
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2008

Bibliography Data Mining and Data Visualization Bibliography Data Mining and Data Visualization

Deepthi Pullannagari
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Pullannagari, Deepthi, "Bibliography Data Mining and Data Visualization" (2008). Master's Projects. 107.
DOI: https://doi.org/10.31979/etd.m2qs-fr6g
https://scholarworks.sjsu.edu/etd_projects/107

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/107?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

BIBLIOGRAPHY DATA MINING AND DATA VISUALIZATION

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Computer Science

By

Deepthi Pullannagari

May 2008

ii

© 2008
Deepthi Pullannagari

ALL RIGHTS RESERVED

iii

Approved by: Department of Computer Science
College of Science
San José State University
San José, CA

Dr. Soon Tee Teoh

Dr. Mark Stamp

Dr. Robert Chun

iv

ACKNOWLEDGEMENTS

I take this opportunity to thank Dr. Soon Tee Teoh for his valuable guidance, encouragement

and patience throughout this project. I would also like to thank Dr. Robert Chun and Dr. Mark

Stamp for consenting to be on my committee and for their valuable feedback and suggestions.

Finally I would like to thank my cousin Prashant Kumar, who provided me with valuable

suggestions and tips when I hit a road block during the course of the project.

Thanks to my husband for his patience and support throughout the project without which this

project would not have been possible

v

ABSTRACT

BIBLIOGRAPHY DATA MINING AND DATA VISUALIZATION

By Deepthi Pullannagari

Data mining is a concept of discovering meaningful patterns from large data

repositories, and Data visualization is a graphical representation of data using shapes, colors

and images for a better conceptualization. These two techniques have been in use for a long

time now and are used together in number of fields to gain a better perception of the data.

Bibliographic data is widely used in academic and scientific literature fields and this

project deals with data mining and data visualization of bibliographic data downloaded from

Citeseer Citation Indexing system.

The downloaded metadata is extracted into the database, looking for patterns in the

data. The extracted data is then queried for the search string and presented to the user using

interactive visualization where the user can navigate through the records for better

conceptualization of the data. The data is further color coded to define the importance of each

record extracted.

vi

TABLE OF CONTENTS

1. INTRODUCTION……………………………………………………………………....1

2. DATA MINING…………………………………………………………………………2

2.1 What is Data mining? ..2

2.2 History………………………………………………………………………………..2

2.3 Steps in Data mining………………………………………………………………..4

3. DATA VISUALIZATION……………………………………………………………..5

3.1 What is Data Visualization? ..5

3.2 History…………………………………………………………………………........5

3.3 Data Visualization Techniques…………………………………………………….7

4. CITESEER………………………………………………………………………….....10

4.1 About Citeseer…………………………………………………………………......10

4.2 How Citeseer works…………………………………………………………….....11

4.3 Future of Citeseer……………………………………………………………….....14

5. STANDARDS USED BY CITESEER………………………………………………..15

5.1 OAI-PMH (Open Archives initiative protocol for Metadata harvesting)……...15

5.1.1 Record Repository Configuration…………………………………………….16

5.2 Dublin Core Metadata Standard………………………………………………….17

5.3 Example of Citeseer record using the standards set forth by OAI & Dublin

Core……………………………………………………………………………………..18

6. PROJECT DETAILS………………………………………………………………….23

 6.1 Overview………………………………………………………………………......23

vii

 6.2 Software Used…………………………………………………………………...28

 6.2.1 Servlet………………………………………………………………………..29

6.2.2 Java Server Pages (JSP)…………………………………………………….30

 6.2.3 Apache Tomcat……………………………………………………………...30

6.2.4 Microsoft SQL Server 2005…………………………………………………31

 6.3 Implementation Details………………………………………………………….31

 6.3.1 Data Repository ……………………………………………………………..31

6.3.2 Program Flow………………………………………………………………..33

7. CONCLUSION……………………………………………………………………….38

8. FUTURE WORK……………………………………………………………………..38

REFERENCES…………………………………………………………………………..40

APPENDIX A –Source Code……………………………………………………………42

viii

LIST OF FIGURES

Figure 1: Steps taken in Data Mining……………………………………………………..5

Figure 2: History of Data visualization……………………………………………………6

Figure 3: Visual presentation of News by Newsmap Application……………………….9

Figure 4: Visual display of books by Amaztype…………………………………………10

Figure 5: Citation in different format……………………………………………………13

Figure 6: Citeseer Record………………………………………………………………...20

Figure 7: Citeseer Record Header……………………………………………………….21

Figure 8: Namespace Declarations and Schema location………………………………21

Figure 9: Citeseer References tag………………………………………………………..23

Figure 10: Screen displaying the results in textual format…………………………….25

Figure 11: Screen displaying the details of the record in textual format……………..26

Figure 12: Visual display of the record and its references (Paper centric view)……..27

Figure 13: Visual display of the author and his/her publications(Author Centric

view)……………………………………………………………………………………….28

Figure 14: Relation between a servlet, browser and the servlet engine……………….30

Figure 15: Architecture of Data query from the database……………………………..34

Figure 16: Application flow diagram…………………………………………………….37

ix

LIST OF TABLES

Table 1: Color coding range used for the paper centric and the author centric view……27

1

1. INTRODUCTION

Data mining is the process of extracting data from large datasets and can be applied to

any form of data, ranging from transactional data to Metadata. Similarly Data visualization is

the concept of presenting the data visually using shapes, colors and images for a better

conceptualization and can be used for data, processes, relations or concepts. Both the

techniques have been in use for a long time now and are still being used largely in various

fields like business, science, academics etc. There are various techniques available for both

data mining and data presentation, but it largely depends on the nature/format of the data that

we are working on.

In this project we dealt with the mining and visualization of Bibliographic data.

Bibliographic data is the details pertaining to articles that are used in creating a document. This

information can further be used to locate the article too. There are many citation indexing

systems available like DBLP, Citeseer, Scientific Citation index (SCI) etc, but for reasons

specific to the project implementation, this project uses Citeseer Citation indexing System.

The goal of this project is to enhance current bibliography web services with an

intuitive interactive visualization interface and to improve user understanding and

conceptualization. The project uses the downloadable records available as XML files from the

Citeseer database, extracts the data into the database and then queries the database for the

results. The same data is then presented visually to allow the user to conceptualize the results

in a better way and help him/her find the articles of interest with utmost ease. In addition the

user can interactively navigate the visual results to get more information about any of the

article or the author displayed.

2

 Section 2, Section 3 and Section 4 of this report provides an overview of the Data

mining, Data visualization and Citeseer Citation Indexing system including the history,

techniques used etc respectively. Section 5 gives an overview of the Open archives initiative

protocol and Dublin core; the standards for presenting the data that would be used for

harvesting and used by Citeseer. Section 6 explains the implementation details of the project

such as the technology used the data flow, architectural diagrams etc and Section 7 presents the

conclusion and Section 8 lists the possible future enhancements.

2. DATA MINING

2.1 What is Data mining?

Data mining is the process of extracting relevant information from large databases and

repositories. Data mining is used in almost every field ranging from business intelligence, and

financial analysis to scientific and medicinal fields. Though the technology is the same in every

field, the definition varies slightly depending upon the nature of the data that is mined. While it

is described as "the nontrivial extraction of implicit, previously unknown, and potentially

useful information from data" and "the science of extracting useful information from large

databases" in the field of science, it is “statistical and logical analysis of large sets of

transaction data looking for patterns that can aid decision making” when it comes to Enterprise

resource planning [8]. Data mining is often referred to as Knowledge discovery in databases.

While some treat both the terms as synonyms others treat data mining only as a part of

Knowledge discovery in databases (KDD).

2.2 History

Though the term is relatively new, introduced only in 1990’s [9], the technique has been

in use for a long time now. Traditionally, data mining has been performed by analysts who

3

looked for patterns and trends in the data sets, but the ever increasing size of the databases in

business and science made it impossible for humans to manage the data and this has seen a

considerable shift from traditional human parsing to automatic parsing of the data. Today there

are various sophisticated tools and software that are available to extract the useful patterns

from the large datasets.

Data mining has it roots along three family lines [9] all of which have played a significant

role in the advent of data mining. They are

1. Classical statistics

2. Artificial intelligence

3. Machine learning

Statistics are the roots of most of technologies that form the building blocks for data

mining. Classical statistics include concepts such as regression analysis, standard distribution,

standard deviation and so on, all of which are used to analyze the data and its relationships.

The classical statistical analysis plays an important role in many of the data mining tools [9].

Second in the line is Artificial intelligence. As against statistics, AI is based on

heuristics, which applies human-thought like processing to statistical problems. This approach

requires high computer processing and wasn’t in much use until the era where compute power

was available at a much reasonable price [9].

The third is the machine learning, a union of both Classical statistics and artificial

intelligence. Machine learning is considered to be an evolution of AI, since it combines AI

heuristics with statistical analysis. This approach lets the programs to learn about the data that

they process, and make decisions based upon the data using statistics and advanced heuristics

and algorithms [9].

4

Thus data mining can be best described as a union of historic and recent developments in

the fields of statistics, AI and machine learning.

2.3 Steps in data mining

Typical data mining includes the following steps performed in succession [10].

1. Extracting the Data

2. Cleansing the extracted data

3. Modeling the data

4. Applying the data mining algorithm

5. Pattern discovery

6. Data visualization

In short data mining includes extracting the raw data from the repositories, cleansing it

and loading it into the database. The data loaded into the database is analyzed for patterns and

a best model or algorithm is chosen to parse the desired patterns. But again the steps vary

depending upon the nature of the data dealt with. Further the data is presented visually to

provide the viewer with a better understanding of the relationship between the data. The Figure

5

1 explains the same.

 Figure 1: Steps taken in data mining [10]

3. DATA VISUALIZATION

3.1 What is Data Visualization?

The science of using images to represent the data or presenting the data in graphical form

in order to enable the viewer to perceive it in a better way is termed as data visualization. There

is a variety of conventional ways to view data such as bar graphs, pie charts, histograms, table

etc. Whatever be the method chosen, the aim is to make sense of the data and communicate the

details to the viewer. With the aid of visualization, understanding or perceiving the data and

relationships between data is made much simpler .Situations where the user had to browse

through large number of web pages or text to get an understanding of data can be presented

using visualization in as less as a single page.

3.2 History

Like data mining, data visualization is also not a new concept and has been in use since

2nd century AD, but significant developments have been made only since the last 30 years. The

6

first known table was created in 2nd century in Egypt to organize astronomical data. Although a

table is a predominantly a textual representation of data, the horizontal and vertical rules used

to arrange the data into columns and rows have rendered them to be more than a textual

representation. The representation of the data in 2 dimensional space using x and y axis arose

only in 17th century. Rene Descartes, A French philosopher has invented graphs for

mathematical calculations, which were eventually used for data representations [11].

 Figure 2: History of Data Visualization [11]

However, it was not until late 18th and early 19th centuries that many of the graphs that

we use today, including bar charts and pie diagrams came into use. A century later, when the

importance of these techniques had been realized, the study of graphics had been made a part

of academic curriculum and the first graphics course was introduced in Iowa state university in

1913. In 1977, the statistics professor John Tukey of Princeton developed a visual approach

known as exploratory data analysis to analyze the data and he is the first person who

introduced us to the power of visualization as a means of exploring and making sense of the

7

data. In 1983, Edward Tufte published his wonderful book “The visual Display of Quantitative

Information” which exposed us to a number of ways of presenting the data visually. Exactly a

year later, in 1984 Apple computer released their most popular computer that used graphics for

interaction and display. This has lead to the advent of using graphics and data visualization

techniques that we interact with using a computer. Ever since the release of this affordable

computer a research has been started in the academic world, with the name of “Information

visualization” and was later published in 1999 as “Readings in Information Visualization:

Using vision to think” [11].

In addition to these notable milestones in the field of data visualization, there were

many other events that triggered the usage of visualization for presenting the data. In parallel

the advancement in computer science has introduced many new techniques which made life

easy for people using visualization as a means of communicating the data. One such event is

the introduction of IBM PC. Before personal computer were common in the workplace,

persons who needed to present the data using graphs and pie diagrams in the meetings were

faced with labor intensive tasks ,which would consume hours of their time in drawing. But

with introduction of PC and the powerful software like spreadsheet everything changed and

now with just a click of mouse, the host of data can be represented using graphs. Thus Data

visualization that started ever since 2nd century has been seeing improvement in its use and

today it forms an integral part of business, medical and academic fields. There are many new

tools available for visualization and many new are still coming up [11].

3.3 Data visualization techniques

There are many techniques available for representing the data graphically and some of

the most common ones are [5]

8

1. Charts which includes pie diagrams and bars

2. Graphs which are good for comparisons and establishing relationships.

3. Maps which are one of the most effective ways of visualization. One of the best examples

would be Google maps and Google earth which presents the user with a picture of route and

locations making it easy to perceive things.

4. 3-D surfaces used for presenting multi-dimensional data.

5. Images which use color and intensity to represent the data and relationships

6. Animation and so on.

 Data visualization is not just presenting the data using pie charts and histograms, but

depending upon the circumstances in order to convey a message effectively to the viewer, it

has to be elegant and descriptive. There are certain applications where data visualization is

made user interactive where one can tour the data by varying the views, zoom the data by

clicking on it using the mouse, panning to explore the neighborhoods and so on. One such

application is Newsmap that visually shows the changing landscape of Google News

aggregator. The size of the data blocks is defined by the popularity of the news at that given

moment. The greater the popularity the larger is the size. Newsmap makes use of the Treemap

algorithm which is a space constrained visualization of information. Given below is the Figure

3 that shows the news at one particular moment [12].

9

 Figure 3: Visual presentation of News by Newsmap Application [24]

Another application is Amaztype which lets you search for the books online. It pulls the

data from Amazon and presents it in the form of keyword that we searched for. For example

say the user has searched for CSS, the search result is provided as shown in the Figure 4. To

get more information about the book one has to click on the book. Another application

Flickrtime uses a similar technology too. It uses the Flickr API to display the uploaded images

in the form of a clock that displays current time.

10

 Figure 4: Visual display of books by Amaztype [24]

However though we have to appreciate the technology behind these techniques, the

motive might not have been achieved. Data visualization is meant to provide the viewer with a

better understanding of the information and to perceive information faster than when provided

in the text format. But in the case of both Amaztype and Flickrtime, the information is too

cluttered and viewer could hardly realize what he/she is looking at until he clicks on the image

for a larger view. Thus one should take into account all these facts when attempting to present

the data using visualization.

4. CITESEER

4.1 About Citeseer

Citeseer is an autonomous citation indexing system that indexes scientific and academic

literature [2]. It is autonomous, since it doesn’t require any manual effort for indexing as other

traditional (manually constructed) indexing systems such as DBLP citation indexes. Citeseer

searches for and indexes the articles as soon as they are available on the web thus providing

access to the most recent papers too.

Citeseer was created in 1997, by the researchers Steve Lawrence, Lee Giles, and Kurt

Bollacker at the NEC Research Institute, Princeton, New Jersey. It is hosted on the World

Wide Web at Pennsylvania State University, the college of Information sciences and

11

Technology. Since then the project has been led by Lee Giles. Currently Citeseer has more then

750,000 documents, predominantly related to the fields of Computer and Information

Technology and Engineering [15].

Citeseer provides the Open archives initiative metadata of all the documents available

freely on the web or submitted directly to the Citeseer database. Being a non-profit service, the

goal of Citeseer is to improve access to the scientific and academic literature and it can be used

by almost everyone[15]. Citeseer also makes all its data available to the general public in the

form of downloadable files.

4.2 How Citeseer works?

A citation index indexes the links between the articles that a researcher makes while

citing other articles [2]. These indexes are very useful for a number of purposes such as

navigating back and forth in time, looking for all the previous articles that a particular record

refers to and also the latest articles that refer to this record, help judge the importance of an

article by observing the number of times it is referred to by other articles, help find articles that

are related to a particular record and so on[2]. These citation indexes are highly being used in

various fields which require information retrieval, such as scientific and academic literature,

bibliographic information etc. There are number of free citation indexes available online for

Indexing academic literature and bibliographic information and one such indexing system is

Citeseer.

Citeseer is an autonomous citation indexing system, which means it doesn’t require any

manual effort to index the articles. This has an advantage over the other indexing systems, in

that it provides more up-to-date information and is also cost effective. On the flip side it has a

disadvantage that Citeseer can index the article only if it is available on the web or has been

12

manually submitted by the author to the Citeseer database [2]. As a result some of the

publications that are not present on the web might not be included in the Citeseer database. In

addition Citeseer only locates articles that are publicly available, but do not crawl the

publishers website. As such articles that are freely available are more likely to find a place in

Citeseer Database [2].

Citeseer uses a combination of web crawler like any other search engine and heuristics

to find the articles and publications available on the World Wide Web. It currently makes use

of web search engines like AltaVista, HotBot, and Excite [2], and looks for pages that contain

the words like publications, papers, postscript etc in the URL. Thus Citeseer identifies and

downloads all the documents with “.ps” , “.ps.Z” and “ps.gz” extensions. These downloaded

papers are then converted to a text format and are validated to make sure that they are indeed

valid research papers by looking at the references and bibliography section. Once it is

confirmed, Citeseer parses the articles and extracts the following information such as

1. The URL of the downloaded paper,

2. the Author and the Title information,

3. Abstract and introduction if they exist.

4. The list of reference or citations made by the document, which are in turn parsed again

to find other articles.

5. Citation context or the Citation tag which is the context in which the document makes

the citation is also extracted [2].

Once this information is available, Citeseer identifies the set of references and sorts out

the independent references. These references are again parsed using heuristics for author name,

article name, year of publication, citation tag, page numbers etc. The Citation tag is the

13

information that is used to cite the article in the body of the document such as “[2]”, “[Lee98]”

etc[2]. This information is used to extract the context of the citation.

Citeseer also has the ability to identify the citations in different format that refer to the

same article. For example consider the citation given in Figure 5, where all three refer to the

same article [2].

 Figure 5: Citation in different formats [2]

Even though each citation differs from the other significantly Citeseer can still identify

that they all refer to the same article. This ability not only helps it to avoid duplicating the

records in the database but also helps it to estimate the importance an article by looking at the

number of times it has been referred to, even though it has been cited in different formats.

Since Citeseer is an autonomous system and since not all the articles or publications are

formatted in the same way, there may be situations where some of the fields like author name,

year of the publication even though they are present might not be extracted by the parser or in

case they are extracted since it is autonomous, not all the extracted data may be free of errors.

Even in such situations, a second citation that refers to the same article would be advantageous,

since the chances of error can be reduced.

The Citeseer database is compliant with open archives initiative protocol for metadata

harvesting (OAI-PMH), and Dublin core Metadata standards, the details of which are provided

14

below. Citeseer provides two different formats of OAI records that can be downloaded for

general use by the public. They are

1. oai_dc.tar.gz which contains the records built using the Dublin core metadata standard

[23]

2. oai_Citeseer.tar.gz which includes the same records as in the previous file built with the

Dublin core metadata standard, but with additional metadata fields, including citation

relationships (References and IsReferencedBy), author affiliations, and author

addresses [23].

This project will use the second format of records as it will be useful for establishing

the relation between various records. There are many other citation indexing systems available

such as DBLP etc which also provide their records in downloadable form the public use, but

the advantage with the Citeseer is that, it assigns each record it indexes with an Identifier

known as Citeseer Identifier and uses this field to identify the number of times this article has

been referenced by the other articles. In short this identifier forms the basis to extract the

“References” and “Referenced By” fields.

4.3 Future of Citeseer

Citeseer has been serving as a public search engine for more than 10 years now and the

original Citeseer database now consists of more than 750,000 records and serves around 1.5

million requests daily. Originally intended as a simple prototype, the response to Citeseer grew

beyond its architectural capabilities. Hence the database which was once up-to-date with all the

citations available online has not been updated regularly since 2005 [15]. Similarly the records

or the data that have been provided for use by the public is up-to-date with all the information

that the Citeseer database consists up to year 2005, but it might be missing some records

15

starting from 2005. In order to overcome these limitations a newer version of Citeseer known

as the Next Generation Citeseer was developed. This Citation Indexing system provides a more

up-to-date version of the Citeseer Database. But we couldn’t use this Citeseerx for this project,

since they do not yet provide their records for public use.

5. STANDARDS USED BY CITESEER

5.1 OAI-PMH (The Open Archives Initiative Protocol for Metadata Harvesting)

Open Archives Initiative Protocol for Metadata Harvesting, generally referred to as

OAI-PMH provides an application independent framework that can be used for presenting and

harvesting of metadata [4]. OAI-PMH made its origin in July 2001 with the aim of increasing

the efficiency of print/pre-print servers that hosted scientific and technical papers. As the size

of these repositories kept increasing over the years, it became hard to maintain the database

leading to incorrect data and loss of data. Thus evolved OAI-PMH that provided certain

standards that made easy, the maintenance of metadata repositories and presentation of

machine readable metadata to public [18]. There are many applications and citation indexes

that comply with OAI-PMH for presenting their metadata and Citeseer is one such database.

OAI-PMH primarily has two categories of providers namely

1. Data provider that uses the standards set forth by OAI-PMH as a means of presenting their

metadata

2. Service providers that use this metadata as a basis for providing the value added services.

In the context of this project, Citeseer represents the Data provider that follows the OAI norms

of presenting the data and this project is the service provider which uses this metadata for

visualizing the articles and their references. Data providers usually present the metadata as a

16

large repositories or databases. There are 3 different repository configurations that OAI-PMH

distinguishes and they are

1. Resource configuration

2. Item configuration

3. Record configuration

The Citeseer database uses the “Record repository configuration”. There are other citation

indexes that use the “Resource” and “Item” repository Configurations, but that is out of the

scope of this report.

5.1.1 Record Repository Configuration

In this configuration the data is presented in the form of records where a record is a

metadata expressed in a single format [4]. Each record is an XML encoded byte stream,

identified by the combination of the unique identifier assigned to the record in the repository,

the metadata prefix identifying the metadata format of the record, and the datestamp of the

record[4] . The XML encoding of the records is classified into following parts

1. Header which is further classified into

 a) Unique identifier of the record in the repository

 b) Date stamp, the latest date that the record has been created or modified.

 c) setSpec ,the set membership of the record. .i.e. provides the information as to which set

the record belongs to.

2. Metadata

The OAI supports multiple formats for the metadata of the items. At the least

repositories must be able to provide records with metadata expressed in Dublin core format.

17

Citeseer uses both Dublin core format along with its self described format[4]. Details about

Dublin core are presented in the next section.

3. About

About is an optional container to present the data about the metadata. The most

common forms of data presented in this section are

 -The rights statements that dictates the terms of use of the metadata or the records that

are made available to the public by the data providers.

 - Provenance statements which provides the details as to when and how the

metadata/record has been harvested. [4]

5.2 Dublin Core Metadata Standard

Dublin Core Metadata standards have been set forth by the organization referred to as

“The Dublin Core Metadata Initiative (DCMI)” engaged in the development of online metadata

standards that support a broad range of purposes and business models. Dublin core is generally

used to represent digital data such as text, images, and videos etc using XML based

implementations [17]. As indicated above OAI-PMH requires that the data providers using the

record repository configurations should be able to present the details in their “metadata”

section using Dublin core Standards and Citeseer does just the same.

The Dublin Metadata element set provides a standard set of conventions for describing the

metadata that would be used for harvesting. The Simple Dublin Core Metadata Element Set

(DCMES) consists of 15 metadata elements [17]:

1. Title

2. Creator

3. Subject

18

4. Description

5. Publisher

6. Contributor

7. Date

8. Type

9. Format

10. Identifier

11. Source

12. Language

13. Relation

14. Coverage

15. Rights

Each Dublin Core element is optional and may be repeated. There is no particular order

in Dublin Core for using the elements. Similarly there is a qualified Dublin core element set

that includes all of the above elements and three additional elements namely Provenance,

Audience and RightsHolder [17]. Citeseer uses the simple Dublin core element set.

5.3 Example of Citeseer record using the standards set forth by OAI and Dublin Core

The Citeseer database makes use of use of both OAI-PMH and Dublin core standards

for exposing the data in its repository. As discussed, Citeseer uses the record configuration of

the repository and includes the first 2 parts namely “header” and “metadata” but ignores the

optional “about” apart. In addition it uses 2 different formats for describing the metadata

section i.e. Dublin core standard and Citeseer’ own standards.

Figure 6 is an example of one such record extracted from the Citeseer database.

19

<record>

<header>

<identifier>oai:CiteseerPSU:2</identifier>

<datestamp>1997-11-01</datestamp>

<setSpec>CiteseerPSUset</setSpec>

</header>

<metadata>

<oai_Citeseer:oai_Citeseer

xmlns:oai_Citeseer="http://copper.ist.psu.edu/oai/oai_Citeseer/" xmlns:dc

="http://purl.org/dc/elements/1.1/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://copper.ist.psu.edu/oai/oai_Citeseer/

http://copper.ist.psu.edu/oai/oai_Citeseer.xsd ">

 <dc:title>The Graham Scan Triangulates Simple Polygons</dc:title>

<oai_Citeseer:author name="Xianshu Kong">

</oai_Citeseer:author>

<oai_Citeseer:author name="Hazel Everett">

</oai_Citeseer:author>

<oai_Citeseer:author name="Godfried Toussaint">

</oai_Citeseer:author>

 <dc:subject>Xianshu Kong,Hazel Everett,Godfried Toussaint The Graham Scan

Triangulates Simple Polygons</dc:subject>

<dc:description>The Graham scan is a fundamental backtracking technique

in computational geometry which was originally designed to compute the

convex hull of a set of points in the plane and has since found application

in several different contexts. In this note we show how to use the Graham

scan to triangulate a simple polygon. The resulting algorithm triangulates

an n vertex polygon P in O(kn) time where k-1 is the number of concave

vertices in P. Although the worst case running time of the algorithm is O(n

20

2), it is easy to implement and is therefore of practical interest. 1.

Introduction A polygon P is a closed path of straight line segments. A

polygon is represented by a sequence of vertices P = (p 0 ,p 1 ,...,p n-1)

where p i has real-valued x,y-coordinates. We assume that no three vertices

of P are collinear. The line segments (p i ,p i+1), 0 i n-1, (subscript

arithmetic taken modulo n) are the edges of P. A polygon is simple if no two

nonconsecutive edges intersect. A simple polygon part...</dc:description>

<dc:contributor>The Pennsylvania State University Citeseer

Archives</dc:contributor>

<dc:publisher>unknown</dc:publisher>

<dc:date>1997-11-01</dc:date>

<oai_Citeseer:pubyear>1991</oai_Citeseer:pubyear>

<dc:format>ps</dc:format>

<dc:identifier>http://Citeseer.ist.psu.edu/2.html</dc:identifier>

<dc:source>http://www-

cgrl.cs.mcgill.ca/~godfried/publications/tri.scan.ps.gz</dc:source>

<dc:language>en</dc:language>

<oai_Citeseer:relation type="References">

 <oai_Citeseer:uri>oai:CiteseerPSU:97473</oai_Citeseer:uri>

 </oai_Citeseer:relation>

<oai_Citeseer:relation type="References">

 <oai_Citeseer:uri>oai:CiteseerPSU:154288</oai_Citeseer:uri>

 </oai_Citeseer:relation>

<dc:rights>unrestricted</dc:rights>

</oai_Citeseer:oai_Citeseer>

</metadata>

</record>

 Figure 6: Citeseer Record [23]

21

As seen in the Figure 7 there is a root tag named as <record> which includes both

<header> and <metadata> tags. The header as set by the OAI-PMH standards has 3 different

parts as shown in the Figure 7 below.

<header>

<identifier>oai:CiteseerPSU:2</identifier>

<datestamp>1997-11-01</datestamp>

<setSpec>CiteseerPSUset</setSpec>

</header>

 Figure 7: Citeseer Record Header [23]

Here the contents in the <identifier> tag represent the unique identifier assigned to

each record. This unique identifier is a combination of “oai:CiteseerPSU” and a number

where “oai:CiteseerPSU” is common for every record while the number is unique. Followed by

this are datestamp which indicates the date of record creation, and setSpec which indicates the

set membership. Citeseer uses just one set where all the records belong to the only set

CiteseerPSUset. The tags <header>, <identifier>, <datestamp>, <metadata> etc are all set forth

by the OAI-PMH and any repository following OAI norms cannot change or ignore them.

Coming to the metadata part, it has a single root tag oai_Citeseer:oai_Citeseer required

by OAI-PMH norms, followed by nested tags belonging to the corresponding metadata format

which in this case includes both Dublin core and Citeseer specific format.

The root tag in the metadata part includes a many attributes common to all XML

documents that include namespaces, schemas etc as shown in Figure 8.

<oai_Citeseer:oai_Citeseer

xmlns:oai_Citeseer="http://copper.ist.psu.edu/oai/oai_Citeseer/"

xmlns:dc ="http://purl.org/dc/elements/1.1/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

22

xsi:schemaLocation="http://copper.ist.psu.edu/oai/oai_Citeseer/

http://copper.ist.psu.edu/oai/oai_Citeseer.xsd ">

 Figure 8: Namespace Declarations and Schema location [23]

1. Namespace declarations

 The declarations of the namespaces used in the metadata part, are prefixed with xmlns.

These declarations are classified into 2 different parts:

a) Metadata format specific namespace(s) - every metadata part must include one or

more xmlns prefixed attributes that define the correspondence between a metadata

format prefix (such as “oai_Citeseer or dc”) and the namespace URI of the respective

metadata format. The repositories using 2 different metadata formats need an entry for

each, prefixed with xlmns. In this example they are xmlns:oai_Citeseer and xmlns:dc

[18].

b) xml schema namespace - every metadata part includes the attribute xmlns:xsi, the value

of which is always a URI shown in the example, which is the namespace URI for XML

schema [18].

c) Schema Location - Schema Location is usually a combination of URI, URL pair; the

first is the namespace URI of the metadata that follows in this part, and the second is

the URL of the XML schema for validation of the metadata that follows. All the

elements described by the tags of the form <dc:title> ,<dc:publisher> ,<dc:format> etc

are following the standards set by Dublin core Metadata element set [18].

While namespace declarations and schema locations are required by Dublin core

standards, Citeseer added it’s own tags <oai_Citeseer:relation> which follow the standards

employed by the Citeseer itself . It included these tags in order to establish a more meaningful

23

relationship between its records and this formed the basis for this project. For example

<oai_Citeseer:uri>oai:CiteseerPSU:154288</oai_Citeseer:uri> in the Figure 9 indicates that

Indicates that this record references the record with the identifier 154288 and this property was

highly useful in this project.

 <oai_Citeseer:relation type="References">

 <oai_Citeseer:uri>oai:CiteseerPSU:154288</oai_Citeseer:uri>

 </oai_Citeseer:relation>

 Figure 9: Citeseer References tag [23]

6. PROJECT DETAILS

6.1 Overview

The Citeseer repository used for this project has 72 dump files containing XML records

or metadata. Each file is around 28KB to 30KB. The first step towards the implementation was

the extraction of the data into the database. Since the metadata was presented in the XML

format that follows OAI-PMH and Dublin core norms, the presence of the tags made parsing of

the data easier. Although there was additional information provided we extracted only those

fields that are relevant to the project. After the database has been populated, every time a query

needs to be processed, the database is accessed and the required result is fetched. Each query

for an Author, keyword or a Title of the paper fetches all the records matching the query and

prints the following information.

1. Title of the paper

2. Authors

3. Citeseer ID

4. Part of Description.

24

5. Time taken to fetch the records

6. Number of records that matched the query and the number printed on the first page.

Every record fetched can be viewed both in the text format and in graphical format. To

view the details in the text format each title/article fetched has been provided as a hyperlink

and clicking on it displays the screen with more details pertaining to the record, like the

complete description, all the papers referencing this article and all the papers referenced by this

article. In every screen, the titles of all the papers are hyperlinked and clicking on them will

provide more information about the paper as shown in Figure 11. Each screen displays the first

10 records and the “next” and “Previous” buttons are provided to navigate through all the

records fetched. Also at every screen there is an option to get back to the main page, from

where you started and a search button on top which allows a new query.

Similarly to view the details in the graphical format, every hyperlinked record is

followed by a link named “paper centric view” clicking on which will display a browser

showing the record/article, keywords, authors, papers referencing the article and papers

referenced by the article in an intuitive focus + context manner, and allow the user to

interactively query related results. For example, by clicking on the title of a paper or the author

of a paper displays the paper centric view of the article or the author centric view of the author.

The author centric view displays the author and all the papers the author has contributed for.

Thus the visualization module switches back and forth between the author centric view and the

paper centric view. All the articles are color coded to indicate the number of times it has been

referenced making it easy to visualize the importance of the paper.

25

Given below are the screen shots to show the results in text format. Figure 10 shows the

screen which displays the result for a particular query and Figure 11 shows the screen that

provides additional information about the record when clicked on it .Similarly Figure 12 and

Figure 13 show Paper centric view and Author centric view respectively.

 Figure 10: Screen displaying the results in textual format

26

 Figure 11: Screen displaying the details of the record in textual format

27

 Figure 12: Visual display of the record and its references (Paper centric view)

Given below is the color coding range used for both the Paper centric view and the author
centric view.

Number of papers the article has been referenced by color used

0
1 - 5
6-10
11-20
21-40
41-60

61 and above

 Table 1: Color coding range used for Paper centric view and Author centric view

28

Figure 13: Visual display of the author and his/her publications (Author Centric view)

6.2 SOFTWARE USED

This section describes the software and the programming languages used for the

implementation

Software

1. jdk1.5

2. Apache Tomcat 5.0

3. MS SQL server 2005

4. Internet Explorer 5.5 or above

5. Windows 2000 or higher Operating system

29

Programming Language

1. Java

2. Servlet

3. Java server pages (JSP)

6.2.1 Servlet

A servlet is a java program that runs in a web browser as against an applet that runs in

the client browser. The servlet takes the request from the browser which is typically an HTTP

request, generates the dynamic HTML content and sends the response back to the client as an

HTTP response. The servlet can also be accessed directly from another application and send

the request back to the application. Running in a J2EE environment a Servlet can generate the

response in both HTML and XML format [22].

Servlets provides improved scalability with its ability to support object orientation,

platform independence, security and robustness much similar to that of Java. In addition

servlets are fully integrated with java API’s such JDBC for database connectivity [22].

A Servlet is usually managed by an external container referred to as a servlet engine. It

is this servlet engine that provides the servlet with the services it needs such as the HTTP

request parameters and its headers and so on. The Figure 14 indicates the relation between a

servlet, servlet engine and the web browser [22].

30

 Figure 14: Relation between a servlet, browser and the servlet engine [22]

6.2.2 Java Server Pages (JSP)

Java Server pages is a java based technology developed at Sun Microsystems, that

allows to dynamically generate HTML, XML or any other type of document in response to the

Web client request. JSP as the technology is often referred to, allows developers to embed java

code and other pre-defined actions into the static HTML code [21]. One can jump in and out of

HTML code by adding the starting and ending tags <% & %> where all the JSP

implementation goes in between these tags.

6.2.3 Apache Tomcat

Apache Tomcat is a web container developed at the Apache software Foundation. Also

referred to as an application server, Tomcat includes its own Internal HTTP server and

provides an environment for the java code to run in co-operation with the web server by

implementing the Java servlet specifications and Java server pages specifications from sun

Microsystems [20].

31

6.2.4 Microsoft SQL Server 2005

Microsoft SQL server is a relational database management system developed by

Microsoft. Transact SQL referred to as T-SQL is its primary query language and is an

implementation of ANSI/ISO standard Structured Query Language used by Microsoft [19].

T-SQL is the primary means of programming and managing the SQL server. It provides

functions to operate and manage the database. Client applications that use the data or manage

the SQL server can communicate with the database by sending the T-SQL statements, which in

turn processes and sends the results back to the client.

This project uses the freely available enterprise version of the software downloaded from the

Microsoft webpage.

6.3. Implementation Details

This project is based on the MVC framework namely the Model, View and the

Controller framework. This framework provides a pattern for organizing presentation logic

(View), business logic (control) and the data objects (model) into three different modules. The

model usually refers to the data objects/database, while the presentation part of the project is

handled by the views which in this case are the JSP’s, the Servlet’s act as the controller

between the model and the view by managing the flow. Section 6.3.1 gives the details of the

model/data repository and section 6.3.2 explains the details of both the views and the

controllers used in the project.

6.3.1 Data Repository

The metadata downloaded from the Citeseer website is extracted and stored in the local

database created with Microsoft SQL server 2005. The downloaded data contains detailed

information about each record including the author addresses, the rights of the papers,

32

affiliation, URL and many more. Since all the records are in the XML format, with set of

specified tags, the data extraction was relatively easy. The local database consists of 4 tables

named AuthorDetails, RecordIndex, RecordRef, and RecordTable.

1. The table AuthorDetails contains the details of the authors and has the following fields

- recordid

- authorname

- address

- affiliation

Each article or record can have more than one author and hence the field recordid is

not unique in this table and can be duplicated any number of times.

2. The table RecordRef contains the fields

- recordid

- refid

The field refid is the Citeseer Id of the articles/records that this particular record given

by recordid references. This information is being used when we fetch all the records that a

particular article references to or is being referenced by. Again since each article can have

more than one reference, the field recordid can be duplicated.

3. The table RecordTable contains the fields

- recordid

- dateofcreation

- title

- subject

- description

33

- publisher

- pubyear

- format

- identifier

- source

- language

- rights

The field “subject” in this table is a combination of both the authors and the title of the article

and it is this field that is looked for while performing the search.

4. The table RecordIndex contains the details of all the records and has the following

columns

- recordid

- subject

- dateofcreation

The table RecordIndex is the index for the database. That is, in this table each article

will have an entry only once. So, whenever the database is queried for the author, title or the

keyword, the RecordIndex table is searched to see if the query matches any of the string in the

“subject” field and that particular recordid is extracted which is then used to search the

Authordetails table for author names, RecordTable for the title and description and RecordRef

table for all the references. Thus the RecordIndex table makes fetching the records much faster

by reducing the number of records that need to be searched.

6.3.2 Program flow

This section provides the inner details of implementation with the help of the figures

34

As shown in architecture in Figure 15, the browser acts as an interface to the client which takes

the input and display’s the result, the web server provides the context for handling the

user requests and processing the query and JSP’s handle the presentation layer of the model. In

the context of web server, it is the Servlet that acts as a controller between the JSP’s and the

database.

 Figure 15: Architecture of Data Query from the Database

The Figure 16 below describes the interaction between various modules and also the

communication between the Servlets, JSP’s and the database within each module. In this

Figure all the JSP’s are indicated in blue, while the Servlets are indicated in green. Here we

describe each Servlet and the JSP and explain the tasks that it performs.

a. DataQuery

 DataQuery a JSP file, acts as an interface to the client accepting the input/request which

is sent to the servlet, Reqhandler.

b. ReqHandler

ReqHandler is a servlet container, which handles the user request, and forwards the

request to ReqSearch servlet.It also handles the search result returned by ReqSearch and

forwards it to the JSP,that is “DisplayResult” for displaying.

Browser

Web Server

Client

Servlets

JSP

Database

Client Tier Middle Tier Third Tier

35

c. ReqSearch

ReqSearch, is a servlet which extracts the keywords from the request using the set of

predefined delimiters and prepares the standard search query, executes the search query against

the database and sends the response back to Reqhandler servlet.

d. LinkHandler

 LinkHandler is a servlet that is invoked when the hyperlinked article is clicked for more

details. This servlet takes the request from the Reqsearch,which in this case is the “link id” and

provides it to the LinkSearch servlet which processes it and sends the response back to

Linkhandler, which in turn forwards it to the JSP LinkResult for display.

e. LinkSearch

 LinkSearch is a servlet which takes the request from the LinkHandler, processes it by

preparing the query to extract the all the records that match the link id of the article clicked

from the tables AuthorDetails, RecordTable and RecordRef tables, and forwards the response

back to it.

f. LinkResult

 LinkResult is a JSP that displays the result forwarded by the servlet LinkHandler.

g. DisplayResult

 DisplayResult a JSP , is a Browser/Interface that displays the result forwarded by the

servlet Reqsearch.

h. CentricView

CentricView is a servlet that handles the Data visualization part and is invoked when the

user clicks on the page centric view in the result page. It then sends this request, which in this

case is the linkid , to the servlet CVsearch, which processes it and sends the response back to

CentricView

i. CVSearch

36

CVSearch is a Servlet that takes the request from CentricView, prepares the query,

contacts the database and sends the result back to CentricView, which then forwards it to

CVResult for display

j. CVResult

CVResult is a JSP that receives the data from the Servlet CVSearch and displays it

using HTML tables and tags.

Similarly AuthCentricView and AuthCVSearch are the Servlets that are invoked when the

author name is clicked upon and the result is sent to the ACVResult JSP for display.

37

 Figure 16: Application Flow Diagram

1

42

5

6

DataQuery.jsp

DisplayResult.jsp

ReqHandler

ReqSearch
Database

3

CVResult.jsp

ACVResult.jsp

CentricView

AuthCentricView

CVSearch

AuthCVSearch

1
2

4

5 (If paper is
clicked) 5 (If the Author is clicked)

6
8

7
9

When page centric
view is clicked
clicked

LinkHandler

LinkSearch

LinkResult.jsp

if hyperlinked
article is clicked

3

4

2

1

 Database

 Database

3

38

7. CONCLUSION

Data Mining and Data visualization are two concepts that have been in use since a long

time and are still being used in various areas ranging from business to academics. A lot of

research and thus lot of development has been made in both the fields over the years. While

both the concepts can stand by themselves, they are more advantageous when used together

and that is the essence of this project.

Unlike many other citation indexes that present their data in textual format, this project

presents the data in the visual format. This allows the user to conceptualize more data all at

once than when presented in the textual format. The references and the referenced by fields and

the color coding used, make it easy for the user to learn more about the relationship between

the papers and estimate the importance/quality of the paper he/she is looking at ,thus showing

the importance of visualization when presenting large sets of data.

8. FUTURE WORK

It would be a good future project to work on enhancing the paper centric view and the

author centric views by

1. Providing the users with an opportunity to upload their papers and visualize how they

fit in the paper centric and the author centric views. This could be easy if the user enters

the details of the paper in a pre-designed form, but if he/she uploads the paper itself it

might not be a trivial task, since it would require an intelligent parser to extract the

required information.

2. Providing the user with more information about the article’s displayed on either views,

with the help of a pop-up box which could contain all the information about the article

such as the authors, number of articles referenced by it and the number of article

39

referencing them, and if possible the titles of the articles themselves and if available the

URL where they can download the article.

40

REFERENCES

[1] Z.Shen, M.Ogawa, S.T. Teoh, and K.L. Ma, “BiblioViz: A System for Visualizing

Bibliography Information,” Proceedings of the Asia Pacific Symposium on Information

Visualization, 2006.

Pages 93-102.

[2] C.L.Giles, K.D. Bollacker and S.Lawrence, “Citeseer: An Automatic Citation Indexing

System,” Third ACM Conference on Digital Libraries, 1998. Pages 89-98.

[3] Citeseer – Scientific Literature Digital Library

http://Citeseer.ist.psu.edu/

[4] Open Archives Initiative –Repository Explorer

http://re.cs.uct.ac.za/

[5] Overview of Data Visualization

http://web.cs.wpi.edu/~matt/courses/cs563/talks/datavis.html

[6] Data Mining

http://www-pub.cise.ufl.edu/~ddd/cap6635/Fall-97/Short-papers/10.htm

[7] Data Mining: What is Data Mining?

http://www.anderson.ucla.edu/faculty/jason.frand/teacher/technologies/palace/datamining.htm

[8] http://en.wikipedia.org/wiki/Data_mining

[9] A Brief History of Data Mining

http://www.data-mining-software.com/data_mining_history.htm

[10] Data Modeling and Mining

http://www.dwreview.com/Data_mining/DM_models.html

[11] S.Few, “Data visualization past, present and future,” Cognos Innovation Center, 10 Jan

2007.

http://www.perceptualedge.com/articles/Whitepapers/Data_Visualization.pdf

[12] http://www.marumushi.com/apps/newsmap/

[13] http://amaztype.tha.jp/

[14] Citeseerx alpha

http://Citeseerx.ist.psu.edu/about/site

[15] http://en.wikipedia.org/wiki/Citeseer

41

[16] V.Petricek, I.J. Cox, H.Han, I.G. Councill and C.L Giles, “A Comparison of Online

Computer Science Citation Databases,” The School of Information Sciences and Technology.

http://www.personal.psu.edu/igc2/papers/petricek05comparison.pdf

[17] http://en.wikipedia.org/wiki/Dublin_Core

[18] S. Amin, “The Open Archives Initiative Protocol for Metadata Harvesting: An

Introduction,” Documentation Research and Training Center.

https://drtc.isibang.ac.in/bitstream/1849/40/2/H_OAIPMH_saiful.pdf

[19] http://en.wikipedia.org/wiki/Microsoft_SQL_Server

[20] http://en.wikipedia.org/wiki/Apache_Tomcat

[21] http://en.wikipedia.org/wiki/JavaServer_Pages

[22] Servlet Overview

http://download.oracle.com/docs/cd/B12166_01/web/B10321_01/overview.htm#1001304

[23] Citeseer Metadata

http://Citeseer.ist.psu.edu/oai.html

[24] Data Visualization – Modern Approaches

http://www.smashingmagazine.com/2007/08/02/data-visualization-modern-approaches/

42

APPENDIX A - Source Code

Dataquery.jsp

 An interface to the user to enter the search string

<html>

<title>Data Query</title>
<head>
 <style type=text/css>
 BODY
 {

 background-color="";
 background-attachment: fixed;
 font-size: 9pt;
 font-family: "Arial","Courier New";
 color: #000000;
 margin-left: 5;
 margin-top: 10;

 }
 </style>

</head>
<body topmargin=0 leftmargin=0 bgcolor="">
 <center>

 <table border=0>
 <tr><td align=center>Bibliography Data

Mining

 </table>
 <hr width="80%">
 <%@ page language="java" import="java.util.*" %>

 <form name="dqform" method="post" action="/servlet/ReqHandler">
 <input type="hidden" name="crpos" value="N_0_0_1_0">
 <table border=0>

 <tr>
 <td aling right>Enter the Search String : </td><td><input type="text" size="60" name="reqsq">

</td>
 </tr>

 </table><hr width="80%">
 <input type="submit" value="Search">

 </form>
 </center>
</body>

</html>

Displayresult.jsp

A JSP that is used to present the results to the user in the text format

<html>
<head>

43

<title>Result Sheet</title>
<style type=text/css>
BODY
{

 background-color="";
 background-attachment: fixed;
 font-size: 9pt;
 font-family: "Arial","Courier New";
 color: #000000;
 margin-left: 5;
 margin-top: 10;

}
</style>

 <script language="javascript">
 function validations(mvbt)
 {

 qv=document.dqform.qv.value;
 pv=document.dqform.pr.value;
 nt=document.dqform.nt.value;
 nqv=document.dqform.nqv.value;
 if(mvbt=="P")

 {
 pval=eval(pv)-1;

 ntval=eval(nt)+1;
 fmv="P_"+qv+"_"+pval+"_"+ntval+"_"+nqv;

 }
 else

 {
 pval=eval(pv)+1;
 ntval=eval(nt)-1;
 fmv="N_"+nqv+"_"+pval+"_"+ntval+"_"+nqv;

 }
 document.dqform.crpos.value=fmv;
 document.dqform.submit();

 }
</script>

</head>
<body topmargin=0 leftmargin=0>

 <%@ page language="java" import="java.util.*" %>
<%@ include file="tops.jsp"%>
<%
ArrayList mres=new ArrayList();
String sreq=(String)request.getAttribute("SREQ");
mres=(ArrayList)request.getAttribute("QResult");
String qtime=(String)request.getAttribute("QTime");
String data="";
if((mres.size()-5)>0)
{

 out.println();
 String qval=(String)mres.get(mres.size()-4);
 String prev=(String)mres.get(mres.size()-3);
 String next=(String)mres.get(mres.size()-2);
 String nqval=(String)mres.get(mres.size()-1);

} %
 <table border=0 width=100% bgcolor="#E4E0E1">

 <tr><td width="25%">Search Result</td>

44

 <td align=right>Page :<%=(Integer.parseInt(prev)+1)%>of<%=(Integer.parseInt(next)+Integer.parseInt(prev)+1)%>
 Total Record Count : <%=mres.get(0)%> Query Time :
 <%=qtime%> </td>

</tr>
</table><hr>

<% int r=0;

 for(r=1;r<(mres.size()-4);r++)
 {

 data=(String)mres.get(r);
 out.println(data);

 out.println("
");
 }%>
<hr>

<form name="dqform" method="post" action="/servlet/ReqHandler" onSubmit="return validations()">
 <input type="hidden" name="qv" value="<%=qval%>">
 <input type="hidden" name="pr" value="<%=prev%>">
 <input type="hidden" name="nt" value="<%=next%>">
 <input type="hidden" name="nqv" value="<%=nqval%>">
 <input type="hidden" name="reqsq" value="<%=sreq%>">
 <input type="hidden" name="crpos" value="">

<table border=0 width=100%>
 <% if(prev.equals("0"))

 { %>
 <tr><td align=center><input type="button" value="Next" onClick="return validations('N')"></td></tr>

<% }
 else if(next.equals("0"))
 { %>

 <tr><td align=center><input type="button" value="Previous" onClick="return validations('P')"></td></tr>
<% }

 else
 { %>

 <tr><td align=center><input type="button" value="Previous" onClick="return validations('P')">

 <input type="button" value="Next" onClick="return validations('N')"></td></tr>
<% } %>

</table>
</form>

<% }
else
{ %>

 <center>No Result Matched.</center>
 <% } %>

</center>
</body>
</html>

CVResult.jsp

An Interface that presents the Paper centric view in context+focus format to the users

**

<html>
<title>CV Link Result</title>
<head>

45

<STYLE type=text/css>
BODY {

background-color="";
background-attachment: fixed;
font-size: 9pt;
font-family: "Arial","Courier New";
color: #000000;
margin-left: 5;
margin-top: 10;

}
A:link {
color: #000000;
font-family: "Arial";
font-size: 11pt;
text-decoration:none;

}
</style>
</head>
<body topmargin=0 leftmargin=0 bgcolor="">
<%@ page language="java" import="java.util.*,java.awt.Color" %>
<% ArrayList rdata=new ArrayList();
String author="",pagetitle="",ref="",refby="",reflink="",refbylink="";
String authcol="",refidcol="",refbycol=""; String refbyid="",authorid="",refid="",cvrefbycnt="";
StringTokenizer stk=null; StringTokenizer stkcol=null; StringTokenizer stkid=null;
String temp="",tempid="",tempcol="",tempLow="";
int seq=0;
rdata=(ArrayList)request.getAttribute("CVResult");
if(rdata.size()>0){

ArrayList prepWord=new ArrayList();
prepWord.add("for"); prepWord.add("the"); prepWord.add("of"); prepWord.add("to");
prepWord.add("a");prepWord.add("an"); prepWord.add("is"); prepWord.add("that");
prepWord.add("this"); prepWord.add("if");prepWord.add("and");prepWord.add("its");
prepWord.add("it's"); prepWord.add("in");prepWord.add("as");prepWord.add("by");
prepWord.add("vs"); prepWord.add("with"); prepWord.add("*"); prepWord.add("<");
prepWord.add(">"); prepWord.add("!"); prepWord.add("#"); prepWord.add("$");
prepWord.add("%"); prepWord.add("("); prepWord.add(")"); prepWord.add("&");
prepWord.add("^"); prepWord.add("@");prepWord.add("()"); prepWord.add("[]");
prepWord.add("{}"); prepWord.add("{"); prepWord.add("}");

 prepWord.add("-"); prepWord.add(":");
 author=(String)rdata.get(0);

 pagetitle=(String)rdata.get(1);
 ref=(String)rdata.get(2);

 refby=(String)rdata.get(3);
 reflink=(String)rdata.get(4);
 refbylink=(String)rdata.get(5);

 authcol=(String)rdata.get(6);
 refidcol=(String)rdata.get(7);
 refbycol=(String)rdata.get(8);
 refid=(String)rdata.get(9);
 refbyid=(String)rdata.get(10);
 cvrefbycnt=(String)rdata.get(11); %>

<form name="f1" method="get">
 <table border=1 bordercolor="pink" cellpadding=4 cellspacing=4 width="100%">

 <tr bgcolor="Orange">
<td colspan=4 align=center height=30>PAPER CENTRIC VIEW

46

BACK TO SEARCH
 </td></tr>
 <tr bgcolor="pink">

<td align="ceneter" width="28%" height="25">
 Referenced By (<%=cvrefbycnt%> Papers)</td>
<td align="" width="20%"><font

face="Arial"> Authors</td>
<td align="" width=""> </td>
<td align="" width="28%"><font

face="Arial"> References</TD></TR>
<tr><td valign="top">

 <table cellpadding=4 cellspacing=4>
<% if(refby!=null){

stk=new StringTokenizer(refby,"|");
stkcol=new StringTokenizer(refbycol,"|");
stkid=new StringTokenizer(refbyid,"|");
while(stk.hasMoreTokens()){

temp=(String)stk.nextToken();
tempcol=(String)stkcol.nextToken();
tempid=(String)stkid.nextToken(); %>

 <tr><td bgcolor=" <%=tempcol%>">
 <a href="/servlet/CentricView?lid=<%=tempid%>"><%=temp%></td></tr>

 <%}
 } %>

 </table></td>
 <td valign="top" align=center>

<table cellpadding=3 cellspacing=3>
<% if(author!=null){

 stk=new StringTokenizer(author,",");
stkcol=new StringTokenizer(authcol,"|");
while(stk.hasMoreTokens()){

temp=(String)stk.nextToken();
tempcol=(String)stkcol.nextToken();

%> <tr><td bgcolor="<%=tempcol%>">
 <a href="/servlet/AuthCentricView?lid=<%=temp%>">
 <%=temp%>
 </td></tr>

 <% }
 } %>

</table></td>
<td valign="top">
<table cellpadding=4 cellspacing=4>
<tr><td bgcolor="yellow">
<u>TITLE:</u>

<%=pagetitle%></td></tr>
<tr><td bgcolor="goldenrod">
<u>KEYWORDS:</u>

<% if(pagetitle!=null){

stk=new StringTokenizer(pagetitle," ");
while(stk.hasMoreTokens()){

temp=(String)stk.nextToken();
tempLow=temp.toLowerCase();
if(!prepWord.contains(tempLow)){

%><%=temp%>
<%
 }
}

} %>
</td></tr>
</table> </td>

47

<td valign="top">
<table cellpadding=2 cellspacing=4>
<% if(ref!=null){

stk=new StringTokenizer(ref,"|");
stkcol=new StringTokenizer(refidcol,"|");
stkid=new StringTokenizer(refid,"|");
while(stk.hasMoreTokens()){

temp=(String)stk.nextToken();
tempcol=(String)stkcol.nextToken();
tempid=(String)stkid.nextToken();
%><tr><td bgcolor="<%=tempcol%>">

 <a
href="/servlet/CentricView?lid=<%=tempid%>"><%=temp%></td></tr>

 <% }
}%>

</table> </td> </tr>
</table>
</td></tr></table>
</form>
<% }

 else{ %>
 <center>No Result Found.</center><%

 } %>
</center>
</body>
</html>

ACVResult.jsp

**
An Interface that presents the Author Centric view in context+focus format to the users

**
<html>
<title>CV Link Result</title>
<head>
<STYLE type=text/css>
BODY
{

background-color="";
background-attachment: fixed;
font-size: 9pt;
font-family: "Arial","Courier New";
color: #000000;
margin-left: 5;
margin-top: 10;

}
A:link
{
color: #000000;
font-family: "Arial";
font-size: 10pt;
text-decoration:none;

}
</style>

48

</head>
<body topmargin=0 leftmargin=0 bgcolor="">
<%@ page language="java" import="java.util.*" %>
<% ArrayList ardata=new ArrayList();

 String pubval="",pubid="",authname="",temp="",tempid="",refcol="",bcol="";
 ardata=(ArrayList)request.getAttribute("ACVResult");
 StringTokenizer stk=null; StringTokenizer stkid=null; StringTokenizer colid=null;

if(ardata.size()>0)
{

pubval=(String)ardata.get(0);
pubid=(String)ardata.get(1);
authname=(String)ardata.get(2);
refcol=(String)ardata.get(3);%>

<form name="f1" method="get">
 <table border=1 bordercolor="black" cellpadding=0 cellspacing=1 width="60%">

 <tr bgcolor="Orange"><td colspan=2 align=center height=30>AUTHOR-CENTRIC
VIEW

 BACK TO SEARCH</td></tr>
 <tr bgcolor="pink">

 <td align="center" width="36%">Author</td>
 <td align="" width="">Published Papers </TD></tr>

 <tr>
 <td valign="top" align=center>

 <table cellpadding=3 cellspacing=3>
<tr><td><big><%=authname%></big></td></tr>

 </table> </td>
 <td valign="top">

 <table cellpadding=4 cellspacing=4>
<% if(pubval!=null)

 {
stk=new StringTokenizer(pubid,"|");
stkid=new StringTokenizer(pubval,"|");
colid=new StringTokenizer(refcol,"|");
while(stk.hasMoreTokens())
{

temp=(String)stk.nextToken();
tempid=(String)stkid.nextToken();
bcol=(String)colid.nextToken(); %>

 <tr><td bgcolor="<%=bcol%>">
 <a href="/servlet/CentricView?lid=<%=tempid%>"><%=temp%></td></tr>

 <%}
} %>

 </table>
 </td></tr></table>
 </form>

<% }
else
{ %>

 <center>No Result Found.</center><%
} %>
</center>
</body>
</html>

49

LinkResult.jsp

A JSP that displays additional details about the article clicked upon.

<html>
<title>Link Result</title>
<head>
<STYLE type=text/css>
BODY
{

background-color="";
background-attachment: fixed;
font-size: 9pt;
font-family: "Arial","Courier New";
color: #000000;
margin-left: 5;
margin-top: 10;

}
</style>
</head>
<body topmargin=0 leftmargin=0 bgcolor="">
<%@ page language="java" import="java.util.*" %>
<%
ArrayList linkres=new ArrayList();
linkres=(ArrayList)request.getAttribute("LResult");
if(linkres.size()>0)
{

out.println();
%><table border=0 width=100%>
<tr><td>Link Result<hr></td></tr>
<tr><td><%=linkres.get(0)%></td>
</tr>
<tr><td>Title : <u><%=linkres.get(1)%></u></td></tr>
<tr><td>Author : <%=linkres.get(2)%></td></tr>
<tr><td>
Description : <%=linkres.get(3)%></td></tr>
<tr><td>
Published On : <%=linkres.get(4)%></td></tr>
<tr><td>Source : <%=linkres.get(5)%></td></tr>
<tr><td>
References :
<%=linkres.get(6)%></td></tr>
<tr><td></td></tr>
</table><%

}
else
{

%><center>No Result Matched.</center><%
}
%>
</center>
</body>
</html>

50

ReqHandler.java

A servlet that acts as a controller between the views Dataquery.jsp , DisplayResult.jsp and the servlet
ReqSearch.java that interacts with the data model/database.

package dm;
import java.lang.*;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ReqHandler extends HttpServlet
{

 ReqSearch rqs=new ReqSearch();
 public void doGet(HttpServletRequest request,HttpServletResponse response) throws IOException,

ServletException
 {

 response.setContentType("text/html");
 String crpos = request.getParameter("crpos");
 String reqqry = request.getParameter("reqsq");
 ArrayList fres=new ArrayList();
 long ST=System.currentTimeMillis();
 fres=rqs.ReqSearch(reqqry,crpos);

 long ET=System.currentTimeMillis();
 float diff=Math.round(ET-ST);
 float qt=(diff/1000);
 String qtime=qt+" Sec";

 request.setAttribute("SREQ",reqqry);
 request.setAttribute("QResult",fres);
 request.setAttribute("QTime",qtime);

getServletConfig().getServletContext().getRequestDispatcher("/DATAMINE/displayResult.jsp").forward(request,respon
se);

 }
public void doPost(HttpServletRequest request,HttpServletResponse response) throws IOException,

ServletException
{

doGet(request, response);
}

}

ReqSearch.java

A Servlet that analyses the search string forwarded as request from Reqhandler.java, constructs the SQL query
and fetches the record from the Database.

public class ReqSearch
{

ArrayList resData=new ArrayList();
ArrayList prepWord=new ArrayList();
int resCount=0;
Connection con =null;

51

Statement stmt = null;
ResultSet rs=null;
public ReqSearch(){}
public ArrayList ReqSearch(String qry,String crpos)
{

prepWord.add("for"); prepWord.add("the"); prepWord.add("of"); prepWord.add("to");
 prepWord.add("a"); prepWord.add("is"); prepWord.add("that");prepWord.add("this");
prepWord.add("if");
resData.clear();
String sql="",ssql="",dataStr="",cond="",temp="",mv="",prev="",next="",nqval="",qval="";
int cnt=0,totrcnt=0,pgcnt=0;
StringTokenizer pstk=new StringTokenizer(crpos,"_");
mv=(String)pstk.nextToken(); //--click status
qval=(String)pstk.nextToken(); //--start_val
prev=(String)pstk.nextToken(); //--pgprev_val
next=(String)pstk.nextToken(); //--pgnxt_val
nqval=(String)pstk.nextToken(); //--next_val
String nqry=qry.replace(' ','+');
StringTokenizer stk=new StringTokenizer(nqry,"+");
while(stk.hasMoreTokens())
{

temp=(String)stk.nextToken();
temp=temp.toLowerCase();
if(!prepWord.contains(temp))
{

if (cnt==0)
{

cond="(subject like '%"+temp+"%' ";
cnt++;

}
else
{

cond+="or subject like '%"+temp+"%' ";
}

}
}
cond+=")";
String Wcond=cond;
if(mv.equals("N"))
{

cond+="and recordid>"+nqval+" order by recordid";
ssql="select distinct top 10 recordid from recordindex where "+cond;

}
else
{

 cond+="and recordid<"+qval+" order by recordid desc";
ssql="select recordid from recordindex where recordid in(select distinct top 10 recordid
from recordindex where "+cond+") order by recordid";

}
try
{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
con=DriverManager.getConnection("jdbc:odbc:dbdsn","dbuser","dbpwd");
stmt=con.createStatement();
sql="select count(distinct recordid) from recordindex where "+Wcond;
rs=stmt.executeQuery(sql);

52

while(rs.next())
totrcnt=rs.getInt(1);

resData.add(totrcnt+"");
if(prev.equals("0"))
{

pgcnt=Math.round(totrcnt/10);
next=pgcnt+"";

}
ArrayList sidx=new ArrayList();
rs=stmt.executeQuery(ssql);
while(rs.next())
{

sidx.add(rs.getString(1));
}
qval=(String)sidx.get(0);
nqval=(String)sidx.get((sidx.size()-1));
String pauthor="";
int acnt=0;
for(int s=0;s<sidx.size();s++)
{

dataStr="";pauthor="";acnt=0;
sql="select distinct authorname from AuthorDetails where

recordid="+sidx.get(s);
rs=stmt.executeQuery(sql);
while(rs.next())
{

if(acnt==0)
{

pauthor=rs.getString(1);
acnt++;

}
else

pauthor+=","+rs.getString(1);
}

sql="select distinct substring(title,1,150),substring(description,1,250) from
recordtable where recordid="+sidx.get(s);

 rs=stmt.executeQuery(sql);
 while(rs.next())
 {

 dataStr="<u>
 "+rs.getString(1)+"</u>

 [Page Centric View]

CiteseerPSU:"+sidx.get(s)+"
Authors :
"+pauthor+"
"+rs.getString(2)+"...
";

 }
 resData.add(dataStr);

}
}
catch(Exception err)
{

System.out.println("Req Search : " + err.getMessage ());
}

resData.add(qval);
resData.add(prev);
resData.add(next);

53

resData.add(nqval);
return resData;

}//end of main
}

LinkHandler.java

**
A servlet that acts as a controller between the view LinkResult.jsp and the Servlet LinkSearch.java that interacts
with the database/datamodel
**
package dm;
import java.lang.*;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class LinkHandler extends HttpServlet
{

 LinkSearch ls=new LinkSearch();
 public void doGet(HttpServletRequest request,HttpServletResponse response) throws IOException,

ServletException
 {

 response.setContentType("text/html");
 String linkid = request.getParameter("lid");
 ArrayList dres=new ArrayList();
 dres=ls.LinkSearch(linkid);

 request.setAttribute("LResult",dres);
getServletConfig().getServletContext().getRequestDispatcher("/DATAMINE/LinkResult.jsp").forward(request,re
sponse);

 }
public void doPost(HttpServletRequest request,HttpServletResponse response) throws IOException,
ServletException

{
doGet(request, response);

}
}

LinkSearch.java

A Servlet that fetches additional information about the article clicked upon, from the database using the
linked/recordid forwarded by the Servlet Linkhandler.java

package dm;
import java.util.*;
import java.sql.*;
public class LinkSearch
{

ArrayList dresData=new ArrayList();
int resCount=0;
Connection con =null;
Statement stmt = null;

54

ResultSet rs=null;
public LinkSearch(){}
public ArrayList LinkSearch(String lid)
{

dresData.clear();
try
{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
con=DriverManager.getConnection("jdbc:odbc:dbdsn","dbuser","dbpwd");
stmt=con.createStatement();
String ident="CiteseerPSU:"+lid+"<hrr>";
dresData.add(ident);
String pauthor="",sql="";
int acnt=0; pauthor="";acnt=0;
sql="select distinct authorname from AuthorDetails where recordid="+lid;
rs=stmt.executeQuery(sql);
while(rs.next())
{

if(acnt==0)
{

pauthor=rs.getString(1);
acnt++;

}
else

pauthor+=","+rs.getString(1);
}
String tit="",descp="",pdate="",src="";
sql="select distinct

title,description,datepart(dd,dateofcreation),datepart(mm,dateofcreation),
 datepart(yy,dateofcreation),source from recordtable where recordid="+lid;
rs=stmt.executeQuery(sql);
while(rs.next())
{

tit=rs.getString(1);
descp=rs.getString(2);
pdate=rs.getString(3)+"-"+rs.getString(4)+"-"+rs.getString(5);
src=rs.getString(6);

}
dresData.add(tit);
dresData.add(pauthor);
dresData.add(descp);
dresData.add(pdate);
dresData.add(src);

String ref="";
int refcnt=0;
sql="select recordid,substring(title,1,150) from recordtable where recordid in(select
distinct refid from recordref where recordid="+lid+" and refid!="+lid+")";
rs=stmt.executeQuery(sql);
while(rs.next())
{

 refcnt++;
ref+=refcnt+". <u>"

 +rs.getString(2)+"</u>
";
}
dresData.add(ref);

55

}
catch(Exception err)
{

System.out.println("Link Search : " + err.getMessage());
}
return dresData;

}//end of main
}

CentricView.java

A Servlet that acts as a controller between the view CVResult.jsp and the servlet CVSearch.jsp that interacts
with the database

package dm;
import java.lang.*;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class CentricView extends HttpServlet
{

 CVSearch ls=new CVSearch();
 public void doGet(HttpServletRequest request,HttpServletResponse response) throws IOException,

ServletException
 {

 response.setContentType("text/html");
String linkid = request.getParameter("lid");
ArrayList dres=new ArrayList();
dres=ls.CVSearch(linkid);

 request.setAttribute("CVResult",dres);

getServletConfig().getServletContext().getRequestDispatcher("/DATAMINE/CVResult.jsp").forward(request,res
ponse);

 }
 public void doPost(HttpServletRequest request,HttpServletResponse response) throws IOException,

ServletException
 {

doGet(request, response);
 }

}

CVSearch.java

A Servlet that fetches all the related records for an article, keeps a count of the number of records fetched and
assigns the color depending on the number to represent its importance.

package dm;
import java.util.*;
import java.sql.*;

56

public class CVSearch{
String sql="",pgtitle="",temp="",pauthor="",ref="",refby="",temps="";
String reflink="",refbylink="";
ArrayList dresData=new ArrayList();
ArrayList auth=new ArrayList();
ArrayList refid=new ArrayList();
ArrayList refidby=new ArrayList();
String fid="",dcol="",auth_col="",ref_col="",refby_col="",cvrefid="",cvrefbyid="";
int resCount=0,acnt=0,cvrefbycnt=0;
Connection con =null;
Statement stmt = null;
ResultSet rs=null;

 int fs0=0; int fs1=5; int fs2=6;int fs3=10;int fs4=11;int fs5=20;int fs6=21;int fs7=40;
int fs8=41;int fs9=60; int fs10=61;
public CVSearch(){}
public ArrayList CVSearch(String lid){

dresData.clear();
try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
con=DriverManager.getConnection("jdbc:odbc:dbdsn","dbuser","dbpwd");
stmt=con.createStatement();
pauthor="";acnt=0;
auth.clear();
sql="select distinct authorname from AuthorDetails where recordid="+lid;
rs=stmt.executeQuery(sql);
while(rs.next()){

temp=rs.getString(1);
auth.add(temp);
if(acnt==0){

pauthor=temp;
acnt++;

}
else{

pauthor+=","+temp;
}

}
acnt=0;
auth_col="";
for(int a=0;a<auth.size();a++){

temp=(String)auth.get(a);
temps=temp.replace('\'',' ');
sql="select count(*) from authordetails where authorname='"+temps+"'";
rs=stmt.executeQuery(sql);
while(rs.next()){

acnt=rs.getInt(1);
if(acnt==fs0)

 dcol="ROYALBLUE";
 else if(acnt<=fs1) dcol="AQUA";
 else if(acnt>=fs2 && acnt<=fs3)

dcol="GREENYELLOW";
else if(acnt>=fs4 && acnt<=fs5)

dcol="GREEN";
else if(acnt>=fs6 && acnt<=fs7)

dcol="YELLOW";
else if(acnt>=fs8 && acnt<=fs9)

dcol="ORANGE";

57

else if(acnt>fs10)
dcol="VIOLET";

}
if(a==0)

auth_col=dcol;
else

auth_col+="|"+dcol;
}
dresData.add(pauthor);
sql="select distinct title from recordtable where recordid="+lid;
rs=stmt.executeQuery(sql);
while(rs.next()){

pgtitle=rs.getString(1);
}
dresData.add(pgtitle);
ref="";
int refcnt=0;
refid.clear();
sql="select recordid,substring(title,1,150) from recordtable where recordid in(select
distinct refid from recordref where recordid="+lid+" and refid!="+lid+")";
rs=stmt.executeQuery(sql);
while(rs.next()){

fid=rs.getString(1);
refid.add(fid);
if(refcnt==0){

ref=rs.getString(2);
cvrefid=fid;
refcnt++;

}
else{

ref+="|"+rs.getString(2);
cvrefid+="|"+fid;

}
}
dresData.add(ref);
ref_col="";
for(int a=0;a<refid.size();a++){

temp=(String)refid.get(a);
sql="select COUNT(*) from RECORDREF WHERE REFID="+temp;
rs=stmt.executeQuery(sql);
while(rs.next()){

acnt=rs.getInt(1);
if(acnt==fs0)

 dcol="ROYALBLUE";
 else if(acnt<=fs1)

dcol="AQUA";
 else if(acnt>=fs2 && acnt<=fs3)

dcol="GREENYELLOW";
else if(acnt>=fs4 && acnt<=fs5)

dcol="GREEN";
else if(acnt>=fs6 && acnt<=fs7)

dcol="YELLOW";
else if(acnt>=fs8 && acnt<=fs9)

dcol="ORANGE";
else if(acnt>fs10)

dcol="VIOLET";

58

}
if(a==0) ref_col=dcol;
else ref_col+="|"+dcol;

}
refby="";refcnt=0;cvrefbycnt=0;
//--Referenceby--
refidby.clear();
sql="select recordid,substring(title,1,150) from recordtable where recordid in(select
distinct recordid from recordref where refid="+lid+" and recordid!="+lid+")";
rs=stmt.executeQuery(sql);
while(rs.next()){

fid=rs.getString(1);
refidby.add(fid);
if(refcnt==0){

refby=rs.getString(2);
cvrefbyid=fid;
refcnt++;

}
else{

refby+="|"+rs.getString(2);
cvrefbyid+="|"+fid;

}
cvrefbycnt++;

}
dresData.add(refby);
refby_col="";
for(int a=0;a<refidby.size();a++){

temp=(String)refidby.get(a);
sql="select COUNT(*) from RECORDREF WHERE REFID="+temp;
rs=stmt.executeQuery(sql);
while(rs.next()){

acnt=rs.getInt(1);
if(acnt==fs0)

 dcol="ROYALBLUE";
 else if(acnt<=fs1)

dcol="AQUA";
 else if(acnt>=fs2 && acnt<=fs3)

dcol="GREENYELLOW";
 else if(acnt>=fs4 && acnt<=fs5)

dcol="GREEN";
else if(acnt>=fs6 && acnt<=fs7)

dcol="YELLOW";
else if(acnt>=fs8 && acnt<=fs9)

dcol="ORANGE";
else if(acnt>fs10)

dcol="VIOLET";

}
if(a==0)

refby_col=dcol;
else

refby_col+="|"+dcol;
}
reflink="";refcnt=0;acnt=0;
for(int r=0;r<refid.size();r++){

59

for(int a=0;a<auth.size();a++){
acnt=0;
sql="select count(*) from authordetails where
recordid="+refid.get(r)+" and
authorname='"+auth.get(a)+"'";
rs=stmt.executeQuery(sql);
while(rs.next()){

acnt=rs.getInt(1);
}
if(acnt!=0){

if(refcnt==0){
reflink=r+","+a;

}
else{

reflink+="|"+r+","+a;
}

}
}

}
dresData.add(reflink);
refbylink="";refcnt=0;acnt=0;
for(int r=0;r<refidby.size();r++){

for(int a=0;a<auth.size();a++){
 acnt=0;
sql="select count(*) from authordetails where
recordid="+refidby.get(r)+" and
authorname='"+auth.get(a)+"'";

rs=stmt.executeQuery(sql);
while(rs.next()){

acnt=rs.getInt(1);
}
if(acnt!=0){

if(refcnt==0) refbylink=r+","+a;
else refbylink+="|"+r+","+a;

}
}

}
dresData.add(refbylink);
dresData.add(auth_col);
dresData.add(ref_col);
dresData.add(refby_col);
dresData.add(cvrefid);
dresData.add(cvrefbyid);
dresData.add(cvrefbycnt+"");

}
catch(Exception err) { System.out.println("CV Link Search : " + err.getMessage ()); }
return dresData;

}
}

60

AuthCentricView.java

A Servlet that acts a controller between the view ACVResult.jsp and the Servlet AuthCentricView that
interacts with the database

package dm;
import java.lang.*;
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class AuthCentricView extends HttpServlet
{

 ACVSearch acvs=new ACVSearch();
 public void doGet(HttpServletRequest request,HttpServletResponse response) throws IOException,

ServletException
 {
 response.setContentType("text/html");

 String linkid = request.getParameter("lid"); //author name
ArrayList dres=new ArrayList();
dres=acvs.AuthCVSearch(linkid);

 request.setAttribute("ACVResult",dres);

getServletConfig().getServletContext().getRequestDispatcher("/DATAMINE/ACVResult.jsp").forward(request,re
sponse);

 }
public void doPost(HttpServletRequest request,HttpServletResponse response) throws IOException,
ServletException

{
doGet(request, response);

}
}

ACVSearch.java

A Servlet that fetches all the related records for an author, keeps a count of the number of records fetched and
assigns the color depending on the number to represent its importance.

package dm;
import java.util.*;
import java.sql.*;
public class ACVSearch
{

String sql="";
ArrayList ridData=new ArrayList();
ArrayList dresData=new ArrayList();
Connection con =null;
Statement stmt = null;
ResultSet rs=null;

 int fs0=0;int fs1=5;int fs2=6;int fs3=10;int fs4=11;int fs5=20;int fs6=21;int fs7=40;int fs8=41;int
fs9=60;

int fs10=61;

61

String temp1="",temp2="",pubval="",pubvalid="",ref_col="",dcol="";
int acnt=0;
public ACVSearch(){}
public ArrayList AuthCVSearch(String lid)
{

dresData.clear();
ridData.clear();
try
{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
con=DriverManager.getConnection("jdbc:odbc:dbdsn","dbuser","dbpwd");
stmt=con.createStatement();
pubval="";pubvalid="";acnt=0;
sql="select recordid,substring(title,1,150) from recordtable where recordid in(select
distinct recordid from authordetails where authorname='"+lid+"')";
rs=stmt.executeQuery(sql);
while(rs.next())
{

temp1=rs.getString(1);
temp2=rs.getString(2);
ridData.add(temp1);
if(acnt==0)
{

pubval=temp1;
pubvalid=temp2;

}
else //if(acnt>1)
{

pubval+="|"+temp1;
pubvalid+="|"+temp2;

}
acnt++;

}
ref_col="";
for(int r=0;r<ridData.size();r++)
{

acnt=0;
sql="select count(*) from recordref where refid="+ridData.get(r);
rs=stmt.executeQuery(sql);
while(rs.next())
{

acnt=rs.getInt(1);
if(acnt==fs0)

 dcol="ROYALBLUE";
 else if(acnt<=fs1)

dcol="AQUA";
 else if(acnt>=fs2 && acnt<=fs3)

dcol="GREENYELLOW";
else if(acnt>=fs4 && acnt<=fs5)

dcol="GREEN";
else if(acnt>=fs6 && acnt<=fs7)

dcol="YELLOW";
else if(acnt>=fs8 && acnt<=fs9)

dcol="ORANGE";
else if(acnt>fs10)

dcol="VIOLET";

62

}
if(r==0)

ref_col=dcol;
else

ref_col+="|"+dcol;
}
dresData.add(pubval);
dresData.add(pubvalid);
dresData.add(lid);
dresData.add(ref_col);

}
catch(Exception err)
{

System.out.println("CV Link Search : " + err.getMessage ());
}
return dresData;

}//end of main
}

DBRead.java

A Java Program that extracts the data from each Citeseer record and inserts it into the Database. This program
has to be run for each of the 72 files downloaded from the Citeseer database.

import java.io.*;
import java.sql.*;
import java.util.ArrayList;
import java.util.regex.*;
public class DBRead {

public static String replaceSQ(String source){
 StringBuffer sb = new StringBuffer();
 if (source!=null){

 String chk="'";
 for(int i = 0;i<source.length();i++){

char temp = source.charAt(i);
String str=String.valueOf(temp);
if(str.equals(chk))
 sb.append("''");

else
 sb.append(temp);

}
 }
return sb.toString();

}
 public static void main(String args[]){

String fname="C:/DataBase/"+args[0];
String s="";BufferedReader bf=null;boolean recstart=false;boolean recend=false;
String identifier="",datestamp="",title="",author="",address="",affiliation="";
String subject="",description="";String

contributor="",publisher="",pubyear="",format="",doc_identifier="";
String source="",language="",References="",rights="";
ArrayList author_name=new ArrayList();
ArrayList author_add=new ArrayList();
ArrayList author_aff=new ArrayList();

63

ArrayList doc_ref=new ArrayList();
Pattern keypat = null;CharSequence inputVal="";Matcher matcher = null;boolean matchFound = false;
int sidx=0,eidx=0;String dval="",fval="",fdata="";
Connection con =null;
Statement stmt = null;
ResultSet rs=null;
try{

 bf=new BufferedReader(new FileReader(fname));
 s=bf.readLine();
 while(s!=null){

s=s.trim();
inputVal = s;
if(s.equals("<record>"))
recstart=true;
if(s.equals("</record>"))
recend=true;
if(recstart){

 keypat = Pattern.compile("<identifier>");
 matcher = keypat.matcher(inputVal);
 matchFound = matcher.find();
 if(matchFound){

sidx=s.indexOf("<identifier>");
eidx=s.indexOf("</identifier>");
dval=s.substring((sidx+12),eidx);
System.out.println("--- "+dval);
eidx=dval.lastIndexOf(":");
identifier=dval.substring(eidx+1);

}
keypat = Pattern.compile("<datestamp>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

sidx=s.indexOf("<datestamp>");
eidx=s.indexOf("</datestamp>");
datestamp=s.substring((sidx+11),eidx);

}
keypat = Pattern.compile("<dc:title>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

sidx=s.indexOf("<dc:title>");
eidx=s.indexOf("</dc:title>");
if(eidx==-1){

title=s.substring((sidx+10));
 while(true){

s=bf.readLine();
eidx=s.indexOf("</dc:title>");
if(eidx!=-1)

 break;
else

 title+=s;
}
dval=s.substring(0,eidx);
title+=dval;

}
else

64

 title=s.substring(10,eidx);
 title=DBRead.replaceSQ(title);

}
//---For Author--
keypat = Pattern.compile("<oai_Citeseer:author");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

 sidx=s.indexOf("name=");
 eidx=s.indexOf(">");
 author=s.substring((sidx+6),(eidx-1));
 author=DBRead.replaceSQ(author);
 author_name.add(author);
 s=bf.readLine();
 inputVal=s;
 keypat = Pattern.compile("<address>");
 matcher = keypat.matcher(inputVal);
 matchFound = matcher.find();
 if(matchFound){

sidx=s.indexOf("<address>");
eidx=s.indexOf("</address>");
address=s.substring((sidx+9),eidx);
address=DBRead.replaceSQ(address);
author_add.add(address);

s=bf.readLine();
inputVal=s;

}
 else

author_add.add("");
keypat = Pattern.compile("<affiliation>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

sidx=s.indexOf("<affiliation>");
eidx=s.indexOf("</affiliation>");
affiliation=s.substring((sidx+13),eidx);
affiliation=DBRead.replaceSQ(affiliation);
author_aff.add(affiliation);

}
else
 author_aff.add("");

}//---End of Author--
keypat = Pattern.compile("<dc:subject>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

sidx=s.indexOf("<dc:subject>");
eidx=s.indexOf("</dc:subject>");
if(eidx==-1){

subject=s.substring((sidx+12));
subject=DBRead.replaceSQ(subject);
while(true){

 s=bf.readLine();
 eidx=s.indexOf("</dc:subject>");
 if(eidx!=-1){

65

 break; }
 else{

s=DBRead.replaceSQ(s);
subject+=s;

 }
}
dval=s.substring(0,eidx);
dval=DBRead.replaceSQ(dval);
subject+=dval;

}
else{

 subject=s.substring(12,eidx);
 subject=DBRead.replaceSQ(subject);

}
}

keypat = Pattern.compile("<dc:description>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

sidx=s.indexOf("<dc:description>");
eidx=s.indexOf("</dc:description>");
if(eidx==-1){

 description=s.substring((sidx+16));
 description=DBRead.replaceSQ(description);
 while(true){

s=bf.readLine();
eidx=s.indexOf("</dc:description>");
if(eidx!=-1){

 break; }
else{

 s=DBRead.replaceSQ(s);
 description+=s;

}
}
dval=s.substring(0,eidx);
dval=DBRead.replaceSQ(dval);
description+=dval;

}
else{
 description=s.substring(16,eidx);

description=DBRead.replaceSQ(description);
}

}
keypat = Pattern.compile("<dc:contributor>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

sidx=s.indexOf("<dc:contributor>");
eidx=s.indexOf("</dc:contributor>");
contributor=s.substring((sidx+16),eidx);
contributor=DBRead.replaceSQ(contributor);

}
keypat = Pattern.compile("<dc:publisher>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();

66

if(matchFound){
sidx=s.indexOf("<dc:publisher>");
eidx=s.indexOf("</dc:publisher>");
publisher=s.substring((sidx+14),eidx);
publisher=DBRead.replaceSQ(publisher);

}
 pubyear="0";

keypat = Pattern.compile("<oai_Citeseer:pubyear>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

sidx=s.indexOf("<oai_Citeseer:pubyear>");
eidx=s.indexOf("</oai_Citeseer:pubyear>");
pubyear=s.substring((sidx+22),eidx);

}
keypat = Pattern.compile("<dc:format>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

sidx=s.indexOf("<dc:format>");
eidx=s.indexOf("</dc:format>");
format=s.substring((sidx+11),eidx);

}
keypat = Pattern.compile("<dc:identifier>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

sidx=s.indexOf("<dc:identifier>");
eidx=s.indexOf("</dc:identifier>");
doc_identifier=s.substring((sidx+15),eidx);
doc_identifier=DBRead.replaceSQ(doc_identifier);

 }
keypat = Pattern.compile("<dc:source>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

 sidx=s.indexOf("<dc:source>");
 eidx=s.indexOf("</dc:source>");
 source=s.substring((sidx+11),eidx);
 source=DBRead.replaceSQ(source);

}
keypat = Pattern.compile("<dc:language>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

sidx=s.indexOf("<dc:language>");
eidx=s.indexOf("</dc:language>");
language=s.substring((sidx+13),eidx);

}
keypat = Pattern.compile("<oai_Citeseer:uri>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

sidx=s.indexOf("<oai_Citeseer:uri>");
eidx=s.indexOf("</oai_Citeseer:uri>");
dval=s.substring((sidx+18),eidx);

67

eidx=dval.lastIndexOf(":");
fval=dval.substring(eidx+1);
doc_ref.add(fval);

}
keypat = Pattern.compile("<dc:rights>");
matcher = keypat.matcher(inputVal);
matchFound = matcher.find();
if(matchFound){

 sidx=s.indexOf("<dc:rights>");
 eidx=s.indexOf("</dc:rights>");
 rights=s.substring((sidx+11),eidx);

 }
}

 if(recend){
 String qry1="",qry2="",qry3="",qry4="";
 qry1="insert into RecordTable

values("+identifier+",'"+datestamp+"','"+title+"','"+subject+"','"+description+

"','"+publisher+"',"+pubyear+",'"+format+"','"+doc_identifier+"','"+source+"','"+language+"','"+rights+"')";
 qry2="insert into RecordIndex values("+identifier+",'"+subject+"','"+datestamp+"')";

 try{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
con=DriverManager.getConnection("jdbc:odbc:dbdsn","dbuser","dbpwd");
stmt=con.createStatement();

stmt.executeUpdate(qry1);
stmt.executeUpdate(qry2);
for(int i=0;i<author_name.size();i++){
 qry3="insert into AuthorDetails values("+identifier+",'"+author_name.get(i)+"','"+author_add.get(i)+
 "','"+author_aff.get(i)+"')";
 stmt.executeUpdate(qry3);

 }
for(int i=0;i<doc_ref.size();i++){

qry4="insert into RecordRef values("+identifier+","+doc_ref.get(i)+")";
stmt.executeUpdate(qry4);

}
}
catch(Exception ex){

System.out.println("
"+ex);
}
recstart=recend=false;
identifier=datestamp=title=author=address=affiliation="";
subject=description=contributor=publisher=pubyear=format=doc_identifier="";source=language=References=rig
hts="";
author_name.clear();author_add.clear();author_aff.clear();doc_ref.clear();
}

 s=bf.readLine();
}

 bf=null;
 System.out.println("--Done--");

}catch(Exception e){}
}

}1

	Bibliography Data Mining and Data Visualization
	Recommended Citation

	pullannagari_deepthi.doc

