
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2008

Firefox Extension to Add Contacts, Events, and View Addresses Firefox Extension to Add Contacts, Events, and View Addresses

Vijay Rao
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Rao, Vijay, "Firefox Extension to Add Contacts, Events, and View Addresses" (2008). Master's Projects.
108.
DOI: https://doi.org/10.31979/etd.66kz-aurf
https://scholarworks.sjsu.edu/etd_projects/108

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/108?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Vijay Rao 1

FIREFOX EXTENSION TO ADD CONTACTS, EVENTS

AND VIEW ADDRESSES

A Writing Project

Presented to

The Faculty of Computer Science

San Jose State University

In Partial Fulfillment of the Requirement for the

Degree

Master of Science

By

Vijay Rao

May 2008

Vijay Rao 2

© 2008

Vijay Rao

ALL RIGHTS RESERVED

Vijay Rao 3

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett

Dr. Robert Chun

Sudip Chattopadhyay

Vijay Rao 4

Abstract

Users of the Firefox browser have the ability to download plugins to manage their

contacts. This usually involves typing or copying the details from some source to add

contacts. Event and meeting invitations are sent by mail and are added to the user’s

calendar once the user accepts the invitation. Users viewing address data on websites are

limited to the mapping capabilities provided by the webpage viewed by the user.

We developed a Firefox extension that allows the user to select portions of text with

contact or event information and add it as a contact or an event in the calendar of their

existing mail client application such as: Microsoft Outlook, Thunderbird, etc. The data is

automatically parsed to pick up relevant information such as name, street address, phone

number, and email address in case of contacts and street addresses and event dates in case

of event. The extension also allows users to right click on a webpage that has a tabular

display of addresses and view these addresses on a maps application such as Google

Maps.

Vijay Rao 5

Table of Contents

FIREFOX EXTENSION TO ADD CONTACTS, EVENTS AND VIEW ADDRESSES 1

Abstract ... 4

Table of Contents.. 5

Index of Figures .. 7

Index of Tables ... 8

Index of Listings ... 8

1 Introduction... 9

1.1 Overview... 9

1.2 The Project .. 10

1.3 Report Overview... 11

2 Technology and Standards Used... 12

2.1 Technology ... 12

2.1.1 XUL .. 12

2.1.2 Javascript... 12

2.1.3 XPCOM .. 12

2.1.4 CSS ... 13

2.1.5 JSP... 13

2.1.6 Google Maps API ... 13

2.2 Standards... 13

2.2.1 vCARD Format... 14

2.2.2 vCALENDAR Format .. 14

3 Implementation ... 16

Vijay Rao 6

3.1 Setting up the framework.. 16

3.2 Adding Contacts.. 17

3.2.1 Implementation ... 18

3.3 Add Events.. 23

3.3.1 Implementation ... 24

3.4 Show Addresses .. 27

3.4.1 Implementation ... 28

4 Conclusion .. 34

5 Future Extension ... 35

6 Bibliography ... 36

Appendix... 37

Vijay Rao 7

Index of Figures

Figure 1– Directory structure for a Firefox extension .. 16

Figure 2 – Add a contact depiction ... 17

Figure 3 – Snapshot of the File Save Open With dialog in Firefox.................................. 21

Figure 4 – Snapshot of the contact in Outlook ... 21

Figure 5 – User capturing portion of data without name .. 22

Figure 6 – Snapshot showing the download as unknown.vcf... 22

Figure 7 – Snapshot showing the name as being unknown .. 23

Figure 8 – Add an event depiction.. 24

Figure 9 – Snapshot of File Save/ Open With dialog in Firefox 26

Figure 10 – Snapshot of the ics file opened in Microsoft Outlook................................... 27

Figure 11– Show Address depiction ... 29

Figure 12 – Snapshot of all the addresses plotted on Google Maps 30

Figure 13 – Snapshot of the map panning to show the address link that was clicked 31

Figure 14 – Snapshot showing addresses that were not geo-coded by Google 31

Figure 15 – Snapshot after adding a landmark ... 32

Figure 16 – Snapshot of an address that was not geo-coded by Google........................... 32

Vijay Rao 8

Index of Tables

Table 1 – Breakdown for STATE ZIP Regular Expression ... 19

Table 2—Regular Expression breakdown for email address.. 20

Table 3 – Regular Expression breakdown for US Telephone number 20

Table 4 – Breakdown for Date and Timestamp Regular Expression................................ 25

Table 5 – Regular Expression breakdown for US Street Address 29

Index of Listings

Listing 1 – Sample of a vCARD format ... 14

Listing 2 – install.rdf file .. 16

Listing 3 – chrome.manifest file ... 17

Listing 4 – Adding an entry in the XUL file... 18

Listing 5 – Regular Expression to identify a STATE ZIP pattern.................................... 19

Listing 6 – Regular Expression for matching an email address.. 19

Listing 7 – Regular Expression for US Telephone number.. 20

Listing 8 – Adding an entry in the XUL file... 25

Listing 9 – Regular Expression to identify the “When” aspect in selected text 25

Listing 10 – Adding an entry in XUL file... 28

Listing 11 -- Regular Expression to identify US Street Address 29

Listing 12 – firefoxmash.xul... 37

Listing 13 – firefoxmash.js ... 44

Listing 14 – index1.jsp.. 49

Vijay Rao 9

1 Introduction

1.1 Overview

Emails, chats and web sites have mundane data such as contact information of friends

and business contacts. Various events happening in certain areas are emailed or found on

the web. Street Addresses present on web pages while viewing home listings or other

information is usually not intuitive and dependant on the website providing a link to view

the address in a map. Usually viewing one address at a time in a map can be tedious and

counter-intuitive.

Various applications for managing contacts are present today including the standard mail

clients such as Microsoft Outlook and Thunderbird. The calendars associated with such

mail clients allow users to add events or meetings. The option of adding contacts usually

involves the user either typing various details such as name, email address, phone number

and other details or copying the text and pasting it in the correct placeholders in the form

provided by the mail client for adding contacts. Similarly meeting invites are usually sent

or received via email and get added to the user’s calendar on acceptance of the same by

the user.

This experience of adding contacts and events could be greatly enhanced if there was an

automatic parsing ability provided by the browser which allowed the user to indicate a

portion of the text as either a contact or event information and it was automatically added

to the user’s mail client application. The user could ideally edit the text to correct or

enhance this information before it is saved.

Vijay Rao 10

Extending the functionality of the browser to meet these needs would be an ideal solution

that makes the process very intuitive and natural, saving the user from typing this

information. Also adding the ability to view tabular listing of US Street addresses in a

cluster enhances the user’s viewing experience allowing the user to interact and

assimilate the data in a better manner. The user who is viewing these addresses usually

has a reference or a landmark address that when viewed along with the other addresses

which gives him a new perspective and context.

1.2 The Project

Mozilla’s Firefox browser has a robust architecture for developers to build and deploy

extensions. Our project involved extending the Firefox browser to allow users to easily

and intuitively add contacts and events to their existing mail clients with minimal effort.

Adding the ability for users to view a collection of addresses from a web page on a

Google Maps application with the ability to add additional landmarks improved the user’s

browsing experience. This was possible by adding additional options in the context click

of the mouse and the user selecting portions of text on a web page and then clicking the

option of adding a contact or an event. The data that was selected on a web page was

parsed and converted to industry standard format such as vCARD in case of contacts and

ICS in case of event information. The user is prompted to open or save this file using the

existing file save dialog of Firefox. The user can associate such files in Firefox to be

opened with an installed mail client such as Outlook or Thunderbird. The user then has

the ability to edit the data, make changes before saving it. A vCARD format is saved as a

contact and an VCALENDAR format is added as an event to the user’s calendar.

Vijay Rao 11

Users looking at webpages with tabular display of address data can use our extension’s

“Show Address” feature to view all the addresses on a given web page on a mapping

application such as Google Maps. For example users viewing home listings on a web

page would prefer to see them on a map to get a sense of location. Also having the ability

to add new landmarks with the existing data allows the user to mash the address data on a

mapping application such as Google Maps.

1.3 Report Overview

The report is divided into the following sections: Chapter 2 discusses various

technologies used in the implementation of this project. Chapter 3 goes into detail about

each component of the Firefox extension. It goes into the details of the implementation.

Chapter 4 has the conclusion. Finally chapter 5 provides information on how this project

can be extended to other areas.

Vijay Rao 12

2 Technology and Standards Used

2.1 Technology

Firefox has a robust architecture for creating extensions. XUL, Javascript and CSS were

some of the technologies that were used for building an extension. Additionally J2EE

technology was used to show the addresses on Google Maps.

2.1.1 XUL

Firefox uses XUL as the UI definition language to specify the various UI widgets and

their placement. This is called an Overlay [Mozilla Developer Center XUL Overlays].

Overlays are used to either override small snippets of the UI without having to write the

entire UI. XUL has a definition to draw various widgets seen in the Firefox browser.

Each UI widget can be provided an “id” attribute and can be controlled using Javascript.

2.1.2 Javascript

Javascript was used to peform all the event handling functions. Once the option to either

“Add Contact”, “Add Event” or “Show Address” was selected the event handling code

written in Javascript was triggered to perform the necessary function.

2.1.3 XPCOM

XPCOM is a standard cross-platform object model provided by Mozilla that exposes a

core set of components and interfaces to perform File I/O and other Content Handling

Services. XPCOM makes it easy to access most aspects of the browser functionality

programmatvCalendarly. Our extension uses XPCOM extensively to perform File I/O

Vijay Rao 13

and access the content handler window to download a .vcf or a .ics file format in a

chrome environment.

2.1.4 CSS

CSS was used to style the context elements to have icon images in the context click of the

browser. Icon images were provided by [Mark James].

2.1.5 JSP

Java Server Pages was used to receive the request parameters and query Google Maps

API for geo-coding the addresses that was parsed from the web page. Once the addresses

were geo-coded they were plotted on Google Maps using the Google Maps API[Google

Map APIs].

2.1.6 Google Maps API

The Google Maps API was used extensively to geo-code addresses and plot them on

Google Maps. Addresses that were geo-coded were shown on Google Maps using the

Google Maps API [Google Map APIs].

2.2 Standards

Two industry standard file formats were used to capture data. Contact data was converted

to the vCARD format for personal data interchange [vCard]. Event data was converted to

ICS format to be added as a calendar event in the user’s mail client [vCalendar].

Vijay Rao 14

2.2.1 vCARD Format

The vCARD format is an industry standard format for Personal Data Interchange. It is

used to exchange “Person” objects[vCard]. This format begins with a “BEGIN:VCARD “

string and ends with the “END:VCARD” string. A vCard has individual attributes that

are known as Property. According to the [vCard], “A property takes the following format:

PropertyName [‘;‘ PropertyParameters] ’:‘ PropertyValue” (p. 5).

The property names and values are case insensitive. The property Name “N” indicates the

name with the format being Last Name followed by First Name. The property “Title” has

the title of the person. The telephone number can be specified using Property “TEL”. A

work number is distinguished from a home number by specifying the “Telephone Type”.

There are several other options for specifying a Fax or Cell number. An email address

can be specified by the property name “EMAIL”. The following example shows a

vCARD format for a person named John Doe

BEGIN:VCARD

VERSION:2.1

N:Doe;John

FN:John Doe

TITLE:Sr. Director

TEL;WORK;VOICE:+1-111-111-1111

TEL;FAX:+1-222-222-2222

ADR;WORK:;;123 Some Way CA 94086

EMAIL;PREF;INTERNET:john.doe@nobody.com

END:VCARD

Listing 1 – Sample of a vCARD format

2.2.2 vCALENDAR Format

The vCalendar format is an industry standard format for defining calendar and scheduling

information. A vCalendar format begins with a “BEGIN:VCALENDAR” string and ends

Vijay Rao 15

with a “END:VCALENDAR”. This element can contain other entities for calendaring

and scheduling entities. A vEVENT object can be present in a VCALENDAR object and

indicates a scheduled period of time for either an event or a meeting. An event format

begins with a “BEGIN:VEVENT” string and ends with a “END:VEVENT” string.

According to the [vCalendar], “A property takes the following form:

PropertyName [‘;‘ PropertyParameters] ’:‘ PropertyValue” (p. 16). The date and time

format can be specified in UTC timezone or if no timezone is provided the user’s

timezone is assumed. According to [vCalendar] “The format for the complete, basic

representation of a date and time value is written in the following sequence of characters:

<year><month><day>T<hour><minute<second><type designator>” (p. 18). A date and

time property that indicates a start of the event is “DTSTART”. A recurring rule that

defines details of a recurring event is defined by the property “RRULE”. A “FREQ”

property parameter defines the frequency of the event with values of “SECONDLY”,

“MINUTELY”,”HOURLY”, “DAILY”, “WEEKLY”, “MONTHLY” and “YEARLY”.

The “INTERVAL” rule part indicates the recurrence of the frequency and is indicated by

a digit. For e.g. RRULE:FREQ=WEEKLY;INTERVAL=1 indicates a weekly rule

occurring once every week. The “BYDAY” rule specifies the day of recurrence with

valid values being “MO”, “TU”, “WE”,”TH”,”FR”. The “UNTIL” rule defines the end

when the event ends. The other options for recurrence are “BYSECOND”,

“BYMINUTE” and “BYHOUR”

Vijay Rao 16

3 Implementation

3.1 Setting up the framework

A standard Firefox extension requires a correct directory structure to be set up [Jonah

Bishop]. The following figure shows the snapshot of our directory structure

Figure 1– Directory structure for a Firefox extension

The install.rdf file gives details such as unique id to the extension as well as a description

and other details to Firefox. The details of the install.rdf are shown below:

<?xml version="1.0"?>

<RDF xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:em="http://www.mozilla.org/2004/em-rdf#">

 <Description about="urn:mozilla:install-manifest">

 <em:id>firefoxmash@sjsu</em:id>

 <em:name>CS 298</em:name>

 <em:version>1.0</em:version>

 <em:targetApplication>

 <Description>

 <em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>

 <em:minVersion>1.5</em:minVersion>

 <em:maxVersion>2.0.0.*</em:maxVersion>

 </Description>

 </em:targetApplication>

 <!-- Optional Items -->

 <em:creator>Vijay Rao</em:creator>

 <em:description>An extension for CS298.</em:description>

<em:homepageURL>http://www.cs.sjsu.edu/faculty/pollett/masters/Semester

s/Fall07/vijay/</em:homepageURL>

 </Description>

</RDF>

Listing 2 – install.rdf file

The chrome.manifest file provides details about the extension’s package structure and

which overlay’s are being modified. Overlays in Firefox are used to provide additional

functionality to the browser UI. New widgets could be placed and various places in the

Vijay Rao 17

UI using XUL overlays. The manifest file is shown below describes the content for this

extension in a package called firefoxmash. It specifies an overlay over the browser’s UI

and provides a package for applying a skin to the extension for images and css.

content firefoxmash chrome/content/

overlay chrome://browser/content/browser.xul

chrome://firefoxmash/content/firefoxmash.xul

skin firefoxmash classic/1.0 chrome/skin/

Listing 3 – chrome.manifest file

The next step involved creating the XUL file. The XUL file described the UI elements

including includes for various UI components including entries for the context menus.

All events and actions were handled in javascript files.

3.2 Adding Contacts

The first phase of the project involved the user selecting the name and address portion of

a web page and right clicking on it to add a contact to the webpage. The “Add Contact”

menu was added to the context click of the user.

A depiction is shown below:

Figure 2 – Add a contact depiction

The implementation involved writing Javascript to capture the user’s data that was

selected on the web page. Once the data was captured, it had to be parsed to identify the

various elements such as Name, Phone Number and Email Address.

Vijay Rao 18

3.2.1 Implementation

The first step involved adding an entry in the firefoxmash.xul file. The entry is shown

below

<?xml version="1.0"?>

<?xml-stylesheet href="chrome://firefoxmash/skin/foxmash.css"

type="text/css"?>

<overlay id="FirefoxMash-Overlay"

xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/DOMHelper.js" />

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/CleanDate.js" />

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/firefoxmash.js" />

 <!-- This is for the right click menu. -->

 <popup id="contentAreaContextMenu">

 <menuseparator id="firefoxmashabove"

insertafter="context-stop"/>

 <menuitem id="contact"

 label="Add Contact"

 class="menuitem-iconic"

 accesskey="C"

 insertafter="context-stop"

 oncommand="addContact();"/>

 </popup>

</overlay>

Listing 4 – Adding an entry in the XUL file

The entry involved defining a menuitem element to create an option to add a contact. The

class was set to “menuitem-iconic” to indicate a png image beside it. Icons were provided

by Mark James [Mark James]. The next step involved collecting the text that was selected

by the user. If no text is selected the code returns and nothing happens. The next step

involves applying a regular expression to identify a STATE ZIP pattern to the text. The

regular expression is shown below:

var statezipre =

/\b(AL|AK|AS|AZ|AR|CA|CO|CT|DC|DE|FM|FL|GA|GU|HI|ID|IL|IN|IA|KS|KY|LA|M

E|MH|MD|MA|MI|MN|MS|MO|MT|NE|NV|NH|NJ|NM|NY|NC|ND|MP|OH|OK|OR|PW|PA|PR|

RI|SC|SD|TN|TX|VI|UT|VT|VA|WA|WV|WI|WY|AA|AE|AP)\b \b[0-9]{5}(-[0-

Vijay Rao 19

9]{4})?\b/;

Listing 5 – Regular Expression to identify a STATE ZIP pattern

The pattern above can be broken down as follows

\b Indicates a word boundary
(AL|AK|AS|AZ|AR|CA|CO|

CT|DC|DE|FM|FL|GA|GU|HI|

ID|IL|IN|IA|KS|KY|LA|ME|MH|

MD|MA|MI|MN|MS|MO|MT|NE|NV|

NH|NJ|NM|NY|NC|ND|MP|OH|OK|

OR|PW|PA|PR|RI|SC|SD|TN|TX|

VI|UT|VT|VA|WA|WV|WI|WY|AA|AE|AP)

Looks for a list of all US States in the two

letter format

[0-9]{5}(-[0-9]{4})? Looks for 5 numbers from 0 to 9 and an

optional hyphen character and 4 numbers

signifying a US zip code.
Table 1 – Breakdown for STATE ZIP Regular Expression

Once a match is found the text is split based on characters before the state zip and

characters after this pattern match. Based on this an intelligent deduction is performed to

look for phone numbers, email address. The regular expression pattern for email address

is shown below

var emailre = /\b[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}\b/;

Listing 6 – Regular Expression for matching an email address

This expression was published at [Jan Goyaverts] and was modified by us to identify

lowercase characters as well. This regular expression is broken down below

\b Indicates a word boundary
[a-zA-Z0-9._%+-]+ This matches any lower case or upper case

characters as well as digits from 0 to 9

including the ., _ % + - characters. The +

sign indicates one or more occurrences of

these characters
@ This matches the @ character
[a-zA-Z0-9.-]+ This matches any lower case or upper case

characters as well as digits from 0 to 9

including the ., and - characters. The + sign

indicates one or more occurrences of these

Vijay Rao 20

characters
\. This matches the . character
[a-zA-Z]{2,4} This matches the domain of the email

address which can be of 2 to 4 characters in

length
Table 2—Regular Expression breakdown for email address

The regular expression to identify a phone number is shown below

var telre = /\b\(?\d{3}\)?[-\s.]?\d{3}[-\s.]?\d{4}\b/;

Listing 7 – Regular Expression for US Telephone number

This regular expression is broken down below

\b Indicates a word boundary
\(? Indicates an optional bracket to identify

area code
\d{3} Indicates a digit ie character 0 to 9 and

matches 3 digits
\)? Indicates an optional closing paranthesis
[-\s.]? Indicates an optional area code separator of

either hyphen, space or a dot character
\d{3}[-\s.]? Indicates another 3 digits followed by a

separator of either a hyphen, space or a dot

character
\d{4} Indicates 4 digits

Table 3 – Regular Expression breakdown for US Telephone number

Once the data has been parsed using the regular expression described above a .vcf file is

generated with the user selected data and the user is prompted to open or save the file in

Firefox. Some of the challenges involved identifying a pattern to the data selected and

making an intelligent deduction about the location of various elements such as phone

email and telephone number. Several formats of contact information was tested to arrive

at an accurate parsing probability. At this point XPCOM [Mozilla Developer Center

XPCOM] was used to launch the browser’s default File Save Dialog to ask the user to

either launch the file with his preferred application or save it to disk. A snapshot is shown

below:

Vijay Rao 21

Figure 3 – Snapshot of the File Save Open With dialog in Firefox

The user can now choose to open this in the preferred mail client edit it, make changes to

it and then save the contact. A snapshot of the screen in Microsoft Outlook is shown

below

Figure 4 – Snapshot of the contact in Outlook

Vijay Rao 22

If the contact has no name defined as shown below then a string “unknown” is used in

place of the name as shown below

Figure 5 – User capturing portion of data without name

Figure 6 – Snapshot showing the download as unknown.vcf

Vijay Rao 23

Figure 7 – Snapshot showing the name as being unknown

The File I/O in Firefox was done by using the api provided by [Captain’s Mozilla XUL

LOG]. The temporary files are written to a temp directory in the user’s profile folder.

3.3 Add Events

The second deliverable of this project involved the user selecting text on a web page by

right clicking on it to add an event to the webpage. The “Add Event” menu was added to

the context click of the user. A depiction is shown below

Vijay Rao 24

Figure 8 – Add an event depiction

To implement this feature a Javascript function was written to capture the data that was

selected on the web page. Once the data was captured, it had to be parsed to identify the

“What”, “When” and “Where” aspect of the event.

3.3.1 Implementation

The first step involved adding an entry in the firefoxmash.xul file. The enty is shown

below

<?xml version="1.0"?>

<?xml-stylesheet href="chrome://firefoxmash/skin/foxmash.css"

type="text/css"?>

<overlay id="FirefoxMash-Overlay"

xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/DOMHelper.js" />

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/CleanDate.js" />

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/firefoxmash.js" />

 <!-- This is for the right click menu. -->

 <popup id="contentAreaContextMenu">

 <menuseparator id="firefoxmashabove"

insertafter="context-stop"/>

 <menuitem id="event"

 label="Add Event"

Vijay Rao 25

 class="menuitem-iconic"

 accesskey="E"

 insertafter="context-stop"

 oncommand="addEvent();"/>

 </popup>

</overlay>

Listing 8 – Adding an entry in the XUL file

The entry involved defining a menuitem element to create an option to add an event. The

class was set to “menuitem-iconic” to indicate an icon style list element. Icons were

provided by Mark James [Mark James]. The selected text was now parsed to separate the

What, When and Where aspect of the event. The “What” aspect was to analyze what the

event was about, the “When” aspect was to parse and find when the event was scheduled

and the “Where” was to identify where the event was scheduled. To do this several

regular expressions were used. The following regular expression was used to identify

various date formats. The regular expression is shown below was modified from [Jan

Goyaverts]

var whenre = ((0?[1-9])|(1[012]))[/](0?[1-9]|[12][0-

9]|3[01])[/](19|20)?\d\d\s\d\d?(:\d\d)?\s(AM|PM)(\s(to|TO)\s(((0?[1-

9])|(1[012]))[/](0?[1-9]|[12][0-

9]|3[01])[/](19|20)?\d\d\s)?\d\d?(:\d\d)?\s(AM|PM))?

Listing 9 – Regular Expression to identify the “When” aspect in selected text

The pattern above can be broken down as follows

((0?[1-9])|(1[012]))[/](0?[1-

9]|[12][0-

9]|3[01])[/](19|20)?\d\d

Looks for a valid date format. This format

was reused from [Jan Goyaverts]

\d\d?(:\d\d)?\s(AM|PM)
Matches a time format

(\s(to|TO)\s Matches a space and character “to”
Table 4 – Breakdown for Date and Timestamp Regular Expression

The matched category is used to populate the “When” part of the event. The “Where”

part of the event is deduced by applying the regular expression to identify a US address.

Vijay Rao 26

The regular expression pattern for US street address is shown in Figure 25. Once the data

has been parsed using the regular expressions described above a .ics file is generated with

the user selected data and the user is prompted to open or save the file in Firefox. At this

point XPCOM [Mozilla Developer Center XPCOM] was used to launch the browser’s

default File Save Dialog to ask the user to either launch the file with his preferred

application or save it to disk. A snapshot is shown below:

Figure 9 – Snapshot of File Save/ Open With dialog in Firefox

The user can now choose to open this in the preferred mail client edit it, make changes to

it and then save the contact. The generation of the ics file was done using the api

provided by [Captain’s Mozilla XUL LOG]. The temporary files are written to a temp

directory in the user’s profile folder. The image below shows the data being parsed and

displayed in the right fields.

Vijay Rao 27

Figure 10 – Snapshot of the ics file opened in Microsoft Outlook

3.4 Show Addresses

A user of a web browser to view web pages often comes across tabular display of data

wit addresses in it. Our extension tries to extend the browser to provide the ability of the

user to view data in a mapping application such as Google Maps. Often data in context of

location provides to be a lot more intuitive. Some examples of such scenarios are house

listings. A user scouring the web looking at listings of homes may want to drop all the

addresses on a map to see houses that have a proximity to a certain landmark such as a

School or a Church. Another example would be where a user viewing the Megan’s law

database for a listing of sex offenders in the vicinity would prefer to see the addresses on

an intuitive mapping application such as Google Maps and in context of another

landmark such as the user’s home. Our extension satisfies this need by parsing the web

page to identify street addresses and plots these addresses on Google Maps. Our

Vijay Rao 28

extension also allows the user to add additional landmarks to the page so that the user can

view the data with a perspective of the landmarks that are added on an as need basis.

3.4.1 Implementation

The first step involved adding an entry in the firefoxmash.xul file. The entry is shown

below:

<?xml version="1.0"?>

<?xml-stylesheet href="chrome://firefoxmash/skin/foxmash.css"

type="text/css"?>

<overlay id="FirefoxMash-Overlay"

xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/DOMHelper.js" />

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/CleanDate.js" />

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/firefoxmash.js" />

 <!-- This is for the right click menu. -->

 <popup id="contentAreaContextMenu">

 <menuseparator id="firefoxmashabove"

insertafter="context-stop"/>

 <menuitem id="showOnMap"

 class="menuitem-iconic"

 label="Show Address"

 accesskey="A"

 insertafter="context-stop"

 oncommand="showAddress();"/>

 </popup>

</overlay>

Listing 10 – Adding an entry in XUL file

The entry involved defining a menuitem element in XUL to create an option to add a

contact. The class was set to “menuitem-iconic” to indicate it as a list item with an icon

beside it. The next step involved parsing the html on the webpage. The HTML DOM was

queried to retrieve all the “th” elements from the page. The utility DOMHelper.js was

created using all the methods provided by John Resig in his book [John Resig]. These

methods are convenience methods for traversing a DOM structure. Regular Expressions

Vijay Rao 29

were used to identify Address or Street in the headers as placeholders for Addresses. A

depiction of the extension for this functionality is shown below:

Figure 11– Show Address depiction

A regular expression to identify US Street addresses was used to identify addresses on the

current web page.

The regular expression is shown below:

var stre =

/\d+\s[\w\s.]+\b(AV|AVE|AVENUE|WY|WAY|TE|DR|DRIVE|CT|COURT|RD|ST|LN|TL|

EL CAMINO REAL)\b/i

Listing 11 -- Regular Expression to identify US Street Address

The pattern can be broken down as follows

\d+ Indicates a digit from 0 to 9 occurring one

or more times
\s Indicates a space
[\w\s.]+ Indicates one or more occurrences of words

and or spaces
\b Indicates a word boundary
(AV|AVE|AVENUE|WY|WAY|TE|

DR|DRIVE|CT|COURT|RD|ST|LN|TL|EL

CAMINO REAL)

Indicates one or more options to identify an

address

I Indicates case-insensitive search
Table 5 – Regular Expression breakdown for US Street Address

Vijay Rao 30

The data that was collected after applying the regular expression above was sent to a web

application. This was done by appending the data as a query string. Once this was

received the web application queried Google’s geo-coding service to geo-code these

addresses [Google Map APIs]. Once the addresses were geo-coded they were plotted on

Google Maps with a listing of addresses to the left. A depiction of this is shown below

Figure 12 – Snapshot of all the addresses plotted on Google Maps

Addresses that were geo-coded by Google are plotted as links. The results are enclosed in

a scrollable div allowing the user to scroll through the list. Clicking on any link pans the

map to that address as shown below:

Vijay Rao 31

Figure 13 – Snapshot of the map panning to show the address link that was clicked

Addresses that were not geo-coded by Google are listed but not highlighted as links as

shown below

Figure 14 – Snapshot showing addresses that were not geo-coded by Google

The user can also add additional landmarks on the map by entering an address in the text

field on the top and pressing the “Add a Landmark” button.

Vijay Rao 32

Figure 15 – Snapshot after adding a landmark

As soon as the user adds a landmark a special icon is dropped on the map indicating a

landmark and the address entered by the user is listed on the right. If a landmark entered

by the user cannot be geo-coded by Google a message is displayed to the user as shown

below

Figure 16 – Snapshot of an address that was not geo-coded by Google

Vijay Rao 33

There were several challenges involved in developing this. Parsing content on websites

involved overcoming the issues related to non-standard markup. The fact that street

address by itself could not be geo-coded from Google involved figuring out the City and

passing it along with the address that needed to be geo-coded. The regular expression had

to be expanded to capture majority of combinations of street endings.

Vijay Rao 34

4 Conclusion

In this writing project our goals were to extend the browser such that the user can save

snippets of data from web pages. We identified adding of contacts and events to the mail

client as a task that was routinely performed by the user. It was obvious that both these

activities involved manual entry of forms to save the contacts phone, address, email

address etc. An automated parsing of the information to retrieve the relevant data seemed

like the best way to attain the objective.

Our extension extended the browser to capture information selected by the user and

intelligently parsing the information and converting it to a standard data exchange format

to be saved to the mail client.Another goal established at the beginning of the project was

to provide the user the ability to mashup the addresses listed on a web page by displaying

the addresses on a mapping application and allow the user to view the data in context of

other landmarks. Our extension exceeded this goal providing the user the ability to view

the addresses on Google Maps application with the flexibility of adding more landmarks.

This project had several challenges in terms of parsing of web pages and poor

documentation on Firefox extension. The challenges involved identifying various patterns

of data and being flexible in extracting relevant data from various formats. Other

challenges involved logistical difficulties such as poor documentation on specific

modules such as XPCOM.

Vijay Rao 35

5 Future Extension

The extension relies on a web application component. This could be hosted at a common

location which could then allow the user to log in and view the address data. This could

be enhanced to allow the user to save this data so that it can be viewed at a later time.

Additionally saving the URL of the source or the list of parameters that produced the

results could enhance the user experience by automatvCalendarly refreshing the results.

The extension could be enhanced to accept newer address patters thus enabling the

extension to learn

Vijay Rao 36

6 Bibliography

Jonah Bishop Firefox Toolbar Tutorial Retrieved May 01, 2008 from

http://www.borngeek.com/firefox/toolbar-tutorial/

Mark James Retrieved May 01, 2008 from

http://www.famfamfam.com/lab/icons/silk/

Jan Goyaverts (28
th

 Aug 2007) Regular Expression Tutorial Retrieved May 01,

2008 from http://www.regular-expressions.info/tutorial.html

vCard Internet Mail Consortium Retrieved May 01, 2008 from

http://www.imc.org/pdi/vcard-21.txt

vCalendar Internet Mail Consortium Retrieved May 01, 2008 from

http://www.imc.org/pdi/vcal-10.txt

Captain's Mozilla XUL LOG Firefox Toolbar tutorial Retrieved May 01, 2008

from http://www.captain.at/programming/xul/

Google Map APIs Retrieved May 01, 2008 from

http://code.google.com/apis/maps/

John Resig (2006) Pro Javascript Techniques Apress

Mozilla Developer Center XUL Overlays Retrieved May 01, 2008

http://developer.mozilla.org/en/docs/XUL_Overlays

Mozilla Developer Center XPCOM Retrieved May 01, 2008

 http://developer.mozilla.org/en/docs/XPCOM

Vijay Rao 37

Appendix

<?xml version="1.0"?>

<?xml-stylesheet href="chrome://firefoxmash/skin/foxmash.css" type="text/css"?>

<overlay id="FirefoxMash-Overlay"

 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/DOMHelper.js" />

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/CleanDate.js" />

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/dateFormat.js" />

 <script type="application/x-javascript"

 src="chrome://firefoxmash/content/firefoxmash.js" />

 <!-- This is for the right click menu. -->

 <popup id="contentAreaContextMenu">

 <menuitem id="showOnMap"

 class="menuitem-iconic"

 label="Show Address"

 accesskey="A"

 insertafter="context-stop"

 oncommand="showAddress();"/>

 <menuitem id="event"

 label="Add Event"

 class="menuitem-iconic"

 accesskey="E"

 insertafter="context-stop"

 oncommand="addEvent();"/>

 <menuitem id="contact"

 label="Add Contact"

 class="menuitem-iconic"

 accesskey="C"

 insertafter="context-stop"

 oncommand="addContact();"/>

 <menuseparator id="firefoxmashabove" insertafter="context-stop"/>

 </popup>

</overlay>

Listing 12 – firefoxmash.xul

String.prototype.trim = function() { return this.replace(/^\s+|\s+$/g,"");}

function read(mime,filename) {

 try {

 netscape.security.PrivilegeManager.enablePrivilege("UniversalXPConnect");

 } catch (e) {

 alert("Permission to read file was denied.");

 }

 var file = Components.classes["@mozilla.org/file/local;1"]

 .createInstance(Components.interfaces.nsILocalFile);

 LOG(" IN READ FILENAME " + filename);

 file.initWithPath(filename);

 if (file.exists() == false) {

 alert("File does not exist");

 }

Vijay Rao 38

 var iosvc = Components.classes["@mozilla.org/network/io-service;1"].

 getService(Components.interfaces.nsIIOService);

 var chnl = iosvc.newChannelFromURI(iosvc.newFileURI(file));

 var helper = Components.classes["@mozilla.org/uriloader/external-helper-app-

service;1"].

 getService(Components.interfaces.nsIExternalHelperAppService);

 var stream = helper.doContent(mime,chnl,this);

 chnl.asyncOpen(stream,this);

}

function getSelectedText()

{

 if(window.content.getSelection) {

 return window.content.getSelection().toString();

 }

}

function addContact() {

 var txt = getSelectedText();

 if(txt == null || txt.length == 0) return;

 var statezipre =

/\b(AL|AK|AS|AZ|AR|CA|CO|CT|DC|DE|FM|FL|GA|GU|HI|ID|IL|IN|IA|KS|KY|LA|ME|MH|MD|MA|MI|MN|M

S|MO|MT|NE|NV|NH|NJ|NM|NY|NC|ND|MP|OH|OK|OR|PW|PA|PR|RI|SC|SD|TN|TX|VI|UT|VT|VA|WA|WV|WI|

WY|AA|AE|AP)\b \b[0-9]{5}(-[0-9]{4})?\b/;

 var myarr = txt.split(/\r\n/);

 for(m = 0 ; m < myarr.length; m++) {

 if(myarr[m].length == 0)

 {

 myarr.splice(m,1);

 }

 }

 var obj = {};

 if(myarr.length > 1) {

 for(i = 0; i < myarr.length; i++) {

 var arr = statezipre.exec(myarr[i]);

 if(arr) {

 obj = collectData(myarr, arr[0], i, myarr.length);

 break;

 }

 }

 } else {

 //data is in one line. apply state zip pattern to check

 var arr = myre.exec(txt);

 if(arr) {

 for(j=0; j < arr.length; j++) {

 alert("j is " + arr[j]);

 }

 }

 }

 var fileData = buildContact(obj);

 send('text/x-vcard',obj.filename,fileData);

}

function addEvent() {

 var dataobj={};

 dataobj.what="";

 dataobj.when="";

 dataobj.where="";

 dataobj.summary="";

 var txt = getSelectedText();

 txt = txt.replace(/\r\n/,' ');

 dataobj.what = txt;

 var re1 = /((0?[1-9])|(1[012]))[/](0?[1-9]|[12][0-

9]|3[01])[/](19|20)?\d\d\s\d\d?(:\d\d)?\s(AM|PM)(\s(to|TO)\s(((0?[1-

9])|(1[012]))[/](0?[1-9]|[12][0-9]|3[01])[/](19|20)?\d\d\s)?\d\d?(:\d\d)?\s(AM|PM))?/mi

 var re2 = /((0?[1-9])|(1[012]))[/](0?[1-9]|[12][0-9]|3[01])[/](19|20)?\d\d\s((All

Vijay Rao 39

Day)|(\d\d?(:\d\d)?\s(AM|PM)?))?/mi

 var fullmthre =

/(Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)\s\d\d?\s\d{4}\s\d\d?(:\d\d?)?(AM|PM)/m

i

 var arr = re1.exec(txt);

 var whenidx = -1;

 if(!arr) {

 arr = re2.exec(txt);

 }

 //LOG(txt);

 if(!arr) {

 arr = fullmthre.exec(txt);

 }

 //LOG("fullmthre is " + arr);

 if(arr)

 whenidx = arr.index;

 var summ = "";

 var splitlinesarr = txt.split(/\r\n/);

 if(whenidx == 0) {

 for(i = 1; i < splitlinesarr.length; i++) {

 summ = splitlinesarr[i];

 summ = splitlinesarr[i].trim();

 if(summ && summ.length > 0) break;

 }

 }

 dataobj.summary = summ;

 //LOG('whenidx ' + whenidx);

 var obj = parseDateString(arr[0]);

 dataobj.when = obj;

 dataobj.where = parseAddress(txt);

 //LOG(dataobj);

 generateCalendarEvent(dataobj);

}

function generateCalendarEvent(eventobj) {

 var mask = "yyyymmdd'T'HHMMss";

 obj = eventobj.when;

 LOG('IN generateCalendarEvent ' + obj.startdate + " - " + obj.enddate);

 var str = "BEGIN:VCALENDAR\n";

 str += "BEGIN:VEVENT\n";

 str += "DTSTART:"+obj.startdate.format(mask)+"\n";

 str += "DTEND:"+obj.enddate.format(mask)+"\n";

 str += "LOCATION:"+eventobj.where+"\n";

 str += "DESCRIPTION:" + eventobj.what.replace(/\r\n/g,'\\n')+"\n";

 str += "SUMMARY:"+eventobj.summary+"\n";

 str += "BEGIN:VALARM\n";

 str += "TRIGGER:-PT15M\n";

 str += "ACTION:DISPLAY\n";

 str += "DESCRIPTION:REMINDER\n";

 str += "END:VALARM\n";

 str += "END:VEVENT\n";

 str +="END:VCALENDAR\n";

 LOG(str);

 var filename = eventobj.summary.trim()+'.ics';

 //Get rid of special characters

 filename = filename.replace(/[:\\/]/g,'-');

 send('text/calendar',filename,str);

}

function parseAddress(str) {

 var stre =

/\d+\s[\w\s]+\b(AVENUE|AV|AVE|WY|WAY|TE|DRIVE|DR|COURT|CT|Boulevard|Blvd|Road|RD|Street|S

T|LANE|LN|TL|EL CAMINO REAL|Highway|HWY)\b/i

 var statezipre =

/\b(AL|AK|AS|AZ|AR|CA|CO|CT|DC|DE|FM|FL|GA|GU|HI|ID|IL|IN|IA|KS|KY|LA|ME|MH|MD|MA|MI|MN|M

S|MO|MT|NE|NV|NH|NJ|NM|NY|NC|ND|MP|OH|OK|OR|PW|PA|PR|RI|SC|SD|TN|TX|VI|UT|VT|VA|WA|WV|WI|

WY|AA|AE|AP)\b \b[0-9]{5}(-[0-9]{4})?\b/

 var addr = stre.exec(str);

 var address,street,streetcity, statezip = "";

 var streetidx,statezipidx = 0;

 if(addr) {

Vijay Rao 40

 street = addr[0];

 streetidx = addr.index;

 }

 var stateziparr = statezipre.exec(str);

 if(stateziparr) {

 statezip = stateziparr[0];

 statezipidx = stateziparr.index;

 }

 LOG('street ' + street);

 LOG('statezip ' + statezip);

 LOG ('Diff ' + str.substring(streetidx,statezipidx));

 streetcity = str.substring(streetidx,statezipidx);

 streetcity = streetcity.replace(/\r\n/g,' ');

 //LOG('statezip.index ' + statezip.index);

 streetcity = streetcity.trim();

 address = streetcity + ' ' +statezip;

 LOG('address ' + address);

 return address;

}

function parseDateString(str) {

 LOG(' IN parseDateString ' + str);

 var simpledtfrmt = /\d?\d[/]\d?\d[/](19|20)?\d\d/

 var simpletmfrmt = /\d?\d(:\d\d)?\s?(AM|PM)/

 var ampmre = /(AM|PM)/i

 var obj = {};

 obj.startdate="";

 obj.enddate="";

 //The following formats are possible

 //mm?/dd?/yy(yy)?

 //mm?/dd?/yy(yy)?\s All Day

 //mm?/dd?/yy(yy)? \d\d?(:\d\d?)? (AM|PM)

 //mm?/dd?/yy(yy)? \d\d?(:\d\d?)? (AM|PM) to \d\d?(:\d\d?)? (AM|PM)

 //mm?/dd?/yy(yy)? \d\d?(:\d\d?)? (AM|PM) to mm?/dd?/yy(yy)? \d\d?(:\d\d?)?(AM|PM)

 if(str) {

 var frmprt = "";

 var toprt = "";

 var frmdt,frmtm,todt,totm = "";

 var toidx = str.indexOf("to");

 LOG('toidx ' + toidx);

 if(toidx != -1) {

 frmprt = str.substring(0,toidx);

 var dtarr = simpledtfrmt.exec(frmprt);

 if(dtarr[0])

 frmdt = CleanDate(dtarr[0]);

 var tmarr = simpletmfrmt.exec(frmprt);

 var splitarr = tmarr[0].split(' ');

 if(splitarr[0].indexOf(':') == -1)

 splitarr[0] += ":00";

 frmtm = splitarr.join(' ');

 LOG(frmdt + ' ' + frmtm);

 toprt = str.substring(toidx+2,str.length);

 var todtarr = simpledtfrmt.exec(toprt.trim());

 if(todtarr && todtarr.length > 0) {

 todt = CleanDate(todtarr[0]);

 } else {

 //to part does not have a date

 todt = frmdt;

 }

 var totmarr = simpletmfrmt.exec(toprt);

 var tosplitarr = totmarr[0].split(' ');

 if(tosplitarr[0].indexOf(':') == -1 && tosplitarr.length > 1) //format 7PM

would have length 1

 tosplitarr[0] += ":00";

 totm = tosplitarr.join(' ');

 obj.startdate = new Date(Date.parse(frmdt + ' ' + frmtm));

 obj.enddate = new Date(Date.parse(todt + ' ' +totm));

 } else {

 //HERE IF THERE IS NO "TO" DATE TIME. So Could be either date and time or

date and "All Day"

 //end to index

Vijay Rao 41

 var alldayidx = str.search(/All Day/i);

 if(alldayidx != -1) {

 var frmdtmarr = simpledtfrmt.exec(str);

 LOG('frmdtmarr ' + frmdtmarr);

 if(frmdtmarr) {

 frmdt = CleanDate(frmdtmarr[0]);

 todt = frmdt;

 frmdt += ' 9:00 AM';

 todt += ' 5:00 PM';

 LOG('frmdt ' + frmdt);

 obj.startdate = new Date(Date.parse(frmdt));

 obj.enddate = new Date(Date.parse(todt));

 }

 } else {

 var frmdtmarr = simpledtfrmt.exec(str);

 LOG('frmdtmarr ' + frmdtmarr);

 if(frmdtmarr) {

 frmdt = CleanDate(frmdtmarr[0]);

 var tmarr = simpletmfrmt.exec(str);

 var splitarr = tmarr[0].split(' ');

 if(splitarr[0].indexOf(':') == -1)

 splitarr[0] += ":00";

 frmtm = splitarr.join(' ');

 LOG(frmdt + ' ' + frmtm);

 todt = frmdt;

 frmdt += ' ' + frmtm;

 todt += ' 5:00 PM';

 LOG('frmdt ' + frmdt);

 obj.startdate = new Date(Date.parse(frmdt));

 obj.enddate = new Date(Date.parse(todt));

 }

 }

 }

 LOG('obj.startdate ' + obj.startdate);

 LOG('obj.enddate ' + obj.enddate);

 }

 return obj;

}

function showAddress() {

 var thtags = content.document.getElementsByTagName("th");

 var headers = [];

 var street_address_idx,city_address_idx = 0;

 for(i = 0; i < thtags.length; i++) {

 var thdata = text(thtags[i]);

 if(thdata.length > 0) {

 headers[i] = thdata;

 }

 }

 headers.reverse();

 var addre = /street|address/i;

 var cityre = /city/i;

 for(tt = 0; tt < headers.length; tt++) {

 if(headers[tt] && headers[tt].length > 0){

 headers[tt] = headers[tt].replace(/^\s+|\s+$/g, '');

 if(addre.exec(headers[tt]) != null) {

 street_address_idx = tt;

 }

 if(cityre.exec(headers[tt]) != null) {

 city_address_idx = tt ;

 }

 LOG("header tt length " + headers[tt].length);

 }

 }

 var trnode = parent(thtags[0]);//TODO if no headers exist fails here

Vijay Rao 42

 var stre =

/\d+\s[\w\s]+\b(AVENUE|AV|AVE|WY|WAY|TE|DRIVE|DR|COURT|CT|Boulevard|Blvd|Road|RD|Street|S

T|LANE|LN|TL|EL CAMINO REAL|Highway|HWY)\b/i

 var rw = 0;

 var data = new Array();

 while(next(trnode)) {

 trnode = next(trnode);

 var innerdata = new Array();

 var alltds = trnode.childNodes;

 var tdelems = [];

 var t = 0;

 for(g = 0; g < alltds.length; g++) {

 if(alltds[g].nodeType == 1) {

 tdelems[t] = alltds[g];

 t++;

 }

 }

 alltds = tdelems;

 alltds.reverse();

 var arr = stre.exec(text(trnode));

 var col = 0;

 if(arr && arr.length > 0) {

 for(k = 0; k < alltds.length; k++) {

 innerdata[col] = text(alltds[k]);

 col++;

 }

 }

 if(innerdata.length > 0) {

 data[rw] = innerdata;

 }

 rw++;

 }

 var querystr = "";

 var rcnt = 0;

 for(a = 0; a < data.length; a++) {

 var innerarr = data[a];

 var otherdata = "";

 var addrdata = "";

 if(innerarr) {

 var city = "";

 for(b = 0; b < innerarr.length; b++) {

 if(b == street_address_idx) {

 var matches = stre.exec(innerarr[b]);

 if(matches && matches.length > 0)

 addrdata += headers[b] + "::"+ matches[0] + " " +city + "||";

 else

 otherdata += headers[b] + "::" + innerarr[b] + "||";

 } else if (b == city_address_idx) {

 city = innerarr[b];

 } else {

 if(headers[b] && headers[b].length > 0 && innerarr[b] &&

innerarr[b].length > 0) {

 var matches = stre.exec(innerarr[b]);

 if(matches && matches.length > 0) {

 addrdata += matches[0];

 }

 otherdata += headers[b] + "::" + innerarr[b] + "||";

 }

 }

 }

 otherdata = addrdata + otherdata;

 otherdata = otherdata.replace(/^\s+|\s+$/g, '');

 addrdata = addrdata.replace(/^\s+|\s+$/g, '');

 if(addrdata && addrdata.length > 0) {

 querystr += "&record"+rcnt+"="

 querystr += addrdata;

 rcnt++;

 }

 }

 }

 LOG(querystr);

Vijay Rao 43

 var url = "http://localhost:8080/test/index1.jsp?";

 url+= querystr;

 var win = window.open(url, "BOO", "");

}

function collectData(origData, matchedData, idx, total) {

 //if idx is 3 then we have a standard pattern

 //alert("idx is " + idx);

 //alert("origData is " + origData);

 //idx is the point where STATE ZIP exists

 var obj = {};

 obj.name = origData[0];

 obj.state = matchedData.substring(0,2);

 obj.zip = matchedData.substring(3);

 switch (idx) {

 case 1:

 obj.name = "unknown";

 obj.street1 = origData[0];

 obj.city =

origData[1].substring(0,origData[1].indexOf(matchedData.substring(0,2)));

 break;

 case 2:

 obj.street1 = origData[1];

 obj.city =

origData[2].substring(0,origData[2].indexOf(matchedData.substring(0,2)));

 break;

 case 3:

 if(origData[3].indexOf(matchedData) == 0) {

 obj.street1 = origData[1];

 obj.city = origData[2];

 } else {

 //this means city is before state

 obj.title = origData[1];

 obj.street1 = origData[2];

 obj.city =

origData[3].substring(0,origData[3].indexOf(matchedData.substring(0,2)));

 }

 break;

 case 4:

 if(origData[4].indexOf(matchedData) == 0) {

 obj.street1 = origData[2];

 obj.city = origData[3];

 } else {

 //this means city is before state

 obj.title = origData[1];

 obj.street1 = origData[2];

 obj.street2 = origData[3];

 obj.city =

origData[4].substring(0,origData[4].indexOf(matchedData.substring(0,2)));

 }

 break;

 }

 obj.filename = obj.name+".vcf";

 var emailre = /\b[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}\b/;

 var telre = /\b\(?\d{3}\)?[-\s.]?\d{3}[-\s.]?\d{4}\b/;

 if(idx < total) {

 //look for phone or email

 for(i = idx+1; i < total; i++) {

 var data = origData[i];

 var emailarr = emailre.exec(data);

 if(emailarr && emailarr.length > 0){

 obj.email = emailarr[0];

 }

 var phonearr = telre.exec(data);

 if(phonearr && phonearr.length > 0) {

 if(obj.phone)

 obj.fax = phonearr[0];

 else

 obj.phone = phonearr[0];

 }

Vijay Rao 44

 }

 }

 return obj;

}

function send(mime,filename, data) {

 var file = Components.classes["@mozilla.org/file/directory_service;1"]

 .getService(Components.interfaces.nsIProperties)

 .get("ProfD", Components.interfaces.nsIFile);

 file.append("temp");

 LOG('filename ' + filename);

 file.append(filename);

 file.createUnique(Components.interfaces.nsIFile.NORMAL_FILE_TYPE, 0666);

 var outputStream = Components.classes["@mozilla.org/network/file-output-stream;1"]

 .createInstance(Components.interfaces.nsIFileOutputStream);

 outputStream.init(file, 0x04 | 0x08 | 0x20, 420, 0);

 var result = outputStream.write(data, data.length);

 outputStream.close();

 read(mime,file.path);

}

function deleteFile(file) {

 file.remove(false);

}

function buildContact(obj) {

//alert(obj.street1 + obj.street2+obj.city + obj.state+obj.zip);

 var str = "BEGIN:VCARD" +"\n";

 str += "VERSION:2.1" + "\n";

 str += "N:"+obj.name+"\n";

 str += "FN:"+obj.name+"\n";

 if(obj.title)

 str += "TITLE:"+obj.title+"\n";

 if(obj.phone)

 str += "TEL;WORK;VOICE:"+obj.phone+"\n";

 if(obj.fax)

 str += "TEL;FAX:"+obj.fax+"\n";

 if(obj.street1) {

 str += "ADR;WORK:;;"+obj.street1+";";

 if(obj.street2) {

 str += obj.street2+";";

 }

 str += obj.city+";"+obj.state+";"+obj.zip+"\n";

 }

 if(obj.email) {

 obj.email = obj.email.toLowerCase();

 str += "EMAIL;PREF;INTERNET:" + obj.email +"\n";

 }

 str += "END:VCARD";

 return str;

}

function LOG(msg) {

 var consoleService = Components.classes["@mozilla.org/consoleservice;1"]

 .getService(Components.interfaces.nsIConsoleService);

 consoleService.logStringMessage(msg);

}

Listing 13 – firefoxmash.js

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<%@ page import="java.net.*,java.io.*,java.util.*"%>

<head>

<script type="text/javascript"

Vijay Rao 45

src="http://www.google.com/jsapi?key=ABQIAAAAFdyjfyZbMg2e1toC0Wn6HRRhbiXqwVLAV3idsTmm6kfJ

JgQf2RQj106BTmITBa8CfN9P0PfktZcjaQ"></script>

<script>

google.load("maps", "2.x");

google.setOnLoadCallback(init);

var side_bar_html = "";

var mapobj = {};

var gmarkers = [];

var q = 0;

function init() {

 mapobj = new google.maps.Map2(document.getElementById("map"));

 mapobj.setCenter(new GLatLng(37.344241, -121.892266), 15);

 mapobj.addControl(new GMapTypeControl());

 mapobj.addControl(new GLargeMapControl());

 plotAddress(mapobj);

}

function plotAddress(map) {

 var lastpoint = "";

 for(b = 0; b < addressarr.length; b++){

 // add the points

 var pt = addressarr[b];

 var point={};

 if(pt.lat == 0 && pt.lng ==0) {

 point = null;

 } else {

 point = new GLatLng(pt.lat,pt.lng);

 lastpoint = point;

 }

 var marker = createMarker(point,pt.address,pt.address);

 if(marker)

 map.addOverlay(marker);

 }

 map.panTo(lastpoint);

 // put the assembled side_bar_html contents into the side_bar div

 document.getElementById("data").innerHTML = side_bar_html+"";

}

// This function picks up the click and opens the corresponding info window

function myclick(q) {

 GEvent.trigger(gmarkers[q], "click");

}

// A function to create the marker and set up the event window

function createMarker(point,name,html) {

 var marker = null;

 if(point) {

 marker = new GMarker(point);

 GEvent.addListener(marker, "click", function() {

 marker.openInfoWindowHtml(html);

 });

 // save the info we need to use later for the side_bar

 gmarkers[q] = marker;

 // add a line to the side_bar html

 side_bar_html += '' + name +

'';

 q++;

 } else {

 side_bar_html += '' + name + '';

 }

 return marker;

}

var lndmrkcnt = 0;

function addLandMark() {

 var obj = document.getElementById("landmarkdata");

 //alert(obj.value);

Vijay Rao 46

 if(obj.value && obj.value.length > 1) {

 var baseIcon = new GIcon();

 baseIcon.shadow = "http://localhost:8080/test/images/landmark_shadow.png";

 baseIcon.iconSize = new GSize(30, 34);

 baseIcon.shadowSize = new GSize(30, 34);

 baseIcon.iconAnchor = new GPoint(9, 34);

 var landmarkIcon = new GIcon(baseIcon);

 //alert("lndmrkcnt is "+lndmrkcnt);

 switch (lndmrkcnt) {

 case 0:

 landmarkIcon.image = "images/A1.png";

 lndmrkcnt++;

 break;

 case 1:

 landmarkIcon.image = "images/B1.png";

 lndmrkcnt++;

 break;

 case 2:

 landmarkIcon.image = "images/C1.png";

 lndmrkcnt++;

 break;

 case 3:

 landmarkIcon.image = "images/D1.png";

 lndmrkcnt++;

 break;

 case 4:

 landmarkIcon.image = "images/E1.png";

 lndmrkcnt++;

 break;

 default:

 landmarkIcon.image = "images/default.png";

 lndmrkcnt++;

 break;

 }

 var markerOptions = { icon:landmarkIcon };

 var geocoder = new GClientGeocoder();

 geocoder.getLatLng(

 obj.value,

 function(point) {

 if (!point) {

 alert(obj.value + " not found");

 lndmrkcnt--;

 } else {

 mapobj.setCenter(point, 15);

 var marker = new GMarker(point,markerOptions);

 mapobj.addOverlay(marker);

 var lobj = document.getElementById("landmarklist");

 lobj.innerHTML += ""+obj.value+"";

 obj.value="";

 }

 }

);

 } else {

 alert("Please enter a valid address");

 }

}

</script>

<style>

 * {

 font-family:"Trebuchet MS", sans-serif;

 font-size:14px;

 }

 #canvas {

 width:1200px;

 height:580px;

 /*border:1px solid red;*/

 }

Vijay Rao 47

 #top {

 width:1200px;

 height:50px;

 /*border:1px solid black;*/

 }

 #container {

 padding-top:10px;

 margin-left:400px;

 /*border:1px solid black;*/

 }

 #info {

 width:22%;

 height:100%;

 float:left;

 /*border:1px solid gray;*/

 }

 #title {

 padding-left:25%;

 padding-top:5px;

 padding-bottom:5px;

 border:1px solid gray;

 font-weight:bold;

 background-color: gray;

 }

 #ltitle {

 padding-left:15%;

 padding-top:5px;

 padding-bottom:5px;

 border:1px solid gray;

 font-weight:bold;

 background-color: gray;

 }

 #data {

 width:100%;

 height:100%;

 overflow:auto;

 margin-top:2px;

 }

 #landmarks {

 width:17%;

 float:left;

 margin-left:2px;

 /*border:1px solid red;*/

 }

 #map {

 width:60%;

 height:104%;

 float:left;

 margin-left:2px;

 border:1px solid gray;

 }

 li {

 padding-top:6px;

 }

</style>

<title>Firefox Mashup Builder</title>

</head>

<script>

var addressarr=[];

var i = 0;

</script>

<body onunload="GUnload()">

Vijay Rao 48

<div id="canvas">

 <div id = "top">

 <div id="container">

 <input type="text" name="landmark" id ="landmarkdata" value="Drop another

address!" size="50"/> <input type="button" value="Add a Landmark"

onclick="addLandMark()"/>

 </div>

 </div>

 <div id="info">

 <div id="title">

 ADDRESSES

 </div>

 <div id="data">

<%

 int cnt = 0;

 HashMap cache = null;

 cache = (HashMap) request.getSession().getAttribute("cache");

 System.out.println("Querystring "+request.getQueryString());

 Enumeration map = request.getParameterNames();

 while(map.hasMoreElements()) {

 String key = (String) map.nextElement();

 System.out.println("Key is " + key);

 }

 if(cache == null)

 cache = new HashMap();

 while(true) {

 String address = request.getParameter("record"+cnt);

 if(address == null)

 break;

 if(address != null) {

 address = address.substring(address.indexOf("::") + 2,address.length());

 address = address.substring(0,address.length() - 2);

 try {

 String [] latlng = new String[2];

 String errorcode = "";

 if(cache.get(address) != null) {

 latlng = (String[]) cache.get(address);

 System.out.println(" Got from cache... " + latlng);

 } else {

 String url = "http://maps.google.com/maps/geo?";

 String address1 = URLEncoder.encode(address,"UTF-8") ;

 url = url +

"q="+address1+"&output=csv&key=ABQIAAAAFdyjfyZbMg2e1toC0Wn6HRRhbiXqwVLAV3idsTmm6kfJJgQf2R

Qj106BTmITBa8CfN9P0PfktZcjaQ";

 URL g = new URL(url);

 //System.out.println("URL inside is " + url);

 BufferedReader in = new BufferedReader(new

InputStreamReader(g.openStream()));

 String inputLine;

 while ((inputLine = in.readLine()) != null) {

 System.out.println(" FETCHING FROM GOOGLE... " + inputLine);

 String [] data = inputLine.split(",");

 if(data.length == 4) {

 errorcode = data[0];

 latlng[0] = data[2];

 latlng[1] = data[3];

 cache.put(address,latlng);

 break;

 }

 }

 in.close();

 Thread.sleep(1000);

 }//end Else query Google

 if(errorcode.equalsIgnoreCase("602")) {

%>

<script>

 var obj = {};

 obj.address = "<%=address%>";

Vijay Rao 49

 obj.lat = 0;

 obj.lng = 0;

 addressarr[i] = obj;

 i++;

</script>

<%

 } else {

%>

<script>

 var obj = {};

 obj.address = "<%=address%>";

 obj.lat = "<%=latlng[0]%>";

 obj.lng = "<%=latlng[1]%>";

 addressarr[i] = obj;

 i++;

</script>

<%

 }

 } catch (Exception e) {

 e.printStackTrace();

 System.out.println("ERROR!"+e.getMessage());

 }

 }//end of if address = null

 cnt++;

 }

 request.getSession().setAttribute("cache",cache);

 //TODO put it in session here request.get

%>

 </div>

 </div>

 <div id="map">

 </div>

 <div id="landmarks">

 <div id="ltitle">

 LANDMARKS

 </div>

 <div"lmarkdata">

 <ul id="landmarklist">

 </div>

 </div>

</div>

</body>

</html>

Listing 14 – index1.jsp

	Firefox Extension to Add Contacts, Events, and View Addresses
	Recommended Citation

	Microsoft Word - CS298 Report_Vijay.doc

