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Summary 18 

 For organisms living in the intertidal zone, temperature is an important selective agent 19 

that can shape species distributions and drive phenotypic variation among populations. Littorinid 20 

snails, which occupy the upper limits of rocky shores and estuaries worldwide, often experience 21 

extreme high temperatures and prolonged aerial emersion during low tides, yet their robust 22 

physiology—coupled with morphological and behavioral traits—permits these gastropods to 23 

persist and exert strong grazing control over algal communities. We use a mechanistic heat-24 

budget model to compare the effects of behavioral and morphological traits on the body 25 

temperatures of five species of littorinid snails under natural weather conditions. Model 26 

predictions and field experiments indicate that, for all five species, the relative contribution of 27 

shell color or sculpturing to temperature regulation is small, on the order of 0.2 – 2 °C, while 28 

behavioral choices such as removing the foot from the substratum or reorienting the shell can 29 

lower body temperatures by 2 – 4 °C on average. Temperatures in central California rarely 30 

exceeded the thermal tolerance limits of the local littorinid species, but at sites where snails are 31 

regularly exposed to extreme high temperatures, the functional significance of the tested traits 32 

may be important. The mechanistic approach used here provides the ability to gauge the 33 

importance of behavioral and morphological traits for controlling body temperature as species 34 

approach their physiological thresholds.   35 
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Introduction 36 

  Within the narrow band of habitat between the low and high tidemarks on 37 

seashores, the distributions of individual species and the structure of ecological communities are 38 

dictated by a variety of biotic and abiotic factors (Connell, 1961;  Lewis, 1964;  Connell, 1972;  39 

Paine, 1974;  Dayton, 1975;  Menge and Branch, 2001). Biological interactions such as 40 

predation, competition, and facilitation play out on a background of constantly-shifting 41 

environmental conditions driven primarily by the action of tides and waves (Stephenson and 42 

Stephenson, 1972;  Denny, 2006;  Denny et al., 2009). Changes in important environmental 43 

parameters such as light, temperature, and wave action can alter the suitability of the habitat for a 44 

given species at both small and large spatial scales (Wethey, 2002;  Denny et al., 2004;  Harley, 45 

2008). The capacity of organisms to persist under these varied environmental conditions is 46 

mediated by the interaction of a suite of behavioral, morphological, and physiological traits.  47 

Snails in the family Littorinidae are important herbivores in mid- and high-shore 48 

intertidal communities around the world (McQuaid, 1996a, b;  Reid, 1996), and often exert 49 

control over macroalgal and microalgal communities (Castenholz, 1961;  Hawkins and Hartnoll, 50 

1983;  Norton et al., 1990;  Hidalgo et al., 2008). These snails can experience large swings in 51 

temperature over the course of a single tide cycle and must often contend with multi-day aerial 52 

emersion periods when they live above the high tide line (Vermeij, 1972;  Cleland and 53 

McMahon, 1986;  McMahon, 1990;  Judge et al., 2009;  Marshall et al., 2010).  54 

The importance of morphological and behavioral traits for managing body temperature 55 

has been demonstrated in many terrestrial ectotherms such as insects, reptiles, and gastropods 56 

(Schmidt-Nielsen et al., 1971;  Porter et al., 1973;  Stevenson, 1985;  Huey, 1991;  Kingsolver, 57 

1996;  Kearney et al., 2009), and similar roles for morphological and behavioral variation have 58 
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been hypothesized for littorinid snails and other intertidal gastropods. Variation in shell color 59 

across geographic scales has been hypothesized to be a response to climatic conditions, with 60 

dark-colored morphs inhabiting cooler sites, while light-colored morphs dominate warmer areas 61 

(Markel, 1971;  Vermeij, 1971b;  Etter, 1988;  McQuaid and Scherman, 1988;  McQuaid, 1992;  62 

Sergievsky, 1992;  McQuaid, 1996a;  Phifer-Rixey et al., 2008), as has been argued for terrestrial 63 

gastropods (Jones, 1973;  Heath, 1975;  Heller, 1981). Shell shapes can vary from globular to 64 

high-spired, which affects heating by absorption of shortwave radiation from the sun and 65 

determines the internal volume of fluid that can be stored in the shell to withstand desiccation 66 

(Vermeij, 1972, 1973;  Chapman, 1995). In addition, the outer surface of the shell may be 67 

smooth,  or it may be sculptured, with ribs, ridges, and nodules that increase the surface area of 68 

the shell (potentially increasing convective heat flux) without a concomitant increase in the 69 

projected area of the shell that captures heat energy from the sun (Vermeij, 1973;  Britton, 1995). 70 

While these morphological traits may impact body temperature, there are additional selective 71 

forces such as predation and wave action that may drive the variation in shell morphology 72 

(Struhsaker, 1968;  Johannesson, 1986;  Seeley, 1986;  Johannesson et al., 1993;  Trussell, 73 

1997b, 2002).  74 

Mobile intertidal grazers often seek refuge from hot conditions in crevices or under algal 75 

canopies. In contrast, littorinids—which often exploit food resources on open rock faces where 76 

thermal refuges are absent—may employ additional behavioral strategies to avoid stressful high 77 

temperatures. As with terrestrial gastropods that must withstand prolonged unfavorable weather 78 

conditions (Stearns, 1877;  Machin, 1967;  Schmidt-Nielsen et al., 1972), littorinid snails 79 

commonly remove the foot from the substratum and anchor the shell using a dried mucus 80 

holdfast (Wilson, 1929;  Newell, 1958;  Vermeij, 1971b;  Garrity, 1984). For a gastropod sitting 81 
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on a surface warmed by the sun, the large surface area of the foot allows for substantial 82 

conductive heat exchange between the foot and substratum (Vermeij, 1971a;  Denny and Harley, 83 

2006). The ability to remove the foot from the substratum reduces this conductive heat flux, 84 

keeping a snail several degrees cooler than the substratum (Schmidt-Nielsen et al., 1972;  85 

Vermeij, 1973). Many littorinid snails can also re-orient the shell, lifting the aperture away from 86 

the substratum, leaving only the outer lip of the shell aperture attached to the substratum with 87 

dried mucus (Fig. 1A, B) (Denny, 1984). Thusly, reorienting the shell alters conductive and 88 

convective heat flux, and may change the projected area absorbing heat from the sun. 89 

 The relative importance of these morphological and behavioral characteristics for 90 

controlling body temperature can be estimated using a mechanistic heat-budget model (Porter 91 

and Gates, 1969;  Gates, 1980;  O'Connor and Spotila, 1992;  Porter and Kearney, 2009), 92 

combining physical parameters of the organism with environmental data to estimate body 93 

temperature through time. From a high-resolution decade-long weather data set from Hopkins 94 

Marine Station, Pacific Grove, California (HMS), we create historical reconstructions of snail 95 

body temperatures to examine the effects of these morphological and behavioral changes, 96 

particularly during high-temperature aerial exposures. Specifically, we test four hypotheses: 1) 97 

light colored shells remain cooler than dark shells, 2) shells with surface ornamentation remain 98 

cooler than smooth shells, 3) removing the foot from the substratum lowers body temperature, 99 

and 4) reorienting the shell up off the substratum lowers body temperature. We compare the 100 

relative effectiveness of each trait for controlling body temperature during hot aerial exposures, 101 

and their effects on body temperature across the range of environmental temperatures 102 

experienced in the field.  103 
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Materials and Methods 104 

 To facilitate the manipulation of individual morphological and behavioral parameters, we 105 

developed heat-budget models for five species of littorinid snails (Figure 1C). The snails 106 

included four of the five common rocky intertidal Littorina species from the temperate western 107 

North American coastline: Littorina keenae Rosewater, L. scutulata Gould (both collected at 108 

HMS), L. plena Gould (collected from Tatoosh Island, Washington, USA), and L. sitkana 109 

Philippi (collected from San Juan Island, Washington, USA). The fifth common species on these 110 

shores, L. subrotundata Carpenter (not used in this study), is morphologically similar to L. 111 

sitkana, so model results for L. sitkana should be similar for L. subrotundata. The final species 112 

used in this study, Echinolittorina natalensis (formerly Nodilittorina natalensis Philippi, see 113 

Williams et al., 2003), collected from Cape Vidal in the Natal region on the east coast of South 114 

Africa, provided an ornamented shell for comparison to the smooth-shelled L. scutulata and L. 115 

plena. Of the species used in this study, L. sitkana tends to live in low- to mid-intertidal zones 116 

(Boulding and Van Alstyne, 1993;  Rochette and Dill, 2000), while the remaining species occupy 117 

the mid- and high-intertidal zone (Harger, 1972;  Stirling, 1982;  Behrens Yamada, 1989, 1992;  118 

Branch et al., 2002).    119 

Heat-budget model 120 

The heat-budget model estimates an organism’s body temperature by balancing the heat 121 

fluxes (W) into and out of the body (see Gates, 1980;  Campbell and Norman, 1998).  122 

 𝑊sw ±  𝑊conv ±  𝑊cond ± 𝑊evap +  𝑊met ± 𝑊lw = 𝑊stored (1) 

 123 
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The basic heat-budget model (1) considers fluxes due to short-wave solar radiation, Wsw; 124 

convective heat exchange with the air, Wconv; conductive heat exchange with the substratum, 125 

Wcond; heat lost or gained due to evaporation or condensation, Wevap; metabolic heat production, 126 

Wmet; and long-wave radiative exchange between the organism and its surroundings, Wlw. The 127 

sum of these fluxes equals heat energy stored in the organism, Wstored.  Our model was modified 128 

from a heat-budget model originally developed for the intertidal limpet Lottia gigantea (Denny 129 

and Harley, 2006), calculating the same heat flux components as the limpet model, but adding in 130 

a behavioral component by altering the area of conduction, surface area for convection, and 131 

projected area facing the sun depending on the modeled shell orientation and foot position (see 132 

below). 133 

 Because littorinid snails have a small mass and are uninsulated, we treat stored heat 134 

energy, Wstored, as negligible and set it equal to zero. Metabolic heat production and evaporative 135 

heat flux for small littorinids are approximately 0.07% and 1% as large as the heat flux due to 136 

short-wave radiation at midday, respectively (Newell, 1976;  Kronberg, 1990;  Miller, 2008). 137 

Based on these estimates, we treat metabolic heat production and heat flux due to evaporation as 138 

negligible terms in the model, and therefore remove Wmet and Wevap from the model. The 139 

simplified heat-budget model used for this study is 140 

 𝑊sw  ±  𝑊conv ± 𝑊cond  ±  𝑊lw = 0. (2) 

 141 

 The methods used for the parameterization of the model are described in detail in Denny 142 

and Harley (2006) and Miller (2008). We made empirical measurements on a pair of snail shells 143 

from each species, except for L. plena, for which we only had a single shell. Projected area and 144 

substratum contact area were measured using size-referenced digital images analyzed in Image-J 145 
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(Rasband, 1997-2010), and surface area was similarly estimated from digital images using the 146 

method of Johnsen and Widder (1999). To estimate the heat transfer coefficient of each shell, we 147 

used silver casts of each shell to measure rates of convective heat exchange in a wind tunnel for 148 

shells both sitting down on the substratum or rotated up onto the lip of shell, allowing us to 149 

incorporate the effects of wind speed and shell orientation on the convective flux component of 150 

the model. Short-wave absorptivity (i.e. color) was measured using shell fragments mounted in 151 

an integrating sphere attached to a Li-Cor 1800 spectroradiometer (LI-COR Biosciences, 152 

Lincoln, Nebraska, USA). The thickness of any mucus attachment was treated as negligible and 153 

was not present in the model, so that heat flux was modeled as occurring directly between rock 154 

and shell surfaces. The rate-limiting step in conductive heat flux is assumed to be between the 155 

rock surface and the foot when the snail is crawling, while conduction from the rock surface 156 

through the shell is assumed rate-limiting when the snail is withdrawn into the shell. Shell 157 

thickness values are given as "conductive distance" in Table 1, with the greater conduction 158 

distance through the lip of the shell reflected in the greater distance given when the shell is 159 

elevated from the substratum. The snail body and any mantle water trapped in the shell are 160 

assumed to be at a single temperature due to blood circulation. 161 

 162 

Model verification 163 

Temperature predictions from the model were ground-truthed against temperature 164 

measurements of live snails and silver-epoxy-filled shells in the field and laboratory. Live L. 165 

keenae were close in size to the modeled L. keenae shells were fitted with polyurethane-coated 166 

0.08 mm diameter thermocouple leads (Omega Engineering Inc., Stamford, Connecticut, USA) 167 

inserted through a hole ground in the shell and covered with cyanoacrylate glue. The hole was 168 
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positioned so that the thermocouple entered the main body whorl near ground level when the 169 

shell sat down on the substratum, and was designed to put the thermocouple tip in contact with 170 

the snail body when the snail was withdrawn into the shell.  Measurements of body temperature 171 

of a live L. keenae were carried out in a temperature-controlled wind tunnel (see Miller et al., 172 

2009) with the snail actively crawling or with the foot withdrawn into the shell. For field 173 

measurements, we took each of the shells used for the size measurements described above, filled 174 

the shells with thermally-conductive silver epoxy (two parts ground silver shavings, one part 175 

epoxy by volume; Devcon 2 Ton Clear Epoxy, ITW Devcon, Danvers, Massachusetts, USA), 176 

and fitted a 0.08 mm thermocouple into a hole drilled in the epoxy filling. We deployed these 177 

shells on a high-shore granite rock at approximately 2.5 m above mean lower low water at HMS 178 

during two warm periods in April and June 2007. In addition, we fit thermocouples into two live 179 

L. keenae to be deployed in the field alongside the silver-epoxy-filled shells during the June 180 

experiment. Temperatures were monitored at 1-minute intervals by a datalogger (23X, Campbell 181 

Scientific Inc., Logan, Utah, USA) while concurrently monitoring air temperature (Viasala 182 

HMP45C, Campbell Scientific Inc.), wind speed (Wind Sentry, R. M. Young Co., Traverse City, 183 

Michigan, USA), and solar irradiance (LI-200SB, LI-COR Biosciences, Lincoln Nebraska, 184 

USA). The field site was not submerged during high tide and thus represented a "worst-case 185 

scenario" for snails on the shoreline.  186 

Model comparisons 187 

For long-term reconstructions of snail body temperatures in the field at HMS, we used a 188 

10 year record of weather and sea-state data from HMS, spanning August 1, 1999 through July 189 

31, 2009. This data set included air temperature, solar irradiance, wind speed, tide height, 190 

significant wave height, and water temperature, all measured or interpolated at 10 min intervals 191 
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(Denny and Harley, 2006). After specifying the shore height, wave exposure, and shell 192 

orientation for a model snail, the heat-budget model calculates a body temperature for each 10 193 

min time step based on the co-occurring environmental conditions. When the tide height exceeds 194 

the specified shore height, the snail body temperature is set equal to sea surface temperature, and 195 

when the tide and waves recede below the modeled shore height, the snail heats or cools 196 

according to the sum of the heat fluxes to and from the surrounding environment. The heat-197 

budget model was employed to analyze the effects of behavioral or morphological changes on 198 

predicted body temperatures for the snail species under a variety of weather conditions. Because 199 

the focus of the study was to examine the effects of these traits under a "worst-case" scenario, all 200 

species were modeled resting on a horizontal surface 2.0 m above mean lower low water, a 201 

height which is 0.4 m above the mean higher high water line at HMS and thus is only submerged 202 

during spring tides or when large waves are present. The predicted temperatures for pairs of 203 

snails of each species were generally within a fraction of a degree Celsius, and so we only report 204 

results from a single representative shell of each species. The model was implemented in 205 

MATLAB 7 (The Mathworks Inc., Natick, Massachussetts, USA). Analyses were carried out in 206 

MATLAB and R 2.12.1 (2010). 207 

Two behavioral manipulations were carried out with the model. First, the effect of 208 

removing the foot from the substratum was simulated by changing the contact area of the snail 209 

with the rock while leaving other parameters constant. The modeled snail either kept the foot in 210 

contact with the rock constantly, or withdrew the foot into the shell after three hours of aerial 211 

emersion, mimicking the behavior of snails that close the operculum as the rock surface becomes 212 

dry. Second, the effect of reorienting the shell up onto the aperture lip was tested by using a 213 

further-reduced value of contact area and simultaneously altering values for the projected area 214 
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facing the sun and the surface area of the shell, as the aperture of the shell is exposed to the air 215 

rather than being held against the substratum (see Table 1 for representative values for each 216 

shell).  217 

Effects of shell color on body temperature were tested by altering the short-wave 218 

absorptivity of the shell (α, a dimensionless value) while leaving all other characteristics 219 

constant. Four shell colors were compared, nominally referred to as "black" (α = 0.85), "green" 220 

(α = 0.82), "brown" (α = 0.80), and "white" (α = 0.67). Shell color differences were also 221 

compared for snails over a range of substratum contact areas to illustrate the relative 222 

contributions of color and conduction to the overall heat budget of the snail. Black and white L. 223 

keenae were modeled with contact areas that scaled from full foot contact to having only the 224 

outer lip of the shell glued to the substratum. Shell ornamentation comparisons were carried out 225 

by comparing temperature predictions for L. scutulata and E. natalensis. These two high-spired 226 

species grow to similar overall sizes, but E. natalensis has rows of nodules on the shell surface, 227 

increasing the total surface area for convection while only slightly increasing the projected area 228 

for absorbing solar irradiance. Both snails were modeled with a brown shell to remove effects of 229 

color differences.  230 

Effects of morphological and behavioral manipulations were compared by examining 231 

predicted body temperatures. Maximum body temperature or body temperature differences 232 

between model scenarios were calculated for the 10 yr time series. Because the heat-budget 233 

model is deterministic, we report calculated temperatures and standard deviations for the 234 

temperatures rather than standard errors. 235 
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In addition to the ten year hindcasts for HMS, we modeled body temperatures with 236 

different foot and shell positions for L. scutulata at ten additional sites (Table 2) along the west 237 

coast of North America between August 2007 and August 2009 to gauge the effects of these 238 

behaviors at sites that might be more thermally stressful than HMS. Data for L. scutulata are 239 

reported because it is found throughout the west coast of the US (Reid, 1996), although modeled 240 

estimates of body temperatures for the other species at each site are very similar. Tide height, 241 

water temperature, air temperature and wind speed data were obtained from tide monitoring 242 

stations run by the U.S. National Oceanic and Atmospheric Administration's Center for 243 

Operational Oceanographic Products and Services, available through an online database 244 

(http://tidesandcurrents.noaa.gov/). When several hours or days of data were missing for a 245 

station, water temperatures were filled in from the nearest oceanographic buoy available in the 246 

NOAA database, while air temperature and wind speeds were obtained from the nearest weather 247 

station available in the MesoWest database maintained by the Department of Atmospheric 248 

Sciences at the University of Utah (http://mesowest.utah.edu/). Data for La Jolla, CA, were 249 

obtained from the Scripps Institute of Oceanography 250 

(http://meteora/ucsd.edu/weather/observations/sio-pier/dat/). Solar irradiance estimates for each 251 

site were obtained from NOAA's National Environmental Satellite, Data, and Information 252 

Service, which produces a map of satellite-derived hourly down-welling shortwave radiation for 253 

North America, available through the Department of Atmospheric and Oceanic Science at the 254 

University of Maryland (http://www.atmos.umd.edu/~srb/gcip/). All data were linearly 255 

interpolated to a 10-minute period. Predictions for 15 December 2008 to 8 January 2009 were 256 

discarded due to unavailable solar irradiance data. We predicted L. scutulata body temperatures 257 

for a black snail either with the foot extended at all times, the foot withdrawn into the shell 258 
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resting on the rock, or the foot withdrawn and the shell rotated up onto the edge of the shell lip. 259 

Effects of wave surge were removed from the model due to uneven availability of data for the 260 

sites. We used the granite substratum characteristics from HMS for all sites. Because the vertical 261 

extent of the tide varies between sites, we modeled the snail at the high water mark for each site, 262 

which represents a likely worst-case scenario for thermal stress. 263 

Live snail color comparisons 264 

To complement the heat-budget model predictions, a comparison of shell color effects on 265 

body temperature was carried out with live L. keenae during a heat wave on May 14-16, 2008 at 266 

HMS, when the air temperature exceeded 27, 36 and 35 °C respecitvely. Three pairs of similar-267 

sized L. keenae were collected from the field. The shell of one snail from each pair was naturally 268 

black, the other, white. Shell length was within 0.2 mm and total mass was within 0.05 g for each 269 

pair of snails. Maximum shell length was 13.25 mm, minimum shell length was 11.13 mm. A 270 

0.08 mm diameter thermocouple wire, coated with a thin layer of polyurethane glue, was inserted 271 

into a hole ground in the main body whorl of the shell. The hole in the shell was then covered in 272 

cyanoacrylate glue to minimize evaporative water loss. Instrumented snails crawled normally in 273 

aquaria for the 24 hrs prior to deployment in the field. The snails were placed on a high-shore 274 

granite rock at midnight, May 14, 2008. The rock was wetted with seawater and the snails were 275 

allowed to crawl. As the rock dried, all snails withdrew the foot and glued the shell to the rock, 276 

but kept the shell aperture down against the rock surface. A datalogger recorded body 277 

temperatures once per minute for the subsequent 68 hr. 278 

Results 279 

Model parameters 280 
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 The measured shell parameters for the snails used in the study are given in  281 

  282 
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Table 1. L. keenae was the largest snail used, with a maximum shell length of 10.8 mm from the 558 

spire tip to the outer edge of the aperture lip. L. plena was the smallest snail, at a maximum 559 

length of 5.7 mm. Parameters used for calculating heat exchange between the rock surface and 560 

the snail shell, or between the sky and the snail shell, are the same as those given in Denny and 561 

Harley (2006) and Miller (2008).  562 

Model verification 563 

 The heat-budget model predicted temperatures for silver-epoxy-filled shells from all five 564 

species and for live L. keenae deployed in the field that were typically within 1.5°C of the 565 

measured temperatures at each time point, while predictions for the hottest 1% of time points 566 

were within 0.64 °C of measured temperatures (Table 3, Figure 2). The largest deviations 567 

between predicted and measured temperatures occurred during foggy conditions at night because 568 

our weather records do not record the incidence of fog. The altered long-wave heat-flux during 569 

foggy periods should keep snails slightly warmer than predicted by our model. Temperature 570 

predictions for the live L. keenae measured in the temperature-controlled wind tunnel agreed 571 

closely with measured temperatures. The difference between measured and predicted 572 

temperatures was 0.18 °C ± 0.27 (mean ± SD) while the snail was actively crawling, and was 573 

0.02 °C ± 0.40 when the foot was withdrawn and the shell rested on the substratum.  574 

Effect of foot position 575 

 The effect of withdrawing the foot into the shell and leaving only portions of the shell in 576 

contact with the substratum was estimated by calculating the average temperature difference 577 

between the foot-out and foot-withdrawn positions during the hottest 1% of all 10-minute time 578 

periods in the 10 yr dataset (n = 5260). Snails modeled with the foot withdrawn were 2.3 – 3.2 579 



29 

 

°C cooler on average during these hot periods than snails that kept the foot attached to the 580 

substratum, with a maximum difference of 5.4 °C for the smallest species, L. plena (Figure 3A). 581 

When the foot was left in contact with the surface, the maximum predicted temperature at HMS 582 

for all five species was between 40.4 and 40.7 °C. When the foot was withdrawn into the shell 583 

during low tide, the maximum temperature experienced by the five modeled species during the 584 

10 yr model run ranged from 38.4 to 39.0 °C. The smallest snail modeled, L. plena, stayed the 585 

coolest, and the largest species, L. keenae, reached the highest temperatures. The daily maximum 586 

body temperature for each day in the 10 year time series (n = 3652) was generally higher for a 587 

snail with its foot in contact with the rock, as shown for L. keenae (Figure 4A). 588 

Effect of shell position 589 

 Standing the shell on edge yielded body temperatures that were on average 1.5 to 2.3 °C 590 

cooler during the hottest 1% of time points when compared to the same shell sitting down against 591 

the substratum with the foot withdrawn (Figure 3B). For all species, the maximum temperature 592 

difference between the two shell orientations was between 2.2 and 3.5 °C. While snails in either 593 

orientation generally start from similar body temperatures in the pre-dawn hours, the difference 594 

in temperatures grows through the day and typically becomes largest during the hottest part of 595 

the day. Maximum temperatures reached by snails with the shell elevated off the substratum 596 

ranged from 36.9 °C (L. plena) to 37.8 °C (L. keenae). Daily maximum body temperature for 597 

every day in the 10 year time series was higher for snails that left the shell on the substratum, 598 

except during occasional cooler periods when the elevated shells became warmer (Figure 4B). 599 

Latitudinal comparison 600 
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 During 2007-2009, L. scutulata was predicted to reach the highest maximum 601 

temperatures near the edges of its latitudinal distribution (Figure 5), both in the north at Friday 602 

Harbor, WA (42.9 °C, 6 days > 40 °C) and Toke Point, WA (40.7 °C, 2 days > 40°C), and in the 603 

south in Los Angeles (41.9 °C, 2 days > 40 °C) and La Jolla, CA (42.7 °C, 4 days > 40 °C). In all 604 

cases, a snail with the foot in contact with the rock reached the highest temperatures, while 605 

removing the foot from the rock reduced the predicted maximum temperature by 1.18 ± 0.53 °C 606 

(mean ± SD), and elevating the shell reduced maximum temperature by an additional 1.56 ± 0.34 607 

°C.  608 

Effect of shell color 609 

 For black vs. white comparisons, the model predicted average temperature differences of 610 

0.38 to 0.54 °C during the hottest 1% of times in the data set, with maximal differences of 0.8 °C 611 

(Figure 3C). Black shells were always predicted to be warmer than white shells when exposed to 612 

the sun, while brown and green shells fell closer to black shells. The magnitude of the 613 

temperature difference between shell color morphs was influenced by conductive heat flux 614 

through the shell or foot, and greater conductive flux with the rock tended to homogenize body 615 

temperatures (Figure 6). At colder environmental temperatures, a similar pattern in temperature 616 

differences between black and white shell color morphs was maintained. For daylight low tides 617 

when air temperatures were less than 15 °C, black morphs of L. keenae were 0.44 ± 0.2 °C 618 

(mean ± 1SD, for all seasons, n = 80,476 time points) warmer than white morphs when snails 619 

were modeled elevated off the substratum (Figure 7A), and for snails modeled with the foot 620 

always in contact with the substratum, the average predicted difference between black and white 621 

morphs was reduced to 0.03 ± 0.03 °C across all seasons (Figure 7B).  622 
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Temperature differences measured between pairs of live black and white L. keenae were 623 

similar to those predicted by the model. Among the three pairs of snails, the average temperature 624 

difference between live black and white snails was less than 0.5 °C during daylight hours (Table 625 

4). The maximal difference between black and white shells was 2.39 °C, though there were 626 

periods during the day when the white shell in each pair was hotter than the black shell. 627 

 628 

Effect of shell sculpture 629 

 The influence of shell sculpturing of E. natalensis on body temperature during warm 630 

periods was minimal. The heat transfer coefficient was greater for the nodulose E. natalensis 631 

shell compared to the smooth-shelled L. scutulata, but the convective flux difference was 632 

greatest at high wind speeds (Figure 8A), which rarely occur during the hottest days (see Denny 633 

and Harley, 2006, materials and methods for the calculation of the heat transfer coefficient). On 634 

calm, hot days, the small difference in heat transfer coefficient resulted in an average predicted 635 

body temperature for L. scutulata 0.2 ± 0.3 °C (mean ± SD, n = 5260) warmer than a similarly-636 

sized and identically-colored E. natalensis shell modeled in the same weather conditions (Figure 637 

8B).  638 

Discussion 639 

Littorinid snails often occupy the highest reaches of the intertidal zone, remaining 640 

exposed to terrestrial conditions for hours to days. As a result, these species may reach high body 641 

temperatures when weather and ocean conditions combine to create hot low tide periods. 642 

Although littorinids can move to refuges to avoid high temperatures and desiccation stress, this 643 

study has focused on littorinid snails living on open rock faces, where they may be the only 644 
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species exerting grazing control over algal communities (Norton et al., 1990;  McQuaid, 1996b). 645 

The behavioral and morphological traits of these species, combined with their physiological 646 

tolerance to heat and desiccation stress, permits them to occupy these habitats and survive 647 

extreme weather conditions.  648 

Most rocky intertidal gastropods must keep their foot attached to the substratum to 649 

maintain their position on the shore, but this comes at the expense of increasing conductive heat 650 

flux between the foot and a potentially hot substratum (Denny and Harley, 2006). The propensity 651 

for littorinid snails to anchor their shell to the rock with mucus and withdraw the foot into the 652 

shell provides a reduction in body temperature not available to most other intertidal gastropods 653 

(Vermeij, 1971a, 1973;  McQuaid and Scherman, 1988), and results in body temperatures for the 654 

five species studied here that can be 3-5°C lower than when the foot is left in contact with the 655 

rock. Withdrawing the foot into the shell has the added benefit of allowing the snail to seal the 656 

operculum, thereby reducing water loss (McMahon and Britton, 1985;  Britton and McMahon, 657 

1986). As a result, littorinid snails typically have very slow evaporative water loss rates, 658 

permitting survival of multi-day aerial exposures (Broekhuysen, 1940;  Cleland and McMahon, 659 

1986;  Britton, 1995;  Marshall et al., 2010). The use of a mucus holdfast does, however, 660 

introduce a trade-off in terms of stability and attachment strength relative to the snail foot 661 

(Miller, 1974;  Denny, 1984;  Ohgaki, 1988), increasing the chance of dislodgement. However, 662 

survival of dislodged snails is typically high and they are commonly able to navigate back to 663 

their preferred high shore habitats (Evans, 1961;  Bock and Johnson, 1967;  Miller et al., 2007). 664 

Reorienting the shell so that only the outer lip of the shell is in contact with the 665 

substratum further enhances littorinid snails’ ability to minimize body temperature on warm 666 

days. Although we lack quantitative data on the frequency of this behavior in the field, the shell-667 
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lifting behavior has been observed in all five species discussed here (L. Miller, personal 668 

observations), as well as in numerous other littorinid snail species (Garrity, 1984;  Britton, 1995;  669 

Lang et al., 1998;  Wada and Ito, 2000). Lifting the shell from the substratum further reduces the 670 

surface area in contact with the substratum over the initial reduction achieved by pulling the foot 671 

into the shell (Table 1), but also changes other important heat flux components. The reoriented 672 

shell exposes a greater surface area to the surrounding air, increasing the rate of convective heat 673 

exchange, which cools a snail that is warmer than the air, as is often the case on hot days 674 

(Marshall et al., 2010), while also lifting the shell higher into faster-flowing air in the boundary 675 

layer over the rock. Together, the reduction in conduction and increase in convection help 676 

minimize body temperature, as has been shown in many terrestrial organisms (Stevenson, 1985). 677 

Changing shells’ orientation could also change the projected area facing the sun, potentially 678 

minimizing absorption of shortwave radiation. Although some species of littorinid snails have 679 

been shown to orient parallel to the sun when resting against the substratum (Muñoz et al., 680 

2005), there is no evidence that the species studied here consistently orient the shell spire 681 

towards the midday sun (Miller, 2008). 682 

The role of shell morphology in avoiding high body temperatures is relatively small. 683 

Within the range of shell colors tested, the reduction in body temperature created by having a 684 

white versus a dark shell is on average less than 0.5 °C, both for model snails of all five species 685 

and for live L. keenae. The complementary hypothesis—that dark shells should be advantageous 686 

in cool conditions by helping to warm these ectothermic animals—also receives minimal support 687 

(Jones, 1973;  Phifer-Rixey et al., 2008). Due to the substantial influence of conductive heat flux 688 

between the snail foot and the rock substratum, an actively grazing littorinid snail does not 689 

deviate from the substratum temperature appreciably, so that differences in short-wave 690 
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absorptivity between shell colors result in temperature differences of less than 0.5 °C in the 691 

model, while the range of reported temperature differences between color morphs of other 692 

species of intertidal snails is on the order of 0 – 2    °C (Markel, 1971;  Cook and Freeman, 1986;  693 

Reid, 1987;  Phifer-Rixey et al., 2008), with differences of 3 – 5  °C in some larger snails species 694 

on certain substrata (Etter, 1988). The high thermal conductivity and heat capacity of seawater 695 

effectively homogenizes temperatures in the intertidal zone during high tide and when waves 696 

splash during rising and ebbing tides, removing any effect of shell color on body temperature 697 

during these periods. Thus, while thermal melanism may be important for warming the body in 698 

some terrestrial organisms (Kingsolver, 1996;  Clusella-Trullas et al., 2007), the importance to 699 

gastropods in intertidal systems is less clear. Differences in shell colors among intertidal snail 700 

populations could be driven by other factors such as visual predation by crabs and fishes 701 

(Reimchen, 1979;  Hughes and Mather, 1986;  Reid, 1987;  Johannesson and Ekendahl, 2002;  702 

Manríquez et al., 2009). 703 

 The functional significance of shell shape in intertidal snails has received substantial 704 

attention. Shell shape and size influence drag forces imposed by waves during high tide (Denny 705 

et al., 1985;  Boulding and Van Alstyne, 1993;  Trussell, 1997a;  Denny and Blanchette, 2000;  706 

Pardo and Johnson, 2005) determine the volume of fluid retained in the shell during emersion 707 

(Vermeij, 1973;  Britton and McMahon, 1986), and provide protection from predators (Seeley, 708 

1986;  Trussell, 2000;  Trussell and Nicklin, 2002;  Johannesson, 2003). The importance of shell 709 

shape for mitigating stress due to exposure to extreme high temperatures in these small species is 710 

less clear. We have shown that when comparing L. scutulata and E. natalensis, the addition of 711 

nodules on the outer surface of E. natalensis shells produces a negligible reduction in body 712 

temperature on hot days. These results mirror the minor contribution of shell sculpture to 713 
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convective cooling found in intertidal limpet species (Harley et al., 2009). Additionally, 714 

estimated temperatures for the globose, ribbed L. sitkana do not differ markedly from the other 715 

high-spired species examined here. Despite the relatively small effect of shell shape and shell 716 

sculpturing on body temperature in the temperate climate conditions used here, the trend within 717 

tropical intertidal gastropods, and particularly littorinids, is generally towards increased 718 

sculpturing and higher-spired shells at higher shore heights (Vermeij, 1973). The nodulose 719 

littorinids such as E. natalensis are primarily found in tropical or sub-tropical regions, so the 720 

importance of these characteristics to controlling body temperature may take on a greater 721 

importance at low latitudes where the frequency of high temperature exposures is greater.  722 

Though body temperature changes created by the behavioral choices and color 723 

differences described here are only a few degrees, they may be sufficient to help littorinid snail 724 

populations avoid substantial mortality due to thermal stress. The reported physiological thermal 725 

tolerances of L. keenae and L. scutulata (> 42-44°C, Somero, 2002) exceed the body 726 

temperatures predicted for snails in the field at HMS, but snails at other sites along the coast may 727 

approach or exceed these temperature limits. The frequency and severity of thermal stress events 728 

are driven by the timing of the tides and the coincidence of calm, warm weather conditions with 729 

midday tides (Helmuth et al., 2002;  Helmuth et al., 2006;  Denny et al., 2009;  Mislan et al., 730 

2009). Our model predicts that littorinids living throughout the species' latitudinal ranges could 731 

occasionally experience prolonged aerial emersion at midday during weather conditions hot 732 

enough to push body temperatures close to 42 °C. Under these circumstances, the additive 733 

benefits of removing the foot from the rock, reorienting the shell, and having lighter shell colors 734 

could keep body temperatures several degrees below those lethal temperatures and help limit 735 

sublethal temperature stress. Work on the physiology of related littorinid snails has shown that as 736 
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temperatures approach lethal limits, there is often an attendant decrease in aerobic respiration, 737 

increases in anaerobic metabolism, and eventual heart failure (McMahon and Russell-Hunter, 738 

1977;  Sokolova and Pörtner, 2003;  Marshall et al., 2010), along with the added energetic cost 739 

of repairing cellular-level damage through avenues such as heat shock protein expression 740 

(Tomanek, 2010).  741 

Although lighter shell colors help avoid temperature stress, the native snail populations in 742 

many of the warmer sites on the west coast of North America highlighted here contain a 743 

substantial fraction of dark-colored individuals (L. Miller, personal observations). All of the 744 

Littorina species discussed here, except L. sitkana, have a pelagic larval dispersal phase (Reid, 745 

1996, 2002), so that mixture among populations may counteract any selection for lighter shell 746 

colors at hot sites. In sub-tropical and tropical habitats the role of shell color may be more 747 

important, as evidenced by experiments with black-painted littorine snails in South Africa that 748 

demonstrated that darker colors did result in acute thermally-induced mortality on hot days 749 

(McQuaid, 1992). At sites with higher peak air and substratum temperatures, the small reduction 750 

in body temperature created by a light colored shell may make the difference between survival 751 

and death on hot days, especially after the more effective behavioral options have been 752 

exhausted. 753 

Based on the long-term weather records for our central California coast site, it appears 754 

unlikely that acute high temperature exposures regularly cause significant mortality in Littorina 755 

populations at HMS. However, when considered over the lifetime of an organism, the cumulative 756 

benefits of the small temperature reductions afforded by the behavioral and morphological traits 757 

examined here could be important for allowing littorinids to exploit high littoral habitats. Sub-758 

lethal temperatures will still incur metabolic costs that can be partially mitigated by having a 759 
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lighter colored shell or minimizing conductive heat flux from a hot substratum. The attendant 760 

reduction in desiccation stress provided by these traits may also help contribute to the success of 761 

littorinids in the high intertidal zone (Chow, 1989). While these behaviors or shell morphologies 762 

may have little effect on the occurrence of single-day thermal mortality events at HMS, on other 763 

shores, particularly tropical shores and sites where mid-day low tides frequently coincide with 764 

warm weather, these traits may be key in allowing littorinids to avoid thermally-induced 765 

mortality.  766 
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Table 1. Measured shell parameters for the five littorinid species used in this study. 1058 

Parameter 

Units 

Littorina 

keenae 

Littorina 

scutulata 

Littorina 

plena 

Littorina 

sitkana 

Echinolittorina 

natalensis 

Shell length mm 10.8 6.1 5.7 6.6 6.3 

Area for conductive flux, 

foot extended mm
2
 58.5 10.3 10.9 15.5 11.4 

Area for conductive flux, 

foot withdrawn mm
2
 2.20 1.02 0.84 1.02 0.71 

Area for conductive flux, 

shell up mm
2
 0.34 0.14 0.10 0.29 0.25 

Area for convective flux, 

shell down mm
2
 287.4 69.9 65.4 106.9 67.2 

 Area for convective 

flux, shell up mm
2
 347.8 81.1 77.0 123.1 85.6 

Maximum projected area mm
2
 104.8 24.6 22.9 37.1 25.5 

Minimum projected area mm
2
 65.8 14.3 13.0 22.4 16.5 

Conduction distance 

(shell down) mm 0.42 0.31 0.32 0.63 0.55 

Conduction distance 

(shell up) mm 2.57 1.41 1.25 1.44 1.32 

  1059 



52 

 

Table 2. Sites on the west coast of North America used to model maximum body temperature for 1060 

L. scutulata from August 2007 to August 2009. The relevant NOAA tide monitoring station ID 1061 

from which data were obtained is given for each site, except La Jolla, CA, where data were 1062 

obtained from the Scripps Institute of Oceanography archive. Maximum water level is the 1063 

highest measured tide height during the survey period, referenced to mean lower low water.  1064 

Tide Station NOAA 

Station ID 

Latitude (°N) Longitude (°W) Maximum 

water level (m) 

Friday Harbor, WA 9449880 48.522 123.025 2.93 

Neah Bay, WA 9443090 48.367 124.612 3.29 

Toke Point, WA 9440910 46.707 124.042 3.65 

Newport, OR 9435380 44.625 124.042 3.25 

Charleston, OR 9432780 43.345 124.322 2.95 

Crescent City, CA 9419750 41.745 124.182 2.67 

Point Arena, CA 9416841 38.913 123.706 2.43 

San Francisco, CA 9414290 37.806 122.465 2.26 

Pacific Grove, CA 9413450 36.622 121.904 2.21 

Los Angeles, CA 9410660 33.720 118.272 2.30 

La Jolla, CA *SIO 32.867 117.257 2.26 

  1065 
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Table 3. Comparison of measured temperatures of epoxy-filled shells and live snails in the field 1066 

with predicted model temperatures using weather data from the same time period.  1067 

Species Mean difference 

between all modeled and 

measured temperatures 

(°C ± SD) 

Mean difference between 

modeled and measured 

temperatures for top 1% 

of temperatures (°C ± SD) 

Shell mimic, shell down   

Littorina keenae  -1.13 (± 1.51) 0.64 (± 0.63) 

Littorina scutulata  0.20 (± 1.31) 0.05 (± 0.46) 

Littorina sitkana  -0.75 (± 0.95) -0.09 (± 0.19) 

Littorina plena  0.17 (± 0.88) -0.07 (± 0.24) 

Echinolittorina natalensis  -0.21 (± 1.07) 0.00 (± 0.41) 

Shell mimic, shell up   

Littorina keenae  -1.47 (± 2.40) 0.45 (± 0.78) 

Littorina scutulata  -1.03 (± 1.14) 0.11 (± 0.63) 

Littorina sitkana  -0.10 (± 0.79) -0.21 (± 0.28) 

Littorina plena  -0.73 (± 1.28) 0.16 (± 0.81) 

Echinolittorina natalensis  -0.55 (± 0.89) -0.17 (± 0.62) 

Live snails, shell down    

L. keenae 1 -0.56 (± 1.50) -0.06 (± 0.86) 

L. keenae 2 -1.00 (± 1.50) 0.17 (± 0.29) 

 1068 

  1069 
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Table 4. Summary of temperatures of three pairs of similarly-sized live black-shelled and white-1070 

shelled Littorina keenae deployed on a high intertidal rock during a heat wave on May 14 – 16, 1071 

2008. Temperature differences between each black and white pair are calculated for times from 1072 

one hour after sunrise to one hour before sunset, and during the four hottest hours of the day. 1073 

Temperature difference (°C) 

black – white shell 

6:00 – 18:00 Pair 1 Pair 2 Pair 3 

Average ± 1 SD, n = 2160 0.11 ± 0.69 0.43 ± 0.41 0.10 ± 0.71 

Maximum 2.29 2.39 2.15 

Minimum -1.40 -0.78 -2.17 

Temperature difference (°C) 

black – white shell 

11:00 – 15:00 

   

Average  ± 1 SD, n = 720 

Maximum 

Minimum 

-0.08 ± 0.54 

2.06 

-1.08 

0.48 ± 0.33 

2.12 

-0.78 

0.31 ± 0.66 

2.02 

-1.61 

Cumulative data, May 14-16 Black White Black White Black White 

Maximum temperature (°C) 43.8 42.5 43.4 42.7 43.7 42.9 

Time above 30°C (hr) 18.7 18.5 19.2 19.1 19.4 19.1 

Time above 40°C (hr) 1.5 1.25 2.05 1.47 2.38 2.0 

  1074 
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Figure legends 1075 

Figure 1. Littorinid snails can often be found (A) with the foot withdrawn into the shell and the 1076 

shell glued to the substratum, or (B) with the shell elevated up off the substratum, perched on the 1077 

outer lip of the shell aperture. C) Representative shells of the five species used in the heat-budget 1078 

model. From left to right: Littorina keenae, L. scutulata, L. plena, L. sitkana, Echinolittorina 1079 

natalensis.  1080 

Figure 2. Measured vs. predicted temperatures for silver-epoxy-filled shells set out in the field.  1081 

The left column shows the relationship when the shells were positioned with the aperture down 1082 

against the substratum. The right column shows data for the same shells re-oriented up onto the 1083 

edge of the shell lip. Data were collected during April 23-29 and June 3-7, 2007, at HMS.  1084 

Figure 3. Mean temperature differences (± 1 SD) between modeled snails during the hottest 1% 1085 

of all time periods in the 10 yr weather data set (n = 5620). Maximum differences are denoted by 1086 

the + symbol above each bar. A) Comparison of snails modeled with the foot always on the rock, 1087 

or withdrawn into the shell during hot periods. Snails with the foot in contact with the rock reach 1088 

higher temperatures. B) Comparison of snails modeled with the foot withdrawn into the shell, 1089 

and the snail either resting aperture-down on the substratum or perched on the outer lip of the 1090 

shell. Leaving the shell resting on the substratum results in higher body temperatures. C) 1091 

Temperature differences between a black shell and alternate shell color morphs. Each color 1092 

morph was modeled with the foot withdrawn and shell perched on the outer lip of the shell. 1093 

Black shells are always warmer than the alternate color morphs.   1094 

Figure 4. A) Predicted daily maximum body temperatures for a black L. keenae modeled with the 1095 

foot out in contact with the substratum at all times or withdrawn into the shell during low tide. B) 1096 
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Predicted daily maximum body temperatures for the same L. keenae with the foot withdrawn and 1097 

the shell sitting down on the substratum or with the shell tipped up on the edge of the aperture 1098 

lip. Temperatures were predicted using environmental data for HMS from 1999-2009 (n = 3652 1099 

days). The snail was modeled on horizontal substratum at 2.0 m above mean lower low water. A 1100 

line of unity is plotted in both panels.  1101 

Figure 5. Maximum predicted body temperatures for a black L. scutulata at eleven sites along the 1102 

west coast of North America, using environmental data from 1 August 2007 through 1 August 1103 

2009. Temperatures are given for the same snail in three positions: with the foot out on the rock 1104 

at all times, with the foot withdrawn into the shell at low tide, and with the shell tipped up on 1105 

edge during low tide. All models were run with the snail sitting on a horizontal surface at the 1106 

height of the maximum still tide level for each site. 1107 

Figure 6. Maximum predicted body temperatures for a black snail shell (solid line) and white 1108 

snail (dashed line) modeled with a range of contact areas on the substratum, using environmental 1109 

data from HMS for 1999-2009. The shaded areas represent the typical range of contact areas for 1110 

littorinid snails with only the lip of the shell glued to the substratum (1 point), resting on the lip 1111 

and main whorl of the shell (2 points), or attached by the foot. As contact area increases, 1112 

conductive heat flux reduces the effect of shell color differences on body temperature. 1113 

Figure 7. Temperature differences between black and white morphs of L. keenae, for all daytime 1114 

low tide periods when air temperature was less than 15 °C. A) Temperature differences for snails 1115 

modeled with the foot withdrawn and the shell elevated up onto the outer lip of the aperture. 1116 

Black shells were warmer than white shells. B) Temperature differences for black vs. white 1117 

snails modeled with the foot always in contact with the substratum. Comparisons were made for 1118 



57 

 

each meteorological season using weather data from HMS for 1999-2009. The center line in each 1119 

box represents the median temperature difference between the two color morphs at each time 1120 

point, and the upper and lower bounds of each box denote the 1
st
 and 3

rd
 quartiles, respectively. 1121 

Crosses above a boxplot represent outliers. Box width represents the relative sample size in each 1122 

season (Spring = 29,918 samples in both panels). Sample size varies between seasons due to the 1123 

timing of low tides, wave action, and day length.    1124 

Figure 8. A) Calculated heat transfer coefficients for similarly-sized E. natalensis (black line) 1125 

and L. scutulata (gray line). Higher values increase the convective heat exchange with the 1126 

surrounding air. Values are calculated for 25°C air temperature and shells sitting with the 1127 

aperture against the substratum. B) Predicted body temperatures for a representative hot day, for 1128 

brown snails of each species modeled with the foot withdrawn and shell resting on the 1129 

substratum. The sculptured shell of E. natalensis was 0.2°C cooler on average compared to the 1130 

smooth shell of L. scutulata under identical weather conditions. The wind speed on this day was 1131 

1.2 ± 0.6 m s
-1

 (mean ± 1SD). 1132 







L. keenae L. sitkana L. scutulata E. natalensis L. plena
0

2

4

6

L. keenae L. sitkana L. scutulata E. natalensis L. plena
0

2

4

6

L. keenae L. sitkana L. scutulata E. natalensis L. plena
0

0.5

1

Te
m

pe
ra

tu
re

 d
iff

er
en

ce
 (°

C
)

Black vs. 
green 

Black vs.
brown

Black vs.
white

A)

B)

C)

vs.

vs.





35

40

45

50

Longitude (°W)

La
tit

ud
e 

(°
N

)

130 125 120

Friday Harbor, WA

0 10 20 30 40°C

40.7
42.2
42.9

Toke Point, WA

0 10 20 30 40°C

38.2
39.7
40.7

Newport, OR

0 10 20 30 40°C

36
37.7
39.3

Charleston, OR

0 10 20 30 40°C

33.6
34.7
35.8

Crescent City, CA

0 10 20 30 40°C

30.5
32.5
33.2

Point Arena, CA

0 10 20 30 40°C

32.9
34

34.6

Monterey, CA (HMS)

0 10 20 30 40°C

34.2
35.2
36.8

San Francisco, CA

0 10 20 30 40°C

36.9
38.7
39.9

Los Angeles, CA

0 10 20 30 40°C

39.6
41.3
41.9

La Jolla, CA

0 10 20 30 40°C

38.8
40.7
42.7

Neah Bay, WA

0 10 20 30 40

31.9
33.6
35.5

115

Foot out
Foot in
Shell up

Foot out
Foot in
Shell up

Foot out
Foot in
Shell up

Foot out
Foot in
Shell up

Foot out
Foot in
Shell up

Foot out
Foot in
Shell up

Foot out
Foot in
Shell up

Foot out
Foot in
Shell up

Foot out
Foot in
Shell up

Foot out
Foot in
Shell up

Foot out
Foot in
Shell up



10
-7

10
-6

10
-5

10
-4

37.5

38

38.5

39

39.5

40

40.5

41

Contact area (m2)

M
ax

im
um

 te
m

pe
ra

tu
re

 (°
C

)

+
1 point 2 points foot



Winter Spring Summer Autumn
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45

Te
m

pe
ra

tu
re

 d
iff

er
en

ce
 (°

C
)

Winter Spring Summer Autumn
0

0.2

0.4

0.6

0.8

1

Te
m

pe
ra

tu
re

 d
iff

er
en

ce
 (°

C
)

A)

B)



6:00 9:00 12:00 15:00 18:00 21:00
15

20

25

30

35

40

Time of day,

Te
m

pe
ra

tu
re

 (°
C

)

June 6, 2003

L. scutulata
E. natalensis

H
ea

t t
ra

ns
fe

r c
oe

ffi
ci

en
t

(W
 m

-2
 K

-1
)

E. natalensis
L. scutulata

A)

B)

0 1 2 3 4 5
0

10
20
30
40
50
60
70
80

Wind speed (m s-1)


	Importance of Behavior and Morphological Traits for Controlling Body Temperature in Littorinid Snails
	Recommended Citation

	tmp.1645471449.pdf.WIRER

