u-20, u+2c] according to Empirical Rule. For a normal distribution, the possibility

17

of having a value 2c less than the expected value is about 2.5%. Given a set of fragments

with average length 800, coverage ten, the expected multiplicity (the number of
occurrences in the fragment set) of a tuple is ten, and o =,/10(1-10/800) = 3.4. Thus,

the possibility for a tuple to have multiplicity of three or less is about 2.5%. In other
words, we are 97.5% confident that a tuple with multiplicity of three or less is caused by

errors [19].

-4 -3 -2 - 0 = 27 3T 4

Figure 11: Normal distribution curve [19]

4.2.2 Error Correction

The Euler Algorithm exploits the fact that errors occur at different positions
to perform error correction of the fragments. Euler Error Correction starts by chopping all
fragments to much smaller tuples. For example, all possible 8-tuples of

attcggctccgtgcettacatg is given by:

18

attcggct
ttcggctc
tcggctcc
cggctccg
ggctccgt
gctccgtg
ctccgtge
tccgtget
ccgtgctt
cgtgctta
gtgcttac
tgcttaca
gcttacat
cttacatg

Creation of tuples from fragments adopts a sliding window approach with the
window width equal to the tuple size. The amount of tuples for a fragment set without
errors can be associated linearly to the length of the target sequence (L) covered by the
fragment set. Besides, there is an inverse relation between the proportion of repeats on
the target sequence and the number of different tuples.

Due to high coverage, fragments overlap with each other. Normally each
tuple appears in multiple fragments. We use multiplicity of a tuple to refer to the number
of the tuple’s occurrences in a fragment set. For a fragment set having coverage ten on
the target sequence, the expected multiplicity of an ordinary tuple is ten. If there is no
error, the multiplicity of an ordinary tuple is expected to be the same as the coverage. For
tuples on repeat regions, the multiplicity can jump to two or more times of the coverage
depending on the frequency of repeats. Due to the randomness of fragment creation, the

possibility of a tuple with only multiplicity of two or less is very small.

19

We call the tuples with low multiplicity weak and the tuples with high
multiplicity solid. Knowing that most weak tuples are caused by errors, we can then
associate each weak tuple with one of the solid tuples and correct the errors accordingly.
An error in a fragment usually causes | weak I-tuples and an additional | weak I-tuples in
the reverse complement fragment. For an error located at d bases away from the fragment
boundary, where d < |, there will be 2d weak tuples created by the error [20]. Figure 12

illustrates how an error results in weak tuples generated by the sliding window approach.

amonaous Hupksa in _(_':
the saquancing read

.,

sequencing resd HEEEENENNEENNNENRENEEREEE
error

-~

amoneous Huples in
the complamantary <
saquancing raad

Figure 12: Weak tuples generated by an error on a fragment and its reverse complement [18]

We define the relationship between two tuples as neighbors if we can change
one to another with one mutation. We call a tuple orphan if the tuple meets the following
three conditions:

(1) Multiplicity smaller than a pre-set threshold. For our former example

of a fragment set with average size 800 bases and coverage ten, we
may set the threshold to three to ensure the 97.5% confidence on

error detection.

20

(i1) The tuple has a unique neighbor.
(111) The tuple’s neighbor is solid. The process of error correction consists
in changing an orphan to its unique solid neighbor.

The example below demonstrates the steps of substitution error correction. In
a fragment set that has ten fragments covering the region ggctccgtgctt, one fragment has
an error at the fourth position changing base t to c. The rest nine fragments that are
correct in the region will generate solid tuples with a multiplicity of nine on the left,
while the fragment with error at the fourth position might create weak tuples on the right.
By mutating the orphans to their corresponding solid neighbor, we correct the error in the
weak tuples as well as the fragment. The fragments that are correct in one region might
have errors in other regions. On the other hand, the fragment that has error in one region
might be correct in other region. Taking advantage of the independent nature of fragment

errors, Euler assembler can correct errors by majority rule.

GGCTCCGTGCTT GGCCCCGTGCTT
(Original) (Substitution error)
{GGCTCCGT » {GGCCCCGT
GCTCCGTG » GCCCCGTG
CTCCGTGC » CCCCGTGC
TCCGTGCT » CCCGTGCT
CCGTGCTT} »CCGTGCTT}

Figure 13: Associating weak tuples with their solid neighbor to correct a substitution error

Correcting insertion and deletion errors is slightly more complicated than

correcting substitution errors. In Figure 14, the fragment on the right has an insertion

error at the fifth position. Such an error causes a series of weak tuples without neighbors

except the last one. Paying attention to this special pattern helps us detect and correct

21

insertion errors.

GGCTCCGTGCTT GGCTACCGTGCTT
(Original) (Insertion error)
{GGCTCCGT {GGCTACCG
GCTCCGTG GCTACCGT
CTCCGTGC CTACCGTGC
TCCGTGCT TACCGTGCT
CCGTGCTT;—_——__—___—_““‘——————> ACCGTGCT
CCGTGCTT}

Figure 14: Associating a weak tuple with a solid neighbor to correct an insertion error

A similar method can be applied for correcting deletion error.

GGCTCAGTGCTT GGCTAGTGCTT
(Original) (Deletion error)
{GGCTCAGT {GGCTAGTG
GCTCAGTG GCTAGTGC
CTCAGTGC CTAGTGCT
TCAGTGCT TAGTGCTT}
CAGTGCTT}

Figure 15: Associating a weak tuple with a solid neighbor to correct a deletion error

4.2.3 Correction Limitation

The selection of | value or tuple size depends on several factors: appearance
of short local repeats, distance between errors, and runtime efficiency for neighbor
discovery. If the tuple size falls close to the size of local repeats, we might encounter
many weak tuples with more than one neighbor because one copy of repeats might differ
slightly from another copy. This issue will confuse the assembly algorithm for the right
way to correct the error. If the distance of two errors in one fragment is smaller than |,
some weak tuples caused by the errors cannot be associated with a solid neighbor that is

one mutation away; the complexity of screening a tuple’s neighbor is O(IG) where | is the

22

tuple size and G is the target sequence length. Given a large G for a complicated
assembly project, a slight increment of tuple size causes the screening runtime to become

significantly longer.

The Euler Error Correction methodology can incorrectly change correct
fragments on the low coverage range of the target sequence. The Euler Assembler uses
parameter A, defining the maximum number of errors in a fragment, as a threshold to
prevent the Euler Error Correction removing the difference in repeats [20]. However, this
can cause the situation in Figure 16 to be overlooked. In Figure 16, a fragment covering
the key information connecting two closely spaced contigs is prone to be eliminated in

insertion error correction.

coeen ATCGACCATCGGACTGCACAAGT. ..

Figure 16: Low coverage on a position due to random fragment generation

The possibility of observing only one coverage at a base position for a fragment

set with average length five hundred and coverage eight, is
11— 500 1 500-1 3 e)
P{C=1}= { (8/500)' (1-8/500)""~2.25 - 10°. The possibility of observing x bases

with one coverage consecutively is (2.25 - 107)*, which decreases exponentially as x

increases. Thus, most of the 2% correct fragment reads with low coverage are on

23

individual base positions situated randomly across the target sequence. The threshold
parameter A can hardly protect them from false Error Correction. The negative effect
caused by the erroneous correction is that more contigs appear at the end of assembly.
In spite of the drawbacks of introducing small amount of new errors, Euler Error

Correction is verified to be a superior method for error elimination in practical
sequencing projects. In the case of Neisseria meningitidis fragment assembly, 234,410
errors were corrected with the side effect of 1,452 new errors. Differentiating tuples of
multiplicity less than three as orphans is effective for error detection based on

experiments [18].

4.2.4 Euler Superpath

Given a set of |-tuples S = {sy,...,sn}, we can construct a de Bruijn graph by using
each tuple in set S as a directed edge. This edge runs from the first (I-1) tuple of the |-
tuple as source vertex to the last I-1 tuple as destination vertex. More precisely, for each
I-tuple as an edge in the de Bruijn graph, we define two I-1 tuples as vertices, the first I-1
nucleotide string as the source and the last I-1 nucleotide string as the destination. For
sequence ATGCTTGCGTGCA, if the edges are 3-tuples, the vertices will be all the 2-

tuples. Edge set S={ATG, TGC, GCT, CTT, TTG, GCG, CGT, GTG, GCA}. Vertex set
S|_1={AT,TG,GC,CT,TT,CG,GT,CA}. Consequently, we have the de Bruijn graph as

illustrated by Figure 17.

24

Figure 17: de Bruijn graph of the DNA sequence ATGCTTGCGTGCA

The problem of finding the consensus sequence for DNA fragment assembly is
converted to the problem of looking for an Euler path that traverses the edges in a de
Bruijn graph. Euler paths can be found in polynomial time of the number of edges.
However, there is one more condition for the Euler path of consensus sequence to satisfy:
the Euler path must contain all the fragment reads as subpaths. Such an Euler path is
called Euler Superpath. The Euler Assembler developed by Pezner et al. performs graph
system transformation to achieve the goal of finding the Euler Superpath according to the
rule that two graph systems, identified by a graph and a path set, are equivalent if there is
a one to one correspondence between graph G and path set P of the first system, and
graph G’ and path set P’ of the second system. Through a series of transformations (G,P)
— (G1,Py) — ... = (Gy,Py), a new graph system is achieved where every edge in the
graph Gy is a path in the path set Px. As a result, finding the Euler path in the last graph
system is the same as finding the Euler Superpath in the original de Bruijn graph system

[18]. The following rules are applied to ensure equivalent transformations.

25

Direct Transformation: Let X = (Vin, Vmid) and y = (Vmid, Vout) be two adjacent edges in
graph G and let P,y be the set of all paths that include edges x and y. A new edge z
=(Vin,Vout) can be used to replace edges x and y in the graph G as well as the path set P,
resulting in an equivalent system graph G; and path set P;. In Figure 18, P_, stands for
the set of all paths that end at edge x; Py, stands for the set of all paths that start with

edge y; Py, stands for the set of all paths that traverse through edge x and edge y.

X

v Vv
A\
y
&
<
Y

=
Y/

AR

Figure 18: Replacing edges x and y with z by Direct Transformation

26

Branch Transformation:

Figure 19: Path subset consistency to determine path replacement by Branch Transformation

When there is one incoming edge x but two outgoing edges y; and y, from
Vmid t0 Vour1 and voup, We cannot replace x in every path ending at x with z = (Vin, Vout1) as
an equivalent transformation. Instead, we must first define path subset P,y as all paths
containing edge x and y; and path subset Py y, as all paths containing edge x and y,.
Whether to replace x with z or not for a Path p_,x ending at x depends on whether Path
p—x 1s consistent with subset Py y; or subset Py y». Two paths are consistent with one
another if they can be joined together without generating a branch. Path 2 is consistent

with Path 3 but inconsistent with Path 1 due to the branch at vertex v in Figure 20.

Figure 20: Path 2 consistent with Path 3 but inconsistent with Path 1

27

A path p_,, is consistent with path set Py y; if p_.x is consistent with every path
in P, ;1 and then we can replace edge x in path p_,, with z. There are three possible results
for the consistency check on two branches:

1. p—.x consistent with either Py y; or Py »

2. p_.x consistent with both P and Py y»

3. p—x consistent with neither Py y; nor Py y»

Result 1 allows us to relate p_. to either Py 1 or Py, for an equivalent
transformation. Result 2 indicates that path p_,x does not provide us any valuable
information for assembling unless we can extend p_,x with another path(s) so that the new
path can be related to either Py i or Py y». Result 3 indicates that there is an error in P_x
that should be corrected.

In Figure 21, Path 2 is too short to tell us anything valuable since it is
consistent with both Path 1 and Path 3, unless we can merge Path 4 with Path 2 to

achieve the green dash Path 5 that is consistent with only Path 3.

Figure 21: Associating Path 2, 3, and 4 to determine path consistency

In Figure 22, due to an insertion error in fragment read #3, Path3 representing
28

the fragment cannot be related to either Path 1 or Path 2.

Figure 22: Fragment error leads to inconsistent Path 3

Compared to traditional pairwise overlap method, path system transformation
is a powerful method to resolve repeats for fragment assembly: for a target sequence
AGTTATCGCGCGAACTAAGGCC covered by three fragments ATCGCGCGAA,
AGTTATCGCG, CGCGAACTAAGGCC, the traditional method might assemble
AGTTATCGCG and CGCGAACTAAGGCC first with a greedy approach to get
AGTTATCGCGAACTAAGGCC and we lose the subsequence ATCGCGCGAA which
contains three occurrences (and not two) of CG. Alternatively, the initial graph system
for a de Bruijn graph with 5-tuples edge and three fragment reads can be illustrated by

Figure 23:

AGTT->GTTA—TTAT-TATC—ATCG -TCGC—CGCG == GCGC

GCGA—-CGAA—-GAAC—HAACT—-ACTA—-CTAA—-TAAG—-AAGG—AGGC

Figure 23: de Bruijn graph generated by the three fragments containing repeats

Most transformations are straightforward until there is a branch selection in
front of CGCG where it can move forward to GCGA or GCGC. We have an equivalent

graph system given in Figure 24:

29

AGTTATCGCG 2 GCGC

GCGA—-CGAA—-GAAC—HAACT—-ACTA—-CTAA—-TAAG—-AAGG—AGGC—-GGCC

Figure 24: Direct Transformation before encountering branches at the repeat location

In addition, the path AGTTATCGCG is consistent with both
ATCGCGCGAA and CGCGAACTAAGGCC, until we merge ATCGCGCGAA and
CGCGAACTAAGGCC to be ATCGCGCGAACTAAGGCC to resolve the double edge

between de Bruijn vertices CGCG and GCGC:

AGTTATCGCG—ATCGCGCGAACTAAGGCC

Figure 25: Delayed Branch Transformation resolves the repeats

Through this process, we get the final sequence: AGTTATCGCGCGAACTAAGGCC

4.3 Proposing Improvements on Euler Algorithms

In our approach, unlike the Euler Assembler that starts with error correction,
our algorithm performs error correction on the fly when needed during the traversal of the
graph. In other words, we postpone error correction and perform it only in need to
achieve better runtime efficiency. Our algorithm also tackles very long repeats, which is

achieved by incorporating statistical analysis in the Euler path traversals.

4.3.1 Traversal Approach for Euler Superpath

Given a set of fragments, we would like to reconstruct the target DNA. As is
done in the Euler Assembler, we construct all 20-tuples from all the fragments.
Conceptually, we have a graph whose edges are the 20-tuple sequences and the vertices

are the 19-tuple sequences.

30

Instead of using the graph system transformation approach to discover the
Euler Superpath, we traverse the de Bruijn graph according to fragment reads so that the
traversed path contains all fragment reads as subpaths. The steps to discover the Euler
Superpath are as follows:

1. Start traversal from a vertex v that does not have a predecessor; a regular
expression checks edges to find a list of such vertices. Each vertex with no
predecessor represents the beginning of a contig or an island in the de Bruijn
graph. Traversal continues until encountering a vertex that has more than one
outgoing edges available (branches) or a vertex that has no way out (end of the
contig). Due to repeats, an edge can be traversed multiple times.

2. There can be at most four choices in front of a branch vertex — A, T, C, and G.
When we encounter branches, we retrieve the fragment path subsets for each
branch, which consist of all fragments for each of the choices. We relate our
traversed path to branch path subsets and select the option whose path subset is
consistent with our traversed path.

For example, given three fragments for coverage one without error:
(1) AAGACGTAGA
(2) CTGACA

(3) CGTAGACT
We can construct the de Bruijn graph shown Figure 26.

31

Figure 26: de Bruijn graph for target sequence AAGACGTAGACTGACA

We start the traversal with vertex AA and reach vertex AC, which
corresponds to sequence AAGAC. From vertex AC we have three choices. At this
point we compare AAGAC to all three fragments. Because AAGAC is the prefix
of the first fragment, which is the one we choose. The next character in the first
fragment is G, consequently, the traversal now visits vertex CG. Traversal
continues until we reach the ending node CA and we get the target sequence
AAGACGTAGACTGACA.

Allowing traversal of an edge more than once can make the traversal end up in an
infinite circle. An ending circle in de Bruijn graph represents an ending repeat for
a sequence. To find out how many times we want to traverse the circle, we resort
to the fragment that contains the largest amount of repeats, or better still the
statistical analysis approach discussed later in this paper.

As we traverse the graph of Figure 27 and encounter AG for the second

time, we know it might be an ending cycle. Then we query all the fragments

32

containing the AG node and compare the fragments with existing traversed paths
to get the longest extension from the fragments. For example, we have
AAGACGTA and if the longest fragment extension for AG repeat is
GACGTAAGACGTAAGACGTA; by comparing our traversed path with the

fragment we know the ending cycle must be traversed one more time.

Figure 27: Same de Bruijn graph for sequences GACGTAAGACGTA and

GACGTAAGACGTAAGACGTA

4.3.2 Statistical Analysis for Perfect Long Repeat Assembly

Perfect long repeats are identical repeats longer than maximum fragment
reads (~1000 b). Using the traditional fragment overlapping approach or the Euler graph
system transformation for the Euler Superpath cannot restore them because all copies of
repeats will be collapsed to one.

Statistical analysis can provide us valuable insight to restore the target
sequence containing perfect long repeats. In the error correction section, we calculated
that the possibility for a tuple to have a multiplicity of three or less is about 2.5%, given a
set of fragments with average length 800 and coverage ten. Because the normal

distribution for binomial statistic approximation is a symmetrical bell shape, we can
33

deduce that under the same circumstances, the probability for a normal tuple to have a
multiplicity of eighteen or more, which is 2c larger than the expected value, is also about
2.5%. In other words, there is a 97.5% probability that the tuple is a two-fold repeat. For

a tuple on a two-fold repeat, the expected multiplicity is twenty since the coverage is

twenty due to the repeat and standard deviation o = \/ 20(1—-20/800) = 4.5. Therefore for

a tuple of multiplicity over twenty five, we are 84% sure that it is a three-fold repeat [19].
Applying the same rule, tuples with multiplicity over thirty six and forty seven are likely
to be a four-fold and five-fold repeats respectively. Based on the statistics, we tag each
edge in the de Bruijn graph with a “best traversal amount”. It would be best for our Euler
Superpath to traverse an edge as many times as the “best traversal amount” tagged to the
edge. There is a two-fold long perfect repeat intermixed with short repeats in the
following target sequence: AA GACGTAGACT GACGTAGACT GACA. Given
sufficiently random fragment coverage, we should have the de Bruijn table augmented

with a “best traversal amount” for each edge as shown in Figure 28:

Figure 28: de Bruijn graph supplemented with ““best traversal amount™ by statistical analysis

34

Our Euler Assembler can traverse the de Bruijn graph containing long perfect

repeats by applying the following steps:

1.

Start traversal from a vertex v that does not have a predecessor and count
the number of traversals on each edge

Resolve branch confusion according to consistency among traversed path
and fragment subset on each branch. Long perfect repeats have exactly
the same long repeats, so there should be no change on fragment subset
consistency.

If there is more than one choice consistent with existing traversed path at
a branch due to the confusion of perfect long repeat, randomly select one
choice to continue traversal.

Stop the traversal at a node that has no edge out or the outgoing edges
have been traversed “best traversal amount” of times.

For edges not traversed by sufficient amount of times according to “best
traversal amount”, backtrack to the nearest branch and redo branch
selection to traverse those edges to meet “best traversal amount”
requirement.

Resolving ending perfect long repeat is straightforward — traversing edges
in the cycle up to “best traversal amount” of times. The target sequence
for the de Bruijn graph in Figure 29 is AAGACGTAGACGTAGAC for a

two and a half folds perfect long ending repeat.

35

AAG 1 AGA3 GAC3

Figure 29: de Bruijn with statistical data uniquely determine target sequence

For the example in Figure 28, if the traversal by mistake goes by AAGACA,
our algorithm will backtrack to the last branch, at AAGAC, to redo the decision, because
a few edges are unvisited. The existing traversal on the last node CA does not need to be
abandoned, because the traversal still needs to go to CA after satisfying the “best
traversal amount” for some other edges. As a result, we can still get the following target
sequence containing perfect long repeat.

AA GAC|GTAGACT GACGTAGACT GACIA®

The target DNA sequence, AAGACGTAGACTGACAGACTGACC has
more complicated long repeats with slight differences among them, so the order of long
repeat matters. The fragment reads do not give us any clues on which one goes first,
because each of the repeats is longer than any fragment. In the Genetic Algorithm

section, we explore the problem of deciding the order of long repeats with slight

? Note: GACGTAGACT is long repeat not covered by any fragment, but GACGTA ahead of GACT should

hopefully be covered by some fragments.

36

differences, which is a common challenge for assembling target sequence containing

ALU repeats [8].

4.3.3 Postponed Error Correction

An important reason to perform error correction before assembly is that errors
will cause large quantity of false tuples that are translated to edges in a de Bruijn graph.
These false edges interfere with the Euler Superpath discovery at the assembly step. For a
sequencing project of 20% repeat rate, 4% error rate, using tuple size of twenty, the
quantity of solid and weak tuples are comparable to each other. Consequently, finding an
Euler path for the de Bruijn graph will be a serious problem because of the large amount

of false edges.

However, error correction can introduce new errors as we have discussed
previously. Also, the process of finding a unique neighbor for an orphan is time
consuming. Despite of the up to 97% success rate correcting error, we suggest postponing
the error correction process until it is necessary. We can drop all weak tuples from the de
Bruijn graph to attain a graph that is as clear as the graph after error correction.
Essentially for de Bruijn graph, Euler Error Correction removes all weak tuples and
increases the multiplicity of relevant solid tuples by one. For solid tuples, increasing
multiplicity by one does not make sense. For graph system transformation, the resolution
of each edge requires fragment set consistency check. This is another reason to have an
almost error free fragment set, because fragments need to be retrieved frequently at every

transformation. On the other hand, with the new traversal approach, the only time for

37

fragments referencing is to decide which branch to continue traversal. We can safely
ignore the potential errors implied by low multiplicity until the traversal encounters two
or more branches. Solving errors at location near branches are safer, because branches
imply repeats. In Figure 17, edge TGC is in front of three branches, indicating TGC will
be repeated three times. The fragment coverage at repeat region is twice or more than the
average coverage, though we still need threshold parameter A to retain the difference
with repeat with low coverage. Statistically, 2.5% of the weak tuples are from the low
coverage region due to random fragment generation. By limiting our error correction only

to fragments necessary for traversal, we protect fragments of low coverage

38

4.4 Existing GA for DNA Fragment Assembly

Genetic algorithms are heuristic techniques that can be used to tackle the DNA
Fragment Assembly problem. General steps applying genetic algorithm are as following:

1. The algorithm randomly generates a pool of solutions.

2. It screens for superior solutions with a fitness function.

3. Mutation and crossover operations are performed on good solutions to create

next generation solutions.

It is believed that solutions evolve better for the DNA Fragment Assembly
problem from one generation to the next. Having a random initial population, an
appropriate fitness function, and suitable mutation and crossover operations allow the
genetic algorithm to converge to good solutions for the DNA Fragment Assembly
problem.

Each fragment is represented by a number or ID. A solution for fragment
assembly is represented by a permutation of the fragment number. The fitness function in
Equation 3 was used for most genetic algorithms for DNA fragment assembly [21]:

n-2
Hio= iZ:O:Wf[i]’f[m] (Equation 3)
where wyip gi+1] 1S the pairwise overlap strength of fragment i and i+1. Overlap strength
can be computed with dynamic programming for minimum edit distance, string
alignment, or shortest common superstring of the two fragments. The obvious problems
for the fitness function are errors and repeats. Moreover, a pair with best overlapping

scores might not be a pair contributing to the assembly most: for example fragment pair
39

ATTGCTCGCT and TGCTCGCTAA scores better than fragment pair ATTGCTCGCT and
TCGCTAACCGTA, but the former pair indeed is closer to the optimal fragment assembly
solution. Due to its efficiency and adequacy, this fitness function continues to be used. It
takes O(n) time to evaluate each individual solution for fragment set of size n [22].

In Equation 4, the fitness function extends the previous fitness function by
adding a penalty to solutions that separate overlapping fragments distantly. The cost of
the addition increases the complexity to O(n?) for each solution evaluation, while it still
fails to address the fundamental loopholes mentioned previously.

F2(1)= ZZ| = J W0
(Equation 4)
Two types of operations are used to evolve solutions from one generation to another —
Crossover and Mutation.

For crossover, the genetic algorithm exchanges small portions between two
solutions to encourage good partial solutions to flourish in different individuals. The
example in Figure 30 illustrates order crossover for two assembly solutions at seventh
position. The first two positions are changed correspondingly since Fragment 7 is moved

to the crossover section; Fragment 1 is pushed up and Fragment 5 is added to the front.

17 8364 | 295

> 518364 972
64 53811972

Figure 30: Crossover for two solutions of DNA fragment assembly

Edge-recombination crossover better suits DNA Fragment assembly by
preserving valuable adjacencies. Given the same two parent solutions above, we can

deduce an adjacency list for edge-recombination:
40

Fragment Adjacent Fragments
7,89
49,7
8,6,5,8
6,2,6,5
9,4,3
3,44
1,8,9,2
7,3,3,1
2,5,1,7

Figure 31: Edge-recombination crossover to preserve fragment adjacency

O 03NN N =

The recombination starts from the Fragment 1, and then takes Fragment 8 due
to its shared adjacency Fragment 3. Following Fragment 3 is Fragment 6 for shared
adjacency Fragment 4. Fragment 2 is the next to select because it has more unselected
adjacency. Applying the same rule the rest of the solution is Fragment 9, Fragment 7, and
lastly Fragment 5. 18364975 is the resulting edge-recombination crossover child. For
fragments with equivalent qualification during crossover process, arbitrary selection can
be made. To explore nearby search space, the mutation performs elemental changes on an
individual solution. Some previously eliminated solutions could be restored to the
solution pool to contribute to further solution generation. Three kinds of mutations can be
applied for fragment assembly solutions:

1. Swapping fragment number at two random positions in a solution. For example,
swapping the first and the last fragments for solution 18364975 produces
58364971.

2. Swapping two adjacent fragments in a solution to achieve better fitness score.

3. Randomly selecting two fragments and moving one next to another for a better

fitness score [23].

41

4.5 New GA for Fragment Coverage Restoration

We would like to propose a new genetic algorithm aiming at restoring all m
layers of fragments given a fragment set with coverage m. Our genetic algorithm
completely abandons the overlapping method to connect two or more fragments together.
Instead, we think fragments should be concatenated to one another, because during
random fragment creation multiple copies of the target sequence are randomly cut to

fragments without any overlapping among fragments from the same copy.

4.5.1 Solution Generation

For a fragment set of size n and coverage m, a quick solution is to retrieve
n/m fragments from the fragment set and concatenate the fragments in a certain order to
form a superstring. Given a fragment set, we should be able to know the total nucleotide
bases in it as well as the coverage. We can estimate the target sequence length by
dividing the total nucleotide bases by the coverage. The length of a proposed sequence
solution should have less than 10% difference from the estimated length.

The solution generation does not need to be random: we can start with a long
fragment because we want to select a good successor and predecessor. For a fragment set
with high coverage especially at repeat region, we might frequently have to decide which
fragment to choose as next successor or predecessor from several candidates while only
one is from the same layer as the current fragment. Also, we need to take into

consideration that some nucleotide bases might be missing.

42

ATCGGACTGACACACACAGCCTTAGGACTCG
CGGTCAGATCGGACTGACACA
(current fragment) CACAGCCTTAGGACTCG (alternatives)
CAGCCTTAGGACTCG
CACACAGCCTTAGGACTCG
GCCTTAGGACTCG

Figure 32: Solution generations by hints from overlapping fragments

4.5.2 Fitness Function

The fitness function lays fragments on a specific position of the proposed
solution to restore all layers of coverage. Repeats covered by fragments read will be
resolved during fragment layout determination, because only one layout is correct to
restore all fragments layers covering the repeat region. The complexity is still O(n) for
individual solution fitness evaluation because all it does is to find the suitable position on
the solution superstring according to pattern matching between solid tuple representations
for fragments and a proposed sequence solution. The fitness function is capable of
dealing with most errors and repeats. Meanwhile, the fitness function rewards good
partial solutions to approach fragment assembly solution quickly.

Several merits of the innovative fitness function deserve further elaboration:
the goal of the fitness function is to restore the original m coverage; laying out a fragment
according to a proposed solution is to find a location to place the fragment on the
proposed solution. If the proposed solution is correct, all fragments are placed in the
correct location on the solution. Consequently, the fitness function must be able to restore
all m layers of fragments covering the target sequence. For each of the m layers, there is

no overlapping at all; thus, during restoration of coverage, no fragment are overlapped —

43

we only permutate the fragments to form layers of coverage. The same rule applies to the
creation of the solution superstring; the new fitness function here is even capable of

solving long perfect repeats.

4.5.3 Operations

Any operation must maintain the integrity of fragments. Because each
solution is only using a subset of all available fragments, two solutions for crossover
might be totally different from one another, which makes exchanging small portions

among solutions straightforward.

17 8364 | 295

> 17 gchij 972

ef gchij | klm

Figure 33: Crossover on solutions not sharing fragments

For two solutions sharing the same fragments affected by the crossover, the

affected position(s) should perform the crossover too.

17 8364 | 29i

> 17 gchij 97m

ef gchij | klm

Figure 34: Crossover on solutions sharing fragments

Some regions of the solution might be capable of restoring all m layers of
fragment, so the partial solution of those regions should certainly be retained with Edge-
recombination crossover. During fitness measurement, we can use the adjacency between
two fragments according to the number of fragment layers that the fitness function can
restore on top of the region.

Six kinds of mutations can be applied for fragment assembly solutions:

44

1. Swapping fragments at two random positions in a solution.

2. Swapping two adjacent fragments in a solution to achieve better layer

restoration.

3. Randomly selecting two fragments and moving one next to the other for a

better fitness score.

4. Replacing a certain fragment in the solution with another fragment in the

fragment set.

5. Replacing a certain fragment with its reverse complement.

The frequency of performing crossover and mutation are controlled by the
crossover rate and the mutation rate, respectively. Setting a high rate for these operations
might overlook good solutions distancing the final regression of genetic algorithm away
from optimal solution. On the contrary, low operation rates slow down the progress of a
genetic algorithm towards optimal solution leading to runtime inefficiency. A wise design
for genetic algorithm is setting variable operation rates — a high rate at the beginning
when solutions are far from being optimal, and a low rate at the end to fine tune final

solutions.

45

4.6 Combining Euler and Genetic Algorithms

Using the genetic algorithm alone to figure out the blueprint of target
sequence to restore all layers of coverage can be time consuming. On the other hand,
Euler algorithms assemble most of the fragments correctly in polynomial time, though
they cannot determine the order of long perfect repeats with slight differences. We can
base our genetic algorithm’s coverage restoration on de Bruijn graph. Combining these
two algorithms can help us achieve more efficient runtime and assembly results that are

closer to optimal.

Our Euler Genetic Hybrid algorithm starts from generating a de Bruijn graph
with all solid tuples from the fragment set including original fragments and their reverse
complements. Then, statistical analysis is performed on tuple multiplicity to drop the
tuples with low multiplicity. Next, path traversal starts from the head of each contig,
which is a head tuple of a fragment with no predecessor in the de Bruijn graph. Coverage
restoration begins where Euler Path Traversal encounters branches or more than one
option to continue. Traversal or the assembly process terminates when the expected
length is met or no more fragments can be used for coverage restoration. In summary, our

algorithm has the following modules:
1. de Bruijn graph generation
2. Target sequence length estimation

3. Euler Path traversal on solid de Bruijn tuples

46

4. Coverage Restoration

5. Termination

Coverage restoration can help us decide the order of long perfect repeats
containing slight differences, because only one order of the long repeat can ensure
fragments adjacency match for all layers. If we change the order of long repeat with
slight difference in Figure 35, the fragments at the end will have to switch position with

fragments at the front as well, which breaks the fragment adjacency among layers.

ATTCGGTGCAAACTACAGCTAAGGGCTTATTCGGTGCAAACTTCGGCTAAGGGCTT

Figure 30: Determining the order of long repeats by adjacency

47

5. Fragment Assembler Design and Implementation

5.1 An lllustrative Example

Given an original sequence,
gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaaatacta

Figure 36 shows the fragments to assemble with coverage of five and fragment IDs

starting from 0 according to the order we read from file:

Fragment FragmentliD
gctagctgcaagtcagttactgagttaagtta 0
ttatttagttaatactttaacaatattat 1
tacggtatttaaaaaatacta 2
gctagctgcaagtcagttaactgagttaagttagtattta 3
gttaatacttttaacaatattattaaggtattttaaaaaatacta 4
gctagctgcagtcagttaactgagttaa 5
gttattatttagttaattactttta 6
acaatattattaaggtatttaaaaatacta 7
gctagctgcaagtcatttaactgagttaagttattatttagttaatactt 8
ttaacaatattattaaggtatttaaaaaatacta 9
gctagctgcaag 10
tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa 11
ggtatttaaaaaatacta 12

Figure 36: Fragment set for Assembly

Fragments are read into the Fragment table with an ID as the primary key and the
fragments themselves as the index. Our assembly program chops the fragments into

tuples of length 15 with a sliding window approach as shown in Figure 37:

48

gctagctgcaagtcagttactgagttaagtta ->

gctagctgcaagtca,
ctgcaagtcagttac,
agtcagttactgagt,
tcagttactgagtta,

tactgagttaagtta

ctagctgcaagtcag, tagctgcaagtcagt, agctgcaagtcagtt, gctgcaagtcagtta,
tgcaagtcagttact, gcaagtcagttactg, caagtcagttactga, aagtcagttactgag,
gtcagttactgagtt,

cagttactgagttaa, agttactgagttaag, gttactgagttaagt, ttactgagttaagtt,

Figure 37: Retrieving tuples from a fragment with the sliding window approach

All the tuples are input to a MySQL database with the following fields:

multiplicity (the number of occurrences in the fragment set)

the fragment IDs of the fragments containing the tuple

TuplelD starting from 0 according to the order each tuple is read
PredecessorIDs as the immediate tuple ahead of the current tuple

SuccessorIDs as the immediate tuple behind the current tuple

TuplelD Tuple Multiplicity FragmentlIDs PredecessorlDs SuccessorDs|
0 gctagctgcaagtca 3 0,3,8 1,1,122
1 ctagctgcaagtcag 2 0,3 0,0 2,2
2 tagctgcaagtcagt 2 0,3 1,1 3,3
3 agctgcaagtcagtt 2 0,3 2,2 4,4
4 gctgcaagtcagtta 2 0,3 3,3 5,40
5 ctgcaagtcagttac 1 0 4 6
6 tgcaagtcagttact 1 0 5 7
7 gcaagtcagttactg 1 0 6 8
8 caagtcagttactga 1 0 7 9
9 aagtcagttactgag 1 0 8 10
10 agtcagttactgagt 1 0 9 11
11 gtcagttactgagtt 1 0 10 12
12 tcagttactgagtta 1 0 11 13

49

TuplelD
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

a4

Tuple
cagttactgagttaa
agttactgagttaag
gttactgagttaagt
ttactgagttaagtt
tactgagttaagtta
ttatttagttaatac
tatttagttaatact
atttagttaatactt
tttagttaatacttt
ttagttaatacttta
tagttaatactttaa
agttaatactttaac
gttaatactttaaca
ttaatactttaacaa
taatactttaacaat
aatactttaacaata
atactttaacaatat
tactttaacaatatt
actttaacaatatta
ctttaacaatattat
tacggtatttaaaaa
acggtatttaaaaaa
cggtatttaaaaaat
ggtatttaaaaaata
gtatttaaaaaatac
tatttaaaaaatact
atttaaaaaatacta
ctgcaagtcagttaa
tgcaagtcagttaac
gcaagtcagttaact
caagtcagttaactg

aagtcagttaactga

Multiplicity
1

1

FragmentiDs
0

0

2,9,12
2,9,12
2,9,12

2,9,12

PredecessorlDs

12

13

14

15

16
,147,147
18,18,18
19,19,19

20,20

21

22

23

24

25

26

27

28

29

30

31

33
34
35,149
36,36,36
37,37,37
38,38,38
4

40

41

42

43

SuccessorlDs
14
15
16

17

19,19,19
20,20,20
21,21
22,150
23
24
25
26
27
28
29
30
31

32

34

35

36
37,37,37
38,38,38

39,39,39

41
42
43
44

45

50

TuplelD
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

76

Tuple
agtcagttaactgag
gtcagttaactgagt
tcagttaactgagtt
cagttaactgagtta
agttaactgagttaa
gttaactgagttaag
ttaactgagttaagt
taactgagttaagtt
aactgagttaagtta
actgagttaagttag
ctgagttaagttagt
tgagttaagttagta
gagttaagttagtat
agttaagttagtatt
gttaagttagtattt
ttaagttagtattta
gttaatacttttaac
ttaatacttttaaca
taatacttttaacaa
aatacttttaacaat
atacttttaacaata
tacttttaacaatat
acttttaacaatatt
cttttaacaatatta
ttttaacaatattat
tttaacaatattatt
ttaacaatattatta
taacaatattattaa
aacaatattattaag
acaatattattaagg
caatattattaaggt

aatattattaaggta

Multiplicity
2

2

FragmentiDs

3,5
3,5
3,5,11
3,5,11
3,5,11
3,11
3,8,11
3,8,11

3,8,11

PredecessorlDs
44,100
45,45
46,46
47,47 ,47
48,48,48
49,49
50,136,50
51,51,51
52,52,52
53
54
55
56
57
58
59
,152
61,61
62,62
63,63
64,64
65,65
66,66
67,67
68,68
69,69
70,70
71,71,71
72,72
73,73
74,74,74

75,75,75

SuccessorlDs
46,46
47,47

48,48,48
49,49,49
50,50
51,51
52,52,52
53,53,53
54,137,137
55
56
57
58
59

60

62,62
63,63
64,64
65,65
66,66
67,67
68,68
69,69
70,70
71,71
72,72,72
73,73
74,74
75,75,75
76,76,76

77,77,77

51

TuplelD
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108

Tuple
atattattaaggtat
tattattaaggtatt
attattaaggtattt
ttattaaggtatttt
tattaaggtatttta
attaaggtattttaa
ttaaggtattttaaa
taaggtattttaaaa
aaggtattttaaaaa
aggtattttaaaaaa
ggtattttaaaaaat
gtattttaaaaaata
tattttaaaaaatac
attttaaaaaatact
ttttaaaaaatacta
gctagctgcagtcag
ctagctgcagtcagt
tagctgcagtcagtt
agctgcagtcagtta
gctgcagtcagttaa
ctgcagtcagttaac
tgcagtcagttaact
gcagtcagttaactg
cagtcagttaactga
gttattatttagtta
ttattatttagttaa
tattatttagttaat
attatttagttaatt
ttatttagttaatta
tatttagttaattac
atttagttaattact

tttagttaattactt

Multiplicity
3

3

FragmentiDs

4,7,9

6,8,11
6,8,11

6,8,11

PredecessorlDs
76,76,76
77,77,77
78,78,78

79
80
81
82
83
84
85
86
87
88
89

90

92
93
94
95
96
97
98
99
,146,146
101,101,101
102,102,102
103
104
105
106

107

SuccessorlDs
78,78,78
79,79,79

80,112,112
81
82
83
84
85
86
87
88
89
90

91

93
94
95
96
97
98
99
100
45
102,102,102
103,103,103
104,147,147
105
106
107
108

109

52

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

ttagttaattacttt
tagttaattactttt
agttaattactttta
ttattaaggtattta
tattaaggtatttaa
attaaggtatttaaa
ttaaggtatttaaaa
taaggtatttaaaaa
aaggtatttaaaaat
aggtatttaaaaata
ggtatttaaaaatac
gtatttaaaaatact
tatttaaaaatacta
ctagctgcaagtcat
tagctgcaagtcatt
agctgcaagtcattt
gctgcaagtcattta
ctgcaagtcatttaa
tgcaagtcatttaac
gcaagtcatttaact
caagtcatttaactg
aagtcatttaactga
agtcatttaactgag
gtcatttaactgagt
tcatttaactgagtt
catttaactgagtta
atttaactgagttaa
tttaactgagttaag
actgagttaagttat
ctgagttaagttatt
tgagttaagttatta
gagttaagttattat

agttaagttattatt

108
109
110
79,79
112,112
113,113
114,114
115,115
116
117
118
119
120
0
122
123
124
125
126
127
128
129
130
131
132
133
134
135
53,53
137,137
138,138
139,139

140,140

110

111

113,113
114,114
115,115
116,116
117,148
118
119
120

121

123
124
125
126
127
128
129
130
131
132
133
134
135
136
51
138,138
139,139
140,140
141,141

142,142

53

TuplelD Tuple Multiplicity FragmentlIDs PredecessorliDs SuccessoriDs
142 gttaagttattattt 2 8,11 141,141 143,143
143 ttaagttattattta 2 8,11 142,142 144,144
144 taagttattatttag 2 8,11 143,143 145,145
145 aagttattatttagt 2 8,11 144,144 146,146
146 agttattatttagtt 2 8,11 145,145 101,101
147 attatttagttaata 2 8,11 103,103 18,18
148 aaggtatttaaaaaa 1 9 116 149
149 aggtatttaaaaaat 1 9 148 36
150 ttagttaatactttt 1 11 21 151
151 tagttaatactttta 1 11 150 152
152 agttaatacttttaa 1 11 151 61

Figure 38: de Bruijn Tuples generated from the give fragment set

Before traversal starts, the assembler has a rough estimation of target
sequence length by the following procedure:

1. Adding up the sum of all fragment lengths in the fragment table
2. Dividing the sum by two for reverse complement
3. Dividing the output of the previous step by coverage.

In the illustrative example, there is no reverse complement. The sum of all
fragment lengths is 419, which is divided by the coverage five to get estimated sequence
length eighty three. The terminating condition would be

1. Traversed path is longer than 105% of estimated length (eighty-six for our

example)

2. Cannot resolve branch at a certain position

3. Traversed path longer than restored coverage at all layers. For coverage

of five, there are five layers to restore.

54

Euler path traversal starts with the Tuple field that has no Predecessor field
and a Multiplicity field larger than one as a solid tuple. In our example, traversal starts at
Tuple 0 — gctagctgecaagtca. From the database, the assembler knows immediately the next
tuple is either Tuple 1 or Tuple 122, so traversal encounters a branch to resolve.
However, Tuple 122 has a multiplicity of one that indicates most likely it is caused by
error. Traversal continues on Tuple 1 — gctagctgcaagtcag. Traversal is straightforward
until the assembler arrives at Tuple 4, gctagctgcaagtcagtta, where the successor can be
either Tuple 5 or Tuple 40, both with a multiplicity of one. At this location, coverage
restoration starts.

For coverage restoration, the assembler begins with tuple gctagctgcaagtca to
withdraw fragments — Fragment 0, Fragment 3, and Fragment 8 in the Fragment Table —
containing the beginning tuple. The assembler applies the dynamic string alignment

algorithm to align the existing traversed path with the three fragments as shown in Figure

39.

gctagctgcaagtcagtta Traversed Path
gctagctgcaagtcagttactgagttaagtta Fragment O at Coverage Layer 1
gctagctgcaagtcagttaactgagttaagttagtattta Fragment 3 at Coverage Layer 2
gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Fragment 8 at Coverage Layer 3

Figure 39: Initial coverage restoration

By the majority rule, the assembler moves on to ctgcaagtcagttaa or Tuple 40
for the next tuple. The successor of Tuple 40 is Tuple 41, which is another weak tuple, so
the assembler refers to the restored coverage layers to decide the next tuple. Again with

the majority rule, Tuple 41 is the right choice. Traversal continues until Tuple 53,

55

gctagctgeaagtcagttaactgagtta, where traversal jumps to Tuple 137 because Tuple 54 is
weak. Continuing from Tuple 137 to Tuple 146, the path is
gctagctgeaagtcagttaactgagttaagttattatttagtt. At tuple 147, traversal goes to Tuple 101,
Tuple 102, Tuple 103, Tuple 147, Tuple 18, Tuple 19, Tuple 20, and Tuple 21
gctagctgeaagtcagttaactgagttaagttattatttagttaatacttt, where the successor can be Tuple 22
or Tuple 150. Here coverage restoration starts again. Restoration starts from the first
layer, beginning with tuple gctagctgcaagtcagtta, and three fragments available for

alignment as shown in Figure 40:

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt Traversed path Length 51
gctagctgcaagtcagttactgagttaagtta Fragment O Length 32
gctagctgcaagtcagttaactgagttaagttagtattta Fragment 3 Length 40
gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Fragment 8 Length 50

Figure 40: Available fragments for restoration at the beginning of Layer 1

The assembler aligns each of these fragments with the traversed path. The
traversed path is significantly longer than Fragment 0, so the assembler uses the
beginning portion of the traversed path — the first thirty-eight nucleotides for alignment or
length of Fragment 0 plus six. Because there are six more nucleotides in the traversed
path, the actual alignment score for Fragment 0 should be six insertion-scores less than
the alignment-score of the first thirty-eight nucleotides of the traversed path and
Fragment 0. The six extra nucleotides are to tolerate some insertions for the fragment.
The error rate of alignment is the sum of insertion (excluding the extra length), deletion
for alignment, and the difference between fragment and traverse path divided by the

fragment length. The assembler does not use a fragment for restoration at a layer position

56

if the error rate is two times higher than the overall error rate in a fragment set. This logic

is to prevent long fragments from achieving a high score by length in spite of errors.

gctagctgcaagtcagtta ctgagttaagtta Fragment O
gctagctgcaagtcagttaactgagttaagttattatt beginning of traversed path
gctagctgcaagtcagttaactgagttaagttagtattta Fragment 3
gctagctgcaagtcagttaactgagttaagttattatttagttaata beginning of traversed path
gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Fragment 8
gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt traversed path

Figure 40: Aligning fragments with traversed path

Among the fragments that are suitable for coverage restoration at a layer
position, the fragment with highest score is selected. The traversed path is most likely to
be correct because the assembler only traverses solid tuples or resolves branches by
majority rule. So, for Layer 1, Fragment 8 has the highest score. The fragment selection
for coverage restoration is based on the indexed tuple. After aligning Fragment 8 at Layer
1, there is only one nucleotide left that is shorter than a tuple, so restoration stops at the
fiftieth nucleotide for Layer 1. Note that the Fragment table has a Consumed field to
record whether a fragment’s position has been determined, with 1 for permanently
determined and 2 for temporarily determined. Fragment 8 is marked Consumed=1, so that
future restoration cannot use this fragment. For Layer 2, restoration stops after the
alignment of Fragment 3. For Layer 3, after the alignment of Fragment O the restoration
continues with Tuple 18 ttatttagttaatac.

From the de Bruijn table, Fragment 1, Fragment 8, and Fragment 11 contain

Tuple 18. The assembler retrieves Fragment 1, Fragment 8, and Fragment 11 to align

57

with the rest of the traversed path ttatttagttaatacttt at Layer 3.

gctagctgcaagtcagtta ctgagttaagtta

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt

ttatttagttaatacttt Remain of traversed path
ttatttagttaatactttaacaatattat Fragment 1
gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Fragment 8
tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa Fragment 11

Figure 41: Aligning fragments with partial traversed path

For the alignment, the Fragment length is much longer than the rest of the
path, so the assembler aligns the beginning of the Fragment with the rest of the traversed
path. For Fragments 8 and Fragments 11, Tuple 18 is in the middle of the fragments.
Fragments 8 and Fragments 11 cannot be used for Layer 3 restoration because by
definition, a layer excludes overlap. Thus Fragment 1 is used for coverage restoration at
Layer 3 following Fragment 0. Restoration at Layer 3 stops because the length of Layer 3
is longer than the traversed path. Fragment 1 is marked Consumed = 2 because it is
temporarily aligned at the current position — as the traversed path extends later on, there
can be other suitable fragments to align at the current position of Fragment 1 at Layer 3.

The current restoration is shown in Figure 42:

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt Traversed Path
gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Layer 1
gctagctgcaagtcagttaactgagttaagttagtattta Layer 2
gctagctgcaagtcagtta ctgagttaagttattatttagttaatactttaacaatattat Layer 3

Figure 42: Coverage restoration for the first three layers

There are five layers for a fragment set of coverage five. For the fourth layer,

there are no more fragments containing first tuple gctagctgcaagtca, so the assembler tries

58

the next tuple in the traversed path in a slide window approach until there are fragments
with Consumed=0. At Tuple 45 or agtcagttaactgag, Fragment 5 is an available fragment
for Layer 4. Restoration continues at Layer 4, on Tuple 101 or gttattatttagtta, with

available Fragment 6 and Fragment 11. Fragment 6 is temporarily selected for Layer 4.

Similarly for Layer 5 restoration, the restoration of all five layers is shown in Figure 43:

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt Traversed Path
gctagctgc agtcagttaactgagttaa Layer 4
gttattatttagttaattactttta Fragment 6
tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa Fragment 11
gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt Traversed Path
gctagctgc agtcagttaactgagttaagttattatttagttaatactttta Layer 4
gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt Traversed Path
gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Layer 1
gctagctgcaagtcagttaactgagttaagttagtattta Layer 2
gctagctgcaagtcagtta ctgagttaagttattatttagttaatactttaacaatattat Layer 3
gctagctgc agtcagttaactgagttaagttattatttagttaatactttta Layer 4
tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa Layer 5

Figure 43: Coverage restoration for all five layers

From the restored layers, the assembler moves to Tuple 150 or ttagttaatactttt. Due to the
weak multiplicity of Tuple 151 and Tuple 152, the assembler continues to rely on
restoration for path traversal until Tuple 61.Traversal continues until Tuple 116, where

the traversed path is

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaa

59

Restoration starts again. Each time restoration starts, the assembler sets fragments with
Consumed = 2 back to 0 because those fragments are partially aligned with traversed path
and might be adjusted to another position for better alignment with a longer traversed
path. Figure 44 shows the beginning of restoration with temporarily aligned fragments in

last restoration removed and a longer traversed path:

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaa

Traversed Path

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Layer 1
gctagctgcaagtcagttaactgagttaagttagtattta Layer 2
gctagctgcaagtcagtta ctgagttaagtta Layer 3
gctagctgc agtcagttaactgagttaa Layer 4

Layer §

Figure 44: Continue restoration with temporarily aligned fragment removed

Following the same logic, the restoration ends as shown in Figure 45.

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaa

Traversed Path

gctagctgcaagtcatttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaaatacta
Layer 1

gctagctgcaagtcagttaactgagttaagttagtatttagttaatacttttaacaatattattaaggtatttaaaaaatacta
Layer 2

gctagctgcaagtcagtta ctgagttaagttattatttagttaatacttt aacaatattat
Layer 3

gctagctgc agtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaatacta
Layer 4

tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa

Layer 5

Figure 45: Coverage restoration for a longer traversed path

60

Again, by majority rule traversal continues on Tuple 148, Tuple 149, Tuple 36, Tuple 37,

Tuple 38, and finally ends at Tuple 39.

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaaatacta

This is an exact match for the original sequence.

5.3 Complexity Analysis

We define n as the total amount of nucleotide bases in the fragment set. The
runtime complexity for the insertion of fragments into the fragment table is O(2In+Kn).
For each fragment, the corresponding reverse complement is calculated for insertion as
well. K is the time constant for reverse complement calculation. | is the time constant for
database insertion. The creation of the de Bruijn table is O(Mn), where M is the time
constant for seeking predecessors and successors of a tuple. Fragment table has fragment
ID as the primary key. De Bruijn table has the TuplelD as primary key and Tuple as
index. Before insertion of a tuple, existence of the tuple is checked: if the tuple exists,
update; otherwise insert. The dynamic fragment alignment algorithm has O(Ln), where
L is the average fragment length. Thus the overall runtime complexity is O(n). The space

requirement for the assembler is also O(n).

61

5.4 Program Architecture

All core operations are programmed in C to achieve good runtime
efficiency and then encapsulated with C++ classes for an object-oriented design. The
MySQL DBMS is used for data storage. The development platform is Visual C++ NET

Windows XP because of the debugging aid of runtime checking.

Windows xXF
__,—o—_____‘—\—\.
. - _
MySaL MySCQL %
Database FProcessar
Fragment
Reader
T DM A,
Fragment
Assembler
Path Traversal

Figure 46: Deployment diagram for implemented assembler

There are three C++ classes for assembly algorithm implementation:
MySQL Processor, FragmentReader, and Restorer. The MySQL_Processor class
encapsulates all operations required to communicate with the MySQL database. The

FragmentReader class imports fragments from an input file, calculates the reverse

62

complement of each fragment, and creates the fragment table and the de Bruijn table. The

Restorer class traverses the Euler path and restores fragment coverage.

Restorer

MySQL_Processor mysqgl_processor;
-FILE *fp1:

-int pathLength;

-char *pPath;

-char **pCoverageRestoration;

-int layerSizes[10];

-int layerRestoreStarts[10];

-double errorRate;

-int insertionScore;

-int agreementScore;

-int differenceScore;

+int checkConsumable(double actualAlignLength, double insertAmount, double agreeAmount, double diffAmount, double removefimount, int diffLocations(]);
+int *extractlDs(char *str, int strLength, int *idAmount, char *token);

+int getScore(int a, int b);

+char maxInt(int scoreDiff, int scorelnsertFragment, int scorelnsertBlueprint, int *m);

+void traverseAndRestore(DEBRUIJN_ROW *edge, int coverage, int rc);

+DEBRUIJN_ROW **getNextEdges(char "currentEdge, int *nextEdgeAmount);

+int restoreCoverage(int coverage);

+int alignFittestFragment(STR_INT “*strintResults, int strAmount, int coveragelayerindex, int subPathStartindex, char *tuple);
+int resolveBranches(int coverage);

+void outputAndCleanTraversal()

+int findMaxIdxInArray(int ary[], int size);

+int calculateTargetLength(int coverage, int rc);

+char **alignFragments(char *fragment, char *blueprint, int fragLength, int blueLength, int *score, int *insertAmount, int *agreeAmount, int *diffAmount, int “remo
+int getCScore(char a, char b);

+char majorityChar(int index, int coverage);

Responsibilities

-- Euler Path Traversal
- Coverage restoration

MySQL_Processor FragmentReader

-MYSQL *sock; -MySQL_Processor mysql_processor;

-char *table_name; -int tuplelD;

-char *table_structure -char *table_name;

-char *pFragments; -char table_structure[1000];

-int fragAmount; -char *dbinsertBuffer[DB_INSERT_BUFFER_SIZE];
-int_insertedFragAmount; -int getTuplelDinFragment(char *pTupleHead);
+MySQL_Processor(char *tn, char *s); +FragmentReader();

+MySQL_Processor(); k— +virtual ~FragmentReader();

+virtual ~MySQL_Processor(); +void importFragment(char *filename);

+void setTableName(char *tn); +void createDeBruijnTable();

+void setTableStructure(char *ts); +void populateDeBruijnTable();

+void printinfo(); +void exportFragments(char *filename);

+void renewDBTable(); +char "reverseComplement{char *fragment);
+void updateTable(char *query); +void setBestTraversalAmount();

+void setFragment(char™ fragments, int fa); +void dropWeakTuples(int threshold);

+void insertFragmentToDB(); +void insertFragmentToDeBruijnTable{char *fragment, ir
+DEBRUIJN_ROW **queryDeBruijnRowFromDB(char *query, int *resultSize, int fragmentSize) Responsibilities

+char **queryFragmentFromDBi{char *guery, int *resultSize, int fragmentSize); ~ Calculate reverse complement

+char *“queryStrFromDB(char *query, int "resultSize, int stringSize); - Insert Fragment to database

+int getFragAmount(); -- de Bruijn tuple creation

+int **queryNumberFromDB(char *guery, int “resultSize, int fragmentSize);

+int **queryIntFromDB(char *query, int “resultSize);

+STR_INT **gueryStrintFromDB(char *guery, int *resultSize, int fragmentSize);

Responsibilities

-- Data communication with MySQL

Figure 47: Class diagram for implemented assembler

63

5.5 Database Schema

The Fragment Table has three columns — FragmentID, Fragment, and
Consumed. Fragment ID starts with 0, fragments with even-numbered IDs are original
fragments from an input file. A fragment with an odd-numbered ID is the reverse
complement of the fragment with an even-numbered ID immediately preceding the odd
number. For example, a fragment with ID 0 and a fragment with ID 1 are the reverse
complements of each another. The Consumed column signals the state of a fragment in
coverage restoration: 0 for available to use, 1 for permanent used for restoration, and 2

temporarily used for restoration.

FragmentID Fragment Consumed
(Type:int) (Type: varchar) (Type: int)
(Primary Key) (Secondary Key)

Table 2: Fragment Table structure

The deBruijn Table contains all solid tuples generated by fragments with the
sliding window approach. An ID is associated with each Tuple for fragment encoding.
The Multiplicity field records the number of occurrences of a tuple in the fragment set for
statistical analysis. Tuples with Multiplicity less than a threshold are not traversed by the
Euler path. The FragmentIDs column of a tuple concatenates all fragment IDs of the
fragment that contains the tuple. FragmentIDs column speeds up fragment layout during
coverage restoration —relevant fragments containing a tuple can be retrieved quickly.
PredecessorIDs column concatenates Tuple IDs preceding a tuple. SuccessorIDs column

concatenates TuplelDs following a tuple.

64

Tuple ID | Tuple Multiplicity | FragmentIDs | PredecessorIDs | SuccessorIDs
(Type:int, | (Type: 20- | (Type:int) | (Type: (Type: varchar) | (Type:
Secondary | character- varchar) varchar)
Key) string) (Foreign keys

(Primary separated by

Key) 2)

Table 3: deBruijn Table structure

Figure 52 illustrates the entity relationship between de Bruijn table and Fragment table.

Fragment

fragment

fragmentID

tuple

i

fragmentIDs

!

PredecessorlDs

Tuple

Figure 48: Entity-relationship models between deBruijnTable and FragmentTable

65

6. Test and Result

The assembly program has been tested with a section of the TIGR. GMG
sequence modified that contains a two-fold long repeat. Each fold is about 1600 bases
long with slight differences among the folds. The original sequence is 3275 bases long.
The sequence is then mutated with GenFrag to have 1.98% error rate and the coverage of
ten. The output of the assembly is a sequence 3264 nucleotide-bases long.

Only four mistakes were found in the output:
1. One insertion of twenty nucleotide bases
2. Two deletion of fifteen nucleotide bases
3. One deletion of one nucleotide base.

The test is performed on a computer equipped with Intel® Core 2 Duo CPU
2.00 GHz and 1.99 GB of RAM. It takes fifty minutes to load the 30K fragment set into
the MySQL database. On the other hand, it takes only five minutes to finish Euler path

traversal and Coverage Restoration for the DNA fragment assembly.

66

7. Conclusion

DNA Fragment Assembly is a key process for DNA sequencing. Due to
current technical limitations, a long target DNA sequence is cloned into multiple copies.
These copies need to be randomly fractured to fragments less than 1000 nucleotide bases
in length. After analysis on individual fragments, all fragment reads need to be assembled
together to rebuild the original target sequence. DNA Fragment Assembly algorithms
have to overcome several challenges to correctly rebuild the original target sequence
from fragments — DNA double helix structure, sequencing errors, repeats, and insufficient
coverage. All existing DNA Fragment Assembly algorithms are hindered by these
challenges. In particular, repeats longer than fragment lengths are nearly impossible to
assemble correctly with current assembly algorithms. Tedious finishing reaction
experiments have to be carried out to manually restore target DNA sequences at regions
containing those long repeats. Hence, there is still considerable need for improvements of
repeat resolution, error correction, and runtime efficiency on DNA Fragment Assembly.

Aiming at improving DNA Fragment Assembly performance in these areas,
we propose a number of enhancements for the Euler Assembler developed by Pevzner et
al.:

1. Traversal approach for Euler Superpath discovery,

2. Statistical Analysis for error and repeat detection,

3. Perfect long repeats fragment assembly.

In addition, we provide an innovative genetic algorithm to restore the

67

coverage of fragments on target sequence. Our genetic algorithm forms solutions with a
portion of fragments covering the target sequence as blueprints to restore the coverage of
all fragments. Fast pattern matching techniques are applied to evaluate the fitness of a
solution. The genetic algorithm determines the sequence order among copies of long
repeats with slight differences, because only one order is correct to restore all layers of
fragments covering the repeat region. We combine our enhanced Euler algorithms and
the genetic algorithm to ensure runtime efficiency. This solution is close to optimal.
Future research might address the issue of load time, platform independence, and

scalability.

68

8. Future Research

The following steps might improve upon our work:

1.

Improve loading time. Loading time is the bottleneck of our assembler, though the
runtime complexity is O(n). The assembler communicates with the MySQL database
through direct C API call. We can consider using Oracle SQL loader or writing SQL
scripts to further speed up the process of fragment input and tuple initialization.
Linux instead of XP for better performance. Initially the assembler is designed for
the Linux platform. However, the gcc compiler on the Linux platform does not have
runtime memory infringement checking. There were a number of memory
infringement bugs in the assembler causing assembly result inconsistency. Visual
C++ NET compiler was then used on Windows platform to debug the assembler for
the memory infringement issue. The runtime memory checking feature of Visual
C++ NET compiler significantly slows down the execution of Visual C++
application. Due to time constraint, no final testing has been done on the Linux
platform. Based on experience, on the Linux platform the assembler can load data to
database two to three times faster than Windows platform.

Larger test data set. Scalability is important for DNA Fragment Assembly. In theory
our assembler is highly scalable since the overall runtime complexity is O(n). The
theoretical runtime analysis needs to be verified by thorough testing with large data

set.

69

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

References:

Tammi, M. T. (2003). The Principles of Shotgun Sequencing and Automated
Fragment Assembly. Aug 11, 2007, http://web.cgb.ki.se/student/sfa.pdf

The Wellcome Trust Sanger Institute. (Sep 21, 2005).
Jan 12, 2008, http://www.sanger.ac.uk/Info/Intro/sanger.shtml

Li, L., & Khuri, S. (2004, Jun.) A Comparison of DNA Fragment Assembly
Algorithms. Proceedings of the 2004 International Conference on Mathematics and
Engineering Techniques in Medicine and Biological Sciences, 329-335.

Muluykov, Z., & Pevzner, P.A. (2002). EULER-PCR: finishing experiments for
repeat resolution in DNA sequencing. Pacific Symposium on Biocomputing, 199-
210.

Smith, J. (Aug 2, 2007). IUPAC Table, Jan 13, 2008,
http://droog.gs.washington.edu/parc/images/iupac.html

Luque, G., & Alba, E. (2005). Metaheuristics for the DNA Fragment Assembly
Problem. International Journal of Computational Intelligence Research, 1(2), 98—
108.

Green, P. (1998). Phrap Documentation, Dec 12. 2007,
http://www.phrap.org/phredphrapconsed.html

Sutton, G. G. et al., (1995) TIGR Assembler: A New Tool for Assembling Large
Shotgun Sequencing Projects. Genome Science and Technology, 1, 9-19.

Huang, X., & Madan, A. (1999). CAP3: A DNA sequence assembly program.
Genome Res., 9, 868-877.

[10] Pevzner, P. A., Tang, H., & Waterman, M.S., (2001). A New Approach to Fragment

Assembly in DNA Sequencing. Proceedings of the 5th Annual International
Conference on Computational Molecular Biology, 256-267.

[11] Myers, G. (1999, May). Whole-Genome DNA Sequencing. Computing in Science &

Engineering, 33 — 43.

[12] Khuri, S. (2007, Jan). CS255 Design and Analysis of Algorithms Lecture note,

Computer Science Department San Jose State University

70

http://web.cgb.ki.se/student/sfa.pdf
http://www.sanger.ac.uk/Info/Intro/sanger.shtml
http://droog.gs.washington.edu/parc/images/iupac.html

[13] Batzoglou, S., Jaffe, D. B., Stanley, K., Butler, J., & Lander, E. S. (2002).
ARACHNE : a whole-genome shotgun assembler. Genome Research, 12, 177-189.

[14] Kim, S., & Segre, A. M., (1999). AMASS : A Structured Pattern Matching
Approach to Shotgun Sequence Assembly. Journal of Computational Biology, 6 (4)

[15] Gallant, J., Maier, D., & Storer, J., (1980). On finding minimal length superstrings.
Journal of Computer and System Sciences, 20, 50-58.

[16] Staden, R. (1979). A strategy of DNA sequencing employing computer programs.
Nucleic Acids Res., 6, 2601-2610.

[17] Myers, E. (1995). A sublinear algorithm for approximate keyword matching.
Algorithmica, 12 (4-5), 345-374.

[18] Pevzner, P. A., Tang, H., & Waterman M. S. (2001). An Eulerian path approach to
DNA fragment assembly. Proceedings of the National Academy of Sciences, 98,
9748-9753.

[19] Dennis, D. W., William, M., & Richard L. S. (2002). Mathematical Statistics with
Applications 6th edition, 348. Thomson.

[20] Pevzner, P. A., & Tang, H. (2001). Fragment assembly with double-barreled data.
Bioinformatics. Proceedings of ISMB, 225-33.

[21] Parsons, R., Forrest, S., and Burks, C. (1995). Genetic Algorithms, Operators, and
DNA Fragment Assembly. Machine Learning, 1-24.

[22] Kikuchi, S., & Chakraborty, G. (2006, July). Heuristically Tuned GA to Solve
Genome Fragment Assembly Problem. Proceedings of IEEE World Congress on
Computational Intelligence - Conference on Evolutionary Computation, 5640-5647.

[23] Parsons, R., & Johnson, M. E. (1995) DNA sequence assembly and genetic

algorithms new results and puzzling insights. Proc Int Conf Intell Syst Mol Biol, (3),
277-84.

71

Appendix Logic of Key Assembly Modules

A.1 de Bruijn Graph Creation

(Create Tuple in Fragment)

Tuple does not exist Tuple already exist
W W
insen Update
4 W
Initialize Update
predecessor and successar predecessor and successar

Figure 49: Activity diagram for de Bruijn graph creation

void FragmentReader::insertFragmentToDeBruijnTable(char *fragment, int fragmentlD)
{
char query[1000];
char insertStatement[1000];

int i;
int frag_size = 0;
int predecessorlID = -1;

int successorlD;
int currentliD;

frag_size = strlen(fragment);

int insertlLength = frag_size - TUPLE_SIZE;
currentlD = getTuplelDinFragment(fragment);
successorID = getTuplelDinFragment(fragment+1);

for (i = 0; 1 <= insertLength; i++)

{
dblnsertBuffer[0] = (char *)calloc(TUPLE_SIZE+1, sizeof(char));
strncpy(dbInsertBuffer[0], fragment+i, TUPLE_SIZE);

ifT (currentlD < 0)

{
if(i == insertLength)
{

72

sprintf(insertStatement, "insert into deBruijnTable (TuplelD, Tuple,
Multiplicity, FragmentlDs, BestTraversalAmount, TraversedAmount, PredecessorlDs,
SuccessorlDs) values(%d, “%s®, 1, "%d®", 0, 0, "%d", *"")", tuplelD, dblnsertBuffer[0],
fragmentlD, predecessorliD);

H
else if(i == 0)

if (successorlID < 0)
sprintf(insertStatement, *“insert into deBruijnTable (TuplelD, Tuple,
Multiplicity, FragmentlDs, BestTraversalAmount, TraversedAmount, PredecessorlIDs,
SuccessorlDs) values(%d, “"%s®, 1, "%d®", 0, 0, *", "%d")", tuplelD, dblnsertBuffer[0],
fragmentlID, tuplelD+1);
else
sprintf(insertStatement, "insert into deBruijnTable (TuplelD, Tuple,
Multiplicity, FragmentlDs, BestTraversalAmount, TraversedAmount, PredecessorlDs,
SuccessorliDs) values(%d, “"%s®, 1, "%d*, 0, 0, ", "%d")", tuplelD, dblnsertBuffer[0],
fragmentlD, successorliD);

}

else

if (successorlID < 0)
sprintf(insertStatement, “insert into deBruijnTable (TuplelD, Tuple,
Multiplicity, FragmentlDs, BestTraversalAmount, TraversedAmount, PredecessorlIDs,
SuccessorliDs) values(%d, "%s®, 1, "%d*, 0, 0, "%d", "%d")", tuplelD, dblnsertBuffer[0],
fragmentlD, predecessorlID, tuplelD+1);
else
sprintf(insertStatement, "insert into deBruijnTable (TuplelD, Tuple,
Multiplicity, FragmentlDs, BestTraversalAmount, TraversedAmount, PredecessorlDs,
SuccessorliDs) values(%d, “%s®, 1, “%d*, 0, 0, “%d", “%d")', tuplelD, dblnsertBuffer[0],
fragmentlID, predecessorlD, successorlD);

}

mysql_processor .updateTable(insertStatement);
tuplelD++;
}

else

//deBruijn fragment already exist, update...;
if(i == insertLength)

sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1,
FragmentlDs=concat(FragmentliDs, ",%d"), PredecessorlIDs=concat(PredecessorlIDs, " ,%d")
where TuplelD=%d", fragmentlD, predecessorlD, currentlD);

else if(i == 0)

iT (successorlID < 0)
sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1,
FragmentlDs=concat(FragmentlIDs, ",%d"), SuccessorlDs=concat(SuccessorlIDs,",%d") where
TuplelD=%d", fragmentlD, tuplelD, currentlD);
else
sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1,
FragmentlDs=concat(FragmentlDs, ",%d"), SuccessorlDs=concat(SuccessorlIDs,",%d") where
TuplelD=%d", fragmentlD, successorlD, currentiD);

else

iT (successorlID < 0)
sprintf(query, '"update deBruijnTable set Multiplicity=Multiplicity+1,
FragmentlDs=concat(FragmentlDs, " ,%d"), PredecessorlDs=concat(PredecessorlIDs,",%d"),
Successor IDs=concat(SuccessorlIDs, " ,%d") where TuplelD=%d", fragmentlD, predecessorlD,
tuplelD, currentiD);
else
sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1,
FragmentlDs=concat(FragmentlDs, " ,%d"), PredecessorlDs=concat(PredecessorlDs,",%d"),
SuccessorlDs=concat(SuccessorlDs, " ,%d") where TuplelD=%d", fragmentlD, predecessorlD,
successorlD, currentiD);

73

}

mysql_processor.updateTable(query);
3

free(dblnsertBuffer[0]);

predecessorlID = currentlD;

if(predecessorlD < 0) //predecessorlD cannot be absent in the middle of thg

loop
{
predecessoriID = tuplelD - 1;
currentlD = successorlD;
successorlD = getTuplelDinFragment(fragment+i+2);
}
}

Code Listing 1: Fragment insertion to database

A.2 Estimating the Length of Target Sequence

int Restorer::calculateTargetLength()
{

int charAmt = 0O;

int **lenResult;

char charLenQuery[500];

int fragmentAmount;

int tmp;

int **amtResult;

char *fragAmtQuery = "'select count(*) from fragmenttable';

amtResult = mysql_processor.querylntFromDB(fragAmtQuery, &tmp);
fragmentAmount = *amtResult[0];

free(amtResult);

for (int i = 0; i1 < fragmentAmount; i++)

sprintf(charLenQuery, "select CHAR_LENGTH(Fragment) from fragmenttable where
FragmentlID = %d", i);

lenResult = mysql_processor.querylntFromDB(charLenQuery, &tmp);

charAmt = charAmt + (*lenResult[0]);

}
int targetlLength = charAmt/(2*10);

return targetLength;

3

Code Listing 2: Target sequence length estimation

74

A.3 Euler Path Traversal

Get N ext Edge
far Traversal

Restore
Caoverage

0 or more than -
1 solid next Tuple™

Only 1 splid next

Tupte Successful
N —
Extend Traversed| D'fﬁld? next
patn S edge by
majority rule
Path |ength
meets &ptimation
@<

il

Figure 50: Activity diagram for Euler Path Traversal

75

void Restorer::traverseAndRestore(DEBRUIJN_ROW *edge, int coverage)

{
char *nextEdgeRegexp = (char *)calloc(TUPLE_SI1ZE+1, sizeof(char));
char *currentkEdge = (char *)calloc(TUPLE_SIZE+1, sizeof(char));
int targetLength = calculateTargetLength();
fprintf(stdout, '"\n targetLength is %d \n", targetlLength);
DEBRUIJIN_ROW **pRowResult = NULL;
int edgeAmount;
char updateQuery[500];
int bDone = 0;

strcpy(currentEdge, edge->Tuple);

strcpy(pPath, edge->Tuple);

pathLength = TUPLE_SIZE;

sprintf(updateQuery, "update deBruijnTable set TraversedAmount=TraversedAmount+1
where Tuple="%s"", currentEdge);

mysql_processor.updateTable(updateQuery);

while(!bDone)
pRowResult = getNextEdges(currentEdge, &edgeAmount);

// more than 1 choice, need to resolve with fragment reads
if (edgeAmount > 1)

if(resolveBranches()==0)

bDone = 1;
¥
if (edgeAmount == 1)
{
pPath[pathLength] = pRowResult[0]->Tuple[TUPLE_SIZE-1];
pPath[pathLength+1] = "\0~";
pathLength++;
if (pathLength > targetLength)
bDone = 1;
}
¥

iT (edgeAmount == 0)
if (layerSizes[0] > pathLength)

pPath[pathLength] = majorityChar(pathLength);

pathLength++;
pPath[pathLength] = "\0~;
3
else
if(resolveBranches()==0)
bDone = 1;
b

3
strcpy(currentEdge, pPath+pathLength-TUPLE_SIZE);

outputAndCleanTraversal();

Code Listing 3: Euler path traversal

76

A.4 Coverage Restoration

natuple

Restare layer path

Get Tuple fram
Traversed Path (<
at restare positit

Getfragment
cantaining the
tuple at current
restore position

Select the fittest
fragment for
alignment at the

curent layer pasition

no fra
avai

gment
able

langer than
traversed path

C:

Finish rg
at all

staration
layers

Figure 51: Activity diagram for Coverage Restoration

77

int Restorer::restoreCoverage()

{
for (int i = 0; i1 < 10; i++)

{
//trySubPathStartindex at the beginning is the same as the current coverage layer
length or where a new fragment should be appended to continue fragment restoration
// if no fitting fragment is found, subPathStartindex will keep increasing until
meeting the expectlLength

int trySubPathStartindex;

trySubPathStartindex = layerRestoreStarts[i];
// restoration for one layer is done when the actual coveragePathSize of the

layer is longer than the expectLength (the best we can expect)
// or trySubPathStartindex is longer than the expectLength (cannot continue

trying)
while ((layerSizes[i] < pathLength)é&&(trySubPathStartindex < pathLength))

layerRestoreStarts[i] = layerSizes[i];

char tryTuple[TUPLE_SIZE+1];
strncpy(tryTuple, pPath + trySubPathStartindex, TUPLE_SIZE);

tryTuple[TUPLE_SIZE]="\0";
char fragmentlDQuery[500];
sprintf(fragmentlDQuery, "'select FragmentlDs from debruijntable where Tuple F

"%s®", tryTuple);

int resultSize;
char **strResults = mysql_processor.queryStrFrombDB(fragmentlDQuery,

&resultSize, 1000);
char fragmentCodelDQuery[500];
sprintf(fragmentCodelDQuery, ''select Fragment, FragmentlD from fragmenttable

where FragmentlID in (%s) and Fragment regexp "~%s.*" and Consumed=0", strResults[0],

tryTuple);
free(strResults);

STR_INT **strintResults =
mysql_processor.queryStrintFromDB(fragmentCodelDQuery, &resultSize, 1000);
int alignScore = alignFittestFragment(strintResults, resultSize, i,

trySubPathStartindex);
if ((alignScore > 0)&&(layerSizes[i]>trySubPathStartindex))

trySubPathStartindex = layerSizes[i]; // need to continue restoration

3
else
trySubPathStartindex++; // no matching fragment to restore at the current
position; try next index
b
}
}
for (int j = 0; j < 10; j++)
{
// as long as 1 layer can be restored to longer than the expect length, restoration

succeeded
if(layerSizes[j] > pathLength)
return 1;

}

return O;

Code Listing 4: Restoring coverage before branch selection

78

A.5 Selecting the Best Fragment for Alignment

-
T

mare fragment
todiign

Check averlapping

V!

calculate alignment

narpare

score
fragimert
for alignment \/
(Chen:k errar rate)

Align most
qualified
fragment far
restaration

Figure 52: Activity diagram for best fragment alignment

alignFittestFragment(STR_INT **strintResults, int strAmount, int coveragelLayerIndex, int
subPathStartindex)
{

for (int i = 0; 1 < strAmount; i++)

if (maxSubPathLength >= fragLength + 6)
{
alignmentLength = fragLength + 6;
strncpy(pSubPath, pPath + subPathStartindex, alignmentLength);
// if mode == 1, alignment will insert space into only fragment
tmpAlignOutput = alignFragments(pFragment, pSubPath, fragLength, alignmentLength,
&tmpScore, &insertAmount, &agreeAmount, &diffAmount, &removeAmount, difflLocations, 1,
&tmpOffset);
int actualScore = tmpScore - 6 * insertionScore;
if ((checkConsumable(fragLength, insertAmount - 6, agreeAmount, diffAmount,
removeAmount, diffLocations) == 1)&&(actualScore > highestScore))

{

79

alignmentOutput = tmpAlignOutput;
bestAlignmentLength = alignmentlLength;
fittestFragmentlD = fragmentlD;
exceeded = 0;
highestScore = actualScore;
bestindex = -1;
bestOffset = tmpOffset;

3

}
else if (maxSubPathLength >= fraglLength)
{
alignmentLength = maxSubPathLength;
strncpy(pSubPath, pPath + subPathStartlndex, alignmentLength);
// if mode == 1, alignment will insert space into only fragment
tmpAlignOutput = alignFragments(pFragment, pSubPath, fragLength, alignmentLength
&tmpScore, &insertAmount, &agreeAmount, &diffAmount, &removeAmount, difflLocations, 1,
&tmpOffset);
int actualScore = tmpScore - 6 * insertionScore;
if ((checkConsumable(fragLength, insertAmount - (maxSubPathLength - fraglLength),
agreeAmount, diffAmount, removeAmount, diffLocations) == 1)&&(actualScore >
highestScore))
{

alignmentOutput = tmpAlignOutput;
bestAlignmentLength = alignmentlLength;
fittestFragmentlD = fragmentlD;
exceeded = 0;

highestScore = actualScore;

bestindex = -1;

bestOffset = tmpOffset;

b
3
else if (fragLength > maxSubPathLength + 6)
{
alignmentLength = maxSubPathLength + 6;
strncpy(pSubPath, pPath + subPathStartlndex, maxSubPathLength);
strcpy(remain, pFragment+alignmentLength);
// fragment is the blue blueprint in this case -- the key is to make best
alignment and get the char right after the last alignment
// if mode == 0, alignment will insert space into both blueprint and fragment

tmpAlignOutput = alignFragments(pSubPath, pFragment, maxSubPathLength,
alignmentLength, &tmpScore, &insertAmount, &agreeAmount, &diffAmount, &removeAmount,
diffLocations, 0, &tmpOffset);

int actualScore = tmpScore - 6 * insertionScore;

if ((checkConsumable(maxSubPathLength, insertAmount - (fragLength-
maxSubPathLength), agreeAmount, diffAmount, removeAmount, diffLocations) ==
1)&&(actualScore > highestScore))

{

alignmentOutput = tmpAlignOutput;
bestAlignmentLength = alignmentlLength;
fittestFragmentlD = fragmentlD;
exceeded = 1;

bestindex = i;

strcpy(bestRemain, remain);
highestScore = actualScore;

bestOffset = tmpOffset;

}

}

else

{
alignmentLength = fraglLength;
strncpy(pSubPath, pPath + subPathStartlndex, maxSubPathLength);
// fragment is the blue blueprint in this case -- the key is to make best

alignment and get the char right after the last alignment

// if mode == 2, alignment will insert space into only blueprint

tmpAlignOutput = alignFragments(pSubPath, pFragment, maxSubPathLength,
fragLength, &tmpScore, &insertAmount, &agreeAmount, &diffAmount, &removeAmount,
diffLocations, 0, &tmpOffset);

80

int actualScore = tmpScore - (fragLength - maxSubPathLength) * insertionScore;

ifT ((checkConsumable(maxSubPathLength, insertAmount - (fragLength-
maxSubPathLength), agreeAmount, diffAmount, removeAmount, difflLocations) ==
1)&&(actualScore > highestScore))

alignmentOutput = tmpAlignOutput;
bestAlignmentLength = alignmentLength;
fittestFragmentlD = fragmentiD;
exceeded = 1;
highestScore = actualScore;
bestindex = -1;
bestOffset = tmpOffset;
3
}
b

if(highestScore > 0) // only align fragments that are good match for current
position
{
int indexOfLastChar = bestAlignmentLength-1;
int skipcount = 0;
int insertcount = O;

if (exceeded == 0) //pathLength longer than layer length, so space the at the
end of alignment for layer restoration to remove first

while (alignmentOutput[O][indexOfLastChar] == " *)
{

indexOfLastChar--;
3

for (int k = 0; k <= indexOfLastChar; k++)
{
pCoverageRestoration[coveragelLayerIndex][subPathStartindex + K] =

alignmentOutput[0] [k+bestOffset];
3

char updateQuery[300];
sprintf(updateQuery, "update FragmentTable set Consumed = 1 where

FragmentlD = %d', FfittestFragmentlD);
mysqgl_processor .updateTable(updateQuery);
else //layer length is longer than pathLength, layer becomes the blueprint
for (int p = 0; p < maxSubPathLength; p++)
{ if (alignmentOutput[0][p+bestOffset] != " *)

{
pCoverageRestoration[coveragelLayerIndex][subPathStartindex + p -
skipcount] = alignmentOutput[1l][p+bestOffset];
3

else
skipcount++;

if (alignmentOutput[1][p+bestOffset] == *)
insertcount++;
}
for (int k = maxSubPathLength; k <= indexOfLastChar+insertcount; k++)

{
pCoverageRestoration[coveragelLayerIndex][subPathStartindex + k -
skipcount] = alignmentOutput[1][k+bestOffset];
}

}

layerSizes[coveragelLayerIndex] = subPathStartindex + indexOfLastChar + 1 -
skipcount + insertcount;

81

ifT (bestlndex >=0)
strcpy(pCoverageRestoration[coveragelayerindex] +
layerSizes[coveragelLayerindex], bestRemain);

layerSizes[coveragelLayerindex] =
strlen(pCoverageRestoration[coveragelLayerIndex]);

}

return highestScore;

Code Listing 5: Selecting the fittest fragment for alignment at a position

82

	DNA Fragment Assembly Algorithms: Toward a Solution for Long Repeats
	Recommended Citation

	introductory (May 13, 2008)
	DNA Fragment Assembly Research Actual (May 10, 2009)
	1. Introduction
	2. Background
	3. Problem Definition
	4. Solution
	4.1 Traditional Algorithms
	4.1.1 Overlap Measurement
	4.1.2 Layout Determination
	4.1.3 Consensus Sequence Construction

	4.2 Euler Algorithms
	4.2.1 Error Statistics
	4.2.2 Error Correction
	4.2.3 Correction Limitation
	4.2.4 Euler Superpath

	4.3 Proposing Improvements on Euler Algorithms
	4.3.1 Traversal Approach for Euler Superpath
	4.3.2 Statistical Analysis for Perfect Long Repeat Assembly
	4.3.3 Postponed Error Correction

	4.4 Existing GA for DNA Fragment Assembly
	4.5 New GA for Fragment Coverage Restoration
	4.5.1 Solution Generation
	4.5.2 Fitness Function
	4.5.3 Operations

	4.6 Combining Euler and Genetic Algorithms
	5.1 An Illustrative Example
	From the restored layers, the assembler moves to Tuple 150 or ttagttaatactttt. Due to the weak multiplicity of Tuple 151 and Tuple 152, the assembler continues to rely on restoration for path traversal until Tuple 61.Traversal continues until Tuple 116, where the traversed path is
	5.3 Complexity Analysis
	5.5 Database Schema

	7. Conclusion
	8. Future Research
	Appendix Logic of Key Assembly Modules
	A.1 de Bruijn Graph Creation
	A.2 Estimating the Length of Target Sequence
	A.3 Euler Path Traversal
	A.4 Coverage Restoration

