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ABSTRACT 
 

Visualization Web Portal on the Grid 
By Sandhya C Turaga 

 
 

Grid-based visualization portals help scientists explore data that is distributed across the 
globe and to visualize the data. Visualization allows scientists to explore data effectively 
and helps them to obtain further insights into the data. We developed a visualization grid 
portal whose main aim is to be able to store large data sets across machines in a cluster in 
a distributed fashion, and to allow users of the Grid Portal to visualize the data set 
effectively. This Grid portal uses HADOOP, a grid platform that facilitates flexible data 
storage in a distributed fashion, and supports distributed computation as well.  
 
The main goal of the Grid portal is to support positional datasets from the user, process 
them on the grid efficiently, and produce the visualization. The input on the grid is 
partitioned into multiple pieces and each partition is executed concurrently. Current 
implementation of HADOOP does not consider any boundaries when it partitions the 
input, which limits the kind of applications that can run on the Grid. Our aim is to 
implement boundary-based input partition and to enable online job submission to the 
grid. We discuss the advantages and disadvantages of the boundary-based input split. 
Finally, we compare the performance of grid processing with standalone machine 
processing of the same dataset and determine which approach is more efficient and faster. 
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1. INTRODUCTION 
 

The need for high-performance computation in scientific communities is increasing, and 
it would be beneficial to provide high performance without having users install additional 
software on their machines.  Grid portals are very useful for processing large amounts of 
data in a distributed manner to meet demanding computational needs.  For large-scale 
applications, storing the data and processing it on a single machine is a difficult task.  
 
Grid software helps to store large databases on multiple machines that are on the grid and 
to share computation on multiple machines to speed up computation when the data is 
large. Machines on the grid may be located across the world. Various tools for facilitating 
grid-enabled computations are available on the market.   
 
Computational Grid and Data Grid are the two different types of grids available. The 
purpose of the Data Grid is to facilitate large-scale data storage and access among 
multiple machines; the purpose of the Computational Grid is to provide large-scale data 
computation on multiple machines to speed up computation. In addition, some grid tools 
provide both large-scale data storage and computation. The advantage of using grid tools 
is that they hide the complexities involved in distributing data and computations among 
machines as well as the complexities involved in connecting to multiple remote servers, 
collecting the data, and producing the final output. 
 
Grid-enabled portals allow users to access and visualize the data regardless of the 
geographic location of the user and without having to install specialized software. In 
addition, once a user is logged on to one machine from a browser on the grid, the user has 
full access to the resources available on the grid. The grid portal that we discuss here 
supports any dataset in which values can be accessed through column numbers and 
processes the dataset on the grid, and produces the visualization of the dataset. The main 
goals of the grid portal are to be able to submit jobs to the grid efficiently, to enable the 
grid to process sequential files that have boundary conditions, and to improve the 
performance of the grid by distributing the tasks in an efficient way.  
 
This report is organized as follows: 

 Section 2 describes grids and discusses their characteristics and applications 
suitable for execution on the grid. We also describe the processing of a sample 
dataset that we have chosen for visualization, and results of our research into 
grid software available on the market. 

 Section 3 describes the design and implementation of a grid portal and the 
challenges involved in producing visualization on the grid.  

 Section 4 describes the performance results of the grid and the performance 
improvements that we have implemented. 

 Section 5 describes various visualizations that we have produced on the grid. 
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 Section 6 presents our conclusions and discusses future work. 

2. GRID COMPUTING 

2.1 What is a Grid? 
 

As Andrew Grimshaw, CTO and Founder Avaki Corporation indicates, a grid is a 
collection of distributed resources connected by a network at different geographical 
locations [7].  These computing resources share some common characteristics; for 
instance, they can be heterogeneous (each CPU’s architecture can be different); they can 
belong to different organizations; and they can have different security and management 
policies.  
“A grid gathers all the resources (e.g., CPU, data, and applications) and makes them 
accessible in secure manner to users and applications.” [7]  
 
Grid middleware has become popular because it manages the underlying hardware 
complexity of sharing resources, and providing access to resources in a secure manner. 
The primary aim of grid middleware is to provide transparent access to grid resources. 
Application developers can take the advantage of Grid middleware to produce robust grid 
applications since grid middleware takes care of the resource access, fault tolerance, and 
fault recovery of machines on the grid.  
 
Because demand for high performance computing is constantly increasing, instead of 
producing new machines with higher performance, using idle CPUs on the network to 
meet computation requirements is increasingly cost effective for organizations. In 
addition, a grid helps in performing more jobs or more work in a given day, which can 
increase an organization’s output.  
 
Different types of grids are available on the market such as Data Grids, Computational 
Grids, and Science Grids. Data Grids manage the complexity of storing data across 
machines on a grid and provide data consistency. Data Grids also reduce the time to copy 
the data manually across machines. Computational Grids share computation across 
machines to perform tasks in a reasonable time. Computers are used extensively in  
weather forecasting, science, and bio-medical research to perform complex analysis of 
data and to perform complex calculations. Computational Grids assist users in those areas 
perform these complex tasks in short periods of time.  
 
“A computational grid is hardware and software infrastructure that provides dependable, 
consistent, pervasive, and inexpensive access to high-end computational capabilities.”[5] 
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2.2 Grid Characteristics 
 

There are several definitions of grids and what they are supposed to do. The following are 
the characteristics of a grid taken from [2]. A grid must be able to handle a number of 
resources ranging from a few to millions without performance degradation. 
Geographically distributed resources can be part of a grid.  A grid should be able to 
support heterogeneity; resources should be sharable across organizations and should be 
able to conform to the security policies defined in various organizations participating on 
the grid. A grid can be seen as a single virtual computer with the following 
characteristics: 

• A grid must assure quality of service.  
• Resources must be coordinated to produce aggregate computing capabilities. 
• Computing resources should be transparent to the users.  
• A grid should be able to adapt to dynamic configurations using automatic failure 

mechanisms and should be able to maximize performance from resources on the 
grid [2].   

• A grid should be able to process large datasets that need intense computational 
power and intense data management [2].  

2.3 Distributed application characteristics 
 

It is important to determine what kind of applications can be used on a grid. For obvious 
reasons such as the time it takes to distribute data and tasks across machines on the 
network, the time it takes to coordinate the resources on the grid, and the overhead 
involved in initiating the actual computation, not all applications are suitable for grid 
usage. A grid is usually used in situations in which the resources of a single machine are 
not sufficient to perform the required tasks, or the time it takes to perform the 
computation on one machine is very high. Therefore, if an application is expecting results 
in real time, it is not an appropriate candidate for the grid. An application with tasks that 
need access to gigabytes of data to perform computations and an application that can be 
partitioned into multiple individual tasks that can run concurrently are suitable candidates 
for the grid [6]. If an application cannot be partitioned into multiple tasks, it defeats the 
purpose of distributed computing. In addition, when a task is broken down into small sub-
tasks, each sub-task should be big enough to compensate for the overhead of initiating the 
task and should be small enough to produce results in a few hours or days. Therefore, it is 
necessary to assess what kind of applications and computations can be deployed on a 
grid.  
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2.4 Sample Dataset to be visualized  
 

The Micro data sample from the 2000 U.S. census data is particularly suitable for 
visualization and data analysis on a grid. 

2.4.1 Micro data Sample from the 2000 U.S. census 
 

http://www.cs.umd.edu/hcil/InfovisRepository/contest-2006/info.htm 
The micro sample dataset contains 5% of the results of the US census 2000.  Housing 
unit record and number of persons per housing unit are recorded in the dataset. The large 
dataset contains information at the state level. The housing unit record starts with the 
character “H” and person records start with a character “P” and follow “H” records; every 
“P” record has a parent “H” record. To process the dataset, we need to process the “H” 
records and their dependant “P” records together. The purpose of choosing this dataset is 
to create an effective visualization on a geographic unit that has different information 
such as professions, income, expenditure, and cultural background. The size of the data is 
5 GB.  

2.4.2 Processing of Micro data Sample 
 

Since this project aims to produce visualization, we have selected the Micro data Sample 
from the 2002 census dataset to produce visualization. This dataset provides housing unit 
records and person records. Housing unit records contain household languages, person’s 
citizenship status, race, profession, industry, and cultural background. All this data is in 
ASCII format. Each single ASCII file has all the housing records information belonging 
to a single state in the U.S. Therefore, the dataset has 50 ASCII files, each with 
information for the people living in the corresponding state. Appendix A-1 shows a 
sample ASCII file from the dataset. 
 
In each ASCII file, each Housing record starts with a letter H and each Person’s record 
starts with a letter P. Each person record contains 314 characters. Each character or set of 
characters in each record specifies some information about the corresponding housing 
unit such as race, status, profession, state.  Each housing record contains 266 characters. 
Each character or set of characters specifies information such as annual income for the 
household, social security income, number of cars owned by the household, amount of 
money each household spends on gas, and rent. The details of what the each column 
means are documented.  
 
Generally, a grid is used to compute very intense calculations on large datasets for which 
it takes long time to process the data and computations on one machine. Since census 
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information contains lot of in-depth information about a house and the persons living in 
it, and since the number of people living in a state is large, processing information on the 
census dataset is time consuming. The overall size of the dataset is 5GB, which is 5% of 
the US census data. Therefore, processing the data and performing various calculations 
on the census dataset suits a grid’s prerequisites.  

2.4.3 Visualization on the Grid 
 

The total size of the dataset is 5 GB. A single machine takes considerable time to perform 
complex calculations on this 5 GB of data and to produce the visualization. This dataset 
has 50 files; processing all these files to produce a simple visualization on a single 
machine takes approximately 10 minutes. Since we are trying to develop a visualization 
web portal, there is a high probability that multiple requests to perform different 
calculations on this dataset can be received by the server in the same period. If one 
machine approximately takes 10 minutes to produce the results for one complex 
calculation, and if we assume that hundreds of machines are serving the clients, even then 
every user has to wait for 10 minutes to get the result once the job is submitted to the web 
server. Thus if only a limited number of machines exist, user wait time might increase. If 
a single user submits multiple requests to produce animated visualization effects, then the 
response time would increase even more. If the dataset is bigger than 5 GB, the response 
time of a single machine would be prohibitively high unless we use a supercomputer.  
 
Therefore, to support above-specified situations, either finding a faster machine with 
huge amounts of memory or combining all machines available and utilizing those 
resources in their fullest are the solutions. The option of getting a faster machine is not 
affordable. Therefore, utilizing all available machines and their resources and performing 
distributed computing might be viable solution. As explained in an earlier section, a grid 
is suitable to process this kind of complex application and to produce results fast without 
having to spending more money.  
 

2.5 Evaluation of Grid software 
 

Grid computing software is used to create the grid environment and to deploy 
applications on the grid. The following are the various grid software packages that we 
have evaluated. 

2.5.1 GRIDGAIN 
www.gridgain.com/ 
This computational grid provides distributed computation. GRIDGAIN is written purely 
in the JAVA programming language. This software helps in creating a computational 
grid, deploying nodes onto the grid, creating grid tasks and grid jobs, distributing tasks 
among nodes, and executing the tasks. GRIDGAIN software allows splitting a task into 
sub-tasks; it executes each task in parallel, combines the results of each sub-task, and 
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produces the result quickly. However, GRIDGAIN does not support data distribution. 
Data must be replicated across all the machines manually. 
 
GridGain runs on both Linux and Windows operating systems. Computational grids help 
in situations in which it takes long time to perform computations, such as complex build 
processes and large-file processing.  

2.5.2 HiveX 
http://sourceforge.net/projects/hivex/ 
HiveX is a computational grid that distributes tasks among nodes (other computers) on 
the grid.  This grid software is written in C/C++.  HiveX can run on LINUX, free BSD, 
and UNIX operating systems.   

2.5.3 Avaki 
http://www.sybase.com/products/allproductsa-z/avakieii/sybaseavakifordatagrid 
Sybase Avaki is data grid that provides the transparent unification of data distributed 
across multiple machines in a cluster. Avaki can be integrated with a computational grid 
without any changes to existing grid environments. Avaki is developed in JAVA. Avaki 
Data Grid also provides secure data sharing across organizations. 

2.5.4 Globus Toolkit  
http://www.globus.org/toolkit/ 
Globus is an open source toolkit for building computational grids. It provides data access 
and storage across firewalls, and it is very useful for setting up large enterprise level 
computational grids. 

2.5.5 HADOOP 
http://lucene.apache.org/hadoop/ 
HADOOP is grid software for running applications in a cluster of machines, providing 
both a data and a computational grid. In other words, HADOOP provides a framework to 
store data across machines in a cluster and to distribute computational work across 
machines. HADOOP transparently provides applications for both reliability and data 
movement. HADOOP implements the map/reduce paradigm to divide tasks into small 
fragments of work; each fragment can be executed on any node in the cluster. 
HADOOP’s Map/Reduce is inspired by Google’s Map/Reduce paradigm. HADOOP is 
developed in JAVA. 
HADOOP implements Master/Slave architecture to distribute data and computation 
across machines.  
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3. GRID-BASED PORTAL FOR VISUALIZATION 

3.1 Design overview 
The main purpose of the web portal presented here is to enable users to access grid 
resources to perform their data and time-intensive computations in a distributed manner 
without having to install any special software on their machines. The project follows a 
client-server architecture in which the client is typically a browser, and the server is an 
HTTP server supported through Tomcat. We used SERVLETS and JSP pages to 
implement the server layer. The server interacts with the grid to submit jobs and returns 
results to users.  Once a user registers with the grid, the user can upload his/her dataset to 
the grid, and submit various requests to the grid. We chose position data sets as input to 
computations on the grid. In a position data set, each line of the input file can be 
recognized by a sequence number. For instance if each line in an input file is like 
“H00001111333445011100000” then “H” is in position one. Therefore, if the user 
specifies to access a character at position two we would take “0” since the value in the 
second position in the line is “0.” In the metadata file the user can specify, for example, 
to select values from one to five and perform specified computation on the values. Every 
user is allotted a home directory on the grid at the time of registration. To perform 
computations on the uploaded datasets, the user specifies metadata through an HTML 
form, which is then stored in an xml format on the grid in a special directory under the 
user’s home. Metadata consists of details about a dataset, such as the definition for the 
contents of a dataset and the computation algorithm to be used during job processing. We 
chose XML and a supporting XSD for that XML structure due to the ease in defining and 
expanding well-defined structures. During the definition of the metadata by the user, 
he/she can specify whether there are any conditions that the computation must follow, 
such as read a line if that line contains some character or read consequent lines only if a 
condition on the previous line is satisfied. The server transforms those specifications into 
regular expressions and stores them in the generated XML. In addition, the user has to 
specify which operation (sum, average, count, and/or median) should be performed on 
the given data, which column should be read for that operation, and whether that column 
should be given a label. Users can create as many metadata files as are required by the 
dataset. 
 
Once the metadata is ready, the user can select one or more data files as input for the job 
and their corresponding metadata file to perform the computation on the grid. This 
information is then submitted to the web server. The Map/Reduce program on the Tomcat 
server specifies HADOOP, which datasets HADOOP has to read to perform the 
computation, the logic of the computation, the set of input directories for the 
computation, the set of output directories where HADOOP should store the final results, 
and the dependencies that exist in a file, if any, to perform the computation. In addition, 
the Map/Reduce program invokes HADOOP’s methods to distribute the specified 
computation and data across machines. It is HADOOP’s responsibility to take the user-
defined Map/Reduce program and distribute the program to multiple machines, splitting 
the input into multiple chunks to perform concurrent execution. Although splitting the 
input into multiple chunks is handled by HADOOP, due to its limited splitting 
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functionality, we have overridden some of its functionality to extend its split function, as 
explained in detail in later sections.   
 
Our project is designed such that data-intensive calculations are performed on the grid in 
the backend and visualization is performed on the front end in an applet to separate the 
presentation logic from application logic. Figure 1 illustrates the overall design of the 
project. As shown, there are two types of job submission—synchronous and 
asynchronous; the one that is used is determined according the size of the dataset by the 
server layer. The user is agnostic of this behavior.  
 

 

Figure 1 Design Overview of the project 

3.2 Map/Reduce Programming Model 
 

HADOOP uses the Map/Reduce programming model to execute a given task 
concurrently. In this model, a computation is expressed as a set of Map and Reduce tasks. 
A map task takes as input key/value pairs and produces a set of intermediate key/value 
pairs. All intermediate values with the same key are combined and passed to a reduce 
task. A reduce task takes the intermediate key and a set of values of that key, combines 
the values together, and produces one output value.  
 
In a map task, each input is split into M partitions. Usually the number of partitions is 
configurable by the user and the input is partitioned using a split function on the 
intermediate key. The default split function hashes its input key. Each partitioned piece 
can be executed in parallel across the machines to speed up the computation.  
 
When the user calls a Map/Reduce program, the following sequence takes place. 



 

9 

1. The input file or files are split into M pieces with a specific block size, and the 
pieces are distributed across the machines for processing. The default 
implementation calculates the optimal split size as:    

max (min (block_size, data/#maps), min_split_size) 
This formulation may not be workable for all datasets as explained below in our 
modification of the split calculation. 

2. The machine processing the map task produces key/value pairs from the input 
split. For instance, if the input to the map task is a line-based file, then the map 
interface produces a sequential key per line, and the position of the starting byte 
in the line with respect to the start of the file is the value for that key. The 
framework produces the keys to guarantee the ordering of the input split. The 
ordering is important for producing sorted output per input split. These key/value 
pairs are passed to the user-defined map function. User defined Map function 
reads each key/value pair and produces an intermediate key/value pair. For 
instance, if the user-defined map function specifies to read the income of a person 
from columns 32-40 in a given value parameter, and to combine that with a key 
“AA”, then AA/income are produced as intermediate key/value pairs. In 
generating intermediate key/value pairs, the user-defined map function defines 
both the key and the value.  

3. A partition function partitions the intermediate key/value pairs into R regions. R 
is the number of reduce tasks per map task that can be controlled by the user. Data 
is partitioned into R regions with the partition function. The default partition 
function hashes the intermediate key. The location of the partitioned data is given 
to the reducer, which eventually generates an output file for each reduce task. 

4. Before reducing the key/value pairs, the Reduce function sorts the output with the 
intermediate key to group the values of the same key. Essentially, a set of values 
for an intermediate key are generated and passed to the user-defined Reduce 
function. The user-defined Reduce function performs its operations on key/value 
pairs, and the output is appended to the output file of that reduction task.  
Figure2 shows that the input data is split into multiple blocks, and each block is 
distributed to a map task. Once the operations that are specified in the map class 
are executed on the given block of data, the intermediate output from Map is 
given to Reduce. The Reduce task performs operations on the given intermediate 
key/value pairs and produces one output file per Reduce task. Since there is only 
one Reduce task, only one output file is created in the figure. 

5. When all map tasks are completed, one output file for each reduction is created in 
the final output.  
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Figure 2 Map/Reduce programming paradigm [1] 

3.3 HADOOP’s Map/Reduce architecture 
 

In HADOOP, before the map operation takes place, the input is logically split into M 
pieces by an operation called FileSplit, and each split is distributed to multiple machines. 
The default InputFormat class, responsible for creating key/value pairs (K1, V1), is 
passed to the mapping function, and creates a set of key/value pairs with each key as a 
sequentially generated long number and each value as one line in the input split. The user 
specifies the Mapper class, which generates intermediate key/value pairs (K2, V2) using 
the input key/value pairs (K1, V1) generated by the InputFormat. After creating the 
intermediate key/value pairs, the Mapper class calls OutputCollector.collect and passes 
the intermediate key/value pairs (K2, V2).  The collected output is partitioned using an 
hash function on the key class. The number of partitions is configurable by the user. Each 
output file will be routed to a reduce task with a key and a set of values. 
 
Before the reduce task starts, if the output files from the map tasks are distributed across 
machines, then these files are first copied to the local file system. Once the data is 
available locally, all the data is appended to a single file to produce a single input file for 
the reduce task. The final merged file is unsorted. To ensure a sorted order on the keys, 
HADOOP uses Merge-sort to generate the final input file for reduction. The following 
figure explains the process from mapping to reduction. Note that the combine step is 



 

11 

optional. The final key/values (K3, V3 and K4, V4) are generated by the reduce function 
in each of the reduction tasks. The output is stored as one file per reduce task. 
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Figure 3 Map/Reduce implementation in the HADOOP framework 

 
Figure 3 explains the sequence in which HADOOP executes a given task. Input data is 
split into M number of splits, and each split is distributed to a user defined map task. The 
map task generates intermediate key/value pairs K2, V2, shuffles them, and passes the 
result to the combiner class. The user-defined combiner combines all the values of the 
same key, performs the operations specified in combine function, and writes them to the 
distributed file system. The keys are passed to the reduce phase after all the map and 
combine tasks are finished. The final output is written to a file after the operations 
specified in the reduce function are executed on the input to the reduce function. One 
output file is created per reduce phase. If a user specifies four reductions, four output files 
are generated and the user has to read the four files to get the complete final output. 

3.4 Steps involved In Producing Visualizations on the Dataset 
 

1. Specify configurations to be used by HADOOP in running the submitted job. 
These configurations are described in detail in section 3.4.1; the xml file that has 
all the configuration values that we set for the project is described in Appendix B.  

2. A user uploads a dataset onto the grid and specifies a split condition if any. For 
this dataset the split condition is “^H\\n”. The dataset is described in section 2.4.  
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Section 3.4.9 describes various options that we considered for performing the split 
operation with a boundary condition, and section 3.4.10 describes in detail the 
implementation of that split calculation. 

3. We store the dataset on the grid and calculate the split metadata on the grid. That 
is, we submit a job to HADOOP to calculate the start and end position of each 
input split and store the final output on the grid.  

4. Take the input information from the user such as input dataset location, metadata 
of the input dataset. In the metadata the user specifies the columns of the input 
data to be used in the computations and the needed computations, such as SUM, 
AVERAGE, COUNT, MEDIAN, CORRELATION, MULTIPLICAITON, 
STANDARD DEVIATION, MAX, and MIN.  

5. Prepare a metadata.xml file, job.xml, and store it on the grid.  Creating the 
metadata.xml file is described in detail in section 3.4.2, and the sample 
metadata.xml file is described in Table 1. The creation of job.xml is described in 
detail in section 3.4.3, and a sample job.xml is shown in Table 2. The creation of 
metadata.xml and job.xml takes place on the web server. 

6. Send a request to the Map/Reduce program we have written, with metadata.xml 
and job.xml as arguments. The web server sends a request to the Map/Reduce 
program that we have written. In our project, we used TOMCAT as the web 
server.  

7. The Map/Reduce program parses the xml files, extracts the required information, 
and submits a request to HADOOP in which it specifies which Map class and 
Reduce class HADOOP should use. We wrote these Map classes and Reduce 
classes to include the actual logic needed to perform any computations that the 
user has requested. We have described how the web server can submit a request to 
HADOOP in section 3.4.4 and described the Map/Reduce program in detail in 
section 3.4.5.  

8. Along with the above information, we specify the location of the split information 
and the split condition that we have used in HADOOP’s configuration object.  In 
addition, we implemented the configuration object to use the 
“LogicalInputFormat” that we had written instead of HADOOP’s “InputFormat.” 
HADOOP’s “InputFormat” is the class that actually calculates the split 
information, including the start index, the length, and the size of the split. We use 
“LogicalInputFormat” to look for the split metadata files specified in the 
configuration object, and we pass this split information to HADOOP. We use 
“LogicalInputFormat,” only if the user specifies a split condition, otherwise we 
use HADOOP’s default “InputFormat” class to calculate the split information.  

9. As soon as HADOOP gets the split information from either “LogicalInputFormat” 
or “InputFormat,” it sorts the splits by size and distributes them to machines on 
the grid. Each machine on the grid calls our Map class to perform operations on 
the split it has received. Each machine gives one line at a time to the user-defined 
Map class. This line from the input chunk would be written by the 
“LineRecordReader” class if we were to use HADOOP’s default inputformat. 
However, if we use “LogicalInputFormat,” “LogicalRecordReader” reads each 
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line and calls the Map class. Section 3.4.9 describes in detail how we 
implemented the “LogicalInputFormat” and “LogicalRecordReader.” Once all the 
input chunk’s processing is finished, the output from the map tasks is shuffled so 
that all the outputs for one key go to the same machine that runs the Reduction. 
Here again the Reduce class that we have written is used by HADOOP and the 
final output is written to a sequence file on the grid.  

10. Our browser polls the output folder with the unique jobid that it has received from 
the web server. As soon as the output file is created on the grid, the browser reads 
the information from that sequence file and submits the data to the JAVA applet. 
The applet performs the visualization on the received data. How we performed 
various visualizations is described in section 4.  

3.4.1 HADOOP configuration 
 

To initialize the grid, a number of parameters must be carefully configured in 
HADOOP’s configuration files. Some of the important configurations are listed below. 

• The location of the log directory for each node on the grid. 
• The data directory location for intermediate data for each node on the grid. 
• The machine to serve as the NAMENODE (Master), which coordinates the rest of 

the DATANODES, on the grid. NAMENODE is the one that handles the 
distribution of data among the other resources on the grid. Note that 
NAMENODE does not receive any user-data; it only acts as a broker between 
data nodes. 

• The machine to serve as the JOBTRACKER, which distributes jobs to 
TASKTRACKERS and keeps track of the jobs. JOBTRACKER is the machine 
that distributes and coordinates jobs among worker machines and worker 
machines are the TASKTRACKERS . 

• The number of maps to be performed on a given job. Selecting the number of 
maps and reduces is a tricky task since it directly affects the overall job execution 
time. 

• The number of reductions to be performed on a given job. 
• The number of tasks that can run concurrently on a machine. 
• The maximum size of a chunk, to be used as an upper bound when splitting the 

input in computations. The default value of chunk size is 64MB. 
• Ports on which the TASKTRACKER, JOBTRACKER, NAMENODE, and 

DATANODE processes should run. 
Appendix B shows the configuration file that we used to specify the above 
configurations to produce visualizations for the census dataset. 
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3.4.2 Metadata creation 
 

Once the user uploads a dataset, understanding the dataset is a major task  to perform any 
computations on the data. The first step is to collect information from the user including 
which line and column to read for performing the computation and the values need to be 
matched; this interaction is done through the front-end HTML form. The information 
submitted by the user is translated into xml and stored in a metadata directory on the grid. 
The schema is defined such that the SUM, AVERAGE, COUNT, and MEDIAN 
functions can be called recursively on a variety of data.  The schema can support 
mutually exclusive operations and conditionally dependant operations. Mutually 
exclusive operations are individual line-level operations that are dependent on some data 
in that line. Conditionally dependant operations are those that support relative 
dependency between lines when performing calculations.   
 
Table 1 shows a sample metadata xml file. Each metadata xml file can have any number 
of “dataprocess” elements. Each “dataprocess” element contains selection criteria for a 
calculation; any number of operations with key/value items can be specified.  According 
to the selection criteria, the user can specify an expression such as process the following 
lines only if the current line starts with “H”–a conditionally dependent operation. If the 
user does not specify the selection criteria but specifies only operations, then it is an 
exclusive operation. Table 1 specifies sample metadata that specifies the grid to calculate 
the percentage of Asians, Hispanics, and Americans living in each state. 
“<tns:condition>1-6=key[1]</tns:condition>” specifies that the user has to extract the 
value from 1-6 characters in the given input line, and has to compare it with the key 1. In 
that way, the user can provide an expression such as 
“<tns:expression>^H</tns:expression>,” which specifies that the user has to consider 
lines that start with an H.  Likewise, the user can also specify the function to be 
performed on the extracted data. For example the function tag in the table 
“<tns:function></tns:count></tns:function>”  specifies to perform a count operation on 
the given input.  
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Table 1 User-defined Metadata xml that specifies operations to be performed on the input 

3.4.3 Types of job submissions 
 

Once the user has specified the metadata, he or she can submit jobs against that metadata 
file. Two different types of job submission are possible: synchronous and asynchronous. 
The type of job submission that should take place for a user’s request depends on the size 
of the input dataset specified by the user for this job. If the input is in gigabytes and not 
enough resources exist, then the computation may take longer than the browser’s time-

<?xml version="1.0" encoding="UTF-8"?> 
<tns:dataprocess> 
   <tns:id>1</tns:id> 
   <tns:selectioncriteria> 
    <tns:expression>^H</tns:expression> 
   </tns:selectioncriteria> 
   <tns:storage> 
    <tns:keys> 
     <tns:key>1-6</tns:key> 
     <tns:key>30-39</tns:key> 
    </tns:keys> 
   </tns:storage> 
  </tns:dataprocess> 
  <tns:dataprocess> 
    <tns:id>2</tns:id> 
    <tns:selectioncriteria> 
      <tns:expression>^P</tns:expression> 
      <tns:condition>1-6=key[1]</tns:condition> 
    </tns:selectioncriteria> 
    <tns:operation> 
     <tns:columndetail>37</tns:columndetail> 
     <tns:columnvalues> 
      <tns:key>1</tns:key> 
      <tns:value>Black</tns:value> 
     </tns:columnvalues> 
     <tns:columnvalues> 
      <tns:key>2</tns:key> 
      <tns:value>Asian</tns:value> 
     </tns:columnvalues> 
     <tns:function> 
      <tns:count>1</tns:count> 
     </tns:function> 
    </tns:operation> 
  </tns:dataprocess> 
</tns:DataProcessor> 
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out period for synchronous job submission. If the input size is below a certain threshold, 
synchronous job submission takes place. 
 
For synchronous job submission, the user submits a request to a SERVLET, and the 
SERVLET submits the job to HADOOP for map/reduce operations. HADOOP returns a 
Boolean job status value indicating whether the job succeeded or failed. If the job 
succeeded, the output files are read from the grid and passed to the client to produce 
visualization. A unique output directory per user request is created by the servlet and 
submitted to HADOOP; final output from the job execution is written to that output 
directory. 
 
In asynchronous job submission, as soon as the user submits a request, a job.xml file is 
created with information such as name of the output directory, input directory path, 
unique jobid, and metadata xml file location; job.xml is stored on the grid in the 
/jobs/inbox directory and the unique jobid is returned to the user. The browser on the 
client side keeps polling the web server via an AJAX call for the status of the job. The 
servlet in turn polls the /jobs/processing, /jobs/error, and /jobs/processed directories on 
the grid to check the submitted job’s status with the unique job id. If the submitted job is 
completed successfully, job.xml is moved to /jobs/processed and the unique output 
directory specified in the job.xml will exist with the final output. A job controller daemon 
that is running on one of the TASKTRACKER machines checks the /jobs/inbox folder 
every five seconds for any job.xml files, reads the elements of the job.xml file, and sends 
them as arguments to the map/reduce program to create and submit the job to HADOOP. 
Table 2 shows a sample job.xml file. In the table, the “datasetname” tag specifies the 
location of the dataset, “filename” indicates the file that needs to be processed, “outfile” 
indicates the output directory location where the final output should be stored, and 
“configfile” indicates the location of the metadata.xml file that the Map/Reduce class is 
supposed to use. 
 
Submitting a job to HADOOP consists only of specifying a set of configuration 
parameters such as which Map, Reduce, and Combine classes to use, which input format 
to use, the location of the input files, the name of the file where the output should be 
stored,  and the boundary condition of the split, if any. Appendix B shows configuration 
parameters that we used in our project. 
 
HADOOP creates the jobid folder in the /jobs/processed folder if the submitted job is 
successful so that the browser polling the /jobs/processed folder can read the folder to get 
the final output. For each submitted job there can be multiple output files created in the 
jobid directory since HADOOP creates as many output files as the number of reductions.  
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<?xml version="1.0" encoding="UTF-8"?> 
 
<job:jobconfig xmlns:job="http://job.sjsu.edu/jobschema"> 
 
 <job:datasetname> 
  /etc/userdatasets/sandhya/datasets/pums1 
 </job:datasetname> 
 
 <job:filename> 
  /etc/userdatasets/sandhya/datasets/pums1/ 
 </job:filename> 
 
 <job:jobid> 
  jobid-1205344163435 
 </job:jobid> 
 
 <job:outfile> 
  /jobs/processed/jobid-1205344163435 
 </job:outfile> 
 
 <job:configfile> 
  /etc/userdatasets/sandhya/metadata/ethnic.xml 
 </job:configfile> 
 
</job:jobconfig> 

Table 2 job.xml created with the user specified information 
 

3.4.4 How to submit a job to HADOOP from TOMCAT 
 

In the initial implementations of HADOOP, online job submission from Tomcat was not 
possible since HADOOP was not able to find the user-defined map and reduce classes 
and was throwing a “ClassNotFoundException.” The reason for that exception is that 
HADOOP could not load classes that were in the traditional web application’s classes 
folder or from a jar in the lib folder. In addition, placing the hadoop-jar file in the web 
application’s lib directory conflicted with the web container’s lib files because hadoop-jar 
contained JETTY webserver’s APIs, which conflict with Tomcat APIs. Removing the 
conflicting APIs from hadoop-jar did not alone resolve the problem although it is part of 
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the solution. HADOOP was not able to load the classes that Tomcat’s CLASSLOADER 
was loading. We had written a new URLCLASSLOADER that can obtain the classes 
from Tomcat’s CLASSLOADER. The URLCLASSLOADER creates a class path, copies 
the classes from Tomcat’s CLASSLOADER, and passes them to the HADOOP’s 
JobClient. However, the JobClient did not load the classes even though it was running in 
the same JVM and context as the SERVLET that initiated the request. In attempting to 
solve this problem, we dug into HADOOP’s source code and found that HADOOP’s 
class loading mechanism is limited to loading only one jar file during the map-reduce 
request. Therefore, we had to prepare a single large jar file that contained the class files 
that we have written and all the dependant jar files that our classes use, place the large jar 
file in the web application’s lib folder, and load this big jar file through the 
URLCLASSLOADER. HADOOP developers are working on being able to accept more 
than one jar file during a map-reduce request.  
 
As a result of these conditions, to enable the online job submission from the Tomcat web 
server to HADOOP, we need to include hadoop-site.xml and hadoop-default.xml, in 
which the HADOOP configurations to run a job are specified, in the web application’s 
classes folder. Apart from that, it is necessary to include the cleaned up hadoop-jar file 
and its dependent jar files and one big jar file that contains all the map/reduce classes and 
its dependent jar files in the web application’s lib directory.  
 

3.4.5 Generic Map/Reduce Program 
 
This program is the major ingredient of the project; in it, user-submitted jobs are 
processed. Only three classes are passed to all the machines on the grid. The first is the 
class that extends MapReduceBase and implements Mapper, the second is the Combiner 
class that extends MapReduceBase and implements Reducer, and the third is the class 
that extends MapReduceBase and implements Reducer. The class that implements 
Mapper does the mapping-related work, the combiner acts like a local reducer for the 
map class, and the class that implements Reducer does the reduction-related work.  Since 
only these three classes are distributed to all machines on the grid, any computation logic 
has to be included in these three classes. From now on, I refer to the class that 
implements the Mapper as the Map class, the class that does the local reduction as the 
Combiner class, and the class that implements the Reducer as the Reduce class.  
 
Since only the Map, Combine, and Reduce classes are transmitted to the machines on the 
grid, any modification of global variables or any parsing of data that is done outside the 
Map or Reduce class cannot be executed on the grid. Therefore, metadata xml, where the 
user specifies operations and the data that need to be read, is parsed in these classes. Once 
a job is submitted to the grid, the input is split into multiple chunks and is distributed 
among the available machines. If the user does not have specific conditions for the split, 
each chunk is terminated at some calculated offset of an input file. At each 
TASKTRACKER, the user-defined Map class is executed, and whatever functionality is 
defined in that Map class is processed on the chunk that is given to the machine. This 
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works perfectly when a user does not have any data dependencies in the executing file. If 
any dependency exists in the file, there is a high probability that dependant data is split 
across multiple chunks and are processed by different machines. In this case, the 
calculated result might be inaccurate. To overcome this problem, we have implemented a 
logical boundary-based split to ensure that all related data is executed on one machine. 
The boundary-based split is explained in detail in later sections. This boundary-based 
split releases the Map program from having to take extra measures to get all the data that 
is related.  
Before the Map class is called, the HADOOP framework internally generates a java long 
number as the key and the value for the key is the offset of the first byte of the line with 
respect to start of the file. Essentially, each line of a chunk is assigned to a java long 
number. These generated key/value pairs are passed to the user-defined Map class. The 
user-defined Map class reads values from the formal argument, applies any selection 
criteria the user has specified, reads the column positions, and prepares a set of 
intermediate key/value pairs as specified in the metadata xml. The way we implemented 
the intermediate key for ease of grouping and sorting is if the user has specified a key in 
metadata.xml, the intermediate key is the user-defined key; otherwise, the matched value 
is the intermediate key. In this Map class we perform operations such as SUM, 
AVERAGE, MEDIAN, and COUNT on a small set of data typically the size of one line 
and pass it the combine phase. We use the combine phase to perform operations similar 
to the reduction phase but with the in-memory data processed by the map phase. The goal 
is to enhance performance and reduce network latency in the data transfer since the 
combine task generates a smaller set of output values passed to the reduction phase. The 
reduction phase performs the specified operations on the multiple map sets.  We 
implemented the Map class such that it creates a mapping with the user-defined key/value 
pairs and passes this mapping to the Combine class and then on to the Reduce class. 
 
In the Reduce phase, the reduce method reads the key and set of values for that key, 
performs the specified function, such as COUNT or SUM, and writes the final output as 
one value per key to the output file specified by the user. The Map class does not call the 
reduce class directly. Before the user-defined reduce class is called, HADOOP collects all 
the outputs of the same key from all the mappers, sorts them either by user-defined 
partitioning function or by HADOOP’s predefined partitioning function, and then passes 
the final key and a set of values for that key to the user-defined combine class. After the 
combine class is done, the key/values are passed down to the user-defined reduce class. 
The user-defined Reduce class executes the specified operation on the set of values for a 
key and writes to the output file. 
 
While submitting the job to HADOOP, the user can specify to perform computations only 
on one file or on a set of files in a directory. When the user specifies only one input file, 
then it is trivial that we submit one job. However, when a user specifies multiple files, 
submitting one job per file would be very inefficient since the overhead to initiate the 
Map tasks is repeated for each file and the metadata.xml is parsed repeatedly in the Map 
class. In addition, if there are multiple users submitting multiple jobs and we create a 
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single job per file, the grid would be overwhelmed with multiple jobs, and multiple 
map/reduce tasks per job and the response time of the grid would increase.  
 
HADOOP can take a directory as an input and execute all the files at once. If we choose 
to submit the whole directory as one job, then the keys for each file should be different in 
order to separate the output for each file in the directory. The reason for this restriction is 
that once a directory is given to the job, the data is partitioned logically to a certain size, 
and each partition is executed on different machine. Machines on the grid do not 
differentiate which partition belongs to what file, so all these machines would write the 
value to a single key. This approach would be useful to calculate aggregate values across 
multiple files. However, if we want to separate each individual file’s output, we need to 
be able create a set of unique keys per file. For instance, if a user wants to calculate how 
many Asians and Hispanics live in each state, we must prepare two unique keys for each 
state.  
 
Initially, we have considered the option of choosing a unique identifier per file and 
attaching at the end of each line in that file. For example, we could attach a unique state 
code at the end of each line of a file. Nevertheless, this approach introduces lot of 
overhead for attaching extra information at the end of every line in a file, not to mention 
that we are indeed changing the user’s data and we had to repeat the operation for every 
file in the dataset.  
 
The other solution we have considered is to record the actual filename while defining the 
chunk. If we attach the file name to the user-defined key in the Map class, even though 
multiple machines are processing two different chunks of a same file, if we know to 
which file the chunk belongs, separating the output among the files becomes easy.  
 
Let us go through an example of how the Generic Map/Reducer executes a sample job. 
Let us consider a simple scenario in which the user wants to calculate the total number of 
Hispanics, Asians, and African Americans who live in each state of the US. The user 
defines a metadata.xml with the above information by specifying Asian, African 
American (AA), and Hispanic as three different keys for each state. The user also 
specifies the criteria for a line to be selected for processing and the column positions in 
that line that the Map class should read from to differentiate amongst the keys. The 
GenericMapReducer program takes the file name of the chunk this machine is processing 
and prepares a key such as Asian_filename, AA_filename, or Hispanic_filename and 
reads the values in the column positions specified for each key and adds them to a map. 
In the combine phase, all the values for the keys Asian_filename, AA_filename, and 
Hispanic_filename that are executed on local Mappers are collected, sorted on the key 
names, and sent to the reduce function of the Combine class. The combine class performs 
the COUNT operation on the set of keys given to it by the local map task. These keys are 
a subset of the overall keys for the file, the rest of which are spread across multiple map 
tasks. The Combine class then sends the calculated sub-total to the Reduce class as a 
key/value combination similar to what is given earlier by the Map phase to the Combiner 



 

21 

phase. The Reduce class performs the COUNT operation on the set of sub-totals for each 
key and writes the output in the user-specified location. The result in the output file is one 
value per key.  
 
The GenericMapReduce program does not guarantee the output to be in the same order in 
which the keys appear in the input dataset. The reason is that prior to the reduction phase, 
the output from the Map class of GenericMapReduce program is sorted on the 
intermediate-keys by HADOOP. Therefore, the order of lines in the output file changes 
from that of the input file. 
 
Let us explain this problem with an example that calculates pixels on the screen from 
geographic latitudes/longitudes. In this example, every state has a file that contains a set 
of latitudes/longitudes separated by spaces. Each line has a geographic latitude/longitude. 
If we combine all these latitudes and longitudes and draw a polygon, we can visualize a 
state’s boundary. However, we must convert the geographic latitudes/longitudes to pixel 
coordinates that can fit on the screen in the order in which they appear in the file. 
Therefore, when we run a formula on this set of latitudes/longitudes to generate the x, y 
coordinate pixels on the screen, the output size would be the same as input size. In this 
case, the order of the coordinates matters since we draw a polygon with these 
coordinates, and if the order of the coordinates changes in the output, the boundary of a 
state changes. In addition, the coordinates for different states should not be intermixed.  
To overcome this problem, we have used HADOOP’s generated key instead of the user-
defined key so that sorting is performed on the unique sequential key and so that the 
order of the output file does not change from the input file. However, this approach has 
resulted in inaccurate output because HADOOP’s generated key is repeated across 
multiple files. To understand this problem we must investigate how HADOOP internally 
generates the key.  

3.4.6 How HADOOP generates a unique key per line in a chunk 
 

Once the input data is split into multiple chunks, each chunk is distributed to a different 
machine. When a machine starts processing the input chunk, it takes the offset of the first 
byte in the line with respect to the beginning of the file as the starting key and increments 
the key by the number of bytes in the line. For example, let us assume that a file with 100 
lines is split into two chunks such that chunk1 contains lines 1-50, chunk2 contains lines 
51-100, and each line in the file is 10 bytes. Let us say that chunk1 is executing on 
machine1 and chunk2 is executing on machine2. In this situation, machine1 generates the 
key starting from zero since this chunk’s first line is beginning of the file and increments 
the key by 10 since the number of bytes per line is 10. Machine1 increments the key until 
it finishes the chunk and it restarts the key generation when it reads another chunk. On 
the other hand, machine2 generates the key starting from 51 since its chunk’s first line 
and increments the key by 10 since the number of bytes in each line is 10.  
 
From the above explanation on how HADOOP generates the key internally, if we submit 
multiple files in a single job, each file’s start position is zero; two different file’s start 
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index for the key being generated would be identical. Therefore, in the reduction phase, 
two different file’s outputs will contain the same key, and we will receive inaccurate 
results at the individual file level output. 
 
To overcome this problem, we modified HADOOP’s functionality so that the key will be 
the line number of the file in combination with the filename of the chunk that the 
machine is processing. Even though some of the indexes of different files are identical, 
the keys are different for different files because the filename is unique in a directory.  
 
Now if we submit coordinate calculation for multiple files in one job, the key for every 
line of a file is always unique, and the order of the input file’s content is not altered in the 
output. 

3.4.7 Input Partition 
 

To distribute tasks among the machines on the grid and to allow multiple machines work 
concurrently on the input, the input is partitioned into multiple parts and each part is 
given to a different machine on the grid.  The idea behind splitting the input is that each 
machine can execute tasks equally so that the load can be balanced among the machines 
on the grid. For this purpose, the input file is logically split into multiple splits as 
explained below. 
 
As soon as HADOOP receives a job to perform, it reads the input location from the 
configuration of the submitted job. If the input path is the directory, HADOOP reads the 
input files in the specified directory one by one and calculates the total number of splits. 
The maximum split size is limited to the block size of the chunk that the user specifies in 
hadoop-default.xml file. The size of the split is calculated by taking the total number of 
bytes in the input directory into account. HADOOP logically splits the input in such a 
way that all the splits are of the same size other than the last split. Only the metadata of 
the input split is stored before the spilt is distributed to a TASKTRACKER that would 
process the split. The metadata of each split contains the name and absolute path of the 
file on the grid, the start index of the split, and the length of the split. The actual bytes are 
read after the split’s metadata is distributed to a TASKTRACKER. Since the time it takes 
to process each task and the overhead of creating the task and distributing the task is 
significant, keeping the split size large enough helps in finishing the job fast. The ideal 
minimum split size is 64MB [1], which is equal to the size of a block of files on the 
Distributed File System (DFS).  The general formula applied for splitting a regular text 
file follows:  
goalSize = totalSize / (requestedNumSplits == 0 ? 1 : requestedNumSplits) 
SplitSize = MAX (minSize, MIN (goalSize, blockSize)) 
Where minSize is the minimum split size as configured in the hadoop-default.xml or 
overridden in hadoop-site.xml 
requestedNumSplits is the number of map tasks that should be run ideally. 
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blockSize is the default blocksize as configured. We choose to keep it at 64MB. 
Each split is then given to a Map task. 

3.4.8 Challenges with Splitting on the Dataset 
 

As explained above, in HADOOP splitting is done irrespective of any conditions or 
boundaries defined on the input. In addition, each split is executed on a different 
machine, which limits the type of applications that can run on the grid. In other words, if 
the first line in the input file is dependant on the consecutive lines upon a starting 
condition, and if the file is partitioned at a certain size, there is a high probability that the 
dependant lines might be shared among multiple partitions, which might change the end 
result. For instance, in the census dataset, each file has multiple lines, and Housing 
records start with an H and person records start with a P. Multiple lines that start with a P 
would follow the lines that start with an H. To calculate the total number of houses and 
the average number of people that live in a house, the same machine should process all 
the P lines that have a parent H line. If this file is split at a random number of bytes, there 
is a high probability that some P lines with the same parent might be placed in different 
splits, which would change the results. Another example is that, to calculate the average 
income per house, we have to calculate the total income per house and divide that with 
the number of houses that are in that file. In this scenario, to calculate the total income, 
we have to process the persons that live in a house and their income. Since every P line is 
dependant on its parent H line, splitting a file with a specified boundary condition is vital 
in these situations. Although a grid is suitable for non-sequential batch jobs, being able to 
process files that have a repetitive pattern increases a grid’s capability. This follows the 
standard data-mining pattern: 
  cat * | grep | sort –unique –c > outfile 
The following paragraphs explain how to perform the input partitioning with a specified 
boundary without imposing significant overhead. 
 
To split the input with a specific boundary, we must be able to define a condition on the 
data. In addition, the condition should support some repetitive pattern. Here we need to 
be able to differentiate the condition that should be met when calculating an output versus 
the condition that can be used to split a file. The main goal of splitting the input with a 
condition is that all the dependant data to perform a calculation be distributed to the same 
TASKTRACKER. 
 
We considered three options to perform the condition-based splitting. The first two 
options try to change the split size once the split is distributed to a machine. The 
advantage of the first two approaches is that, HADOOP’s calculation of split metadata is 
not modified, so no overhead is imposed on the job execution. Third option overrides 
HADOOP’s current split calculation but comes with overhead. 
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1. Specifying only end condition.  
2. Specifying start condition and end condition of a line for splitting. 
3. Preprocess the input file looking for the matching conditions, and prepare the metadata 
of the split ourselves on a single machine. 
4. Prepare split metadata ourselves on the grid. 
Now we analyze the pros and cons of each of the above specified options. 

3.4.8.1 Specifying only the end condition  
 

The condition that is specified is for a line, which means the condition should indicate 
split the file only when the line ends with some specified condition. If the user wants to 
split before a line beginning with H, then the end condition should be specified as \nH. In 
this case, a TASKTRACKER reads the chunk until the next H starts. This method 
ensures that the patterns for H and the corresponding P lie in the same flow and relative 
matching can be achieved. However, some obvious drawbacks exist in this approach. 
 
One obvious scenario is when two machines are processing two splits concurrently and 
the ending H in split1 actually occurs past the beginning index of split 2. As a result, two 
machines might process some lines twice. Figure 4 explains this scenario. Another 
drawback is that some of the splits would be very large, creating load balancing 
problems. If the input is hundreds of gigabytes and the end condition matches after 100 
GB, only one machine has to take the load of this 100 GB split, resulting in load 
imbalance.  
 
The above explanation leads to option two, in which we take both start condition and end 
condition; if the condition is not matched even after the chunk size is read, read up to 
1MB of data from another chunk to meet the condition.  
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Figure 4 Split reading when only end condition specified 

3.4.8.2 Specifying start condition and end condition for a line  
In this scenario, the user has to specify the start condition and end condition of a pattern 
so that every block is split at one line before the condition. If the condition matches at the 
first line of the file, which would be the beginning of the file, start reading all the lines 
until it reaches 1MB less than the specified split size. From then on, start matching for the 
condition at every line so that the last block does not exceed the total split size. If the split 
size exceeds and the condition did not meet, we add a buffer size of 10% of the split size 
to accommodate more data until it matches the condition. The need for that extra buffer is 
created by the repetitive nature of the data within each split-size. If the condition matches 
for the first time before the extra buffer is read, we stop reading data into that split. If the 
start index of a split does not match the condition, read the lines until the start condition 
matches and ignore these read lines. Start the split from the position where the start 
condition matches. Ignoring the lines that do not match a condition ensures that more 
than one machine on the grid do not process these lines.  
 
Let us explain the above scenario with an example from the PUMS dataset. In the PUMS 
dataset, housing record lines start with an H and are followed by a set of related person 
records. Therefore, the user specifies the start condition as H and the new line as the end 
condition. Now our split condition as a regular expression is ^H.*[\r\n]. When a machine 
reads the first line of a split, if it is beginning of the file, the condition matches and the 
machine reads all the lines until it reaches the last 1MB. Within the last 1MB of data, the 
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condition is checked at every line to ensure that the H line and all its dependant P lines 
can fit into the specified split size. If the H line and all its dependant P lines cannot fit 
into the specified split size, we add a buffer of 10% of the split size to accommodate the 
H line and all its dependant P lines. If the first line that is read does not meet the 
condition, the machines have to ignore the lines before the condition matches. This 
ensures that all the H lines and the P lines dependant on these H lines go to one machine 
and avoids the multi processing of these lines.  

Split Metadata
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Start 0

End line 6

Split 3
Start line 14

Until end of file
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End line 13 

H data data data data
P data data data data
P data data data data
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Figure 5 Split reading when both start and end condition is specified 
 

The main drawback of the above scenario is that the splitting cannot be done on the 
datasets that do not have a start condition. The second drawback is that if the condition 
does not match even after adding the 10% buffer size to the actual split size, the split 
takes place after the 10% limit is reached. The second machine reading the consecutive 
split does not know the position at which the previous split was read and ignores these 
lines. In that case, some of the data is not processed at all, which produces an inaccurate 
result. Figure 5 explains this scenario. In the example explained above, once the line 
starting with H is encountered but did not get the same condition even after the added 
10% buffer size is reached, this portion of the data is split as soon as the 10% buffer is 
reached. As a result, the P lines that depend on the H line were separated into another 
split. In addition, the other machine ignores the rest of the P lines that depend on this H 
line since they do not meet the match condition, and the other machine thinks that these 
lines are to be read by another machine. The third drawback is that there is a little 
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overhead to read and check for the condition in the last 1MB of data and the first few 
lines. This overhead adds up when multiple map tasks are reading data and trying to 
match conditions on the same file. The load is clearly seen on the TASKTRACKERs as 
well as the data nodes that actually supply the data from the DFS. 

3.4.8.3 Prepare metadata on the machine that has submitted the job 
 

Until this point, we have been utilizing the metadata of the split that is prepared by 
HADOOP and have tried to manipulate the metadata after the task is distributed to a 
machine on the grid. Now let us consider the scenario of preparing the metadata 
ourselves. We must read the file on the machine that has submitted the job, match the 
specified condition, and prepare the metadata. For instance, to match the condition 
^H$\\n, when a client submits the job, open the input files and start reading the lines of 
each file so that a split’s metadata ends exactly when a condition is matched. In this case, 
no conditions need to be matched at the time the TASKTRACKER is reading the input.  
 
The worst case for this scenario occurs when the input is too large; a single machine takes 
a long time to read the lines in the input, match for the condition, and specify the split’s 
metadata. The second problem is some splits might be too big, resulting in load 
imbalance. The third problem is reading all the input on one machine by the client 
imposes significant overhead on the client machine. 

3.4.8.4 Calculating Split metadata on the grid 
 

Since the metadata preparation on a single machine takes a long time and defining the 
metadata without any condition and matching for the condition at the time of distributing 
the task results in inaccurate results, we consider the option of performing the split 
calculation on the grid. That is, when the user requests for visualization, we take the split 
condition from the user and prepare the metadata for the splits on the grid. We submit a 
job to the grid to calculate the metadata of the split, such as start index, end index, and 
total number of bytes. We match the user-specified condition and define a split’s start 
index, end index, and total number of bytes.  In this scenario, the split calculation is a 
pre-processing step and need not be part of the actual job submission.  However, this 
approach does not overcome the problem of load balancing since some of the splits can 
be larger than others. Nevertheless, one potential advantage of this approach is that since 
we know the actual split size before the split is distributed to the TASKTRACKER, we 
can consider the worker machine’s available CPU, memory, and network bandwidth 
before we submit a large split to a TASKTRACKER. In this way, we can ensure that 
bigger splits can be executed on a machine with high performance and high network 
bandwidth.  
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3.4.9 The option we choose  
 

After considering the four options specified in section 3.4.8, we have chosen option 4, 
which calculates split metadata on the grid. Calculating split metadata on the grid 
overcomes most of the disadvantages of options 1, 2, and 3. This section describes how 
we implemented split calculation on the grid. 

Implementation of Split calculation on the grid 
 

We chose to take the starting condition and ending condition as input parameters that can 
be specified in the job configuration. We then implemented this approach as two phases. 
  1. A job to calculate the logical split 
  2. An InputFormat to read the calculated logical split  

3.4.9.1 Logical Split Map/Reduce program 
The logical splitting mentioned earlier is most optimal if performed on the grid. We took 
the default implementation provided out of the box by HADOOP and ran our 
Map/Reduce program, LogicalSplitter. For every map task in the LogicalSplitter, we 
obtained the filename on which the map is executing, the start offset of the map as 
calculated by HADOOP, the length of the offset as calculated by HADOOP, and the start 
and end conditions provided by the user at configuration time. Every time the map 
method was called on the LogicalSplitter, we look for the starting condition and calculate 
the starting offset as follows: 
 
Logical_start = start +          ( no.of bytes per ith value)                  --- (1)  
Where start is the optimal start calculated by HADOOP 
N is the total number of bytes between the start and start + length (where length is the 
optimal length calculated by HADOOP) 
And 1 ≤ i ≤ N 
Once start is marked, we looked for the end, starting from the very next byte of start, until 
we find the end or the map is finished, in which case we would not have found the end in 
the current split. If logical_end is found we calculated that as follows: 
Logical_end = Logical_start +         ( no.of bytes per ith value)    ---(2) 
The conditions defined in (1) holds for (2) also. 
We then created an intermediate key with the logical start and filename, and we group the 
results in the reduction phase and write them out to the grid.  
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Note that it is not necessary to find the end condition in the same map. Although in 
theory there is no limit to the size of a file on the DFS or to the number of files on the 
DFS, the current implementation does have a set limit in the number of splits it can have 
for a single file. We have seen that the number of splits will be a factor of the total 
number of map tasks that will be executed, which is limited. Due to this limitation, we 
chose to have one reduction for the LogicalSplitter to provide us with an ease of 
implementation of the actual split file. During reduction we used the following formula, 
which involves iteration over the group of obtained keys to find the right start and length 
pair that will eventually be used by the InputFormat of the Job-submission client. Table 3 
explains the logic. 
 

 
Table 3 Algorithm to perform logical split 
 

In Table 3, Ki is the start offset of the key of the ith key (the intermediate key is filename 
+ start off set). 
Along with the above, we also saved the actual criteria for which this map/reduce 
operation is valid and the filename to which the metadata belongs.  
As mentioned earlier, we require that the user provide the start condition, the end 
condition, or both. It is obvious that in the case in which neither condition is provided, 

BEGIN 
END_FOUND=false; 
PREV_K=null; 
FOR-EACH Ki in (K1, K2, K3..Kn) 
      IF PREV_K = null THEN 
           PREV_K = Ki 
      END-IF 
      IF (Vi is NOT empty ) THEN 
           END_FOUND=true; 
      END-IF 
       IF END-FOUND THEN 
              Write  the pair of PREV_K,(Vi-PREV_K) as a valid split 
               PREV_K = null 
       ELSE IF PREV_K = null THEN   /* for consecutive maps with null V */ 
               PREV_K = Ki 
       END-IF 
END FOR 

END 
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this discussion is nullified. To simplify the discussion, we break the algorithm into 
separate sections to discuss these multiple scenarios. 

Start condition is mentioned and end condition omitted 
In the case in which the start condition is mentioned and the end condition is omitted, the 
formula given in (1) is the only one that needs to be calculated. Logical_end will be null 
since (2) will not be calculated. Hence the algorithm in the reduction phase will have 
multiple Ki’s with their corresponding Vi’s as null. This case needs to be dealt with 
separately when all the V’s are null. Then, the algorithm changes as specified in Table 4.  
 

 
Table 4 Algorithm to perform logical split when only start condition is specified 

Start condition is omitted and end condition is supplied 
The case in which the end condition is the only condition mentioned, we take the first 
start and ignore the others. In this case, (1) will not be calculated, but to calculate (2) the 
following is assumed: Logical_start = start; The calculation for (2) is then trivial. 
 

  
Table 5 Algorithm to calculate the logical split when only end condition is specified 
 

BEGIN 
 IF all K are EMPTY THEN 

         PREV_START=0 
          FOREACH Vi in (V1, V2, V3 .. Vn) 
                             Write the pair of (PREV_START, Vi-PREV_START-1) as a valid 
split 
                              PREV_START = Vi 
                     END-FOR 
            END-IF 

BEGIN 
             PREV_K=K1 

FOR-EACH Ki in (K2, K3, K4..Kn) 
                   Write  the pair of PREV_K,(Ki - PREV_K -1) as a valid split 

       PREV_K = Ki 
END FOR 

END 
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3.4.9.2 LogicalInputFormat and LogicalRecordReader 
 

In the previous section, we discussed how the meta-data is calculated for the 
LogicalSplit. In this section, we discuss how that meta-data is used prior to the job 
submission to perform the actual Map/Reduce that the user wants on the input data set.  
 
When the user requests a new job to be performed on a given input dataset, we check  the 
directory holding the metadata and look for the input filename(s) on which the operation 
will be performed. We chose to have the sub-directory with the same name as the real 
input file so that the implementation is extendible for multiple reductions in the previous 
phase. We then iterate through any sub-directories under it to find the actual meta-data 
files and look to see if a meta-data file is found with the same criteria that the user is 
currently requesting. If no meta-data file is found, then the job is submitted without any 
logical splitting. Otherwise, we read the contents of the meta-data file and create the 
FileSplit with the start and length in it as discussed above. An array of splits is created 
and passed to the job submission logic. 
 
At the time of reading the contents of the meta-data file, we needed to ensure that even 
the \r and \n be read and passed as input to the map program. We limited ourselves to 
processing one line at a time. 
 
We found that the HADOOP implementation of DFS has a lower limit of 16KB of data 
when a read is called for one byte. To ensure that the line-ends are met properly in 
different systems, we had to read one byte of data towards the end of the split. To 
minimize overhead, we found it optimal to declare a buffer size of 16KB for both the 
input and output buffers used to read and pass data to the map program. 

4. PERFORMANCE RESULTS 
 

We have produced different types of visualization requiring computation-intensive 
calculations. One of the visualizations is to calculate the median income of people that 
belong to seven different races, the average number of people per house in seven 
different races, and the average number of people that speak five different languages. 
These three calculations are performed for each state in USA. The total data that needs to 
be processed to produce the visualization for 50 states in the USA is 5 GB, and the 
number of computations, including comparisons, additions, multiplications, and 
divisions, equals 26,240,015.  
 
We have performed the calculations to produce the above visualization on a single 
machine with 512MB random access memory, 1.6GHz processor speed, and 10GB of 
free hard disk space. The single machine took 9 minutes and 30 seconds to finish the 
computations to produce the visualization, whereas a grid with six machines finished in 
20 minutes initially but after performance tuning, finished in 5 minutes and 12 seconds. 
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Out of the six machines, only four machines performed the computations; the remaining 
two machines were the masters coordinating data and task distribution on the grid.  

4.1 Performance improvement of the grid 

4.1.1 Grid computation with Map/Reduce 
 

The performance of the grid depends critically on how we write the Map/Reduce 
program. In the initial version of the Map/Reduce program, we identified patterns to 
calculate median income for different races, number of people per household per race, 
and the number of people speaking a certain language. This information is collected per 
state. The matched input lines are parsed to extract the required data.  An intermediate 
key with “race+statecode” and a corresponding intermediate value for the data that was 
extracted were written to the OutputCollector. The intermediate keys looked like 
“statecode+race” or “statecode+ language.” That is because when sorting happens on 
these intermediate keys, they are sorted by statecode first and then by the secondary key 
that is race or language. We ensured that the intermediate keys for race or language do 
not collide with each other. The way HADOOP works after this is that it shuffles and 
sorts these intermediate keys and writes them to a common location on the DFS 
(Distributed File System). Once all the map tasks for the job are done, the reduction 
phase starts and each key and its corresponding values are processed by one reduction 
task. We then calculated the mean, median, mode, total number of people speaking a 
language, and the maximum and minimum number of people per household in the 
reduction phase. Note that these were calculated per race or per language per state.  
 
In this approach, the number of bytes output by the map is proportional to the input bytes 
given to the map. The entire output has to be sorted in memory and written to the DFS; 
this requirement caused severe overhead due to network latency and resource contention 
during sorting. Therefore, the grid took 20 minutes to finish the job, a result far worse 
than the single machine’s performance.  
 
In an attempt to increase the job’s performance, we increased the number of parallel map 
tasks on a machine from two to ten. Although this allowed the grid to execute 
computations faster, the load on the DATANODES was exhaustive. Hence, the total turn 
around time for the job completion increased to 20mins.  Since the load on the 
DATANODES created a bottleneck, we attempted to compress the intermediate output 
from the map tasks. Although the compression decreased the load on the DATANODES, 
the fact that large amounts of data needed to be compressed resulted in high CPU and 
memory utilization on the TASKTRACKER machines. This immediately resulted in 
“java.lang.OutOfMemory” exceptions on the TASKTRACKER JVMs. An attempt to 
increase the heap size considerably was not fruitful. After analyzing the memory usage 
pattern in the JVM and the corresponding garbage collection statistics, we realized that 
JVM tuning is not an apt approach.  
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4.1.2 Grid computation with Map/Combine/reduce 
 

To improve the performance of the job, we decided to decrease the number of input bytes 
for the reduce phase. To achieve this, we dug more deeply into HADOOP’s map/reduce 
framework. One lead obtained from the HADOOP documentation was a combiner class. 
However, the affect of using a combiner class was not documented. From looking at the 
“TaskRunner” class, which executes a map task or a reduce class, we realized that using a 
combiner class to calculate intermediate aggregated values would be very effective. 
Therefore, we wrote a combiner class that processes the map output in memory before 
writing to the disk. We had to ensure the uniqueness of the keys to maintain data 
integrity. The result of using the combiner was the number records to be input to the 
reduction phase decreased from 648757504 records to 685 records.  The time taken for 
processing also decreased significantly from 20 minutes to 13 minutes. Although this is a 
considerable improvement, the number of bytes output from the map remained the same. 
Moreover, the number of bytes was same that was sent for sorting of the intermediate 
keys. Hence, the network latency decreased, but CPU utilization and in-memory 
processing were high, and the processing time of the job was still far way from the single 
machine’s performance of 9 minutes, 15 seconds.  

4.1.3 Grid computation with several other improvements 
 

Having tried all of the above improvements and not achieving a significant performance 
breakthrough, we analyzed the entire HADOOP code base for vital process 
improvements.  We observed that HADOOP spawns a new process every time a map task 
is executed. Note that there is one map task for each data chunk. We set the number of 
map tasks that can be launched to a number equal to the number of splits or number of 
files, which is comparable with the actual split calculation during job submission [13]. 
We chose to equate the number of reduce tasks to the number of machines available for 
the map/reduce process [13]. In addition, we noticed that the process’ life is ended as 
soon as it is done executing the split. Considering that each process is a JVM, this puts 
significant overhead on a machine that is under load.  To maximize the amount of work 
done in the map phase, we chose to perform most computations in the map phase. To 
perform computations in map phase, input should be logically split with a boundary 
condition to get accurate results, as explained in section 3.4.9. We performed a majority 
of the aggregations, and we maintained sorted order of the keys in the Map class. Finally, 
we wrote the output towards the end of the mapping phase in the “close()” function that is 
called once for a map task. Upon doing this, we realized that we could eliminate the 
combiner phase. This elimination resulted in a huge decrease in memory usage and 
optimal CPU utilization. The number of records traversing the network dropped 
significantly, from 1512 to 672.  The time taken for the reduce phase was well under a 
minute. Therefore, it was not essential to make significant performance improvements in 
the reduce phase.   
 
In addition to the above improvements, we also recognized that accessing data over the 
network is very expensive. At the time of distributing tasks, HADOOP takes care of 
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sorting the nodes from which the data should be accessed such that the least expensive 
node is at the beginning. Ideally, the least expensive node would be the local node. If the 
chunk that is about to be processed by the TASKTRACKER does not reside on the local 
node, the chunk is transmitted over the network from the nearest DATANODE. To 
transmit the data, which cumulatively might be several gigabytes, over the network is 
very expensive. Furthermore, when multiple TASKTRACKERS perform this type of data 
transfer, the overall turnaround time for job completion is significantly affected. To 
minimize this data transfer latency, we chose to redistribute the data on the grid at the 
time of the DATANODE startup.  Once we executed the job with 100% local data access, 
we achieved a job processing time of 6 minutes and 15 seconds.  At that point, the grid’s 
performance is significantly better than that of a single machine, 9 minutes and 15 
seconds.  
 
During the job execution, HADOOP performs redundant execution of some tasks on 
different machines as a failsafe. This technique is called speculative execution. We 
analyzed speculative execution in terms of visualization to see whether we could find 
different ways to monitor fail-over cases. With this intention, we turned off speculative 
execution; doing so decreased the job completion time from 6 minutes, 15 seconds to 5 
minutes, 12 seconds. Therefore, our overall job execution time was reduced from 20 
minutes to 5 minutes, 15 seconds.  

4.1.4 Lateral scaling of the grid 
 

Despite the above enhancements, the addition of a new machine with the equivalent or 
better configuration on the grid improves overall job execution time by about 1 minute. 
The improvement arises from the fact that the number of splits available for processing is 
significantly higher than the number of machines running map tasks. This will be true as 
long as one map task processes one split and the input dataset can be split into logical 
chunks. Figure C-2 in Appendix C shows the lateral scaling of the grid. 

5. VISUALIZATION 
 

Since the dataset provides state level information, visualizing state based information in 
individual geographic state would be more effective. US census website 
(http://www.census.gov/geo/www/cob/pu_metadata.html) provided a set of geographic 
latitudes and longitudes per state in individual files. These set of latitudes and longitudes 
in a file specifies a state’s boundaries. Therefore, parsing the geographic latitudes and 
longitudes that fits the screen size or the applet size is necessary.  

5.1 Calculation of pixels from geographic latitude/longitude 
 

The purpose of this calculation is to convert the given geographic latitudes and longitudes 
to pixels. From geographic US map, the whole US map is divided into seven latitudes 
and eight longitudes. Maximum longitude is 130 degrees and Maximum latitude is 50 
degrees. In addition, the difference between the latitudes is five degrees and difference 
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between the longitudes is ten degrees.  Calculating the pixel value of width of each 
longitude and latitude is as follows.  
Following are the list of variables that we have used to calculate the pixels for drawing 
US map on the screen. 
MAXLON – Maximum value of a longitude on the map 
MAXLAT – Maximum value of a latitude on the map 
NUM_LON – The number of longitudes 
NUM_LAT – The number of latitudes  
W – The maximum screen width 
H – The maximum screen height 
Δ lon – The number of longitudes between each representation of longitudinal line 
Δ lat – The number of latitudes between each representation of latitudinal line 
No. of pixels between each longitude (pLON) = W / NUM_LON 
No. of pixels between each latitude (pLAT) = H / NUM_LAT 
The factor to display the longitudinal and latitudinal lines would be 
Lon_factor( €lon) = pLON/Δ lon 
Lat_factor (€lat) = pLAT/ Δ lat 
For a given coordinate (LONi, LATi) we can calculate the corresponding pixel (x, y) as 
follows: 
For a western map LONi is always less than zero. Hence to obtain the absolute LONi we 
perform LONi = MAX_LON – LONi 
Then pixel x = LONi * €lon 
Since latitude values increase up north to the poles from equator and the screen 
measurement of a pixel increases from north to south that is from top of the screen to 
bottom LATi should be represented as  
LATi = MAX_LAT – LATi 
Then pixel y = LATi * €lat 
 

To increase or decrease the map size, Δ lon and Δ lat can be adjusted. In our calculation 
we have taken the Δ lon as 4 and Δ lat as 8 to get a decent map size that can fit in the 
applet with the size (600, 600).  

5.2 US Map visualization 
 

US census bureau has provided boundary files that contain geographic latitude and 
longitude for all states that are in USA. These coordinates are the boundary coordinates 
for states. Each state’s boundary coordinates are specified in a separate file. We have 
converted these latitudes and longitudes to pixels on the grid using the calculation 
specified in section 5.1. WE have stored the output of the converted pixels in 52 separate 
files, one file per state on the grid and read all the 52 files to draw the map. Since these 
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coordinates are boundaries a particular state, we have drawn a polygon that combines 
these coordinates. Each state’s original boundary file contains different sections that are 
separated with some special characters. A new section starts whenever a new corner of a 
state boundary starts. Therefore, when draw a polygon whenever a new section starts. As 
a result each state internally has multiple polygons in it. However, some coordinates 
overlap with each other. As a result, the user sees the whole state as one polygon. Since 
all the calculations are performed on the grid, the applet reads the boundary files from the 
grid and draws each state one by one. The size of the map varies with the applet size. If 
the applet size is high map would look bigger. To make the map size relative to the 
applet/screen’s size, user need to perform the calculations specified in section 5.1 on the 
boundary files. Since we have limited the applet size to 600 x 600, we have calculated the 
pixels only once for 600 x 600 size and stored on the grid. Figure 6 is such US map that 
is drawn as polygons.  We calculate each state’s center coordinate when we are drawing 
the map that is used later in the visualization. 

5.3 Map Visualization with census data analysis  
 

Visualization would be very effective when users want to analyze the census data. 
Therefore, we have performed such an analysis and displayed in circle format inside each 
state. Each circle in each state defines some information that relates to that state. We have 
calculated the employment and unemployment status in each state in USA. We have 
calculated this information on the grid for each state and stored the output on the grid. 
The applet reads the output files and calculates percentage relative to the circle and 
displays on the grid. We have used Java Applet 2D objects to draw the arcs in the circle.  
 

 
Figure 6  USA map that is drawn as polygons 
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To draw the circle we have to calculate the ARC size and draw the circle ARC by ARC. 
To draw the ARC, we have to calculate the start position of the ARC in degrees, and the 
length of the ARC in degrees, height and width of the eclipse. If the height and width of 
the circle are same then the eclipse becomes a circle. The following algorithm is use to 
calculate the ARC of a circle. 
 
START = 0.0 
FINISH = 0.0 
FOE EACH VALUE IN Vi (V1, V2, V3) 
 FINISH = START + Vi 
 STARTING ANGLE F1 = MINIMUM (90, 90 - FINISH); 
 LENGTH OF THE ARC F2 = MAXIMUM (90 – START, 90 - FINISH); 
 START = FINISH 
END FOR 
 
Java Arc2D.Double constructs an ARC, initialized to the specified location, size, angular 
extent and type. To draw the circle inside each state, we have calculated the center 
latitude and longitude of each state.  We have set the circle size as 20/20 which are height 
and width of the circle, and the coordinates of the upper left corner of the ARC are  
Coordinate X = center longitude of the state – width of the circle/2 
Coordinate Y = center latitude of the state – height of the circle/2 
 
We construct the ARC using java Arc2D.Double to which we pass the X, Y, Width, 
Height, F1, and F2-F1. After we construct the ARC we transform the arc and append to 
the path. The path is drawn once all the arcs are added to the circle.  
 
We have performed an analysis of the employment rate and unemployment rate in each 
state in USA. Since each state’s size in the US map is small we have limited the amount 
of information that can be shown within each state. Figure 7 shows the visualization of 
US map with the employment and unemployment rate within each state as circles. From 
figure 7, green color indicates the employment status and red color indicates the 
unemployment rate. As can be seen from the visualization, one can say that 
unemployment rate in very little in all the states in USA.  
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Figure 7 Visualization of each state in US with employment versus unemployment rate 
 

However, the user is looking at very limited amount of data that relates to each state. If 
the user is interested in looking into more details then the user can zoom each state 
separately and can visualize more information that is related to that state. When the user 
zooms a single state, the whole US map would be visualized in the corner in smaller size 
to accommodate the bigger single state map. However, the limited information within 
each state is not distracted by the bigger map. In this detailed version of the state, we 
have analyzed eight different types of income a person gets in each state on an average.  
So if the user clicks on the state that he/she is interested in we show these details that 
relate to that state. Since each state is drawn as a polygon, when a user clicks on a state 
we capture the mouse click, and get the point where the user clicked. We go through the 
set of polygons and find to which polygon the point belongs. Once we know the state that 
is clicked by the user, we multiply the each and every coordinates of that state with 2 to 
make the state twice as big. When we draw the zoomed state, to get the map into the 
center of the applet we had to add some correction factor to each coordinate in the state. 
Therefore, the coordinates of the zoomed state are calculated as  
 

FACTOR = 2, ADDVAL = 50 
LONGITUDE = CENTER_LONGITUDE * FACTOR 
LATITUDE = CENTER_LATITUDE * FACTOR 
LONCORRECTION = (WIDTH OF THE APPLET / 2 – LONGITUDE) + ADDVAL 
LATCORRECTION = (HEIGHT OF THE APPLET / 2 – LATITUDE) + ADDVAL 
FOR EACH COORDINATE IN STATE S ((X,Y), X1,Y1) 

NEW_LONGITUDE = (Xi * FACTOR) + LONCORRECTION 
NEW_LATITUDE = (Yi * FACTOR) + LATCORRECTION. 
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END FOR 
In the same way, we multiply each and every coordinate of every other state in the US 
map with 0.5 to make the US map half the current size displayed. Figure 8 shows the 
visualization that includes the detailed information of state California and the US map in 
the corner. In the figure state California is zoomed to see detailed information about that 
state. In California the bigger state has different income in different colors. Out of those, 
the bigger part of the circle that is showed in cyan color shows that wage income is 
higher than the rest of the income types. In the same way the user can visualize seven 
different types of expenditure also in another circle. 
 

 
Figure 8 Visualization of each state in US with employment versus unemployment rate 

 

5.4 Visualizing more data in matrix form   

Sometimes visualizing different types of information at one time helps to derive some 
details. We have performed an analysis on seven different races in each state. We have 
calculated the median income per race within state, and the average number of people 
that live in a house. In addition, we have analyzed five different languages that are 
spoken more in each state. All this information is displayed in one visualization. Figure 9 
shows the visualization that has all the details described in earlier lines. 
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Figure 9 Matrix representation of different ethnic groups, languages that are spoken, and the 
average number of people per household 

 
In figure 9, RED color represents the number of household that live per house, GREEN 
color represents the median income of people in each ethnic group and BLUE color 
represents the languages that are spoken. Each row defines either and ethnic group or the 
language as shown in the figure and each column represents a state. In addition, some 
colors are light and some colors are dark. Dark color indicates that the value is higher and 
light color indicates that the value is small.  
 
To produce the above visualization, we have calculated the median income, average 
number of people per household, and the number of people that speak each language for 
each state on the grid.  In addition, to produce from lighter color to darker color, we have 
to have the sorted order from higher value to lower value. This sorting is also done on the 
grid. Once the calculations are done on the backend, the applet reads the values, assigns a 
unique color to three sets. The dark color and light color are pre assigned to maximum 
value of the group and to minimum value of the group respectively. The color to the 
values that are in between the maximum value and minimum value is assigned by 
calculating relative position of the value in the array. Once a color is assigned to number 
that is stored so that the same number gets always the same color.  The color is calculated 
as 
 
DIFF = NUMEBR OF ELEMENTS BETWEEN THE MAX_VAL AND MIN_VAL 
R_FACTOR = ABS(MAX_REDCOLOR – MIN_RED_COLOR) / DIFF 
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G_FACTOR = ABS(MAX_GREENCOLOR – GREEN_MIN_COLOR) / DIFF 
B_FACTOR = ABS(MAX_BLUECOLOR – BLUE_MIN_COLOR) 
FOR EACH ELEMENT IN ARRAY A(A1,A2,A3) 
 IF ELEMENT_VAL == MAX_VAL  
  ASSIGN DARK COLOR 
 ELSE IF ELMENT_VAL == MIN_VAL 
  ASSIGN LIGHT COLOR 
 ELSE 
 COLOR_RED=ABS(MIN_R_COLOR–ELEMENT_IDX *R_ FACTOR) 

COLOR_GREEN=ABS(MIN_G_COLOR–ELEMENT_IDX* G_FACTOR) 
COLOR_BLUE=ABS(MIN_B_COLOR–ELEMENT_IDX *B_ FACTOR) 

END FOR 

6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 
Grid is useful for processing large datasets with extensive computations. It leverages the 
power of multiple machines by splitting the input into multiple chunks and by 
distributing them to the machines on the grid. The grid executes the chunks concurrently. 
However, the accuracy of the output will be skewed if these chunks are not split with 
some designated boundaries. Logical splitting helps prevent this problem by splitting the 
input on a well-defined boundary condition. In addition, multiple lines can be grouped 
into one record when the boundary is well-defined on the input chunk. As long as the 
chunks are proportional in size the performance of the computation is on par with 
HADOOP’s default splitting. However, if the boundary condition causes a chunk size to 
be abnormally large, performance degradation might occur due to an imbalance in load. 
In order to avoid this, the task distribution should take individual machine’s capability 
into consideration so that powerful machines get bigger chunks to process.  
 
The performance of the grid is directly proportional to the size of the grid. It is possible to 
complete a job in constant time by determining the number of machines that it has to run 
on, given the size of the dataset.  However, we need to consider the time it takes to 
distributes tasks across multiple machines, transfer the data on the network to the 
machines and finally aggregate the output, against the time it takes to process on a single 
machine, before choosing the grid. If the dataset and the number of computations are too 
small, the turn around time for the job completion will be higher on the grid than a single 
machine’s turn around time.   
 
Since the dataset that we chose for our project is large, and the number computations that 
we had to perform to produce the visualization are high, grid was very useful in reducing 
the turnaround time for the visualization.  
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6.2 Future work 
 
Since network latency is involved between the master node and the slave nodes 
communication, it will be helpful for the logical splitting to work more efficiently if we 
have contiguous blocks replicated across different machines. In addition, if a slave node 
gets the list of splits to be processed in one request, it can better allocate its map and 
reduction tasks for these splits. 
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APPENDIX A - Sample input dataset and boundary files 
Figure A -  1 Sample entries of input dataset 
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Figure A -  2 Sample entries in geographic coordinate file 

 



 

46 

APPENDIX B – HADOOP configurations 
Table B -  1 Configurations that we have specified in HADOOP for the visualization project 

<?xml version="1.0"?> 
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
<configuration> 
<property> 
  <name>hadoop.tmp.dir</name> 
  <value>/tmp/hadoop-sanju</value> 
</property> 
<property> 
  <name>fs.default.name</name> 
  <value>hdfs://krishna:54310</value> 
</property> 
<property> 
  <name>mapred.job.tracker</name> 
  <value>ganges:54311</value> 
</property> 
<property> 
  <name>dfs.replication</name> 
  <value>3</value> 
</property> 
<property> 
  <name>mapred.child.java.opts</name> 
  <value>-XX:NewSize=50m –Xmx512m</value> 
</property> 
<property> 
 <name>dfs.datanode.port</name> 
 <value>yamuna:54312</value> 
</property> 
<property> 
 <name>mapred.task.tracker.output.port</name> 
 <value>yamuna:54313</value> 
</property> 
<property> 
 <name>dfs.name.dir</name> 
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 <value>/cygdrive/c/Hadoop/hadoop-0.15.3/newdfs/newname/newdfsname</value> 
</property> 
<property> 
 <name>dfs.data.dir</name> 
 <value>/cygdrive/c/Hadoop/hadoop-0.15.3/newdfs/newdata/newdfsdata</value> 
</property> 
<property> 
 <name>dfs.client.buffer.dir</name> 
 <value>/cygdrive/c/Hadoop/hadoop-
0.15.3/newdfs/newclient/newbuffer/newclientbuffer</value> 
</property> 
<property> 
 <name>mapred.local.dir</name> 
 <value>/cygdrive/c/Hadoop/hadoop-0.15.3/newmapred/newlocal/newmapredlocal</value> 
</property> 
<property> 
 <name>mapred.map.tasks</name> 
 <value>10</value> 
</property> 
<property> 
 <name>mapred.reduce.tasks</name> 
 <value>4</value> 
</property> 
<property> 
  <name>mapred.reduce.parallel.copies</name> 
  <value>5</value> 
  <description>The default number of parallel transfers run by reduce 
  during the copy(shuffle) phase. 
  </description> 
</property> 
<property> 
  <name>mapred.tasktracker.tasks.maximum</name> 
  <value>5</value> 
  <description>The maximum number of tasks that will be run 
  simultaneously by a task tracker. 
  </description></property> 
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<property> 
  <name>io.file.buffer.size</name> 
  <value>10485760</value> 
  <description>10 mb</description> 
</property> 
 
<property> 
  <name>mapred.compress.map.output</name> 
  <value>false</value> 
  <description>Should the outputs of the maps be compressed before being 
               sent across the network. Uses SequenceFile compression. 
  </description> 
</property> 
 
<property> 
  <name>mapred.output.compress</name> 
  <value>false</value> 
  <description>Should the job outputs be compressed? 
  </description> 
</property> 
 
</configuration> 
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Table B -  2 Configuration parameters that we submit to HADOOP when no split condition specified 

JobConf conf = new JobConf(GenericMapReducer.class); 
 conf.setJobName("GenericMapReducer" + jobid); 
conf.setOutputKeyClass(LongWritable.class); 
conf.setOutputValueClass(Text.class); 
conf.setOutputFormat(SequenceFileOutputFormat.class); 
conf.setMapperClass(MapClass.class); 
conf.setCombinerClass(Reduce.class); 
conf.setNumReduceTasks(4); 
conf.setReducerClass(Reduce.class); 
conf.setInputPath(new Path(inDir)); 
 conf.set(XMLKEY, xml); 
conf.set("OUTDIR", outfile); 
Path tmpDir = new Path(Constants.TMP_DIR, "job" + jobid); 
conf.setOutputPath(tmpDir); 
JobClient.runJob(conf); 
 

Table B -  3  Configuration parameters that we submit to HADOOP when a split condition is 
specified 

JobConf conf = new JobConf(EthnicCalcAll.class); 
conf.setJobName("EthnicCalcAll" + outfile); 
cnf.setOutputKeyClass(Text.class); 
conf.setOutputValueClass(Text.class); 
conf.setInputFormat(LogicalSplitTextInputFormat.class); 
conf.set("mapred.logicaltextinput.metadatadir", 
"/etc/userdatasets/sandhya/metadata/pums5"); 
conf.set ("mapred.logicaltextinput.condition", "^H.*[\n\r]?"); 
conf.setOutputFormat(SequenceFileOutputFormat.class); 
conf.setMapperClass(MapClass.class); 
conf.setSpeculativeExecution(false); 
conf.setReducerClass(Reduce.class); 
conf.setInputPath(new Path(inDir)); 
conf.setOutputPath(new Path(outfile)); 
JobClient jc = new JobClient(conf); 
RunningJob rj = jc.submitJob(conf); 
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APPENDIX C - Performance Results 
Figure C -  1 Performance improvement in Grid with Logical mapping 

Time comparision for Grid and Single Machine

0

200

400

600

800

1000

1200

1400

Start time map finish
time

reduce finish
time

Ti
m

e 
in

 s
ec

s Single Machine
Default Map/Red
Map/Combine/Red
Logical mapping/Red

 
 

Figure C -  2 Lateral scaling of grid with more machines 
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