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Marine ecologists and managers need to know the spatial extent of at-sea areas most

frequented by the groups of wildlife they study or manage. Defining group-specific

ranges and distributions (i.e., space use at the level of species, population, age-class,

etc.) can help to identify the source or severity of common or distinct threats among

different at-risk groups. In biologging studies, this is accomplished by estimating the

space use of a group based on a sample of tracked individuals. A major assumption of

these studies is consistency in individual movements among members of a group. The

implications of scaling up individual-level tracking data to infer higher-level spatial patterns

for groups (i.e., size and extent of areas used, overlap or segregation among groups) is

not well documented for wide-ranging pelagic species with high potential for individual

variation in space use. We present a case study exploring the effects of sampling (i.e.,

number and identity of individuals contributing to an analysis) on defining group-specific

space use with year-round multi-colony tracking data from two highly vagile species,

Laysan (Phoebastria immutabilis) and black-footed (P. nigripes) albatrosses. The results

clearly demonstrate that caution is warranted when defining space use for a specific

species-colony-period group based on datasets of small, intermediate, or relatively

large sample sizes (ranging from n = 3–42 tracked individuals) due to a high degree

of individual-level variation in movements. Overall, we provide further support to the

recommendation that biologging studies aiming to define higher-level patterns in space

use exercise restraint in the scope of inference, particularly when pooled Kernel Density

Estimation (KDE) techniques are applied to small datasets for wide-ranging species.

Transparent reporting in respect to the potential limitations of the data can in turn better

inform both biological interpretations and science-based management decisions.
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INTRODUCTION

A common goal in spatial ecology research or conservation
planning is to identify the areas most frequented by a target
group of free-ranging animals. In marine systems, this often
involves identifying important areas beyond the shoreline,
creating unique challenges for species that range widely across
the open sea. Groups of interest for marine spatial planning
could include for example specific community-level functional
groups (e.g., apex predators, Block et al., 2011), taxonomic
groups (e.g., seabirds, Ronconi et al., 2012), species-at-risk (e.g.,
African penguins Spheniscus demersus, Ludynia et al., 2012),
sub-populations (e.g., seabird colonies, Louzao et al., 2011; sea
turtle breeding areas, Schofield et al., 2013) or specific life
history phases, often divided further by sex (e.g., pupping female
white sharks Carcharodon carcharias, Domeier and Nasby-Lucas,
2013). Our ability to study the space use of marine animals
belonging to a specific group of-concern continues to expand
with innovations in animal-attached biologging devices that
record location and other ancillary data (Cooke, 2008; Hussey
et al., 2015; Wilson et al., 2015). Importantly, how we use
these individual-based data to define space use more broadly
for the higher-level group to which the tracked animals belong,
influences how we interpret the biological and management
implications of the findings.

For seabirds, individual-based tracking data are commonly
used to infer higher-level interpretations of space use. The distant
separation between terrestrial breeding and marine foraging
areas requires the use of biologging devices to gain insights into
habitat use at sea. Because extinction now threatens over 30% of
extant seabird species (IUCN, 2015), a priority in conservation
planning is to assess the variability and extent of the at-sea areas
most frequented by birds (Croxall et al., 2012; Ronconi et al.,
2012). Seabirds are generally seasonally colonial and migratory,
thus specific regions are more heavily visited during different
periods of their annual cycle. Defining period-specific space use
can help to identify the source or severity of common or distinct
threats posed at different periods in the annual cycle for a species,
and for further sub-groups divided by for example age-class (e.g.,
Péron and Grémillet, 2013; Riotte-Lambert and Weimerskirch,
2013; Gutowsky et al., 2014a), or sex (e.g., Phillips et al., 2004;
Hedd et al., 2014). At the colony level, individual-based tracking
data have been used to discern period- and colony-specific space
use and potential associated impacts for population dynamics for
a variety of seabird species (e.g., Young et al., 2009; Catry et al.,
2011; Gaston et al., 2011;Wakefield et al., 2011; Frederiksen et al.,
2012; McFarlane Tranquilla et al., 2013).

Various analytical approaches are available to estimate home
ranges (i.e., full extent of the area used) and utilization
distributions (i.e., areas of concentrated space use within the

Abbreviations: Laysans, Laysan albatross Phoebastria immutabilis; black-footeds,

black-footed albatross Phoebastria nigripes; Midway, Midway Atoll National

Wildlife Refuge, Northwest Hawaiian Islands; Tern, Tern Island, French Frigate

Shoals, Northwest Hawaiian Islands; GLS, Global Location Sensing archival

geolocator tag; ECR, Early chick rearing; LCR, Late chick rearing; OW,

Overwinter; PBE, Pre-breeding, egg laying and incubation; KDE, Kernel Density

Estimation or Estimate (used interchangeably).

range) from biologger-derived location data (Fieberg and Börger,
2012). Kernel Density Estimation (KDE) remains one of the most
common tools for visualizing and quantifying animal ranges and
distributions since its inception in ecological studies (Worton,
1989). KDE is a non-parametric statistical method for estimating
probability densities. When applied to tracking data, the result
of a KDE analysis is the creation of contours representing
densities or intensities of space use, often called a Kernel Density
Estimate (herein we use “KDE” interchangeably to refer to both
the analytical approach and output of the analysis). There has
been much discussion over best practices in implementing and
reporting for KDE and other similar approaches, and these have
been thoroughly reviewed elsewhere (e.g., Laver and Kelly, 2008;
Kie et al., 2010; Fieberg and Börger, 2012; Fleming et al., 2015;
Signer et al., 2015). Despite shifting baselines in execution, KDE
continues to endure among ecologists as a relatively simple and
accessible tool for describing space use.

Generally, the results of independent KDE for each tracked
individual in a dataset are reported, thus facilitating comparisons
among individuals in the extent and locations of home ranges
and areas of high use. Generalizations are often made for the
higher-level group to which the tracked individuals belong by
reporting results across individuals (Laver and Kelly, 2008).
However, within the seabird literature, location data from
multiple individuals are often combined into a single pooled KDE
analysis to describe space use without discriminating among
individuals. The results are then used to extrapolate space use to
the higher-level group to which the tracked individuals belong
(e.g., species-colony-period specific). Wood et al. (2000) were
among the first to recommend pooled KDE as a tool to define
and compare space use between groups of seabirds based on
group-level sets of KDE contours (two albatross spp. from the
same colony during breeding), and the practice has since become
commonplace. Some recent examples include the use of pooled
KDE to compare space use between different annual periods for a
species and colony (e.g., Robertson et al., 2014), different species
from the same colony (e.g., Linnebjerg et al., 2013), different
colonies of the same species (e.g., Young et al., 2009; Thiebot
et al., 2011), and different species and colonies (e.g., McFarlane
Tranquilla et al., 2013, 2015; Ratcliffe et al., 2014).

Scaling up individual-level location data in a pooled analysis
to infer higher-level group spatial patterns has two related
consequences: (1) the output masks the degree of variation in
movements among the individuals in the dataset contributing to
the analysis, and (2) it assumes tracked individuals reasonably
represent the larger group as a whole. Individual-level space
use is rarely reported together with group-level pooled analyses,
unintentionally inhibiting assessment of the contribution of
individuals to the observed higher-level spatial patterns. The
assumption of representativeness is sometimes briefly conceded,
but implications for the biological interpretations of the results
generally are not formally evaluated. A number of marine
vertebrate studies have illustrated an asymptotic saturation effect
of increasing the number of tracked individuals or number of
foraging trips per individual on estimates of the size of the area
occupied by a sample of tracked animals in a pooled analysis
(e.g., Wood et al., 2000; Hindell et al., 2003; Taylor et al., 2004;
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Breed et al., 2006; Soanes et al., 2013; Orben et al., 2015). These
studies suggest that a sample of individuals may be representative
of their respective group if the estimated occupied areas reach an
asymptote before the maximum sample size is included in the
analysis. In addition to the estimated size of the area occupied
by a group, it has also been demonstrated that the geographic
locations of contours resulting from pooled analyses of different
individuals can vary depending on the degree of individual
variation within the sample (Taylor et al., 2004; Breed et al.,
2006; Orben et al., 2015). Beyond these few examples which
directly address assumptions of group-level representativeness
of a sample, consistencies in movements among individuals
comprising a dataset and among members of the higher-level
group they represent remain un-tested assumptions, especially in
seabird studies with small sample sizes (Soanes et al., 2013).

Importantly, this oversight persists despite a number of
published works recommending that biologists using biologging
technologies exercise restraint in the inferential scope of the
findings (Lindberg and Walker, 2007; Hebblewhite and Haydon,
2010). Here, we explicitly demonstrate the impacts of individual
variation and sample size on inter-colony comparisons of space
use (i.e., differences in the size of areas used, overlap or
segregation in distributions) in relation to the stage of the annual
cycle in two highly vagile seabirds, Laysan and black-footed (P.
nigripes) albatross. Past work has used sub-sampling routines to
identify the presence of an area asymptote as justification for
pooled analyses. We use a similar approach but focus rather
on the range in output at different sample sizes to assess the
potential for sampling effects from individual-level variation
on higher-level interpretations of space use. When not at the
breeding colonies, Laysan and black-footed albatross inhabit the
vast open waters of the North Pacific Ocean basin. Like many
seabirds, a variety of anthropogenic threats have resulted in both
species being listed as “Near Threatened” (IUCN, 2015), thus
identifying at-sea habitat and spatial overlap with risks has been
a management priority (Naughton et al., 2007; Arata et al., 2009).
We expect our practical demonstration of the consequences of
sampling effects to provide further insights into the importance
of considering the inferential limitations of small datasets, for
these and other wide-ranging species, especially when informing
science-based conservation planning strategies and management
decisions.

METHODS

Logger Deployment
Fieldwork was conducted between 2008 and 2013 at two colonies
in the Northwest Hawaiian Islands: Sand Island, Midway Atoll
National Wildlife Refuge (28.21◦N, 177.36◦W; herein “Midway”)
and Tern Island, French Frigate Shoals (23.87◦N, 166.28◦W;
herein “Tern”). These breeding sites are located 1200 km apart
with population sizes (including all islands within the atolls) for
Laysan albatross (herein “Laysans”) of 408,130 breeding pairs at
Midway and 3230 pairs at Tern, and for black-footed albatross
(herein “black-footeds”) of 21,830 pairs at Midway and 4260 pairs
at Tern (Arata et al., 2009). We deployed and recovered two

TABLE 1 | Number of individual GLS tracks used in analyses by

species-colony-year.

SPECIES Hatch-year of deployment
colony

2008 2009 2010 2011 2012 2013

LAYSANS

Midway 10 9 8 7 5 3

LAYSANS

Tern 9 11 6

BLACK-FOOTEDS

Midway 6 7 3 6 3 5

BLACK-FOOTEDS

Tern 10 9 5

Recoveries of GLS loggers from Laysan and black-footed albatross from Midway Atoll

National Wildlife Refuge and Tern Island, French Frigate Shoals. Year refers to the hatch-

year during deployment (i.e., GLS deployed in Dec 2010 and recovered in Jan 2012

is considered a 2011 deployment). All GLS were Model LAT2500 and LAT2900 (Lotek

Wireless, Inc., St. John’s, Newfoundland, Canada) except eight deployments of Model

MK3 and MK7 [British Antarctic Survey (BAS), Cambridge, UK] in 2013.

types of leg-mounted global location sensing (GLS) loggers using
similar approaches across device types, colonies, and species
(Table 1). Breeding birds (generally of unknown sex and only one
member of a pair) were selected and captured opportunistically
at the nest during incubation or chick brooding for device
deployment and recaptured for device retrieval in a subsequent
breeding season. All devices were mounted to a plastic leg
band using cable ties and marine grade quick-setting epoxy and
attached to the tarsus (logger+attachment c. 5–9 g, <1% body
mass; well below the recommended limit for albatrosses, Phillips
et al., 2003). GLS recovery rates varied among years but were on
average 77% at Midway (2008–2013) and 91% at Tern (2008–
2010). While it was not possible to formally assess tag effects,
deployments at a Laysan albatross colony on Oahu, Hawaii
resulted in no detectable short-term effects on reproductive
success (Young et al., 2009). The Institutional Animal Care
and Use Committee at the University of California Santa Cruz
approved all protocols employed in this study. Permission to
carry out research on Midway and Tern was granted from The
Hawaiian Islands National Wildlife Refuge, US Fish and Wildlife
Service, Department of the Interior (although opinions expressed
in this publication do not necessarily reflect those of the agency).

Positional Data Processing
GLS were programmed to record ambient light level data sub-
sampled to maximums at 10-min intervals. Time of sunrise
and sunset, estimated from thresholds of light level intensity,
allowed for daily estimation of latitude from day length, and
longitude from the time of local noon/midnight. Light data
from BAS GLS were processed manually using TransEdit and
Birdtrack software and light data from Lotek GLS were processed
internally by automated template fitting software. The accuracy
of latitude estimates during equinox periods is unavoidably
compromised, as day length depends only weakly on latitude
at this time (Ekstrom, 2004). For this study, locations on 15
days of either side of the equinoxes were excluded based on
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FIGURE 1 | The four periods of the annual cycle considered in analyses. Daily GLS locations of Laysan and black-footed albatross were divided into four

60-day periods (vertical light gray blocks) associated with different life history phases (horizontal dark gray bars). Early chick rearing (ECR) coincides with late

incubation, peak hatch, and early chick rearing (01-Jan to 01-Mar). Late chick rearing (LCR) coincides with the end of chick rearing (05-Apr to 15-Jun). Overwinter

(OW) occurs during the non-breeding season, when all birds have departed the colonies and are at overwintering areas at sea (01-Jul to 01-Sep). Pre-breeding and

eggs (PBE) encompasses the end of non-breeding, the return of birds to the colonies for courtship, and the transition into egg laying and incubation (15-Oct to

15-Dec). The timing of reproductive events were derived from Arata et al. (2009) and Gutowsky et al. (2014b) and typically varies little among colonies or between

species (at most by c. 2 weeks). Each period avoids overlap with the equinoxes and intervals of most intensive logger deployment and recovery (15-Dec to 01-Jan).

consistently suspect latitude estimates. All remaining locations
were then processed using hierarchical state-space models
(SSMs) estimated with Bayesian techniques (Jonsen et al., 2005;
Block et al., 2011; Winship et al., 2012) to improve estimate
accuracy and consistency across colonies and device types and to
avoid unnecessary data loss (for SSM details see Gutowsky et al.,
2014b).

We divided daily locations into four periods of the annual
cycle approximately overlapping different life history phases
(phenology can vary between species and colonies by c. 1–2
weeks) for subsequent analyses (Figure 1). Each period is 60
days in length thus avoiding overlap with the equinoxes (01-
Mar–15-Apr and 01-Sep–15-Oct) and avoiding intervals of
most intensive logger deployment and recovery wherein each
individual bird’s deployment length varied most (15-Dec–01-
Jan). Locations within each period for each bird were included
only if an individual contributed >30 days of data within that
period to ensure each individual exhibited a range of natural
behaviors for each life history phase (i.e., capturing time spent
both at the colony and foraging at sea during the breeding season
periods).

We examined patterns of at-sea distribution within species
between colonies for each annual period with KDE (Worton,
1989; Wood et al., 2000; Laver and Kelly, 2008; Kie et al., 2010),
using purpose-built software written in Matlab (MathWorks
Inc, USA; IKNOS Toolbox, Y. Tremblay unpublished). Limited
sample sizes within years inhibited inter-annual comparisons
due to the inability to differentiate among individual variation
and true annual effects. Therefore, data were pooled across years
within each period by colony and species. KDEs were conducted
independently for each individual and as pooled KDEs where all
locations from individuals within a species-colony-period dataset
are pooled together for the analysis.

A KDE for bivariate data is defined as:

f (x) =
[

1/(nh2)
]

n
∑

i= 1

K

{

(x− Xi)

h

}

where Xi(i = 1, 2, . . ., n) is the sample of n observed locations
(i.e., a coordinate vector of longitude and latitude) from a
distribution with unknown density f , x is the location where
the function is evaluated, h > 0 is the smoothing parameter
(or bandwidth; details below), and K is a kernel density (we use
a biweight kernel, as described in Seaman and Powell, 1996).
The KDE method essentially places a kernel over each observed
location in the dataset of sample size n, where Xi as the ith

observation. A grid is superimposed over the data and the
function is evaluated at each grid intersection, or x (we computed
KDEs on a 0.25◦ × 0.25◦ grid), providing a two-dimensional
(bivariate) Gaussian density estimate for each x. The density
estimated for each grid intersection represents an average density
of all the kernels that overlap that location. Observations closer
to the intersection contribute more to the estimate than those
further away. The density surface can then be converted into
contours of concentric polygons by connecting areas of equal
density. Following the standard for most KDE studies (Laver and
Kelly, 2008), we took the 50% kernel contour to represent regions
of high use for each sample of individuals or individual, and
the 95% kernel contour to represent the outermost limits of the
range. The contours can then be visualized as distribution maps.

The most important decision in computing KDEs is the
selection of the smoothing parameter, h (Kie, 2013). The value
of h influences both the outermost limits of an estimated range,
and the shape and distribution of the regions of high use (Kie
et al., 2010); high values of h can lead to over-smoothing the
kernel contours (i.e., contours contain fewer more contiguous
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polygons, considered lower precision with higher bias toward
larger areas) while low values of h can under-smooth the kernel
contours (i.e., contours break into smaller disjointed polygons,
considered higher precision with bias toward smaller areas). The
influence of h changes with the sample size of a dataset, where
a higher number of locations contributing to an analysis will
have lower optimal values of h for minimizing under- and over-
smoothing (Kie et al., 2010). Because each species-colony-period
dataset differed in sample size (including locations from six to
42 individuals in pooled KDEs), we selected h independently for
each dataset using an automated data-based selection method
to estimate optimal values for h (Sheather and Jones, 1991;
Sheather, 2004). A second decision in calculating kernel contours
is whether to hold h constant for all evaluated points (fixed
kernels) or to allow h to vary as a function of local densities (local
kernels, Kie, 2013). Local kernels increase h at points with lower
location densities allowing for greater smoothing in areas with
more uncertainty (Worton, 1989). With local kernels, smaller
datasets comprised of fewer location estimates are subject to
increased smoothing and less reliable contours overall relative
to larger datasets, especially at the peripheries of the range
(>80% kernel contours; Seaman et al., 1999). Because we are
interested in comparing both the 50% and 95% kernel contours
of KDEs generated from datasets of different size, we used a fixed
kernel approach for our analyses. KDE iterations in our analyses
resulted in optimized fixed h values for each dataset ranging from
0.0043–0.0738◦ latitude and 0.0038–0.119◦ longitude (mean ±

standard deviation 0.0282 ± 0.01◦ latitude and 0.0385 ± 0.02◦

longitude).

Sampling Effects
We performed four period-specific independent KDEs for each
individual, as well as a pooled KDE for each complete species-
colony-period dataset. As a first assessment of the potential
influence of individual-level variation on perceived higher-level
space use from pooled KDE, we consider the effect of excluding
a single individual on KDE output from each full species-colony-
period dataset. We performed a pooled KDE (as outlined above)
for iterations of max n–1 individuals (sequentially excluding each
individual once, for a total number of iterations equal to max n),
and recorded the area and geographic location of the resulting
kernel contours. To represent the geographic location of pooled
KDE kernel contours, we assessed the maximum and minimum
latitudes and longitudes of the 95 and 50% contours. Because
each set of kernel contour polygons can comprise multiple
variably shaped polygons, it was not practical to compare the
location of polygon centroids between pooled KDE iterations.
The peripheral limits of the contours provide a generalization of
the location of each group of polygons.

We also used a simple sub-sampling approach to assess
the influences of different n and identity of the individuals
comprising the sample on the output of pooled KDE for
each species-colony-period dataset. Our approach is similar to
previous studies (Wood et al., 2000; Hindell et al., 2003; Taylor
et al., 2004; Breed et al., 2006; Soanes et al., 2013; Orben
et al., 2015) but our focus is not identifying the presence of an
asymptote but rather the range in output at each sample size. For

each dataset, we randomly sub-sampled n individuals (without
replacement) beginning with n = 3 and increasing in increments
of two, up to three less than the maximum number available. For
each value of n, we repeated the random selection process 100
times, resulting in 100 unique sub-samples of individuals for each
n. We then carried out a pooled KDE generated from the daily
locations of each sub-sample of individuals. The value of h for
each KDE was again determined based on the data within each
sub-sample. This approachmost accurately simulates having only
the data in the sub-sample from which to estimate the range and
distribution of the represented group (i.e., the species and colony
in a given period of the annual cycle). This differs from past
studies, where a pre-determined fixed value of h was applied to
all KDE iterations (e.g., Breed et al., 2006; Orben et al., 2015).
Here we are interested in the degree of variation among KDE
outputs given the “available” data set, and therefore a data-based
selection method for each independent KDE is most appropriate.
For each KDE, we recorded the total area of the resulting 95 and
50% kernel contours. We visualized the influence of n on the
kernel contour areas by plotting the results of each set of 100
KDE iterations for a given value of n [as median, interquartile
range (IQR, 50% of iterations around the median), whiskers to
1.5xIQR, and outlying data points indicating the maximum and
minimum estimates for each n].

RESULTS

Assessing Individual-level Variation within
a Dataset
The results of independent KDE for each bird show differing
degrees of variation in space use among the individuals tracked,
depending on the species-colony-period dataset (Table 2;
Figures 2, 3). Stacked individual 50% kernel contours visualize
variation in geographic locations used by all individuals in a
dataset, as well as the areas of most intense overlap among
individuals. As one example, while independent 50% kernel
contours for Laysans from Midway overlap most north and
northwest of the colony during PBE, nine (of 42) tracked
birds also exhibit 50% contours to the east, and northeast of
the colony (Figure 2). During this period, individual Laysans
from Midway occupied a mean 50% kernel contour area
of 532,000 km2, but this varied greatly among individual
birds (±341,000 km2 standard deviation, Table 2). The 95%
kernel contour areas also varied greatly among individuals
(6,624,000 ± 3,228,000 km2, mean ± standard deviation;
Table 2). Similarly, 50% kernel contours for black-footeds
from Tern during OW occurred mostly along the coasts and
offshore from British Columbia and Alaska, but four (of 24)
tracked birds also occupied 50% kernel contours north and
northwest of the colony over the open North Pacific (Figure 3).
During this period, 50% kernel contours occupied a mean
149,000 km2 (±149,000 km2) and 95% contours occupied a
mean 2,001,000 km2 (±1,526,000 km2).

The results of layering pooled KDE generated from the
maximum n for each dataset with independent stacked
KDE indicate differing potential for misrepresentation of
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TABLE 2 | Kernel contour areas from pooled and individual KDE analyses.

SPECIES Annual max n Area (×103 km2)

colony period
Pooled 50% Pooled 95% Individual 50% Individual 95%

Kernel Contour Kernel Contour Kernel Contour Kernel Contour

LAYSANS

Midway ECR 34 1520 11,000 377 ± 140 4743 ± 2292

LCR 42 2580 11,700 575 ± 370 5409 ± 2737

OW 42 2040 9200 157 ± 104 2204 ± 1558

PBE 42 3270 15,400 532 ± 341 6624 ± 3228

LAYSANS

Tern ECR 6 2610 10,000 449 ± 202 2928 ± 2615

LCR 26 2500 11,300 646 ± 423 6128 ± 3533

OW 26 1750 7700 178 ± 89 2547 ± 1479

PBE 18 2920 11,000 516 ± 281 6107 ± 2704

BLACK-FOOTEDS

Midway ECR 23 2010 14,500 531 ± 404 6284 ± 4510

LCR 30 2910 19,600 714 ± 548 7732 ± 5657

OW 30 3720 20,600 179 ± 203 2508 ± 2497

PBE 29 3050 15,000 690 ± 613 7046 ± 4944

BLACK-FOOTEDS

Tern ECR 6 2340 11,500 724 ± 584 2434 ± 2737

LCR 24 2710 16,900 815 ± 471 9161 ± 4176

OW 24 2490 13,500 149 ± 149 2001 ± 1526

PBE 16 3200 12,900 539 ± 327 6455 ± 2787

Total area (km2 ) of 50 and 95% kernel contours from pooled KDE including the maximum available number of individuals, and mean ± standard deviation KDEs from each species-

colony-period dataset (Laysan and black-footed albatross from Midway Atoll National Wildlife Refuge and Tern Island, French Frigate Shoals). The four periods (ECR, LCR, OW, PBE)

correspond to phases of the annual cycle (see Figure 1).

individual spatial diversity depending on the species-colony-
period (Figures 2, 3). Generally, the 50% kernel contours
resulting from pooled KDE including all locations in a dataset
together fail to represent the extent of variability among
individuals, both in geographic locations (Figures 2, 3) and
size of areas used (Table 2). As one example, for black-
footeds from Tern during LCR, 11 (of 23) individuals occupied
50% kernel contours along the northeast perimeter of the
North Pacific ranging throughout offshore waters of Alaska to
California, yet a pooled KDE identifies a group-level 50% kernel
contour occupying a relatively small area near Vancouver Island,
British Columbia (Figure 3). During this period, individual
black-footeds used 50% kernel contour areas of 815,000 ±

471,000 km2, while a pooled KDE indicates an overall area used
of 2,710,000 km2, masking the variation among individuals in the
dataset (Table 2).

KDE outputs generated from iterations where single
individuals are sequentially excluded from the analysis show
variable sensitivity of pooled KDE to individual-level variation
depending on the species-colony-period dataset (Tables 3, 4).
For example, max n–1 sampling sensitivity during OW for both
colonies was low for Laysans but high for black-footeds. For
Laysans during OW, outputs from pooled max n–1 KDE were
generally consistent in area and geographic location, suggesting
that variation in movements among the individuals comprising
the datasets from each colony during this period is relatively

low (Tables 3, 4). Areas occupied by OW 50% contour estimates
varied by 129,000 km2 and 158,000 km2, for Midway (max
n = 42) and Tern (max n = 26), respectively (Table 3). For
Midway Laysans, the locations of OW 50% contour estimates
among max n–1 iterations were consistent (northern-most
limits varying by only 0.66◦N, western-most limits varying by
1.04◦W; Table 4). Tern Laysans differed more in their east-
west movements during OW, resulting in variable estimates
of the western 50% contour limits (up to 5.93◦W), while the
northern limits were more consistent (ranging 0.38◦N). For
both colonies, estimates of the areas and geographic locations
of the 95% contours followed similar patterns (Tables 3, 4). In
contrast, black-footeds tracked from both colonies exhibited
higher individual-level variation during OW than Laysans.
Fifty percent contour area estimates from max n–1 pooled
KDE iterations for both colonies varied ≥500,000 km2 and
95% contour estimates varied >2,500,000 km2 (Table 3). The
northern limits of both 50 and 95% contour estimates varied by
≤ 2◦N, but the western limits varied widely (Table 4). Western
50% contour limits were estimated across 5 and 2.64◦W and
95% contour limits across 14.18 and 32.1◦W (Midway and
Tern, respectively; Table 4). The high individual-level variation
in space use among black-footeds for both colonies during
OW illustrated by independent KDEs (Figures 2, 3; Table 1)
results in high variability in max n–1 pooled KDE outputs
(Tables 3, 4).
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FIGURE 2 | Pooled and stacked 50% kernel contours for two colonies of Laysan albatross during four periods of the annual cycle. Dashed polygons

show 50% kernel contours from pooled KDE including GLS location data from all individual Laysan albatross tracked from Midway (left panes in gray) and Tern (right

panes in blue) during four periods of the annual cycle: (A) ECR, (B) LCR, (C) OW, and (D) PBE (see Figure 1). Shaded polygons show 50% contours from individual

KDE including data from each bird independently. The lightest shade indicates areas used by a single individual, and the darkest indicates areas of most intense

overlap among individuals. Colonies are indicated in panels (C) by solid circles in their respective colors (projection: Lambert Cylindrical Equal Area, datum: WGS1984).

Sampling Sensitivity of Pooled KDE at
Intermediate Sample Sizes
Pooled KDE iterations generated from the daily locations of
15 randomly selected individuals showed varying sensitivity
of KDE output at intermediate values of n. The difference
between the largest and smallest 50% contour estimated from
KDE iterations of n = 15 ranged from 595,000 km2 (Laysans
from Midway during ECR) to 4,861,000 km2 (black-footeds
from Midway during OW; Table 3). The area of the 95%
contour was similarly variable at n = 15; the difference

between the largest and smallest estimated 95% contour was

least for Laysans from Tern during PBE (2,200,000 km2) but

this dataset had a small total number of individuals (max

n = 18) from which to draw sub-samples. KDE iterations

of n = 15 produced 95% contours varying in area generally

between 3,000,000 and 9,000,000 km2, but varied by as much as

13,115,000 km2 for black-footeds from Midway during the OW

period (Table 3).
The geographic location of the 50% contour was highly

sensitive to sampling effects at n = 15. The outermost limits of
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FIGURE 3 | Pooled and stacked 50% kernel contours for two colonies of black-footed albatross during four periods of the annual cycle. Dashed

polygons show 50% kernel contours from pooled KDE including GLS location data from all individual black-footed albatross tracked from Midway (left in gray) and Tern

(right in blue) during four periods of the annual cycle: (A) ECR, (B) LCR, (C) OW, and (D) PBE (see Figure 1). Shaded polygons show 50% contours from individual

KDE including data from each bird independently. The lightest shade indicates areas used by a single individual, and the darkest indicates areas of most intense

overlap among individuals. Colonies are indicated in panels (C) by solid circles in their respective colors (projection: Lambert Cylindrical Equal Area, datum: WGS1984).

50% contours resultant from 100 unique KDEs of 15 randomly
sub-sampled individuals varied widely depending on the species-
colony-period considered (Figure 4). Fifty percent contours
varied least in location during ECR, however this could only be
assessed for Midway. During the remaining three annual periods,
the limits of the 50% contour estimated from KDE iterations for
both colonies of Laysans and black-footeds varied least in the
southernmost extents (Figure 4). The high degree of variation in
the northern-, eastern-, and western-most limits resulted in 50%

contours spread widely across the North Pacific, yielding either
high overlap or complete segregation among colony-specific
ranges depending on the 15 individuals contributing to the KDE
(Figure 4).

Sampling Sensitivity of Pooled KDE at
Small Sample Sizes
Small values of n comprised of only a few individuals resulted in
highly variable pooled KDE output (Figures 5, 6). Sub-samples
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TABLE 3 | Range in areas of 50 and 95% contours from pooled KDE with

sample sizes of maximum n less one and n = 15.

SPECIES Annual max n 50% kernel 95% kernel
contour max-min contour max-min

area (×103 km2) area (×103 km2)

colony period

max n–1 n = 15 max n–1 n = 15

LAYSANS

Midway ECR 34 100 595 1154 6592

LCR 42 202 1553 791 6301

OW 42 129 1400 906 5426

PBE 42 287 2008 937 8700

LAYSANS

Tern ECR 6 – – – –

LCR 26 289 1551 608 3743

OW 26 158 1120 851 3099

PBE 18 458 1037 1514 2200

BLACK-FOOTEDS

Midway ECR 23 209 1009 2166 8571

LCR 30 380 2782 1312 8273

OW 30 678 4861 2811 13115

PBE 29 260 1949 1394 8791

BLACK-FOOTEDS

Tern ECR 6 – – – –

LCR 24 309 1449 2238 6968

OW 24 497 1929 2641 7397

PBE 16 400 – 1178 –

Kernel contour areas (km2 ) were calculated from pooled KDE iterations including all

tracked individuals successively excluding one from each iteration (max n–1) and 100

KDE iterations including 15 randomly sub-sampled individuals. The difference between

the maximum and minimum estimated areas (max-min) from each set of iterations for

each species-colony-period dataset are presented [Laysan and black-footed albatross

from Midway Atoll National Wildlife Refuge and Tern Island, French Frigate Shoals during

four periods of the annual cycle (ECR, LCR, OW, PBE; see Figure 1)].

of three to five random individuals consistently produced areas
of 50 and 95% kernel contours that varied by a factor of
three to four. For example, three randomly selected Laysans
or black-footeds from Midway during PBE can produce a 95%
contour encompassing an area anywhere from 5,000,000 to
20,000,000 km2 (Figures 5, 6). Similarly, five randomly selected
Laysans from Tern during OW can produce a 50% contour
encompassing areas from 600,000 to 2,300,000 km2 (Figure 6).
The highest degree of spatial diversity among individuals
occurred among black-footeds tracked from Tern during OW,
where pooled KDE based on location data from five (of
24) individuals can result in 50% contours encompassing
areas differing by a factor of eight (ranging from 400,000 to
3,200,000 km2, Figure 6).

The locations of contours were also highly sensitive to the
sample of individuals at small values of n. Generally for both
species and colonies during all annual periods, sub-samples
of three to five random individuals produced 50 and 95%
kernel contours that varied in their northern limit by at
least 10◦ of latitude. Contours often varied in the northern
limit by 20◦, and up to 30◦ of latitude for the 95% contour

representing black-footeds from Tern during LCR. The amount
of variation among iterations at small n was generally similar
regardless of the size of the full dataset from which sub-samples
were drawn.

Sampling Effects with Increasing Sample
Size
For species-colony-period datasets where the maximum n
was >30 individuals, the sensitivity of pooled KDE in the
resultant areas of 50 and 95% contours appears to stabilize
with increasing n. The median areas of the contours roughly
approach an asymptote between n = 17–21 (both species from
Midway, Figures 5, 6). Around the same n, the area estimates
resulting from each set of iterations encompass similar IQRs and
maximum/minimum values. At this n, increasing the number of
individuals contributing to a KDE does not appear to increase
the probability of obtaining a more refined estimate of the
amount of area occupied by a pooled estimate of the 50 or 95%
kernel contour. However, the range in pooled KDE outputs for
some species-colony-period datasets remains large even when
sampling effects appear to reach saturation. For example, sub-
samples of n = 31 individual Laysans from Midway during
PBE result in 95% contour areas varying by 7,250,000 km2 and
50% contour areas varying by 1,000,000 km2, despite an apparent
stabilization of median outputs around n = 17. As n approaches
within five individuals of the max n, the variability among
KDE area outputs predictably decreases, as the sub-samples are
drawn from a finite pool of individuals and the results will
inevitably become increasingly similar. Species-colony-period
datasets with maximum n less than 30 individuals exhibited
less consistently identifiable values of n at which sampling
sensitivity for KDE area estimates stabilized (both species from
Tern, Figures 5, 6). For these datasets, the estimated areas
occupied by the 50 and 95% contours continue to increase or
remain highly variable until n reaches within five individuals of
max n.

DISCUSSION

From our exploratory assessment of sampling effects, the number

and selection of individual Laysan or black-footed albatrosses

contributing location data to a pooled KDE had a marked effect

on perceived spatial usage at the colony level for both species.
Where an asymptotic saturation effect was detectable (datasets
with maximum n > 30), a minimum of 17–21 individuals was
required to minimize the variability among mean KDE outputs
generated from sub-samples of individuals representing a higher-
level group. Even when this minimum sample size is satisfied,
the influence of inconsistencies among individual space use
on higher-level interpretations is apparent when the full range
in outputs at the saturation sample size is considered, along
with independent individual-level KDE. Our analysis highlights
some of the major limitations for biological interpretations based
on different sample sizes that are not apparent from pooled
KDE analyses alone. We discuss some examples of common
individual-to-colony level extrapolations in seabird tracking
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TABLE 4 | Range in 50 and 95% contour locations from KDE successively removing one individual.

SPECIES Annual max n 50% kernel contour 95% kernel contour
colony period

Northern limit Western limit Northern limit Western limit

(max-min, ◦N) (max-min, ◦W) (max-min, ◦N) (max-min, ◦W)

LAYSANS

Midway ECR 34 0.34 1.5 0.63 1.48

LCR 42 0.52 1.32 1.9 22.2

OW 42 0.66 1.04 1.17 0.66

PBE 42 2.98 0.4 1.52 0.53

LAYSANS

Tern ECR 6 – – – –

LCR 26 2.8 3 3.14 25

OW 26 0.38 5.93 0.57 6.3

PBE 18 0.51 3.53 1.49 9.9

BLACK-FOOTEDS

Midway ECR 23 2.7 2.2 2.06 1.35

LCR 30 3.68 4.92 0.54 1.3

OW 30 1.23 5 2 14.18

PBE 29 1.23 2.06 4.53 2.22

BLACK-FOOTEDS

Tern ECR 6 – – – –

LCR 24 0.97 20.64 16.8 0.6

OW 24 1.11 2.64 0.43 32.1

PBE 16 0.36 7.93 3.26 3.26

Kernel contour locations were determined from pooled KDE iterations including all tracked individuals successively excluding one from each iteration (max n–1). The difference between

the maximum and minimum estimated locations (max-min, in degrees of latitude or longitude) from each set of iterations for each species-colony-period dataset are presented [Laysan

and black-footed albatross fromMidway Atoll National Wildlife Refuge and Tern Island, French Frigate Shoals during four periods of the annual cycle (ECR, LCR, OW, PBE; see Figure 1)].

research that could benefit from reporting and discussing the
potential influence of individual variation.

Commonly in multi-colony tracking studies, the size of the
areas used and the degree of at-sea spatial segregation among
seabird colonies are delineated by a pooled KDE from a sample
of tracked individuals from each group. The size of pooled
KDE 50 or 95% contours are quantified and compared, and the
degree of overlap between groups is calculated (e.g., Young et al.,
2009; Frederiksen et al., 2012; Thiebot et al., 2012; McFarlane
Tranquilla et al., 2013; Ratcliffe et al., 2014). However, without
consideration of individual variation within an available dataset,
these higher-level inferences can be inadvertently misleading.
With a small number of tracked individuals (n = 3–15) of
Laysans or black-footeds, our analysis shows that the calculated
degree of overlap between contours taken to represent colony-
specific ranges can vary between complete segregation and
extensive overlap, dependent on the identity and number of
individuals sampled. Predictably, sampling effects are strongest
outside of the early chick rearing period (Figures 5, 6), a time
when central place constraints are most limiting on the degree of
individual variation in movements (Orians and Pearson, 1979).

Tracked individuals are sometimes used to estimate the
proportional use or potential presence within specified regions
and periods for birds from different colonies based on
colony population size estimates. For black-legged kittiwakes
(Frederiksen et al., 2012) and murres (Uria spp., McFarlane

Tranquilla et al., 2013), the overwinter movements of tracked
individuals have been taken to represent all of their colony
members proportional to the colony’s breeding population,
thereby “distributing” members among specified regions of
interest. Pooled KDE 50% contours generated from 15 or fewer
individuals were taken to represent 11 of 16 kittiwake study
colonies, and three of those colonies were represented by 5–
7 tracked birds (Frederiksen et al., 2012). For example, seven
birds from one colony represented the spatial distributions of
c. 150,000 pairs nesting in the Newfoundland-Labrador Shelf
Large Marine Ecosystem. From our case study, it is clear that
colony-level inferences of space use based on seven individual
Laysans and black-footeds from Midway and Tern would result
in considerably different estimates of potential presence of birds
from these colonies throughout the North Pacific depending
on the identity of the individuals tracked. Further, if 15
individual black-footeds were taken to represent the overwinter
range and distribution of the Midway colony, the area within
which >21,000 pairs (>35% of the total breeding population,
Arata et al., 2009) would be “distributed” could differ by as
much as 13,000,000 km2 (Table 3) and vary greatly in geographic
location (Figure 4), depending on the individuals sampled.

Even a reasonably large sample size can result in a biased
depiction of space use based on pooled KDE 50% kernel contours.
Presenting the results of independent KDE for each of the
42 Laysans tracked from Midway during PBE illustrates how
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FIGURE 4 | Sampling effects on the location of 50% kernel contours from pooled KDE for two colonies of Laysan and black-footed albatross during

four periods of the annual cycle. Polygons show 50% kernel contour results from pooled KDE including GLS location data from all individual Laysan albatross (top

four panes) and black-footed albatross (bottom four panes) from Midway and Tern (n shown in each pane). Arrows depict the outermost extents of 50% kernel

contours (northern, eastern, southern, and western limits for each set of polygons) resulting from 100 KDE generated from the daily locations of 15 randomly selected

individuals from the full dataset for each colony. The outermost perimeter of the 50% kernel contour from KDEs ranged between the beginning and end of each arrow

in the four cardinal directions as shown. Each set of four panes represent the four periods of the annual cycle: (A) ECR, (B) LCR, (C) OW, and (D) PBE (see Figure 1).

Colonies are indicated by solid circles in their respective colors (projection: World Azimuthal Equidistant, datum: WGS1984).

pooled KDE vastly under-represents the potential presence of
the >400,000 pairs of Laysans nesting at Midway (c. 70% of the
total breeding population, Arata et al., 2009) over the pelagic
eastern North Pacific during this time (Figure 2). Similarly,
pooled KDE for 18 Laysans tracked from Tern during PBE
under-estimates the potential importance of the western North

Pacific for birds from this small colony (Figure 2). The size
of the pooled KDE 50% contour areas would be estimated
around 3,000,000 km2 for both colonies, but would differ greatly
among the individuals tracked (Table 2). If pooled analyses
from both colonies were used to “spatially distribute” Laysans
throughout the North Pacific Ocean during PBE, an assessment
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FIGURE 5 | Pooled KDE contour areas for Laysan albatross from two colonies during four periods of the annual cycle. Pooled KDE contour area (km2)

outputs for Laysan albatross from colonies at Midway (left panes in gray) and Tern (right panes in blue). Boxplots for each sample size (from n = 3 to n = max n–3)

represent the 95 and 50% kernel contour areas of 100 iterations of KDE generated from the daily locations of n randomly selected individuals’ GLS tracks. The final

boxplot in each panel depicts the results of KDE iterations of max n–1 (i.e., removing one individual from the dataset for each KDE), resulting in max n number of total

iterations. Each set of four panes represent the four periods of the annual cycle: (A) ECR (insufficient data for Tern), (B) LCR, (C) OW, and (D) PBE (see Figure 1).

LOESS smoothers are for visual interpretation and should be used only as a guide.

Frontiers in Marine Science | www.frontiersin.org 12 November 2015 | Volume 2 | Article 93

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Gutowsky et al. Extrapolating from individual-based tracking data

FIGURE 6 | Pooled KDE contour areas for black-footed albatross from two colonies during four periods of the annual cycle. Pooled KDE contour area

(km2) outputs for black-footed albatross from colonies at Midway (left panes in gray) and Tern (right panes in blue). Boxplots for each sample size (from n = 3 to n =

max n–3) represent the 95 and 50% kernel contour areas of 100 iterations of KDE generated from the daily locations of n randomly selected individuals’ GLS tracks.

The final boxplot in each panel depicts the results of KDE iterations of max n–1 (i.e., removing one individual from the dataset for each KDE), resulting in max n number

of total iterations. Each set of four panes represent the four periods of the annual cycle: (A) ECR (insufficient data for Tern), (B) LCR, (C) OW, and (D) PBE (see

Figure 1). LOESS smoothers are for visual interpretation and should be used only as a guide.
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of proportional use between the colonies based on our complete
tracking datasets would be misguided. In past studies, authors
have often acknowledged the assumption that the movements
of sub-sampled birds are representative of all birds from each
colony but the potential implications for the conclusions are
not made explicit. Addressing sampling effects with a clear
representation of individual variation within the datasets would
help to ensure that management recommendations made are as
reliable and useful as possible.

A straightforward approach to reporting individual variation
in movement within a tracking dataset is to conduct and report
individual-level analyses, as illustrated recently by Ceia et al.
(2015), Young et al. (2015), and in the present study (Table 2;
Figures 2, 3). While identifying the locations and areas of high
use regions is more challenging to describe quantitatively from
stacked individual contours, the degree of variation among
individuals is clear. If group-level pooled analyses are still
desirable, asking the simple question, “If we tracked one less
individual, how different could the results of the pooled analysis
be?” can be an effective means of considering whether a pooled
analysis is appropriate for higher group-level inferences. As
illustrated with our max n–1 analyses, exclusion of a single
individual in some cases can have a significant influence on the
group-level range and distributions estimated from a pooled KDE
(Tables 3, 4), sending up a “red flag” for pooled analysis alone.
For example, the east-west variation among the movements of
Laysans tracked from both Midway (n = 42) and Tern (n = 26)
during late chick rearing has a sizeable effect on the western-most
limits of max n–1 pooled KDE 95% contours (Table 4). Taking
the space use of these birds as representative of all members of
their respective colony during this period would be ill advised.
The convenience of a single pooled analysis to represent the space
use of a group of individuals can come at the loss of important
information on individual movements that can greatly impact
higher-level biological inferences.

Importantly, the shape of area saturation curves alone do
not fully disclose the influence of individuals on the output
of pooled analyses, especially when the outputs are used to
draw comparisons in space use among groups of interest. The
variability among sub-samples should be assessed including
maximum and minimum estimates in area occupied, along with
the range in geographic locations of those areas. Increasingly,
studies are including significance tests for overlap analyses;
the proportional area of overlap between specified contours
estimated for groups of interest from full datasets are compared
with those estimated from randomized iterative sub-samples
as a test of whether enough individuals were tracked to
make reasonable higher-level inferences of significant spatial
segregation (e.g., Breed et al., 2006; Kappes et al., 2011; Cleasby
et al., 2015; Orben et al., 2015). This approach, coupled with area
saturation curves, can improve confidence in the appropriateness
of higher-level extrapolations. However, it is important these
assessments are conducted for smaller contours (i.e., 50%) where
individual variation has a much higher influence on pooled
outputs (Figures 5, 6), and should be accompanied by reporting
of individual-level analyses, especially where the size of datasets
are limited.

Here we focus on KDE, but there are a variety of approaches
for estimating group-specific ranges and the distribution of
locations within that range (Kie et al., 2010). Grid cell methods
offer a simple alternative, where the cumulative time spent within
cells of a predefined grid size is used to identify the extent
of a group’s range and areas of most intense use (e.g., Soanes
et al., 2013). Other methods take a habitat preference modeling
approach, which takes into account environmental factors that
shape patterns of space use (e.g., Aarts et al., 2008; Wakefield
et al., 2011; Raymond et al., 2015). There have been a number
of recent advances in approaches for estimating space use at the
individual level which incorporate both the spatial and temporal
nature of tracking data to estimate distribution contours, but
most have not been expanded to generate group-level estimates
of space use (e.g., Time Local Convex Hull, Lyons et al., 2013;
Baker et al., 2015; movement-based KDE, Benhamou, 2011).
Regardless of the approach selected as the best method to scale
up individual location data to infer higher-level patterns in space
use, the number and identity of the individuals contributing to
the analysis has some effect on the output. The biases introduced
from individual variation and sample size can be accounted for
in part by methods that use mixed-effects modeling (e.g., Aarts
et al., 2008). For other methods, like KDE or grid cells, the
output of pooled analyses should be interpreted with careful
consideration of the sensitivity to sampling effects, especially
for wide-ranging species with high potential for individual-level
variation in movements.

Location data can be obtained from a variety of tracking
device types, varying in location uncertainty (Wakefield et al.,
2009). Devices with higher uncertainty, such as GLS deployed on
animals capable of traveling large daily distances, will inherently
introduce more error in defining group-specific ranges, and
distributions. SSM approaches offer a considerable advancement
in refining location estimate uncertainty by incorporating device-
specific error and movement dynamics into estimates of true
daily positions (Jonsen et al., 2005; Winship et al., 2012). Still, the
remaining uncertainty in our SSM-estimated locations was not
accounted for in KDE (estimated as Bayesian 95% credible limits
from the posterior distributions of individual location estimates,
mean ± standard error, 0.89 ± 0.08◦ latitude and 0.92 ± 0.06◦

longitude). While small differences in geographic locations of
contours may be attributable in part to underlying location
estimate uncertainty, the large differences observed among sub-
sampled KDE iterations for many species-colony-period KDEs
likely reflect individual-level differences. Given the vast spatial
scale at which our study species are acting and the magnitude of
differences amongKDE outputs, the effect of location uncertainty
is not likely greater than the effect of true individual-level spatial
diversity on the observed variation among pooled KDE output
(particularly KDE of n = 15 random individuals; Table 3;
Figure 4).

We are certainly not the first to caution that small sample
sizes of biologger-tracked individuals increase the probability of
erroneous higher-level conclusions (e.g., Lindberg and Walker,
2007; Hebblewhite and Haydon, 2010; Schofield et al., 2013;
Soanes et al., 2013). Further, the examination of intra-population
variation among individual movements is presently a burgeoning
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field in biologging studies of marine vertebrate behavior
(reviewed by Patrick et al., 2014). Yet a major gap remains
where inferences continue to be drawn from individual-based
tracking data with insufficient consideration of the influence
of sampling effects. Consistency among individuals in their
movements will vary depending on a given species’ biology, and
the representativeness of a sample will also be a function of
the total size of the represented group (Lindberg and Walker,
2007; Hebblewhite and Haydon, 2010). Sampling effects should
be evaluated on a case-by-case basis. Many seabirds do not
range widely from small colonies during the breeding season,
for example, and colony-level interpretations of space-use may
be entirely justified (e.g., Wakefield et al., 2013). During non-
breeding, many migrate far from the colonies where colony
members may or may not be consistent in their movements and
overwinter areas most frequented. In some cases, it may simply
be unreasonable to delineate the boundaries of group-specific
distributions due to an inability to confidently infer higher-
level patterns with the available sample of tracked individuals.
As albatrosses may be an extreme example of wide-ranging
pelagic seabirds, a comparative analysis similar to that presented
here could be undertaken for species with differing degrees
of individual variation and extent in movements throughout
the annual cycle. In light of our results, we caution against
drawing lines around group-specific ranges based on a sample
of tracked individuals without first assessing and reporting
potential sampling effects. This is especially true in calculating
proportional areas of overlap and estimating “potential presence”
between groups of interest (i.e., species, colonies, periods, age
classes, sexes) based on substantial extrapolations from few
tracked individuals.

Tracking data has a key role to play in developing
management and recovery plans for seabird species-at-risk,
and in the designation and monitoring of Marine Protected

Areas, especially when integrated with a variety of different
approaches (Croxall et al., 2012; Ronconi et al., 2012; Young
et al., 2015). The effectiveness of advising conservation decisions
based on the movements of individuals ultimately depends on
the clarity with which we concede the limitations of the data
and subsequent analyses. This is especially important for wide-
ranging pelagic seabirds, as these families have experienced the
largest documented population declines (Paleczny et al., 2015)
and have high potential for individual variability in movements
across the oceans they inhabit relative to shorter-ranging and
coastal species. For most marine wildlife tracking studies, the
number of individuals successfully tracked falls short of an
“ideal” (i.e., statistically robust and biologically relevant) sample
size. Rather, the ultimate sample size is governed by ethics,
time, costs and recovery rates, where the final dataset can often
unavoidably be comprised of location data from few individuals.
As such, assessment and acknowledgement of the sensitivity
of a chosen analytical approach to sampling effects at the
available sample size need to become the norm, especially for
higher-level interpretations of space use for wide-ranging marine
species.
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