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ABSTRACT 

 

DNA FRAGMENT ASSEMBLY ALGORITHMS: 
TOWARDS A SOLUTION FOR LONG REPEATS 

 

by Ching Chia Li 

In this work, we describe our efforts to seek optimal solutions for the DNA Fragment 

Assembly Problem in terms of assembly accuracy and runtime efficiency. The main obstacles for 

the DNA Fragment Assembly are analyzed. After reviewing various advanced algorithms 

adopted by some assemblers in the bioinformatics industry, this work explores the feasibility of 

assembling fragments for a target sequence containing perfect long repeats, which is deemed 

theoretically impossible without tedious finishing reaction experiments. Innovative algorithms 

incorporating statistical analysis proposed in this work make the restoration of DNA sequences 

containing long perfect repeats an attainable goal.  
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1. Introduction  

The Human Genome Project aims to identify the exact sequence of nucleotide 

base pairs for the entire human genome. The Human genome contains about three billion 

nucleotide base pairs; however, current technologies usually sequence DNA fragments 

shorter than 1000 bases [1]. Large DNA sequences are always cut into small fragments 

for analysis and then assembled together to restore the original sequence. Thus, the 

bioinformatics industry needs efficient algorithms for the precise assembly of long DNA 

sequences from DNA fragments that are shorter than 1000 bases. 

2. Background 

 DNA sequences, determining protein synthesis of biological entities, are 

important for scientists to understand the functioning of various organisms. Long and 

complicated as they are, all DNA sequences consist of four nucleotides – A (adenine), T 

(thymine), C (cytosine), and G (guanine), which are termed “bases” [1]. In 1982, 

Frederick Sanger led a group of scientists to sequence the 48,000 base-pairs long genome 

of a virus, Bacteriophage lambda, utilizing the DNA whole genome shotgun sequencing 

method [2]. Since then, the DNA whole genome shotgun sequencing method continues to 

evolve in terms of scalability, accuracy, and robustness. In 2001, the initial human 

genome sequencing of three and a half billion base-pairs was accomplished by this 

method. Improvements in DNA fragment assembly algorithms contribute significantly to 

the success of the shotgun sequencing method.  
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Figure 1: DNA Sequencing Process  

Though there are variations in the actual implementation of shotgun 

sequencing, they all follow a similar procedure:  

1. Target sequence cloning – multiple copies of a DNA sequence under 

analysis are created.  

2. For DNA fragment creation, each copy of the target sequence is fractured 

randomly with sonication or nebulation; fragments that are too long or 

too short are removed due to DNA sequence analysis performance 

concerns; statistically, fragment length has a normal distribution of about 

10% variance after screening. 

3. DNA sequence analysis on fragments, where fragments are inserted into 

engineered viruses to form vectors and a sequencing reaction is 
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performed in the vectors to produce a fragment read ranging from 300 to 

900 bases long. 

4. DNA fragment assembly – computational algorithms and expert 

knowledge are applied to put pieces of fragments back to a consensus 

sequence [3].  

The more efficient and accurate the computational algorithm, the less 

intervention is required by biologists for DNA fragment assembly, and consequently the 

more efficient the DNA fragment assembly can be. Thus, the continuous improvement of 

DNA fragment assembly algorithm is crucial for biologists to study large scale DNA 

sequences efficiently.  

3. Problem Definition 

 DNA fragment assembly reconstructs the original DNA sequence from a 

large number of fragments that are several hundred bases long. To accomplish this goal, 

all DNA fragment assembly algorithms need to overcome the following challenges: 

Unknown orientation  

 Given the dual helix structure of DNA, each fragment can come from either 

strand of the helix structure. Thus, as we determine the fragment layout, we need to 

consider the reverse complement of each fragment, which essentially doubles our 

assembling efforts. A (adenine) complements T (thymine), while C (cytosine) 

complements G (guanine), and vice versa. To get the reverse complement of a fragment, 

we first reverse the fragment sequence; for example, the reverse of fragment ATGCTA is 
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ATCGTA; then taking the complement for each nucleotide base in the sequence, we have 

TAGCAT [1]. Essentially, the DNA fragment assembly results in two DNA base 

sequences complementing each other, each stands for one strand of the original DNA 

sequence. 

 

 Read  Orientation  Assembly 

              ATGCTA            --- TAGCAT ------------------ 

              CATTGCC            --------- CATTGCC ---------- 

              AATGC            --------GCATT ---------------- 

              TGCCGTAG             ----------------TGCCGTAG--- 

Figure 2: Calculating reverse complement of DNA fragments 
 

 

Base-calling errors or sequencing errors  

 The technical constraint of analyzing less than one kbps sequences at a time 

is actually due to various read errors, since most sequence results longer than one kbps 

are filled with errors and therefore have to be discarded. Due to a complicated sequencing 

process, the DNA fragments are contaminated with base errors: Dideoxynucleotide 

(ddNTPs) are used to randomly fracture long DNA chains; however, the fluorescent 

signal, which tags ddNTPs, is weakened by the geometric distribution of concentration; 

in addition, molecules diffuse in the gel as they are read – longer fragment reads cause 

more molecules in the fragment diffuses; thus data quality at the end of fragments is 

usually inferior, while DNA polymerase (DNA copying enzyme affected by temperature) 
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and sequencing reactions may hide some low quality data in the middle of high quality 

regions. The assumption of a uniform moving speed when reading a DNA sequence is 

also error prone, because various DNA strands often move on the gel at different speeds. 

Contamination and undiscovered vectors are two additional common factors causing 

errors [4].   

  

 There are four different types of sequencing errors – Substitution (one base is 

reported as another base), Deletion (bases are not reported at all), Insertion (irrelevant 

bases are reported), and Ambiguity (uncertainty about the exact base). Table 1 lists the 

IUPAC Ambiguity codes for DNA sequence analysis [5]. 

Figure 3: Chemical structure of ddNTP used to fracture DNA sequence 

IUPAC Code Meaning Complement 
A A T 
C C G 
G G C 

T/U T A 
M A or C K 
R A or G Y 

W A or T W 
S C or G S 
Y C or T R 
K G or T M 
V A or C or G B 
H A or C or T D 
D A or G or T H 
B C or G or T V 
N G or A or T or C N 

  Table 1: IUPAC code meanings and complements 

Figure 4 demonstrates how errors hinder fragment assembly. 
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Genome sequence: 
  Repeat       Repeat 
         CTTCGCGTCATCATCACTTGAGTCATCATCACCTCGGA 
 Sequence reads in the correct layout: 
  CTTCGCGTCATCATCA 
         TCATCATCACTTGA 
                  CTTGAGTCATCATCA 
                        TCATCATCACCTCGGA 
 Fragments including some sequencing errors: 
          CTTCGCGTCATCATCA 
                 TCATCATCAC*TTG*A 
          CTT*GAGTCATCATCA 
                 TCATCATCACCTCGGA 

Figure 4: Assembly errors caused fragment errors 

 

Repeated regions  

 DNA sequences may contain many repeats. There are identical repeats as 

well as repeats with only slight differences. Repeats are difficult to resolve because there 

are multiple ways of joining related fragments together. Figure 5 provides a simple 

illustration of how repeats can cause assembly errors:  

 

Genome sequence: 
          Repeat       Repeat 
      CTTCGCGTCATCATCATCACTTGAGTCATCATCATCACCTCGGA 
  
Sequence reads in the correct layout: 
 CTTCGCGTCATCATCA 
           TCATCATCACTTGA 
                    CTTGAGTCATCATCA 
                             TCATCATCACCTCGGA 
Wrong layout: 

CTTCGCGTCATCATCA 
       TCATCATCACTTGA 
                CTTGAGTCATCATCA 

                            TCATCATCACCTCGGA 

Figure 5: Assemble errors caused by repeats 

The complexity of repeats actually goes much further. The length of repeats 
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varies greatly and can be interspersed in numerous genomic locations or linked closely 

together. For instance, a trypsinogen gene has a five-fold repeat as long as four kbp with 

3-5% variations among each fold. Three folds of the repeat locate so closely together that 

they confuse assembly algorithms with potential errors. Given the technology constraint 

of sequencing fragments shorter than one kbp, assembling long perfect repeats is deemed 

unsolvable [6]. The second half of our work is dedicated to developing algorithms that 

incorporate statistical analysis to put together the correct assembly for fragments 

containing long repeats. 

Incomplete coverage 

 Given a target sequence of length L and N fragments of average length r, the 

genome coverage C = N· r/L. There is a tradeoff between high coverage to ensure original 

DNA sequence cover probability and the computational complexity of the fragment 

assembler. Though no high coverage ensures the complete covering of target sequence 

due to the random fracturing process, coverage of eight to ten are preferred in common 

practice. For example, to get 10X coverage in a sequence of length 125 kb, we need 

2,604 random fragments read with an average length of 480 bases:  

2604 · 480/ 125,000 = 10. Because of the double helix DNA structure, we need to 

consider the reverse complement of each fragment [6].  

Random creation of DNA fragments can lead to the situation where the 

coverage is insufficient to assemble all fragments to a consensus sequence and instead 

result in several long fragments. In Figure 6, judgments have to be made to determine the 

assembly orders of two contigs (long partially assembled DNA fragments). 
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Figure 6: Failure to restore the target sequence due to no fragment coverage on some [22] 

 

 

 

 

In summary, we define the DNA fragment assembly problem as the 

following: given a collection of fragment reads F={fi }R
i=1 that are sequences over 

∑={A,C,G,T}, find the optimal superstring S, such that each fi  or its reverse 

complement, after a minimum number of mutations (insertion, substitution, or deletion of 

some nucleotide bases), is a substring of S. There can be multiple optimal superstrings for 

a unique collection of fragments.  
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4. Solution 

In the past decade, a number of excellent DNA fragment assemblers emerged 

applying various algorithms. Some of the most well-known assemblers are Phrap[7],  

TIGR[8], CAP3[9], and EULER[10]. There are weaknesses even for the best assemblers 

– failing to handle repeats longer than fragment reads, generating too many contigs, 

assembling results shorter than the target sequence, and slow assembly speed. Aiming at 

improving these weaknesses, we have explored three types of algorithms – traditional 

''overlap–layout–consensus'' algorithm, Euler algorithms, and genetic algorithms to solve 

the DNA Fragment Assembly problem.  

4.1 Traditional Algorithms 

 Most DNA Fragment Assembly algorithms have three key modules: The 

Overlap module measures the degree of overlapping among fragments; The Layout 

module determines the blueprint to join fragments one after another according to the 

overlapping degrees among fragments; The Consensus module forms the consensus 

sequence according to the layout blueprint [11].  

4.1.1 Overlap Measurement 

Applying the traditional ''overlap–layout–consensus'' algorithm, we will first 

measure the feasibility of assembling every possible pair of the fragments with dynamic 

programming. There are four types of overlaps to consider, as illustrated in Figure 7. 
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Type 1: Read A ahead of Read B  Type 2: Read A contains Read B 
 Read A   Read A 
 Read B   Read B 
 
Type 3: Read B ahead of Read A  Type 4: Read B contains Read A 
 Read A   Read A 
 Read B   Read B 

Figure 7: Four types of fragment overlapping  

 A commonly used dynamic programming algorithm for overlap pattern 

matching is String Alignment. String Alignment computes the similarity of two strings 

according to a predefined “alignment” function that provides a positive score on match 

but negative scores on insertion, deletion, and substitution. The final score for aligning 

two strings is deduced by gradually increasing the prefixes of the two strings and 

computing the scores of prefixes step by step. Scores in each step are reused in the next 

immediate step, so a matrix with the width of one string's length plus one, and the height 

of the other string's length plus one is required to hold the alignment scores of all prefixes 

of the two strings. A high alignment score indicates close similarity of two strings. The 

algorithm's complexity is O(nm), where n and m are the length of two strings 

respectively. In addition, it consumes O(nm) memory space due to the matrix caching 

prefixes alignment scores [12]. For k fragments inputs with average size m, the 

complexity for overlap pattern matching is O(k2m2). Figure 8 illustrates the steps and 

functions used to align two strings ACGTCGTC and TCGTCTT. 
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i \ j - T C G T C T T 
- 0 -2 -4 4 -6-6 -8-8 -10-10 -12-12 -14 -14 
A -2 -1 -3 -5 -7 -9 -11 -13 
C -4 -3 0 -2 -4 -6 -8 -10 
G -6 -5 -2 1 -1 -3 -5 -7 
T -8 -5 -4 -1 2 0 -2 -4 
C -10 -7 -4 -3 0 3 1 -1 
G -12 -9 -6 -3 -2 1 2 0 
T -14 -11 -8 -5 -2 -1 2 3 
C -16 -13 -10 -7 -4 -1 0 1 

 

 Aligning S1 = ACGTCGTC and S2 = TCGTCTT 

Dynamic string alignment  
⎪
⎩

⎪
⎨

⎧

−+−
−+−

+−−
=

])[,()1,(
)],[(),1(

])[],[()1,1(
max),(

2

1

21

jSvjiA
iSvjiA

jSiSvjiA
jiA

 The score function may be  
⎪
⎩

⎪
⎨

⎧

−=−=−
≠−
=+

=
][][2
][][1
][][1

])[],[(

21

21

21

21

jSoriSif
jSiSifif
jSiSifif

jSiSv

 We obtain: 
 T C G T C – T T 
 A C G T C G T C 
   Score  -1+1+1+1+1-2+1-1=+1 

Figure 8: A dynamic programming example to align two strings 

Based on the dynamic programming algorithm for string alignment, a variety 

of improvements can be made: TIGR assembler computes the k-tuples in common 

between each pair of fragments; Myers combines suffix and indexes in sequence database 

for fast retrieval of similar fragments; Phrap and ARACHNE [13] use various flavors of 

common subsequence identification algorithms to rule out obviously unmatched fragment 

pairs before applying time consuming dynamic algorithms for detail alignments. AMASS 
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represents fragments with multiple sub-string patterns called probes and performs pattern 

matching on probes rather than on the whole fragment to accomplish superior speed [14]. 

4.1.2 Layout Determination 

 According to the measurement result, we determine the basic layout of the 

fragments. This is the most challenging step because it is hindered by issues of errors, 

repeats, and insufficient coverage. Numerous creative methodologies, ranging from 

greedy algorithms to graph theory algorithm, have been applied to seek optimal solutions 

at this step. 

 The DNA Fragment Assembly problem can be reduced to Shortest Common 

Superstring Problem (SCS), in which case we attempt to find the shortest DNA sequence 

that contains all the DNA fragments. Gallant et al. proved that SCS is NP-complete [15]. 

In other words, we can only apply some heuristic methods to find a close to optimal 

solution in an acceptable amount of time. Greedy algorithm was firstly introduced by 

Staden in 1979 to iteratively assemble fragments with maximum overlaps to one DNA 

sequence [16]. The worst result for superstring computation is about twice as long as 

optimal superstring [17]. 

 In reality, the shortest super string for fragment inputs is not the target DNA 

sequence, which we are looking for due to read errors, repeat regions, and orientation 

issues. A better model for DNA Fragment Assembly might be Sequence Reconstruction: 

for a set of fragments fi Є F with error rate ε Є [0,1], find the shortest superstring S 

satisfying the condition – min{d(Ssub, fi), d(Ssub, fi')}≤ ε |Ssub|, where fragment fi' is the 

reverse complement of fragment fi and d(Ssub, fi) is the minimum edit distance between 
12 

 



subsequence of S and fragment fi computed with dynamic programming similar to the 

string alignment algorithm. Sequence Reconstruction is also proven to be NP-complete 

[1]. A robust approach to tackle NP-Complete problems is genetic programming, which 

we elaborate in a later section. 

 In addition to string processing algorithms, graph theory might be an 

alternative to assist DNA Fragment Assembly. We can model DNA Fragment Assembly 

with weighted graphs where each vertex stands for a fragment and each edge stands for 

overlap between the two fragments. The Hamiltonian path that traverses each vertex once 

provides us with important insight for assembling the fragments. The graph of Figure 9 is 

a simplified illustration on reducing Fragment Assembly to the Traveling Salesman 

problem: for fragment set V = {GTG, TGA, GAT, ATG, TGC, GCT, CTG, TGG} 

finding the path sequence that visits each vertex once yields S=GTGATGCTGG, a 

minimum superstring for the fragment set. Although the Traveling Salesman Problem is 

NP-Complete [1], due to its long history in math and computer science there are many 

studies finding close to optimal solutions; thus, a lot of techniques tackling TSP can be 

revised to apply to DNA Fragment Assembly. Euler algorithms are innovative 

approaches that convert DNA Fragment Assembly to Euler Path Finding on a de Bruijn 

graph [9]. We have dedicated most of the research project to applying Euler graph theory 

on DNA Fragment Assembly. 
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Figure 9: Hamiltonian path solution for DNA Fragment Assembly Problem [1] 

4.1.3 Consensus Sequence Construction  

Creating a consensus sequence is the final step. Resolving repeats intermixed 

with errors is the main issue challenging assembly algorithms at this stage. Phrap 

generates consensus sequence in a greedy approach according to its proprietary LLR-

score order [7]. Phrap incorporates error probability to fragment alignment dynamic 

programming. In practice, errors in fragments are independent from each other, implying 

that fragments do not have errors at the same position of a sequence. In other words, 

given sufficient coverage, most fragment errors can be corrected by the majority rule. 

Celera Assembler masks repeats to avoid confusion and leaves repeats unassembled. 

Some repeats are already known from experience [1]. Those repeats are assembled based 

on the former understanding of repeats. TIGR, CAP3, and ARACHNE assemblers 

compute distance constraints between two ends of fragments by using the majority rule to 

assist pairwise ordering. Most assemblers cannot reconstruct fragments back to one 

unique consensus sequence at the end for sophisticated genome sequencing projects; 
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instead, several long contigs are returned for users to do the rest of the finishing work. 

Even for fragment inputs free of errors, most assemblers still make assembling errors: 

Phrap, CAP3, and TIGR assemblers make five, four, and two errors respectively when 

assembling error-free Neisseria meningitidis1 genome fragments [11].  

 

 

 

                                                 

1 Neisseria meningitidis is a kind of bacterium playing a role in meningitis. 
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4.2 Euler Algorithms 

EULER algorithms for DNA Fragment Assembly, developed by Pevzner et 

al., completely abandon the traditional overlap-layout-consensus methodology. EULER 

algorithms are innovative in the sense that they cut the existing DNA fragments into even 

smaller pieces of regular size to transform the NP-Hard Fragment Layout issue to a 

polynomial time solvable Euler Path Discovery problem. Moreover, EULER algorithms 

surpass other DNA fragment assembly algorithms in error correction and repeat 

resolution – they can correct up to 97% of the errors and resolve all repeats that are not 

longer than fragment length. There are two main modules for Euler algorithms – Error 

Correction and Euler Superpath Resolution [18]. 

4.2.1 Error Statistics  

Before we discuss error correction, we need to elaborate on the general error 

patterns in fragments to be assembled. Usually, the average error rate is known before 

fragment assembly and should be less than 10%. It is a common practice to discard 

fragments containing errors exceeding a certain error rate. Errors are independent of one 

another: different fragments covering the same range of a sequence have errors at 

different positions. For example, in Figure 10 three fragments cover AACTGCCTTAG 

while containing errors at different positions. 

     CGTCAA?TGCCTTAGGCTA 
 ATCGTCAACTACCTTAG 
                AACTGCC TAGGCTACA 

Figure 10: Independent nature of fragment errors 
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Given average fragment length m, target sequence length L, and coverage c, 

there should be cL/m fragments in the fragment set. The possibility for one out of L 

positions to be randomly selected as the beginning of a fragment is p = c/m. For a 

position to be covered by a fragment, any of the inclusive m positions before the position 

can be selected as the starting position of the fragment. To have x coverage on a position, 

x of the m positions must be selected as the beginning of fragment. This infers a binomial 

distribution for the probability of the number of times that a position covered by fragment 

reads [2]:  

P{C = x} =  ( ) ( ) xmx mcmc
x
m −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
/1/

Equation 1  Possibility calculation for fragment coverage equal some number on a certain location 

The possibility of a position covered by less than or equal to x fragments: 

P{C ≤ x} =  ( ) ( )∑
=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛x

k

kmk mcmc
k
m

0
/1/

Equation 2  Possibility calculation for fragment coverage no more than x on a target DNA sequence 

For fragments with an average size larger than one hundred, we may 

approximate a binomial distribution using a normal distribution with expected value µ(x) 

= c and standard deviation )/1()/1)(/( mccmcmcm −=−=σ  according to the 

Central Limit Theorem. A key property of the normal distribution is that about 68% of 

the values should be in the range [µ-σ, µ+σ] and about 95% of the values should be in the 

range [µ-2σ, µ+2σ] according to Empirical Rule. For a normal distribution, the possibility 
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of having a value 2σ less than the expected value is about 2.5%. Given a set of fragments 

with average length 800, coverage ten, the expected multiplicity (the number of 

occurrences in the fragment set) of a tuple is ten, and )800/101(10 −=σ ≈ 3.4. Thus, 

the possibility for a tuple to have multiplicity of three or less is about 2.5%. In other 

words, we are 97.5% confident that a tuple with multiplicity of three or less is caused by 

errors [19]. 

 

 

Figure 11: Normal distribution curve [19] 

4.2.2 Error Correction 

The Euler Algorithm exploits the fact that errors occur at different positions 

to perform error correction of the fragments. Euler Error Correction starts by chopping all 

fragments to much smaller tuples. For example, all possible 8-tuples of 

attcggctccgtgcttacatg is given by:  
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Gl = { 
attcggct 
  ttcggctc 
   tcggctcc 
    cggctccg 
      ggctccgt 
        gctccgtg 
          ctccgtgc 
            tccgtgct 
             ccgtgctt 
               cgtgctta 
                 gtgcttac 
                   tgcttaca 
                    gcttacat 
                      cttacatg 

     } 
 
 Creation of tuples from fragments adopts a sliding window approach with the 

window width equal to the tuple size. The amount of tuples for a fragment set without 

errors can be associated linearly to the length of the target sequence (L) covered by the 

fragment set. Besides, there is an inverse relation between the proportion of repeats on 

the target sequence and the number of different tuples.  

Due to high coverage, fragments overlap with each other. Normally each 

tuple appears in multiple fragments. We use multiplicity of a tuple to refer to the number 

of the tuple’s occurrences in a fragment set. For a fragment set having coverage ten on 

the target sequence, the expected multiplicity of an ordinary tuple is ten. If there is no 

error, the multiplicity of an ordinary tuple is expected to be the same as the coverage. For 

tuples on repeat regions, the multiplicity can jump to two or more times of the coverage 

depending on the frequency of repeats. Due to the randomness of fragment creation, the 

possibility of a tuple with only multiplicity of two or less is very small. 
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We call the tuples with low multiplicity weak and the tuples with high 

multiplicity solid. Knowing that most weak tuples are caused by errors, we can then 

associate each weak tuple with one of the solid tuples and correct the errors accordingly. 

An error in a fragment usually causes l weak l-tuples and an additional l weak l-tuples in 

the reverse complement fragment. For an error located at d bases away from the fragment 

boundary, where d < l, there will be 2d weak tuples created by the error [20]. Figure 12 

illustrates how an error results in weak tuples generated by the sliding window approach. 

 

 

          Figure 12:  Weak tuples generated by an error on a fragment and its reverse complement [18] 

We define the relationship between two tuples as neighbors if we can change 

one to another with one mutation. We call a tuple orphan if the tuple meets the following 

three conditions:  

(i) Multiplicity smaller than a pre-set threshold. For our former example 

of a fragment set with average size 800 bases and coverage ten, we 

may set the threshold to three to ensure the 97.5% confidence on 

error detection.  
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(ii) The tuple has a unique neighbor.  

(iii) The tuple’s neighbor is solid. The process of error correction consists 

in changing an orphan to its unique solid neighbor.  

The example below demonstrates the steps of substitution error correction. In 

a fragment set that has ten fragments covering the region ggctccgtgctt, one fragment has 

an error at the fourth position changing base t to c. The rest nine fragments that are 

correct in the region will generate solid tuples with a multiplicity of nine on the left, 

while the fragment with error at the fourth position might create weak tuples on the right. 

By mutating the orphans to their corresponding solid neighbor, we correct the error in the 

weak tuples as well as the fragment. The fragments that are correct in one region might 

have errors in other regions. On the other hand, the fragment that has error in one region 

might be correct in other region. Taking advantage of the independent nature of fragment 

errors, Euler assembler can correct errors by majority rule.  

GGCTCCGTGCTT  GGCCCCGTGCTT  
 (Original)  (Substitution error) 
 {GGCTCCGT      {GGCCCCGT 
   GCTCCGTG        GCCCCGTG 
    CTCCGTGC         CCCCGTGC 
     TCCGTGCT                  CCCGTGCT 
              CCGTGCTT}                   CCGTGCTT} 

           

            Figure 13: Associating weak tuples with their solid neighbor to correct a substitution error  

Correcting insertion and deletion errors is slightly more complicated than 

correcting substitution errors. In Figure 14, the fragment on the right has an insertion 

error at the fifth position. Such an error causes a series of weak tuples without neighbors 

except the last one. Paying attention to this special pattern helps us detect and correct 
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insertion errors. 

 

GGCTCCGTGCTT   GGCTACCGTGCTT  
 (Original)   (Insertion error) 
 {GGCTCCGT   {GGCTACCG 
   GCTCCGTG     GCTACCGT 
    CTCCGTGC      CTACCGTGC 
     TCCGTGCT       TACCGTGCT 
              CCGTGCTT}        ACCGTGCT 
           CCGTGCTT} 

 Figure 14: Associating a weak tuple with a solid neighbor to correct an insertion error 

A similar method can be applied for correcting deletion error. 

GGCTCAGTGCTT   GGCTAGTGCTT 
(Original)   (Deletion error) 
{GGCTCAGT   {GGCTAGTG 
  GCTCAGTG     GCTAGTGC 
   CTCAGTGC      CTAGTGCT  
    TCAGTGCT       TAGTGCTT} 
     CAGTGCTT} 

 Figure 15: Associating a weak tuple with a solid neighbor to correct a deletion error 

4.2.3 Correction Limitation 

The selection of l value or tuple size depends on several factors: appearance 

of short local repeats, distance between errors, and runtime efficiency for neighbor 

discovery. If the tuple size falls close to the size of local repeats, we might encounter 

many weak tuples with more than one neighbor because one copy of repeats might differ 

slightly from another copy. This issue will confuse the assembly algorithm for the right 

way to correct the error. If the distance of two errors in one fragment is smaller than l, 

some weak tuples caused by the errors cannot be associated with a solid neighbor that is 

one mutation away; the complexity of screening a tuple’s neighbor is O(lG) where l is the 
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tuple size and G is the target sequence length. Given a large G for a complicated 

assembly project, a slight increment of tuple size causes the screening runtime to become 

significantly longer. 

 The Euler Error Correction methodology can incorrectly change correct 

fragments on the low coverage range of the target sequence.  The Euler Assembler uses 

parameter Δ, defining the maximum number of errors in a fragment, as a threshold to 

prevent the Euler Error Correction removing the difference in repeats [20]. However, this 

can cause the situation in Figure 16 to be overlooked. In Figure 16, a fragment covering 

the key information connecting two closely spaced contigs is prone to be eliminated in 

insertion error correction. 

               Figure 16: Low coverage on a position due to random fragment generation 

……...ATCGACCATCGGACTGCACAAGT…

The possibility of observing only one coverage at a base position for a fragment 

set with average length five hundred and coverage eight, is   

P{C=1}= ≈ 2.25 · 10-3. The possibility of observing x bases 

with one coverage consecutively is (2.25 · 10-3)x, which decreases exponentially as x 

increases. Thus, most of the 2% correct fragment reads with low coverage are on 
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individual base positions situated randomly across the target sequence. The threshold 

parameter Δ can hardly protect them from false Error Correction. The negative effect 

caused by the erroneous correction is that more contigs appear at the end of assembly.  

In spite of the drawbacks of introducing small amount of new errors, Euler Error 

Correction is verified to be a superior method for error elimination in practical 

sequencing projects. In the case of Neisseria meningitidis fragment assembly, 234,410 

errors were corrected with the side effect of 1,452 new errors. Differentiating tuples of 

multiplicity less than three as orphans is effective for error detection based on 

experiments [18]. 

4.2.4 Euler Superpath 

Given a set of l-tuples Sl = {s1,...,sn}, we can construct a de Bruijn graph by using 

each tuple in set Sl as a directed edge. This edge runs from the first (l-1) tuple of the l-

tuple as source vertex to the last l-1 tuple as destination vertex. More precisely, for each 

l-tuple as an edge in the de Bruijn graph, we define two l-1 tuples as vertices, the first l-1 

nucleotide string as the source and the last l-1 nucleotide string as the destination. For 

sequence ATGCTTGCGTGCA, if the edges are 3-tuples, the vertices will be all the 2-

tuples. Edge set Sl={ATG, TGC, GCT, CTT, TTG, GCG, CGT, GTG, GCA}. Vertex set  

Sl-1={AT,TG,GC,CT,TT,CG,GT,CA}. Consequently, we have the de Bruijn graph as 

illustrated by Figure 17. 
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Figure 17: de Bruijn graph of the DNA sequence ATGCTTGCGTGCA 

The problem of finding the consensus sequence for DNA fragment assembly is 

converted to the problem of looking for an Euler path that traverses the edges in a de 

Bruijn graph. Euler paths can be found in polynomial time of the number of edges. 

However, there is one more condition for the Euler path of consensus sequence to satisfy: 

the Euler path must contain all the fragment reads as subpaths. Such an Euler path is 

called Euler Superpath. The Euler Assembler developed by Pezner et al. performs graph 

system transformation to achieve the goal of finding the Euler Superpath according to the 

rule that two graph systems, identified by a graph and a path set, are equivalent if there is 

a one to one correspondence between graph G and path set P of the first system, and 

graph G’ and path set P’ of the second system. Through a series of transformations (G,P) 

→ (G1,P1) → ... → (Gk,Pk), a new graph system is achieved where every edge in the 

graph Gk is a path in the path set Pk. As a result, finding the Euler path in the last graph 

system is the same as finding the Euler Superpath in the original de Bruijn graph system 

[18]. The following rules are applied to ensure equivalent transformations. 
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Direct Transformation: Let x = (vin, vmid) and y = (vmid, vout) be two adjacent edges in 

graph G and let Px,y be the set of all paths that include edges x and y. A new edge z 

=(vin,vout) can be used to replace edges x and y in the graph G as well as the path set P, 

resulting in an equivalent system graph G1 and path set P1. In Figure 18, P→x stands for 

the set of all paths that end at edge x; Py→ stands for the set of all paths that start with 

edge y; Px,y stands for the set of all paths that traverse through edge x and edge y. 

 

 

 

       

       

       

       

       

       

             

Px,y 

Vin Vmi Vout 

P→x Py→ 

Vin 

Vmi

Vout 

P→x 

z 

Px,y 

x y 
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                 Figure 18: Replacing edges x and y with z by Direct Transformation 
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Branch Transformation: 

 

 

 

 

 

 

          Figure 19: Path subset consistency to determine path replacement by Branch Transformation 

When there is one incoming edge x but two outgoing edges y1 and y2 from 

vmid to vout1 and vout2, we cannot replace x in every path ending at x with z = (vin, vout1) as 

an equivalent transformation. Instead, we must first define path subset Px,y1 as all paths 

containing edge x and y1 and path subset Px,y2 as all paths containing edge x and y2. 

Whether to replace x with z or not for a Path p→x ending at x depends on whether Path 

p→x is consistent with subset Px,y1 or subset Px,y2. Two paths are consistent with one 

another if they can be joined together without generating a branch. Path 2 is consistent 

with Path 3 but inconsistent with Path 1 due to the branch at vertex v in Figure 20. 

 

Vin Vmid 

Vout1 

Vout2 

Vin Vmid 

Vout2 

Vout1 

Px,y1 

P→x 

z 

y2 

y1 x 

P→x 

x 

   ??? 
   y2 

Px,y1 
Py1→ 

Py1→ 

Figure 20: Path 2 consistent with Path 3 but inconsistent with Path 1 
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A path p→x is consistent with path set Px,y1 if p→x is consistent with every path 

in Px,y1 and then we can replace edge x in path p→x with z. There are three possible results 

for the consistency check on two branches:  

1. p→x consistent with either Px,y1 or Px,y2  

2. p→x consistent with both Px,y1 and Px,y2        

3. p→x consistent with neither Px,y1 nor Px,y2  

Result 1 allows us to relate p→x to either Px,y1 or Px,y2 for an equivalent 

transformation. Result 2 indicates that path p→x does not provide us any valuable 

information for assembling unless we can extend p→x with another path(s) so that the new 

path can be related to either Px,y1 or Px,y2. Result 3 indicates that there is an error in P→x 

that should be corrected. 

In Figure 21, Path 2 is too short to tell us anything valuable since it is 

consistent with both Path 1 and Path 3, unless we can merge Path 4 with Path 2 to 

achieve the green dash Path 5 that is consistent with only Path 3.  

 

Figure 21: Associating Path 2, 3, and 4 to determine path consistency 

In Figure 22, due to an insertion error in fragment read #3, Path3 representing 
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the fragment cannot be related to either Path 1 or Path 2. 

 

Figure 22: Fragment error leads to inconsistent Path 3 

Compared to traditional pairwise overlap method, path system transformation 

is a powerful method to resolve repeats for fragment assembly: for a target sequence 

AGTTATCGCGCGAACTAAGGCC covered by three fragments ATCGCGCGAA, 

AGTTATCGCG, CGCGAACTAAGGCC, the traditional method might assemble 

AGTTATCGCG and CGCGAACTAAGGCC first with a greedy approach to get 

AGTTATCGCGAACTAAGGCC and we lose the subsequence ATCGCGCGAA which 

contains three occurrences (and not two) of CG. Alternatively, the initial graph system 

for a de Bruijn graph with 5-tuples edge and three fragment reads can be illustrated by 

Figure 23: 

AGTT→GTTA→TTAT→TATC→ATCG →TCGC→CGCG        GCGC                

     GCGA→CGAA→GAAC→AACT→ACTA→CTAA→TAAG→AAGG→AGGC 

          Figure 23: de Bruijn graph generated by the three fragments containing repeats 

Most transformations are straightforward until there is a branch selection in 

front of CGCG where it can move forward to GCGA or GCGC. We have an equivalent 

graph system given in Figure 24: 
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AGTTATCGCG       GCGC    

                   GCGA→CGAA→GAAC→AACT→ACTA→CTAA→TAAG→AAGG→AGGC→GGCC 

Figure 24: Direct Transformation before encountering branches at the repeat location 

In addition, the path AGTTATCGCG is consistent with both 

ATCGCGCGAA and CGCGAACTAAGGCC, until we merge ATCGCGCGAA and 

CGCGAACTAAGGCC to be ATCGCGCGAACTAAGGCC to resolve the double edge 

between de Bruijn vertices CGCG and GCGC: 

AGTTATCGCG→ATCGCGCGAACTAAGGCC 

Figure 25: Delayed Branch Transformation resolves the repeats 

Through this process, we get the final sequence: AGTTATCGCGCGAACTAAGGCC 

4.3 Proposing Improvements on Euler Algorithms 

In our approach, unlike the Euler Assembler that starts with error correction, 

our algorithm performs error correction on the fly when needed during the traversal of the 

graph. In other words, we postpone error correction and perform it only in need to 

achieve better runtime efficiency. Our algorithm also tackles very long repeats, which is 

achieved by incorporating statistical analysis in the Euler path traversals.  

4.3.1 Traversal Approach for Euler Superpath 

Given a set of fragments, we would like to reconstruct the target DNA. As is 

done in the Euler Assembler, we construct all 20-tuples from all the fragments. 

Conceptually, we have a graph whose edges are the 20-tuple sequences and the vertices 

are the 19-tuple sequences. 
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Instead of using the graph system transformation approach to discover the 

Euler Superpath, we traverse the de Bruijn graph according to fragment reads so that the 

traversed path contains all fragment reads as subpaths. The steps to discover the Euler 

Superpath are as follows: 

1. Start traversal from a vertex v that does not have a predecessor; a regular 

expression checks edges to find a list of such vertices. Each vertex with no 

predecessor represents the beginning of a contig or an island in the de Bruijn 

graph. Traversal continues until encountering a vertex that has more than one 

outgoing edges available (branches) or a vertex that has no way out (end of the 

contig). Due to repeats, an edge can be traversed multiple times. 

2. There can be at most four choices in front of a branch vertex – A, T, C, and G. 

When we encounter branches, we retrieve the fragment path subsets for each 

branch, which consist of all fragments for each of the choices. We relate our 

traversed path to branch path subsets and select the option whose path subset is 

consistent with our traversed path.  

For example, given three fragments for coverage one without error:  

(1) AAGACGTAGA  
(2) CTGACA  
(3) CGTAGACT 

            We can construct the de Bruijn graph shown Figure 26. 
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TG CT 

GA AC CA 

CG GT 

AG AA 

TA 

AAG AGA GAC GCA 

ACT 

CTG 

TGA 

TAG ACG 

CGT GTA 

Figure 26: de Bruijn graph for target sequence AAGACGTAGACTGACA 

We start the traversal with vertex AA and reach vertex AC, which 

corresponds to sequence AAGAC. From vertex AC we have three choices. At this 

point we compare AAGAC to all three fragments. Because AAGAC is the prefix 

of the first fragment, which is the one we choose. The next character in the first 

fragment is G, consequently, the traversal now visits vertex CG. Traversal 

continues until we reach the ending node CA and we get the target sequence 

AAGACGTAGACTGACA. 

3. Allowing traversal of an edge more than once can make the traversal end up in an 

infinite circle. An ending circle in de Bruijn graph represents an ending repeat for 

a sequence. To find out how many times we want to traverse the circle, we resort 

to the fragment that contains the largest amount of repeats, or better still the 

statistical analysis approach discussed later in this paper. 

As we traverse the graph of Figure 27 and encounter AG for the second 

time, we know it might be an ending cycle. Then we query all the fragments 
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containing the AG node and compare the fragments with existing traversed paths 

to get the longest extension from the fragments. For example, we have 

AAGACGTA and if the longest fragment extension for AG repeat is 

GACGTAAGACGTAAGACGTA; by comparing our traversed path with the 

fragment we know the ending cycle must be traversed one more time. 

 

Figure 27: Same de Bruijn graph for sequences GACGTAAGACGTA and 

GACGTAAGACGTAAGACGTA 

GA AC 

CG GT 

AG AA 

TA 

AAG AGA GAC 

TAG ACG 

CGT GTA 

4.3.2 Statistical Analysis for Perfect Long Repeat Assembly 

Perfect long repeats are identical repeats longer than maximum fragment 

reads (~1000 b). Using the traditional fragment overlapping approach or the Euler graph 

system transformation for the Euler Superpath cannot restore them because all copies of 

repeats will be collapsed to one.  

Statistical analysis can provide us valuable insight to restore the target 

sequence containing perfect long repeats. In the error correction section, we calculated 

that the possibility for a tuple to have a multiplicity of three or less is about 2.5%, given a 

set of fragments with average length 800 and coverage ten. Because the normal 

distribution for binomial statistic approximation is a symmetrical bell shape, we can 
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deduce that under the same circumstances, the probability for a normal tuple to have a 

multiplicity of eighteen or more, which is 2σ larger than the expected value, is also about 

2.5%. In other words, there is a 97.5% probability that the tuple is a two-fold repeat. For 

a tuple on a two-fold repeat, the expected multiplicity is twenty since the coverage is 

twenty due to the repeat and standard deviation )800/201(20 −=σ ≈ 4.5. Therefore for 

a tuple of multiplicity over twenty five, we are 84% sure that it is a three-fold repeat [19]. 

Applying the same rule, tuples with multiplicity over thirty six and forty seven are likely 

to be a four-fold and five-fold repeats respectively. Based on the statistics, we tag each 

edge in the de Bruijn graph with a “best traversal amount”.  It would be best for our Euler 

Superpath to traverse an edge as many times as the “best traversal amount” tagged to the 

edge. There is a two-fold long perfect repeat intermixed with short repeats in the 

following target sequence: AA GACGTAGACT GACGTAGACT GACA. Given 

sufficiently random fragment coverage, we should have the de Bruijn table augmented 

with a “best traversal amount” for each edge as shown in Figure 28: 

 

TG CT 

GA AC CA 

CG GT 

AG AA 

TA 

AAG 1 AGA 3 GAC 5 GCA 1 

ACT 2 

CTG 2 

TGA 2 

TAG 2 ACG 2 

CGT 2 GTA 2 

        Figure 28: de Bruijn graph supplemented with “best traversal amount” by statistical analysis 
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Our Euler Assembler can traverse the de Bruijn graph containing long perfect 

repeats by applying the following steps: 

1. Start traversal from a vertex v that does not have a predecessor and count 

the number of traversals on each edge 

2. Resolve branch confusion according to consistency among traversed path 

and fragment subset on each branch. Long perfect repeats have exactly 

the same long repeats, so there should be no change on fragment subset 

consistency.  

3. If there is more than one choice consistent with existing traversed path at 

a branch due to the confusion of perfect long repeat, randomly select one 

choice to continue traversal. 

4. Stop the traversal at a node that has no edge out or the outgoing edges 

have been traversed “best traversal amount” of times.  

5. For edges not traversed by sufficient amount of times according to “best 

traversal amount”, backtrack to the nearest branch and redo branch 

selection to traverse those edges to meet “best traversal amount” 

requirement.   

6. Resolving ending perfect long repeat is straightforward – traversing edges 

in the cycle up to “best traversal amount” of times. The target sequence 

for the de Bruijn graph in Figure 29 is AAGACGTAGACGTAGAC for a 

two and a half folds perfect long ending repeat. 
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GA AC 

CG GT 

AG AA 

TA 

AAG 1 AGA 3 GAC 3 

TAG 2 ACG 2 

CGT 2 GTA 2 

 

Figure 29: de Bruijn with statistical data uniquely determine target sequence 

For the example in Figure 28, if the traversal by mistake goes by AAGACA, 

our algorithm will backtrack to the last branch, at AAGAC, to redo the decision, because 

a few edges are unvisited. The existing traversal on the last node CA does not need to be 

abandoned, because the traversal still needs to go to CA after satisfying the “best 

traversal amount” for some other edges. As a result, we can still get the following target 

sequence containing perfect long repeat.  

AA GAC|GTAGACT GACGTAGACT GAC|A2 

The target DNA sequence, AAGACGTAGACTGACAGACTGACC has 

more complicated long repeats with slight differences among them, so the order of long 

repeat matters. The fragment reads do not give us any clues on which one goes first, 

because each of the repeats is longer than any fragment. In the Genetic Algorithm 

section, we explore the problem of deciding the order of long repeats with slight 

                                                 

2 Note: GACGTAGACT is long repeat not covered by any fragment, but GACGTA ahead of GACT should 

hopefully be covered by some fragments.  
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differences, which is a common challenge for assembling target sequence containing 

ALU repeats [8]. 

4.3.3 Postponed Error Correction 

An important reason to perform error correction before assembly is that errors 

will cause large quantity of false tuples that are translated to edges in a de Bruijn graph. 

These false edges interfere with the Euler Superpath discovery at the assembly step. For a 

sequencing project of 20% repeat rate, 4% error rate, using tuple size of twenty, the 

quantity of solid and weak tuples are comparable to each other. Consequently, finding an 

Euler path for the de Bruijn graph will be a serious problem because of the large amount 

of false edges. 

However, error correction can introduce new errors as we have discussed 

previously. Also, the process of finding a unique neighbor for an orphan is time 

consuming. Despite of the up to 97% success rate correcting error, we suggest postponing 

the error correction process until it is necessary. We can drop all weak tuples from the de 

Bruijn graph to attain a graph that is as clear as the graph after error correction. 

Essentially for de Bruijn graph, Euler Error Correction removes all weak tuples and 

increases the multiplicity of relevant solid tuples by one. For solid tuples, increasing 

multiplicity by one does not make sense. For graph system transformation, the resolution 

of each edge requires fragment set consistency check. This is another reason to have an 

almost error free fragment set, because fragments need to be retrieved frequently at every 

transformation. On the other hand, with the new traversal approach, the only time for 
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fragments referencing is to decide which branch to continue traversal. We can safely 

ignore the potential errors implied by low multiplicity until the traversal encounters two 

or more branches. Solving errors at location near branches are safer, because branches 

imply repeats. In Figure 17, edge TGC is in front of three branches, indicating TGC will 

be repeated three times. The fragment coverage at repeat region is twice or more than the 

average coverage, though we still need threshold parameter Δ to retain the difference 

with repeat with low coverage. Statistically, 2.5% of the weak tuples are from the low 

coverage region due to random fragment generation. By limiting our error correction only 

to fragments necessary for traversal, we protect fragments of low coverage 
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4.4 Existing GA for DNA Fragment Assembly 

Genetic algorithms are heuristic techniques that can be used to tackle the DNA 

Fragment Assembly problem. General steps applying genetic algorithm are as following:  

1. The algorithm randomly generates a pool of solutions. 

2. It screens for superior solutions with a fitness function.  

3. Mutation and crossover operations are performed on good solutions to create 

next generation solutions.  

It is believed that solutions evolve better for the DNA Fragment Assembly 

problem from one generation to the next. Having a random initial population, an 

appropriate fitness function, and suitable mutation and crossover operations allow the 

genetic algorithm to converge to good solutions for the DNA Fragment Assembly 

problem.  

Each fragment is represented by a number or ID. A solution for fragment 

assembly is represented by a permutation of the fragment number. The fitness function in 

Equation 3 was used for most genetic algorithms for DNA fragment assembly [21]: 

∑
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 (Equation 3)    

where wf[i],f[i+1] is the pairwise overlap strength of fragment i and i+1. Overlap strength 

can be computed with dynamic programming for minimum edit distance, string 

alignment, or shortest common superstring of the two fragments. The obvious problems 

for the fitness function are errors and repeats. Moreover, a pair with best overlapping 

scores might not be a pair contributing to the assembly most: for example fragment pair 
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ATTGCTCGCT and TGCTCGCTAA scores better than fragment pair ATTGCTCGCT and 

TCGCTAACCGTA, but the former pair indeed is closer to the optimal fragment assembly 

solution. Due to its efficiency and adequacy, this fitness function continues to be used. It 

takes O(n) time to evaluate each individual solution for fragment set of size n [22]. 

 In Equation 4, the fitness function extends the previous fitness function by 

adding a penalty to solutions that separate overlapping fragments distantly. The cost of 

the addition increases the complexity to O(n2) for each solution evaluation, while it still 

fails to address the fundamental loopholes mentioned previously. 

∑∑ −= ][],[*||)(2 jfifwjiIF
(Equation 4)    

Two types of operations are used to evolve solutions from one generation to another – 

Crossover and Mutation. 

 For crossover, the genetic algorithm exchanges small portions between two 

solutions to encourage good partial solutions to flourish in different individuals.  The 

example in Figure 30 illustrates order crossover for two assembly solutions at seventh 

position. The first two positions are changed correspondingly since Fragment 7 is moved 

to the crossover section; Fragment 1 is pushed up and Fragment 5 is added to the front. 

17 8364 | 295 
     51 8364 972 

64 5381 | 972 
Figure 30: Crossover for two solutions of DNA fragment assembly 
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 Edge-recombination crossover better suits DNA Fragment assembly by 

preserving valuable adjacencies. Given the same two parent solutions above, we can 

deduce an adjacency list for edge-recombination: 



Fragment Adjacent Fragments 
1 7,8,9    
2 4,9,7    

  3 8,6,5,8 
  4 6,2,6,5 
5 9,4,3    
6 3,4,4    

  7 1,8,9,2 
  8 7,3,3,1 
  9 2,5,1,7 

                        Figure 31: Edge-recombination crossover to preserve fragment adjacency 

The recombination starts from the Fragment 1, and then takes Fragment 8 due 

to its shared adjacency Fragment 3. Following Fragment 3 is Fragment 6 for shared 

adjacency Fragment 4. Fragment 2 is the next to select because it has more unselected 

adjacency. Applying the same rule the rest of the solution is Fragment 9, Fragment 7, and 

lastly Fragment 5. 18364975 is the resulting edge-recombination crossover child. For 

fragments with equivalent qualification during crossover process, arbitrary selection can 

be made. To explore nearby search space, the mutation performs elemental changes on an 

individual solution. Some previously eliminated solutions could be restored to the 

solution pool to contribute to further solution generation. Three kinds of mutations can be 

applied for fragment assembly solutions: 

1. Swapping fragment number at two random positions in a solution. For example, 

swapping the first and the last fragments for solution 18364975 produces 

58364971. 

2. Swapping two adjacent fragments in a solution to achieve better fitness score.  

3. Randomly selecting two fragments and moving one next to another for a better 

fitness score [23]. 

41 

 



4.5 New GA for Fragment Coverage Restoration 

 We would like to propose a new genetic algorithm aiming at restoring all m 

layers of fragments given a fragment set with coverage m. Our genetic algorithm 

completely abandons the overlapping method to connect two or more fragments together. 

Instead, we think fragments should be concatenated to one another, because during 

random fragment creation multiple copies of the target sequence are randomly cut to 

fragments without any overlapping among fragments from the same copy.  

4.5.1 Solution Generation 

For a fragment set of size n and coverage m, a quick solution is to retrieve 

n/m fragments from the fragment set and concatenate the fragments in a certain order to 

form a superstring. Given a fragment set, we should be able to know the total nucleotide 

bases in it as well as the coverage. We can estimate the target sequence length by 

dividing the total nucleotide bases by the coverage. The length of a proposed sequence 

solution should have less than 10% difference from the estimated length.  

The solution generation does not need to be random: we can start with a long 

fragment because we want to select a good successor and predecessor. For a fragment set 

with high coverage especially at repeat region, we might frequently have to decide which 

fragment to choose as next successor or predecessor from several candidates while only 

one is from the same layer as the current fragment. Also, we need to take into 

consideration that some nucleotide bases might be missing. 
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       ATCGGACTGACACACACAGCCTTAGGACTCG  
CGGTCAGATCGGACTGACACA 
(current fragment)   CACAGCCTTAGGACTCG (alternatives) 
                     CAGCCTTAGGACTCG 
                     CACACAGCCTTAGGACTCG 
                           GCCTTAGGACTCG 

 

Figure 32: Solution generations by hints from overlapping fragments 

4.5.2 Fitness Function 

The fitness function lays fragments on a specific position of the proposed 

solution to restore all layers of coverage. Repeats covered by fragments read will be 

resolved during fragment layout determination, because only one layout is correct to 

restore all fragments layers covering the repeat region. The complexity is still O(n) for 

individual solution fitness evaluation because all it does is to find the suitable position on 

the solution superstring according to pattern matching between solid tuple representations 

for fragments and a proposed sequence solution. The fitness function is capable of 

dealing with most errors and repeats. Meanwhile, the fitness function rewards good 

partial solutions to approach fragment assembly solution quickly. 

Several merits of the innovative fitness function deserve further elaboration: 

the goal of the fitness function is to restore the original m coverage; laying out a fragment 

according to a proposed solution is to find a location to place the fragment on the 

proposed solution. If the proposed solution is correct, all fragments are placed in the 

correct location on the solution. Consequently, the fitness function must be able to restore 

all m layers of fragments covering the target sequence. For each of the m layers, there is 

no overlapping at all; thus, during restoration of coverage, no fragment are overlapped – 
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we only permutate the fragments to form layers of coverage. The same rule applies to the 

creation of the solution superstring; the new fitness function here is even capable of 

solving long perfect repeats.  

4.5.3 Operations 

Any operation must maintain the integrity of fragments. Because each 

solution is only using a subset of all available fragments, two solutions for crossover 

might be totally different from one another, which makes exchanging small portions 

among solutions straightforward. 

17 8364 | 295 
    17 gchij 972 
 ef gchij | klm 
Figure 33: Crossover on solutions not sharing fragments 

For two solutions sharing the same fragments affected by the crossover, the 

affected position(s) should perform the crossover too. 

17 8364 | 29i 
    17 gchij 97m 
 ef gchij | klm 
Figure 34: Crossover on solutions sharing fragments 

Some regions of the solution might be capable of restoring all m layers of 

fragment, so the partial solution of those regions should certainly be retained with Edge-

recombination crossover. During fitness measurement, we can use the adjacency between 

two fragments according to the number of fragment layers that the fitness function can 

restore on top of the region. 

 Six kinds of mutations can be applied for fragment assembly solutions:  
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1. Swapping fragments at two random positions in a solution. 

2. Swapping two adjacent fragments in a solution to achieve better layer 

     restoration. 

3. Randomly selecting two fragments and moving one next to the other for a 

better fitness score. 

4. Replacing a certain fragment in the solution with another fragment in the    

fragment set. 

5. Replacing a certain fragment with its reverse complement.  

The frequency of performing crossover and mutation are controlled by the 

crossover rate and the mutation rate, respectively. Setting a high rate for these operations 

might overlook good solutions distancing the final regression of genetic algorithm away 

from optimal solution. On the contrary, low operation rates slow down the progress of a 

genetic algorithm towards optimal solution leading to runtime inefficiency. A wise design 

for genetic algorithm is setting variable operation rates – a high rate at the beginning 

when solutions are far from being optimal, and a low rate at the end to fine tune final 

solutions. 
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4.6 Combining Euler and Genetic Algorithms 

Using the genetic algorithm alone to figure out the blueprint of target 

sequence to restore all layers of coverage can be time consuming. On the other hand, 

Euler algorithms assemble most of the fragments correctly in polynomial time, though 

they cannot determine the order of long perfect repeats with slight differences. We can 

base our genetic algorithm’s coverage restoration on de Bruijn graph. Combining these 

two algorithms can help us achieve more efficient runtime and assembly results that are 

closer to optimal.  

Our Euler Genetic Hybrid algorithm starts from generating a de Bruijn graph 

with all solid tuples from the fragment set including original fragments and their reverse 

complements. Then, statistical analysis is performed on tuple multiplicity to drop the 

tuples with low multiplicity. Next, path traversal starts from the head of each contig, 

which is a head tuple of a fragment with no predecessor in the de Bruijn graph. Coverage 

restoration begins where Euler Path Traversal encounters branches or more than one 

option to continue. Traversal or the assembly process terminates when the expected 

length is met or no more fragments can be used for coverage restoration. In summary, our 

algorithm has the following modules: 

1. de Bruijn graph generation  

2. Target sequence length estimation 

3. Euler Path traversal on solid de Bruijn tuples 
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4. Coverage Restoration 

5. Termination 

Coverage restoration can help us decide the order of long perfect repeats 

containing slight differences, because only one order of the long repeat can ensure 

fragments adjacency match for all layers. If we change the order of long repeat with 

slight difference in Figure 35, the fragments at the end will have to switch position with 

fragments at the front as well, which breaks the fragment adjacency among layers. 

    ATTCGGTGCAAACTACAGCTAAGGGCTTATTCGGTGCAAACTTCGGCTAAGGGCTT 
Figure 30: Determining the order of long repeats by adjacency 
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5. Fragment Assembler Design and Implementation 

5.1 An Illustrative Example 

Given an original sequence, 

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaaatacta 

Figure 36 shows the fragments to assemble with coverage of five and fragment IDs 

starting from 0 according to the order we read from file: 

 Fragment    FragmentID 

gctagctgcaagtcagttactgagttaagtta   0 

ttatttagttaatactttaacaatattat   1 

tacggtatttaaaaaatacta    2 

gctagctgcaagtcagttaactgagttaagttagtattta  3 

gttaatacttttaacaatattattaaggtattttaaaaaatacta  4 

gctagctgcagtcagttaactgagttaa   5 

gttattatttagttaattactttta   6 

acaatattattaaggtatttaaaaatacta   7 

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt 8 

ttaacaatattattaaggtatttaaaaaatacta   9 

gctagctgcaag    10 

tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa 11 

ggtatttaaaaaatacta    12 

Figure 36: Fragment set for Assembly 

Fragments are read into the Fragment table with an ID as the primary key and the 

fragments themselves as the index. Our assembly program chops the fragments into 

tuples of length 15 with a sliding window approach as shown in Figure 37: 
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gctagctgcaagtcagttactgagttaagtta -> 

gctagctgcaagtca, ctagctgcaagtcag, tagctgcaagtcagt, agctgcaagtcagtt, gctgcaagtcagtta, 

ctgcaagtcagttac, tgcaagtcagttact, gcaagtcagttactg, caagtcagttactga, aagtcagttactgag, 

agtcagttactgagt, gtcagttactgagtt, 

tcagttactgagtta, cagttactgagttaa, agttactgagttaag, gttactgagttaagt, ttactgagttaagtt, 

tactgagttaagtta 

Figure 37: Retrieving tuples from a fragment with the  sliding window approach 

All the tuples are input to a MySQL database with the following fields: 

• multiplicity (the number of occurrences in the fragment set) 

• the fragment IDs of the fragments containing the tuple 

• TupleID starting from 0 according to the order each tuple is read 

• PredecessorIDs as the immediate tuple ahead of the current tuple 

• SuccessorIDs as the immediate tuple behind the current tuple 

       

TupleID Tuple Multiplicity FragmentIDs PredecessorIDs SuccessorIDs 

0 gctagctgcaagtca 3 0,3,8 1,1,122 

1 ctagctgcaagtcag 2 0,3 0,0 2,2 

2 tagctgcaagtcagt 2 0,3 1,1 3,3 

3 agctgcaagtcagtt 2 0,3 2,2 4,4 

4 gctgcaagtcagtta 2 0,3 3,3 5,40 

5 ctgcaagtcagttac 1 0 4 6 

6 tgcaagtcagttact 1 0 5 7 

7 gcaagtcagttactg 1 0 6 8 

8 caagtcagttactga 1 0 7 9 

9 aagtcagttactgag 1 0 8 10 

10 agtcagttactgagt 1 0 9 11 

11 gtcagttactgagtt 1 0 10 12 

12 tcagttactgagtta 1 0 11 13 
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TupleID Tuple Multiplicity FragmentIDs PredecessorIDs SuccessorIDs 

13 cagttactgagttaa 1 0 12 14 

14 agttactgagttaag 1 0 13 15 

15 gttactgagttaagt 1 0 14 16 

16 ttactgagttaagtt 1 0 15 17 

17 tactgagttaagtta 1 0 16 

18 ttatttagttaatac 3 1,8,11 ,147,147 19,19,19 

19 tatttagttaatact 3 1,8,11 18,18,18 20,20,20 

20 atttagttaatactt 3 1,8,11 19,19,19 21,21 

21 tttagttaatacttt 2 1,11 20,20 22,150 

22 ttagttaatacttta 1 1 21 23 

23 tagttaatactttaa 1 1 22 24 

24 agttaatactttaac 1 1 23 25 

25 gttaatactttaaca 1 1 24 26 

26 ttaatactttaacaa 1 1 25 27 

27 taatactttaacaat 1 1 26 28 

28 aatactttaacaata 1 1 27 29 

29 atactttaacaatat 1 1 28 30 

30 tactttaacaatatt 1 1 29 31 

31 actttaacaatatta 1 1 30 32 

32 ctttaacaatattat 1 1 31 

33 tacggtatttaaaaa 1 2 34 

34 acggtatttaaaaaa 1 2 33 35 

35 cggtatttaaaaaat 1 2 34 36 

36 ggtatttaaaaaata 3 2,9,12 35,149 37,37,37 

37 gtatttaaaaaatac 3 2,9,12 36,36,36 38,38,38 

38 tatttaaaaaatact 3 2,9,12 37,37,37 39,39,39 

39 atttaaaaaatacta 3 2,9,12 38,38,38 

40 ctgcaagtcagttaa 1 3 4 41 

41 tgcaagtcagttaac 1 3 40 42 

42 gcaagtcagttaact 1 3 41 43 

43 caagtcagttaactg 1 3 42 44 

44 aagtcagttaactga 1 3 43 45 
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TupleID Tuple Multiplicity FragmentIDs PredecessorIDs SuccessorIDs 

45 agtcagttaactgag 2 3,5 44,100 46,46 

46 gtcagttaactgagt 2 3,5 45,45 47,47 

47 tcagttaactgagtt 3 3,5,11 46,46 48,48,48 

48 cagttaactgagtta 3 3,5,11 47,47,47 49,49,49 

49 agttaactgagttaa 3 3,5,11 48,48,48 50,50 

50 gttaactgagttaag 2 3,11 49,49 51,51 

51 ttaactgagttaagt 3 3,8,11 50,136,50 52,52,52 

52 taactgagttaagtt 3 3,8,11 51,51,51 53,53,53 

53 aactgagttaagtta 3 3,8,11 52,52,52 54,137,137 

54 actgagttaagttag 1 3 53 55 

55 ctgagttaagttagt 1 3 54 56 

56 tgagttaagttagta 1 3 55 57 

57 gagttaagttagtat 1 3 56 58 

58 agttaagttagtatt 1 3 57 59 

59 gttaagttagtattt 1 3 58 60 

60 ttaagttagtattta 1 3 59 

61 gttaatacttttaac 2 4,11 ,152 62,62 

62 ttaatacttttaaca 2 4,11 61,61 63,63 

63 taatacttttaacaa 2 4,11 62,62 64,64 

64 aatacttttaacaat 2 4,11 63,63 65,65 

65 atacttttaacaata 2 4,11 64,64 66,66 

66 tacttttaacaatat 2 4,11 65,65 67,67 

67 acttttaacaatatt 2 4,11 66,66 68,68 

68 cttttaacaatatta 2 4,11 67,67 69,69 

69 ttttaacaatattat 2 4,11 68,68 70,70 

70 tttaacaatattatt 2 4,11 69,69 71,71 

71 ttaacaatattatta 3 4,9,11 70,70 72,72,72 

72 taacaatattattaa 3 4,9,11 71,71,71 73,73 

73 aacaatattattaag 2 4,9 72,72 74,74 

74 acaatattattaagg 3 4,7,9 73,73 75,75,75 

75 caatattattaaggt 3 4,7,9 74,74,74 76,76,76 

76 aatattattaaggta 3 4,7,9 75,75,75 77,77,77 
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TupleID Tuple Multiplicity FragmentIDs PredecessorIDs SuccessorIDs 

77 atattattaaggtat 3 4,7,9 76,76,76 78,78,78 

78 tattattaaggtatt 3 4,7,9 77,77,77 79,79,79 

79 attattaaggtattt 3 4,7,9 78,78,78 80,112,112 

80 ttattaaggtatttt 1 4 79 81 

81 tattaaggtatttta 1 4 80 82 

82 attaaggtattttaa 1 4 81 83 

83 ttaaggtattttaaa 1 4 82 84 

84 taaggtattttaaaa 1 4 83 85 

85 aaggtattttaaaaa 1 4 84 86 

86 aggtattttaaaaaa 1 4 85 87 

87 ggtattttaaaaaat 1 4 86 88 

88 gtattttaaaaaata 1 4 87 89 

89 tattttaaaaaatac 1 4 88 90 

90 attttaaaaaatact 1 4 89 91 

91 ttttaaaaaatacta 1 4 90 

92 gctagctgcagtcag 1 5 93 

93 ctagctgcagtcagt 1 5 92 94 

94 tagctgcagtcagtt 1 5 93 95 

95 agctgcagtcagtta 1 5 94 96 

96 gctgcagtcagttaa 1 5 95 97 

97 ctgcagtcagttaac 1 5 96 98 

98 tgcagtcagttaact 1 5 97 99 

99 gcagtcagttaactg 1 5 98 100 

100 cagtcagttaactga 1 5 99 45 

101 gttattatttagtta 3 6,8,11 ,146,146 102,102,102 

102 ttattatttagttaa 3 6,8,11 101,101,101 103,103,103 

103 tattatttagttaat 3 6,8,11 102,102,102 104,147,147 

104 attatttagttaatt 1 6 103 105 

105 ttatttagttaatta 1 6 104 106 

106 tatttagttaattac 1 6 105 107 

107 atttagttaattact 1 6 106 108 

108 tttagttaattactt 1 6 107 109 
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109 ttagttaattacttt 1 6 108 110 

110 tagttaattactttt 1 6 109 111 

111 agttaattactttta 1 6 110 

112 ttattaaggtattta 2 7,9 79,79 113,113 

113 tattaaggtatttaa 2 7,9 112,112 114,114 

114 attaaggtatttaaa 2 7,9 113,113 115,115 

115 ttaaggtatttaaaa 2 7,9 114,114 116,116 

116 taaggtatttaaaaa 2 7,9 115,115 117,148 

117 aaggtatttaaaaat 1 7 116 118 

118 aggtatttaaaaata 1 7 117 119 

119 ggtatttaaaaatac 1 7 118 120 

120 gtatttaaaaatact 1 7 119 121 

121 tatttaaaaatacta 1 7 120 

122 ctagctgcaagtcat 1 8 0 123 

123 tagctgcaagtcatt 1 8 122 124 

124 agctgcaagtcattt 1 8 123 125 

125 gctgcaagtcattta 1 8 124 126 

126 ctgcaagtcatttaa 1 8 125 127 

127 tgcaagtcatttaac 1 8 126 128 

128 gcaagtcatttaact 1 8 127 129 

129 caagtcatttaactg 1 8 128 130 

130 aagtcatttaactga 1 8 129 131 

131 agtcatttaactgag 1 8 130 132 

132 gtcatttaactgagt 1 8 131 133 

133 tcatttaactgagtt 1 8 132 134 

134 catttaactgagtta 1 8 133 135 

135 atttaactgagttaa 1 8 134 136 

136 tttaactgagttaag 1 8 135 51 

137 actgagttaagttat 2 8,11 53,53 138,138 

138 ctgagttaagttatt 2 8,11 137,137 139,139 

139 tgagttaagttatta 2 8,11 138,138 140,140 

140 gagttaagttattat 2 8,11 139,139 141,141 

141 agttaagttattatt 2 8,11 140,140 142,142 
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TupleID Tuple Multiplicity FragmentIDs PredecessorIDs SuccessorIDs 

142 gttaagttattattt 2 8,11 141,141 143,143 

143 ttaagttattattta 2 8,11 142,142 144,144 

144 taagttattatttag 2 8,11 143,143 145,145 

145 aagttattatttagt 2 8,11 144,144 146,146 

146 agttattatttagtt 2 8,11 145,145 101,101 

147 attatttagttaata 2 8,11 103,103 18,18 

148 aaggtatttaaaaaa 1 9 116 149 

149 aggtatttaaaaaat 1 9 148 36 

150 ttagttaatactttt 1 11 21 151 

151 tagttaatactttta 1 11 150 152 

152 agttaatacttttaa 1 11 151 61 

Figure 38: de Bruijn Tuples generated from the give fragment set 

Before traversal starts, the assembler has a rough estimation of target 

sequence length by the following procedure:  

1. Adding up the sum of all fragment lengths in the fragment table 

2. Dividing the sum by two for reverse complement 

3. Dividing the output of the previous step by coverage.  

In the illustrative example, there is no reverse complement. The sum of all 

fragment lengths is 419, which is divided by the coverage five to get estimated sequence 

length eighty three. The terminating condition would be  

1. Traversed path is longer than 105% of estimated length (eighty-six for our 

example) 

2. Cannot resolve branch at a certain position 

3. Traversed path longer than restored coverage at all layers. For coverage 

of five, there are five layers to restore. 
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Euler path traversal starts with the Tuple field that has no Predecessor field 

and a Multiplicity field larger than one as a solid tuple. In our example, traversal starts at 

Tuple 0 – gctagctgcaagtca. From the database, the assembler knows immediately the next 

tuple is either Tuple 1 or Tuple 122, so traversal encounters a branch to resolve. 

However, Tuple 122 has a multiplicity of one that indicates most likely it is caused by 

error. Traversal continues on Tuple 1 – gctagctgcaagtcag. Traversal is straightforward 

until the assembler arrives at Tuple 4, gctagctgcaagtcagtta, where the successor can be 

either Tuple 5 or Tuple 40, both with a multiplicity of one. At this location, coverage 

restoration starts.  

For coverage restoration, the assembler begins with tuple gctagctgcaagtca to 

withdraw fragments – Fragment 0, Fragment 3, and Fragment 8 in the Fragment Table – 

containing the beginning tuple. The assembler applies the dynamic string alignment 

algorithm to align the existing traversed path with the three fragments as shown in Figure 

39. 

gctagctgcaagtcagtta    Traversed Path 

gctagctgcaagtcagttactgagttaagtta   Fragment 0 at Coverage Layer 1 

gctagctgcaagtcagttaactgagttaagttagtattta  Fragment 3 at Coverage Layer 2 

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Fragment 8 at Coverage Layer 3 

                         Figure 39: Initial coverage restoration 

By the majority rule, the assembler moves on to ctgcaagtcagttaa or Tuple 40 

for the next tuple. The successor of Tuple 40 is Tuple 41, which is another weak tuple, so 

the assembler refers to the restored coverage layers to decide the next tuple. Again with 

the majority rule, Tuple 41 is the right choice. Traversal continues until Tuple 53, 
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gctagctgcaagtcagttaactgagtta, where traversal jumps to Tuple 137 because Tuple 54 is 

weak. Continuing from Tuple 137 to Tuple 146, the path is 

gctagctgcaagtcagttaactgagttaagttattatttagtt. At tuple 147, traversal goes to Tuple 101, 

Tuple 102, Tuple 103, Tuple 147, Tuple 18, Tuple 19, Tuple 20, and Tuple 21 

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt, where the successor can be Tuple 22 

or Tuple 150. Here coverage restoration starts again. Restoration starts from the first 

layer, beginning with tuple gctagctgcaagtcagtta, and three fragments available for 

alignment as shown in Figure 40: 

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt Traversed path Length 51 
gctagctgcaagtcagttactgagttaagtta   Fragment 0 Length 32 

gctagctgcaagtcagttaactgagttaagttagtattta  Fragment 3 Length 40 

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Fragment 8 Length 50 

Figure 40: Available fragments for restoration at the beginning of Layer 1 

The assembler aligns each of these fragments with the traversed path. The 

traversed path is significantly longer than Fragment 0, so the assembler uses the 

beginning portion of the traversed path – the first thirty-eight nucleotides for alignment or 

length of Fragment 0 plus six. Because there are six more nucleotides in the traversed 

path, the actual alignment score for Fragment 0 should be six insertion-scores less than 

the alignment-score of the first thirty-eight nucleotides of the traversed path and 

Fragment 0. The six extra nucleotides are to tolerate some insertions for the fragment. 

The error rate of alignment is the sum of insertion (excluding the extra length), deletion 

for alignment, and the difference between fragment and traverse path divided by the 

fragment length. The assembler does not use a fragment for restoration at a layer position 
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if the error rate is two times higher than the overall error rate in a fragment set. This logic 

is to prevent long fragments from achieving a high score by length in spite of errors.  

 

gctagctgcaagtcagtta ctgagttaagtta   Fragment 0  
gctagctgcaagtcagttaactgagttaagttattatt  beginning of traversed path  
gctagctgcaagtcagttaactgagttaagttagtattta  Fragment 3 

gctagctgcaagtcagttaactgagttaagttattatttagttaata  beginning of traversed path 

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Fragment 8 

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt traversed path 

Figure 40: Aligning fragments with traversed path 

Among the fragments that are suitable for coverage restoration at a layer 

position, the fragment with highest score is selected. The traversed path is most likely to 

be correct because the assembler only traverses solid tuples or resolves branches by 

majority rule. So, for Layer 1, Fragment 8 has the highest score. The fragment selection 

for coverage restoration is based on the indexed tuple. After aligning Fragment 8 at Layer 

1, there is only one nucleotide left that is shorter than a tuple, so restoration stops at the 

fiftieth nucleotide for Layer 1. Note that the Fragment table has a Consumed field to 

record whether a fragment’s position has been determined, with 1 for permanently 

determined and 2 for temporarily determined. Fragment 8 is marked Consumed=1, so that 

future restoration cannot use this fragment. For Layer 2, restoration stops after the 

alignment of Fragment 3. For Layer 3, after the alignment of Fragment 0 the restoration 

continues with Tuple 18 ttatttagttaatac. 

From the de Bruijn table, Fragment 1, Fragment 8, and Fragment 11 contain 

Tuple 18. The assembler retrieves Fragment 1, Fragment 8, and Fragment 11 to align 
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with the rest of the traversed path ttatttagttaatacttt at Layer 3. 

gctagctgcaagtcagtta ctgagttaagtta 
gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt 

ttatttagttaatacttt    Remain of traversed path 

ttatttagttaatactttaacaatattat   Fragment 1 

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt Fragment 8 

tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa Fragment 11 

Figure 41: Aligning fragments with partial traversed path 

 For the alignment, the Fragment length is much longer than the rest of the 

path, so the assembler aligns the beginning of the Fragment with the rest of the traversed 

path. For Fragments 8 and Fragments 11, Tuple 18 is in the middle of the fragments. 

Fragments 8 and Fragments 11 cannot be used for Layer 3 restoration because by 

definition, a layer excludes overlap. Thus Fragment 1 is used for coverage restoration at 

Layer 3 following Fragment 0. Restoration at Layer 3 stops because the length of Layer 3 

is longer than the traversed path. Fragment 1 is marked Consumed = 2  because it is 

temporarily aligned at the current position – as the traversed path extends later on, there 

can be other suitable fragments to align at the current position of Fragment 1 at Layer 3. 

The current restoration is shown in Figure 42: 

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt  Traversed Path 

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt  Layer 1 

gctagctgcaagtcagttaactgagttaagttagtattta   Layer 2 

gctagctgcaagtcagtta ctgagttaagttattatttagttaatactttaacaatattat Layer 3 

 Figure 42: Coverage restoration for the first three layers   

There are five layers for a fragment set of coverage five. For the fourth layer, 

there are no more fragments containing first tuple gctagctgcaagtca, so the assembler tries 
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the next tuple in the traversed path in a slide window approach until there are fragments 

with Consumed=0. At Tuple 45 or agtcagttaactgag, Fragment 5 is an available fragment 

for Layer 4. Restoration continues at Layer 4, on Tuple 101 or gttattatttagtta, with 

available Fragment 6 and Fragment 11.  Fragment 6 is temporarily selected for Layer 4. 

Similarly for Layer 5 restoration, the restoration of all five layers is shown in Figure 43: 

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt  Traversed Path 
gctagctgc agtcagttaactgagttaa    Layer 4 
gttattatttagttaattactttta    Fragment 6 

tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa  Fragment 11 

 

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt  Traversed Path 
gctagctgc agtcagttaactgagttaagttattatttagttaatactttta  Layer 4 

 

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttt  Traversed Path 

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt  Layer 1 

gctagctgcaagtcagttaactgagttaagttagtattta   Layer 2 

gctagctgcaagtcagtta ctgagttaagttattatttagttaatactttaacaatattat Layer 3 
gctagctgc agtcagttaactgagttaagttattatttagttaatactttta  Layer 4 

tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa Layer 5 

Figure 43: Coverage restoration for all five layers 

From the restored layers, the assembler moves to Tuple 150 or ttagttaatactttt. Due to the 

weak multiplicity of Tuple 151 and Tuple 152, the assembler continues to rely on 

restoration for path traversal until Tuple 61.Traversal continues until Tuple 116, where 

the traversed path is 

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaa 
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Restoration starts again. Each time restoration starts, the assembler sets fragments with 

Consumed = 2 back to 0 because those fragments are partially aligned with traversed path 

and might be adjusted to another position for better alignment with a longer traversed 

path. Figure 44 shows the beginning of restoration with temporarily aligned fragments in 

last restoration removed and a longer traversed path: 

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaa

 Traversed Path 

gctagctgcaagtcatttaactgagttaagttattatttagttaatactt   Layer 1 

gctagctgcaagtcagttaactgagttaagttagtattta    Layer 2 

gctagctgcaagtcagtta ctgagttaagtta     Layer 3 
gctagctgc agtcagttaactgagttaa     Layer 4 

      Layer 5 

Figure 44: Continue restoration with temporarily aligned fragment removed 

Following the same logic, the restoration ends as shown in Figure 45. 

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaa

 Traversed Path 

gctagctgcaagtcatttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaaatacta

 Layer 1 

gctagctgcaagtcagttaactgagttaagttagtatttagttaatacttttaacaatattattaaggtatttaaaaaatacta

 Layer 2 

gctagctgcaagtcagtta ctgagttaagttattatttagttaatacttt aacaatattat  
 Layer 3 
gctagctgc agtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaatacta

 Layer 4 
 tcagttaactgagttaagttattatttagttaatacttttaacaatattattaa  

 Layer 5 

Figure 45: Coverage restoration for a longer traversed path 
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Again, by majority rule traversal continues on Tuple 148, Tuple 149, Tuple 36, Tuple 37, 

Tuple 38, and finally ends at Tuple 39. 

gctagctgcaagtcagttaactgagttaagttattatttagttaatacttttaacaatattattaaggtatttaaaaaatacta 

This is an exact match for the original sequence. 

5.3 Complexity Analysis 

We define n as the total amount of nucleotide bases in the fragment set. The 

runtime complexity for the insertion of fragments into the fragment table is O(2In+Kn). 

For each fragment, the corresponding reverse complement is calculated for insertion as 

well. K is the time constant for reverse complement calculation. I is the time constant for 

database insertion. The creation of the de Bruijn table is O(Mn), where M is the time 

constant for seeking predecessors and successors of a tuple. Fragment table has fragment 

ID as the primary key. De Bruijn table has the TupleID as primary key and Tuple as 

index. Before insertion of a tuple, existence of the tuple is checked: if the tuple exists, 

update; otherwise insert. The dynamic fragment alignment algorithm has O(L2n), where 

L is the average fragment length. Thus the overall runtime complexity is O(n). The space 

requirement for the assembler is also O(n). 
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5.4 Program Architecture 

All core operations are programmed in C to achieve good runtime 

efficiency and then encapsulated with C++ classes for an object-oriented design. The 

MySQL DBMS is used for data storage. The development platform is Visual C++ .NET  

Windows XP because of the debugging aid of runtime checking.  

 

Figure 46: Deployment diagram for implemented assembler 

There are three C++ classes for assembly algorithm implementation: 

MySQL_Processor, FragmentReader, and Restorer. The MySQL_Processor class 

encapsulates all operations required to communicate with the MySQL database. The 

FragmentReader class imports fragments from an input file, calculates the reverse 
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complement of each fragment, and creates the fragment table and the de Bruijn table. The 

Restorer class traverses the Euler path and restores fragment coverage. 

 

Figure 47: Class diagram for implemented assembler 

63 

 



5.5 Database Schema 

The Fragment Table has three columns – FragmentID, Fragment, and 

Consumed. Fragment ID starts with 0, fragments with even-numbered IDs are original 

fragments from an input file. A fragment with an odd-numbered ID is the reverse 

complement of the fragment with an even-numbered ID immediately preceding the odd 

number. For example, a fragment with ID 0 and a fragment with ID 1 are the reverse 

complements of each another. The Consumed column signals the state of a fragment in 

coverage restoration: 0 for available to use, 1 for permanent used for restoration, and 2 

temporarily used for restoration. 

FragmentID  
(Type:int) 
(Primary Key) 

Fragment  
(Type: varchar)  
(Secondary Key) 

Consumed 
(Type: int)  

… … … 
  Table 2: Fragment Table structure 

The deBruijn Table contains all solid tuples generated by fragments with the 

sliding window approach. An ID is associated with each Tuple for fragment encoding. 

The Multiplicity field records the number of occurrences of a tuple in the fragment set for 

statistical analysis. Tuples with Multiplicity less than a threshold are not traversed by the 

Euler path. The FragmentIDs column of a tuple concatenates all fragment IDs of the 

fragment that contains the tuple. FragmentIDs column speeds up fragment layout during 

coverage restoration –relevant fragments containing a tuple can be retrieved quickly. 

PredecessorIDs column concatenates Tuple IDs preceding a tuple. SuccessorIDs column 

concatenates TupleIDs following a tuple. 
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Tuple ID 
(Type:int, 
Secondary 
Key) 

Tuple  
(Type: 20-
character-
string) 
(Primary 
Key) 

Multiplicity 
(Type:int) 

FragmentIDs  
(Type: 
varchar) 
(Foreign keys 
separated by 
‘,’) 

PredecessorIDs 
(Type: varchar) 

SuccessorIDs 
(Type: 
varchar) 

… … … … … … 
Table 3: deBruijn Table structure 

Figure 52 illustrates the entity relationship between de Bruijn table and Fragment table. 

Fragment contains Tuple 

fragment fragmentID 

fragmentIDs tuple 

TupleID 

Multiplicity 

PredecessorIDs 

SuccessorIDs 

Consumed 

Figure 48: Entity-relationship models between deBruijnTable and FragmentTable 

65 

 



 

6. Test and Result 

The assembly program has been tested with a section of the TIGR_GMG 

sequence modified that contains a two-fold long repeat. Each fold is about 1600 bases 

long with slight differences among the folds. The original sequence is 3275 bases long. 

The sequence is then mutated with GenFrag to have 1.98% error rate and the coverage of 

ten. The output of the assembly is a sequence 3264 nucleotide-bases long. 

Only four mistakes were found in the output:  

1. One insertion of twenty nucleotide bases 

2. Two deletion of fifteen nucleotide bases 

3. One deletion of one nucleotide base.  

The test is performed on a computer equipped with Intel® Core 2 Duo CPU 

2.00 GHz and 1.99 GB of RAM. It takes fifty minutes to load the 30K fragment set into 

the MySQL database. On the other hand, it takes only five minutes to finish Euler path 

traversal and Coverage Restoration for the DNA fragment assembly. 
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7. Conclusion 

DNA Fragment Assembly is a key process for DNA sequencing. Due to 

current technical limitations, a long target DNA sequence is cloned into multiple copies.  

These copies need to be randomly fractured to fragments less than 1000 nucleotide bases 

in length. After analysis on individual fragments, all fragment reads need to be assembled 

together to rebuild the original target sequence. DNA Fragment Assembly algorithms 

have to overcome several challenges to correctly rebuild the original target sequence 

from fragments – DNA double helix structure, sequencing errors, repeats, and insufficient 

coverage. All existing DNA Fragment Assembly algorithms are hindered by these 

challenges. In particular, repeats longer than fragment lengths are nearly impossible to 

assemble correctly with current assembly algorithms. Tedious finishing reaction 

experiments have to be carried out to manually restore target DNA sequences at regions 

containing those long repeats. Hence, there is still considerable need for improvements of 

repeat resolution, error correction, and runtime efficiency on DNA Fragment Assembly.  

Aiming at improving DNA Fragment Assembly performance in these areas, 

we propose a number of enhancements for the Euler Assembler developed by Pevzner et 

al.: 

1. Traversal approach for Euler Superpath discovery,  

2. Statistical Analysis for error and repeat detection, 

3. Perfect long repeats fragment assembly. 

 In addition, we provide an innovative genetic algorithm to restore the 
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coverage of fragments on target sequence. Our genetic algorithm forms solutions with a 

portion of fragments covering the target sequence as blueprints to restore the coverage of 

all fragments. Fast pattern matching techniques are applied to evaluate the fitness of a 

solution. The genetic algorithm determines the sequence order among copies of long 

repeats with slight differences, because only one order is correct to restore all layers of 

fragments covering the repeat region. We combine our enhanced Euler algorithms and 

the genetic algorithm to ensure runtime efficiency. This solution is close to optimal. 

Future research might address the issue of load time, platform independence, and 

scalability. 
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8. Future Research 

The following steps might improve upon our work: 

1. Improve loading time. Loading time is the bottleneck of our assembler, though the 

runtime complexity is O(n). The assembler communicates with the MySQL database 

through direct C API call. We can consider using Oracle SQL loader or writing SQL 

scripts to further speed up the process of fragment input and tuple initialization. 

2. Linux instead of XP for better performance. Initially the assembler is designed for 

the Linux platform. However, the gcc compiler on the Linux platform does not have 

runtime memory infringement checking. There were a number of memory 

infringement bugs in the assembler causing assembly result inconsistency. Visual 

C++ .NET compiler was then used on Windows platform to debug the assembler for 

the memory infringement issue. The runtime memory checking feature of Visual 

C++ .NET compiler significantly slows down the execution of Visual C++ 

application. Due to time constraint, no final testing has been done on the Linux 

platform. Based on experience, on the Linux platform the assembler can load data to 

database two to three times faster than Windows platform. 

3. Larger test data set. Scalability is important for DNA Fragment Assembly. In theory 

our assembler is highly scalable since the overall runtime complexity is O(n). The 

theoretical runtime analysis needs to be verified by thorough testing with large data 

set. 
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Appendix Logic of Key Assembly Modules 

A.1 de Bruijn Graph Creation 

 

Figure 49: Activity diagram for de Bruijn graph creation 

void FragmentReader::insertFragmentToDeBruijnTable(char *fragment, int fragmentID) 
{ 

char query[1000]; 
char insertStatement[1000]; 
int i; 
int frag_size = 0; 
int predecessorID = -1; 
int successorID; 
int currentID; 

  
frag_size = strlen(fragment); 
int insertLength = frag_size - TUPLE_SIZE; 
currentID = getTupleIDinFragment(fragment); 
successorID = getTupleIDinFragment(fragment+1); 

   
for (i = 0; i <= insertLength; i++) 
{ 

dbInsertBuffer[0] = (char *)calloc(TUPLE_SIZE+1, sizeof(char)); 
strncpy(dbInsertBuffer[0], fragment+i, TUPLE_SIZE); 

   
if (currentID < 0) 
{ 

if(i == insertLength) 
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 sprintf(insertStatement, "insert into deBruijnTable (TupleID, Tuple, 
Multiplicity, FragmentIDs, BestTraversalAmount, TraversedAmount, PredecessorIDs, 
SuccessorIDs) values(%d, '%s', 1, '%d', 0, 0, '%d', '')", tupleID, dbInsertBuffer[0], 
fragmentID, predecessorID); 

} 
else if(i == 0) 
{ 

if (successorID < 0) 
     sprintf(insertStatement, "insert into deBruijnTable (TupleID, Tuple, 
Multiplicity, FragmentIDs, BestTraversalAmount, TraversedAmount, PredecessorIDs, 
SuccessorIDs) values(%d, '%s', 1, '%d', 0, 0, '', '%d')", tupleID, dbInsertBuffer[0], 
fragmentID, tupleID+1); 
 else 
     sprintf(insertStatement, "insert into deBruijnTable (TupleID, Tuple, 
Multiplicity, FragmentIDs, BestTraversalAmount, TraversedAmount, PredecessorIDs, 
SuccessorIDs) values(%d, '%s', 1, '%d', 0, 0, '', '%d')", tupleID, dbInsertBuffer[0], 
fragmentID, successorID); 
          } 
          else 

{ 
 if (successorID < 0) 
     sprintf(insertStatement, "insert into deBruijnTable (TupleID, Tuple, 
Multiplicity, FragmentIDs, BestTraversalAmount, TraversedAmount, PredecessorIDs, 
SuccessorIDs) values(%d, '%s', 1, '%d', 0, 0, '%d', '%d')", tupleID, dbInsertBuffer[0], 
fragmentID, predecessorID, tupleID+1); 
 else 
     sprintf(insertStatement, "insert into deBruijnTable (TupleID, Tuple, 
Multiplicity, FragmentIDs, BestTraversalAmount, TraversedAmount, PredecessorIDs, 
SuccessorIDs) values(%d, '%s', 1, '%d', 0, 0, '%d', '%d')", tupleID, dbInsertBuffer[0], 
fragmentID, predecessorID, successorID); 
          } 
           
           mysql_processor.updateTable(insertStatement); 
           tupleID++; 
       } 
       else 
       { 
 //deBruijn fragment already exist, update...;   
 if(i == insertLength) 
 { 
    sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1, 
FragmentIDs=concat(FragmentIDs,',%d'), PredecessorIDs=concat(PredecessorIDs,',%d')  
where TupleID=%d", fragmentID, predecessorID, currentID); 
 } 
 else if(i == 0) 
 { 
    if (successorID < 0) 
      sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1, 
FragmentIDs=concat(FragmentIDs,',%d'), SuccessorIDs=concat(SuccessorIDs,',%d') where 
TupleID=%d", fragmentID, tupleID, currentID); 
    else 
      sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1, 
FragmentIDs=concat(FragmentIDs,',%d'), SuccessorIDs=concat(SuccessorIDs,',%d') where 
TupleID=%d", fragmentID, successorID, currentID); 
 } 
 else 
 { 
    if (successorID < 0) 
      sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1, 
FragmentIDs=concat(FragmentIDs,',%d'), PredecessorIDs=concat(PredecessorIDs,',%d'), 
SuccessorIDs=concat(SuccessorIDs,',%d') where TupleID=%d", fragmentID, predecessorID, 
tupleID, currentID); 
    else 
      sprintf(query, "update deBruijnTable set Multiplicity=Multiplicity+1, 
FragmentIDs=concat(FragmentIDs,',%d'), PredecessorIDs=concat(PredecessorIDs,',%d'), 
SuccessorIDs=concat(SuccessorIDs,',%d') where TupleID=%d", fragmentID, predecessorID, 
successorID, currentID); 
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 } 
  
 mysql_processor.updateTable(query); 
 } 
   
 free(dbInsertBuffer[0]); 
   
 predecessorID = currentID; 
 if(predecessorID < 0) //predecessorID cannot be absent in the middle of the 
loop 
 { 
  predecessorID = tupleID - 1; 
 } 
 currentID = successorID; 
 successorID = getTupleIDinFragment(fragment+i+2); 
       } 
} 

 Code Listing 1: Fragment insertion to database 

A.2 Estimating the Length of Target Sequence 

int Restorer::calculateTargetLength() 
{ 

int charAmt = 0; 
int **lenResult; 
char charLenQuery[500]; 
int fragmentAmount; 
int tmp; 
int **amtResult; 
char *fragAmtQuery = "select count(*) from fragmenttable"; 

  
amtResult = mysql_processor.queryIntFromDB(fragAmtQuery, &tmp); 
fragmentAmount = *amtResult[0]; 
free(amtResult); 
for (int i = 0; i < fragmentAmount; i++) 
{ 

     sprintf(charLenQuery, "select CHAR_LENGTH(Fragment) from fragmenttable where 
FragmentID = %d", i); 
     lenResult = mysql_processor.queryIntFromDB(charLenQuery, &tmp); 
     charAmt = charAmt + (*lenResult[0]); 
   } 
 
   int targetLength = charAmt/(2*10); 
 
   return targetLength; 
} 

 Code Listing 2: Target sequence length estimation 
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A.3 Euler Path Traversal 

 

Figure 50: Activity diagram for Euler Path Traversal 
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void Restorer::traverseAndRestore(DEBRUIJN_ROW *edge, int coverage) 
{ 

char *nextEdgeRegexp = (char *)calloc(TUPLE_SIZE+1, sizeof(char)); 
char *currentEdge = (char *)calloc(TUPLE_SIZE+1, sizeof(char)); 
int targetLength = calculateTargetLength(); 
fprintf(stdout, "\n targetLength is %d \n", targetLength); 
DEBRUIJN_ROW **pRowResult = NULL; 
int edgeAmount;  
char updateQuery[500]; 
int bDone = 0;  

  
strcpy(currentEdge, edge->Tuple); 
strcpy(pPath, edge->Tuple); 
pathLength = TUPLE_SIZE; 
sprintf(updateQuery, "update deBruijnTable set TraversedAmount=TraversedAmount+1  
where Tuple='%s'", currentEdge); 
mysql_processor.updateTable(updateQuery); 

  
while(!bDone) 
{ 

pRowResult = getNextEdges(currentEdge, &edgeAmount); 
   
      // more than 1 choice, need to resolve with fragment reads 

if (edgeAmount > 1) 
{ 

if(resolveBranches()==0) 
 bDone = 1; 

} 
   

if (edgeAmount == 1) 
{ 

pPath[pathLength] = pRowResult[0]->Tuple[TUPLE_SIZE-1]; 
pPath[pathLength+1] = '\0'; 
pathLength++; 
if (pathLength > targetLength) 
{ 

 bDone = 1; 
} 

    
} 

   
if (edgeAmount == 0) 
{ 

if (layerSizes[0] > pathLength) 
 { 

pPath[pathLength] = majorityChar(pathLength); 
pathLength++; 
pPath[pathLength] = '\0'; 

 } 
 else 
 { 

if(resolveBranches()==0) 
bDone = 1; 

 } 
} 

 
strcpy(currentEdge, pPath+pathLength-TUPLE_SIZE); 
} 
outputAndCleanTraversal(); 

} 

 Code Listing 3: Euler path traversal 
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A.4 Coverage Restoration 

 

Figure 51: Activity diagram for Coverage Restoration 
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int Restorer::restoreCoverage() 
{ 

for (int i = 0; i < 10; i++) 
{ 
//trySubPathStartIndex at the beginning is the same as the current coverage layer 

length or where a new fragment should be appended to continue fragment restoration 
// if no fitting fragment is found, subPathStartIndex will keep increasing until 

meeting the expectLength 
int trySubPathStartIndex; 
trySubPathStartIndex = layerRestoreStarts[i]; 
// restoration for one layer is done when the actual coveragePathSize of the  
layer is longer than the expectLength (the best we can expect) 
// or trySubPathStartIndex is longer than the expectLength (cannot continue 

trying) 
while ((layerSizes[i] < pathLength)&&(trySubPathStartIndex < pathLength)) 
{ 

 layerRestoreStarts[i] = layerSizes[i]; 
 char tryTuple[TUPLE_SIZE+1]; 
 strncpy(tryTuple, pPath + trySubPathStartIndex, TUPLE_SIZE); 
 tryTuple[TUPLE_SIZE]='\0'; 
 char fragmentIDQuery[500]; 
 sprintf(fragmentIDQuery, "select FragmentIDs from debruijntable where Tuple = 
'%s'", tryTuple); 
 
 int resultSize; 
 char **strResults = mysql_processor.queryStrFromDB(fragmentIDQuery, 
&resultSize, 1000); 
 char fragmentCodeIDQuery[500]; 
 sprintf(fragmentCodeIDQuery, "select Fragment, FragmentID from fragmenttable 
where FragmentID in (%s) and Fragment regexp '^%s.*' and Consumed=0", strResults[0], 
tryTuple); 
 free(strResults); 
    
 STR_INT **strintResults = 
mysql_processor.queryStrIntFromDB(fragmentCodeIDQuery, &resultSize, 1000); 
 int alignScore = alignFittestFragment(strintResults, resultSize, i, 
trySubPathStartIndex); 
 if ((alignScore > 0)&&(layerSizes[i]>trySubPathStartIndex)) 
 { 

trySubPathStartIndex = layerSizes[i]; // need to continue restoration  
} 

 else 
 { 

trySubPathStartIndex++; // no matching fragment to restore at the current 
position; try next index 

 } 
} 

} 
 

for (int j = 0; j < 10; j++) 
{ 

// as long as 1 layer can be restored to longer than the expect length, restoration 
succeeded 
 if(layerSizes[j] > pathLength) 
  return 1; 

} 
 

return 0; 
} 
 

Code Listing 4: Restoring coverage before branch selection 
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A.5 Selecting the Best Fragment for Alignment  

 

        Figure 52: Activity diagram for best fragment alignment 

alignFittestFragment(STR_INT **strintResults,int strAmount,int coverageLayerIndex,int 
subPathStartIndex) 
{ 

for (int i = 0; i < strAmount; i++) 
{ 

if (maxSubPathLength >= fragLength + 6) 
{ 
alignmentLength = fragLength + 6; 
strncpy(pSubPath, pPath + subPathStartIndex, alignmentLength); 
// if mode == 1, alignment will insert space into only fragment 
tmpAlignOutput = alignFragments(pFragment, pSubPath, fragLength, alignmentLength, 

&tmpScore, &insertAmount, &agreeAmount, &diffAmount, &removeAmount, diffLocations, 1, 
&tmpOffset); 

int actualScore = tmpScore - 6 * insertionScore; 
if ((checkConsumable(fragLength, insertAmount - 6, agreeAmount, diffAmount, 

removeAmount, diffLocations) == 1)&&(actualScore > highestScore)) 
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 alignmentOutput = tmpAlignOutput; 
 bestAlignmentLength = alignmentLength; 
 fittestFragmentID = fragmentID; 
 exceeded = 0; 
 highestScore = actualScore; 
 bestIndex = -1; 
 bestOffset = tmpOffset; 

} 
} 
else if (maxSubPathLength >= fragLength) 
{ 
alignmentLength = maxSubPathLength; 
strncpy(pSubPath, pPath + subPathStartIndex, alignmentLength); 
// if mode == 1, alignment will insert space into only fragment 
tmpAlignOutput = alignFragments(pFragment, pSubPath, fragLength, alignmentLength, 

&tmpScore, &insertAmount, &agreeAmount, &diffAmount, &removeAmount, diffLocations, 1, 
&tmpOffset); 

int actualScore = tmpScore - 6 * insertionScore; 
if ((checkConsumable(fragLength, insertAmount - (maxSubPathLength - fragLength), 

agreeAmount, diffAmount, removeAmount, diffLocations) == 1)&&(actualScore > 
highestScore)) 

{ 
 alignmentOutput = tmpAlignOutput; 
 bestAlignmentLength = alignmentLength; 
 fittestFragmentID = fragmentID; 
 exceeded = 0; 
 highestScore = actualScore; 
 bestIndex = -1; 
 bestOffset = tmpOffset; 

} 
} 
else if (fragLength > maxSubPathLength + 6) 
{ 
alignmentLength = maxSubPathLength + 6; 
strncpy(pSubPath, pPath + subPathStartIndex, maxSubPathLength); 
strcpy(remain, pFragment+alignmentLength); 
// fragment is the blue blueprint in this case -- the key is to make best 

alignment and get the char right after the last alignment 
// if mode == 0, alignment will insert space into both blueprint and fragment 
tmpAlignOutput = alignFragments(pSubPath, pFragment, maxSubPathLength, 

alignmentLength, &tmpScore, &insertAmount, &agreeAmount, &diffAmount, &removeAmount, 
diffLocations, 0, &tmpOffset); 

int actualScore = tmpScore - 6 * insertionScore; 
if ((checkConsumable(maxSubPathLength, insertAmount - (fragLength-

maxSubPathLength), agreeAmount, diffAmount, removeAmount, diffLocations) == 
1)&&(actualScore > highestScore)) 

{ 
 alignmentOutput = tmpAlignOutput; 
 bestAlignmentLength = alignmentLength; 
 fittestFragmentID = fragmentID; 
 exceeded = 1; 
 bestIndex = i; 
 strcpy(bestRemain, remain); 
 highestScore = actualScore; 
 bestOffset = tmpOffset; 

} 
} 
else 
{ 

 alignmentLength = fragLength; 
 strncpy(pSubPath, pPath + subPathStartIndex, maxSubPathLength); 
 // fragment is the blue blueprint in this case -- the key is to make best 
alignment and get the char right after the last alignment 
 // if mode == 2, alignment will insert space into only blueprint 
 tmpAlignOutput = alignFragments(pSubPath, pFragment, maxSubPathLength, 
fragLength, &tmpScore, &insertAmount, &agreeAmount, &diffAmount, &removeAmount, 
diffLocations, 0, &tmpOffset); 
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 int actualScore = tmpScore - (fragLength - maxSubPathLength) * insertionScore; 
 if ((checkConsumable(maxSubPathLength, insertAmount - (fragLength-
maxSubPathLength), agreeAmount, diffAmount, removeAmount, diffLocations) == 
1)&&(actualScore > highestScore)) 
 { 

alignmentOutput = tmpAlignOutput; 
bestAlignmentLength = alignmentLength; 
fittestFragmentID = fragmentID; 
exceeded = 1; 
highestScore = actualScore; 
bestIndex = -1; 
bestOffset = tmpOffset; 

 } 
}  

} 
 

if(highestScore > 0) // only align fragments that are good  match for current 
position 

{ 
int indexOfLastChar = bestAlignmentLength-1; 
int skipcount = 0; 
int insertcount = 0; 

   
 if (exceeded == 0) //pathLength longer than layer length, so space the at the 
end of alignment for layer restoration to remove first 
 { 

while (alignmentOutput[0][indexOfLastChar] == ' ') 
{ 

indexOfLastChar--; 
} 

 
for (int k = 0; k <= indexOfLastChar; k++) 
{ 

  pCoverageRestoration[coverageLayerIndex][subPathStartIndex + k] = 
alignmentOutput[0][k+bestOffset]; 

} 
 

char updateQuery[300]; 
sprintf(updateQuery, "update FragmentTable set Consumed = 1 where 

FragmentID = %d", fittestFragmentID); 
mysql_processor.updateTable(updateQuery); 

 } 
 else //layer length is longer than pathLength, layer becomes the blueprint 
 { 

for (int p = 0; p < maxSubPathLength; p++) 
{ 

if (alignmentOutput[0][p+bestOffset] != ' ')  
{ 

  pCoverageRestoration[coverageLayerIndex][subPathStartIndex + p - 
skipcount] = alignmentOutput[1][p+bestOffset]; 

} 
else 

  skipcount++; 
 

if (alignmentOutput[1][p+bestOffset] == ' ') 
  insertcount++; 

} 
 

for (int k = maxSubPathLength; k <= indexOfLastChar+insertcount; k++) 
{ 

pCoverageRestoration[coverageLayerIndex][subPathStartIndex + k - 
skipcount] = alignmentOutput[1][k+bestOffset]; 

}  
} 

   
 layerSizes[coverageLayerIndex] = subPathStartIndex + indexOfLastChar + 1 - 
skipcount + insertcount; 
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 if (bestIndex >=0) 
 { 

strcpy(pCoverageRestoration[coverageLayerIndex] + 
layerSizes[coverageLayerIndex], bestRemain); 

layerSizes[coverageLayerIndex] = 
strlen(pCoverageRestoration[coverageLayerIndex]); 

 } 
} 

 
return highestScore; 

} 

 Code Listing 5: Selecting the fittest fragment for alignment at a position 
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