
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2008

Code Obfuscation and Virus Detection Code Obfuscation and Virus Detection

Ashwini Venkatesan
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Venkatesan, Ashwini, "Code Obfuscation and Virus Detection" (2008). Master's Projects. 116.
DOI: https://doi.org/10.31979/etd.ez5v-x8jc
https://scholarworks.sjsu.edu/etd_projects/116

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/116?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F116&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

CODE OBFUSCATION AND VIRUS DETECTION

A Project Report
Presented to

The Faculty of the Department of Computer Science
San Jose State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Computer Science

By
Ashwini Venkatesan

May, 2008

©2008
Ashwini Venkatesan

ALL RIGHTS RESERVED

2

APPROVED BY DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp

Dr. Soon Tee Teoh

__
Dr Agustin Araya

3

ACKNOWLEDGEMENTS

I am greatly indebted to Dr Mark Stamp not only for his expert guidance, judgment,

suggestions and insight without which this thesis could not have been completed but also

for his excellent information security class which sparked my interest in the subject and

started me on this journey.

I would also like to thank Dr Agustin Araya and Dr Soon Tee Teoh for graciously

consenting to be on my committee and providing me with valuable feedback.

Thanks are also due to all my friends and lab mates for their help and companionship

which made graduate school a much more memorable experience.

And to my husband – thank you for putting up with all the long nights and weekends and

making my life pleasurable when I was busy and down!

4

ABSTRACT

Typically, computer viruses and other malware are detected by searching for a string of

bits which is found in the virus or malware. Such a string can be viewed as a

“fingerprint” of the virus. These “fingerprints” are not generally unique; however they

can be used to make rapid malware scanning feasible. This fingerprint is often called a

signature and the technique of detecting viruses using signatures is known as signature-

based detection [8].

Today, virus writers often camouflage their viruses by using code obfuscation techniques

in an effort to defeat signature-based detection schemes. So-called metamorphic viruses

are viruses in which each instance has the same functionality but differs in its internal

structure. Metamorphic viruses differ from polymorphic viruses in the method they use to

hide their signature. While polymorphic viruses primarily rely on encryption for signature

obfuscation, metamorphic viruses hide their signature via “mutating” their own code [3].

The paper [1] provides a rigorous proof that metamorphic viruses can bypass any

signature-based detection, provided the code obfuscation has been done carefully based

on a set of specified rules. Specifically, according to [1], if dead code is added and the

control flow is changed sufficiently by inserting jump statements, the virus cannot be

detected.

In this project we first developed a code obfuscation engine conforming to the rules in

[1]. We then used this engine to create metamorphic variants of a seed virus (created

using the PS-MPK virus creation kit [15]) and demonstrated the validity of the assertion

in [1] about metamorphic viruses and signature based detectors. In the second phase of

this project we validated another theory advanced in [2], namely, that machine learning

based methodsspecifically ones based on Hidden Markov Model (HMM) can detect

metamorphic viruses. In other words, we show that a collection of metamorphic viruses

which are (provably) undetectable via signature detection techniques can nevertheless be

detected using an HMM approach.

5

TABLE OF CONTENTS

1.INTRODUCTION .. 8

2.A HISTORY OF VIRUS EVOLUTION FROM A DETECTION AVOIDANCE

PERSPECTIVE ... 10

2.1. Stealth viruses ... 10
2.2. Encrypted and Polymorphic viruses ... 11
2.3. Metamorphic viruses ... 12
2.3.1. Obfuscation techniques used in metamorphic viruses ... 13
2.3.2.Metamorphic virus generation toolkits ... 14
2.4. Other malware self-defense techniques (Rootkits, Packers etc) 15
2.5. Current state of virus detection techniques ... 17
2.5.1.String scanning or pattern based detection ... 18
2.5.2.Emulation based detection .. 19
2.5.3.Static analysis based detection .. 19

3.HIDDEN MARKOV MODELS APPLIED TO METAMORPHIC VIRUS

DETECTION .. 20

3.1. The Hidden Markov Model (HMM) ... 21
3.1.1.Training the HMM .. 22
3.1.2.Assembly code comparison and scoring ... 22

4.IMPLEMENTATION OF THE METAMORPHIC CODE GENERATOR 24

4.1. Background theory .. 24
4.2. Implementation details .. 25
4.3. Detailed description of the code obfuscation process ... 27
4.3.1.Jump statement insertion ... 28
4.3.2.Dead code insertion ... 29
4.3.3.Block re-ordering .. 30

5.EXPERIMENT SETUP AND RESULTS .. 32

5.1. Experiment setup .. 32
5.2.Test methodology ... 32
5.3. Results ... 36

6.CONCLUSIONS AND FUTURE WORK .. 37

7.BIBLIOGRAPHY ... 38

APPENDIX A: Normalized HMM Scores for Metamorphic Viruses and Normal

Files .. 40

Table1: Scores of files with model file 99_virus_N2_E0.model 40
Table2: Scores of files with model file 99_virus_N2_E1.model 41

6

Table3: Scores of files with model file 99_virus_N2_E2.model 41
Table4: Scores of files with model file 99_virus_N2_E3.model 42
Table5: Scores of files with model file 99_virus_N2_E4.model 43

APPENDIX B: Scatter graph representation of HMM Training and Testing Results

44

TABLE OF FIGURES

Figure 1: How polymorphic viruses evolve with each generation [4]......................... 12

Figure 2: Evolution of generations of a metamorphic virus [4].................................. 13

7

Figure 3: Instruction reordering and jump statement insertion in Zperm [4].......... 14

Figure 4: Difference between a packed and unpacked virus [6]................................. 16

Figure 5: Approximate breakdown of malware self defense techniques in 2007 [6].17

Figure 6: Stoned virus showing the search pattern 0400 B801 020E 07BB 0002 33C9

8BD1 419C [4].. 19

Figure 7: Stages in static analysis of virus binaries [15].. 20

Figure 8: Average similarity score comparison for metamorphic viruses and normal

files 21

Figure 9: Method used to compare assembly programs (virus families and benign

programs) [2]..23

Figure 10: HMM similarity scores for different metamorphic virus families [2]......24

Figure 11: Equation to determine the value of integer 'k'... 26

Figure 12: Dead code blocks... 27

Figure 13: Code obfuscation process in our metamorphic engine.............................. 28

Figure 14: Separation of virus code into blocks..28

Figure 15: Example of jump statement insertion... 29

Figure 16: Insertion of dead code blocks...30

Figure 17: Rearrangement of blocks after shuffling ... 31

Figure 18: Seed virus being detected by McAfee VirusScan....................................... 33

Figure 19: Two metamorphic variants generated by our code morphing engine..... 34

Figure 20: McAfee VirusScan fails to detect our metamorphic viruses..................... 35

Figure 21: N = 2, E = 0...45

Figure 22: N =2, E = 1..45

Figure 23: N =2, E = 2..46

Figure 24: N =2, E = 3..46

Figure 25: N =2, E = 4..47

1. INTRODUCTION

8

In today’s age, where a majority of the transactions involving sensitive information

access happen on computers and over the internet, it is absolutely imperative to treat

information security as a concern of paramount importance. Computer viruses and other

malware have been in existence from the very early days of the personal computer and

continue to pose a threat to home and enterprise users alike. As anti-virus technologies

evolved to combat these viruses, the virus writers too changed their tactics and mode of

operation to create more complex and harder to detect viruses and the game of cat and

mouse continued.

Both viruses and virus detectors have gone through several generations of change since

the first appearance of viruses and this thesis is particularly concerned with a recent stage

in virus evolutionmetamorphic viruses. These are viruses which employ code

obfuscation techniques to hide and mutate their appearance in host programs as a means

to avoid detection. The most popular virus detection technique employed today is

signature based static detection, which involves looking for a fingerprint-like sequence of

bits (extracted from a known sample of the virus) in the suspect file. Metamorphic

viruses are quite potent against this technique since they can create variants of themselves

by code-morphing and the morphed variants do not necessarily have a common signature.

In fact, the paper [1] provides a rigorous proof that metamorphic viruses can bypass any

signature-based detection, provided the code obfuscation has been done based on a set of

specified rules. These rules include dead code insertion and jump statements to obfuscate

the control flow.

For this thesis a code obfuscating engine conforming to the rules specified in [1] has been

created and using it we demonstrate that viruses obfuscated with this engine are not

detectable by commercial virus scanners employing signature based detection. A second

experiment was then carried out to test the hypothesis in [2] that metamorphic viruses can

be detected by machine learning based methods (in this case employing Hidden Markov

Models or HMMs). The detection engine in [2] was tested against metamorphic viruses

generated by our obfuscation engine to determine the effectiveness of this detection

approach.

9

This thesis is organized in the following manner. Chapter 2 provides background

information and some history on how viruses evolved, from the point of view of

detection avoidance. We also consider various techniques used by virus writers including

encryption and code obfuscation. Some background information on the current state of

virus detection is also presented. Chapter 3 provides details on the HMM model and its

application to the problem of detecting metamorphic viruses. A complete description of

the code obfuscation engine created for this project is provided in Chapter 4. Chapter 5

details the experimental setup used for this project and the various experiments

performed with the metamorphic code generation engine. Chapter 6 records the

conclusions from the experiments and provides some suggestions for future research.

2. A HISTORY OF VIRUS EVOLUTION FROM A
DETECTION AVOIDANCE PERSPECTIVE

10

2.1. Stealth viruses

Virus writers have been employing techniques to avoid detection from the earliest days of

computer viruses. One of the first techniques virus writers employed to evade detection

was to keep the last modified date of an infected file unchanged to make it seem like it

was uninfected. Virus detectors combated this tactic by maintaining cyclic redundancy

check (CRC) logs on files to detect infection. Other viruses tried to hide in memory and

maintained copies of infected files, taking over system functions for reading files or disk

sectors and redirecting virus detectors to the unaffected copies to evade detection.

“Brain”, the very first PC virus was an example of such a virus which redirected attempts

to read infected boot sectors to the area of the disk where the original boot sector was

stored [11]. The catch here was that the virus had to be memory resident to do this and

virus detectors began to analyze memory as well for evidence of viruses as a

countermeasure. Brain also was the origin of the rule of thumb: starting from a clean

trusted disk before checking the status of a system.

2.2. Encrypted and Polymorphic viruses

The next stage in virus evolution produced viruses which used encryption as a technique

to obfuscate their presence. One of the earliest examples of a virus using encryption as an

anti-detection technique was Cascade, a DOS virus [11]. Encrypted viruses typically

carry along a decryption engine and thus they have to maintain a small portion of the

virus body unencrypted. Virus detectors began to tackle these viruses by looking for the

signature bits in this unencrypted portion. Oligomorphic viruses then appeared, where the

viruses employed multiple decryption algorithms (one simple way was to carry along

multiple decryption engines and pick one at random) making pattern based detection

more difficult [12]. Then came polymorphic viruses which were basically encrypted

viruses capable of mutating their decryption engines in each generation. Polymorphic

viruses created variants of themselves which used a different encryption mechanism in

11

each generation resulting in different decryption engines and thus effectively countering

scanners looking for the signature of the decryptor [12].

Polymorphic viruses necessitated further evolution in anti-virus technology and the

answer came in the form of static emulation. In this detection technique, the virus

decryption process is executed in a controlled environment and the location of the

decrypted virus is captured. After decryption, the virus detector can locate a signature

string in the decrypted virus and use that to detect subsequent infections of the same virus

just as if the virus were unencrypted. Figure 1 below [4] pictorially illustrates how

polymorphic viruses evolve with each generation.

Figure 1: How polymorphic viruses evolve with each generation [4]

2.3. Metamorphic viruses

12

Polymorphic viruses have one major Achilles heelthe virus body is identical in each

generation. Therefore, if a polymorphic virus is somehow decrypted it can subsequently

be detected by pattern-based detection. Metamorphic viruses were the next stage in virus

evolution. These viruses do not rely on encryption as an obfuscation technique but

instead mutate their own code structure through operations such as dead code insertion

and control flow obfuscation, which yields generational variants that are very different.

This is illustrated pictorially in Figure 2 [4]

Figure 2: Evolution of generations of a metamorphic virus [4]

2.3.1. Obfuscation techniques used in metamorphic viruses

Metamorphic viruses can obfuscate their data flow by various techniques including

register exchange (using different registers in each generation), instruction swap

13

(replacing instructions with other equivalent ones), permutation (subroutine reordering),

transposition (reordering instructions which are not order dependant) and dead code

insertion (adding nop and other “do nothing” statements). They can also obfuscate their

control flow can by extensive use of jump instructions. Some metamorphic viruses carry

their own metamorphic engines. For example, Zperm carries along its own metamorphic

engine, which is known as the Real Permuting Engine or RPME [12]. Other metamorphic

generators operate “offline”, in the sense that the metamorphic engine is independent of

the virus itself. Figure 3 [4] illustrates how jump instructions and instruction reordering

are used in the Zperm virus to obfuscate the virus body.

Figure 3: Instruction reordering and jump statement insertion in Zperm [4]

Regardless of the actual technique used to obfuscate the virus body, metamorphic viruses

have one shared characteristic which gives them their potency and makes them difficult

to detectthey do not provide any moment in their evolution when a constant code body

is completely observable. Note that this is in contrast to polymorphic viruses.

2.3.2.Metamorphic virus generation toolkits

Virus writing used to be the purview of a few dedicated “enthusiasts”. However, the past

several years have seen the emergence of several virus generation toolkits which has

made creating a potent virus very easy. These toolkits range from rudimentary ones to

14

very elaborate tools with GUIs which can generate polymorphic and metamorphic

viruses. Some of the more sophisticated toolkits come complete with anti-debugging and

emulation resistant techniques built in. VX Heavens [14], which is a resource for virus

creators and researchers, lists well over a hundred virus generation toolkits. Some of the

more advanced toolkits include the Next Generation Virus Creation Kit (NGVCK),

Phalcon/Skism Mass Produced Code Generator (PS-MPC), Mass Code Generator

(MPCGEN), etc.

For the purposes of this project the PS-MPC toolkit [17] has been used to generate

sample viruses. According to Szor [3], PS-MPC generates viruses that are not only

polymorphic but have different decryption routines and structures in variants.

2.4. Other malware self-defense techniques (Rootkits, Packers etc)

In addition to the techniques discussed earlier in this section there are several other

techniques employed by virus writers to avoid being detected by anti-virus programs.

Some of the more common ones include Rootkits, Packers and anti-debugging

techniques.

Rootkits are programs that reside in a computer system without authorization and take

control of the operating system [6]. They are designed to conceal malicious programs in

the system to make it very difficult to detect the malicious programs using antivirus or

other security software. Execution Path Modification (modifying a chain of system calls

and using API level hooks to hijack system functions) and Direct Kernel Object

Modification (modifying information or commands directly in the kernel source) are

some common techniques used by Rootkit technologies. The deeper these Rootkits are

located in the system the more difficult it is to find them. Newer trends in Rootkits

include Firmware rootkits which attack the firmware supplied with devices and

Virtualized rootkits which modify the boot sequence, load themselves instead of the

original OS and then load the original OS as an enslaved virtual machine [18].

15

Packers are programs that compress viruses making them difficult to be detected. When

virus writers try to create new viruses by building on or modifying existing viruses the

heart of the virus remains the same with some extra lines of code. Viruses created in this

manner are hence easily detected by many virus scanners using pattern based detection.

By packing the files virus creators bypass the problem as changing even one byte in the

unpacked executable results in a very differently byte sequenced packed file. Figure 4 [6]

below illustrates the difference between a packed and unpacked virus executable.

Figure 4: Difference between a packed and unpacked virus [6]

Figure 5 [6] provides a graphical breakdown of the various self defense techniques used

by malware writers in the year 2007. We can see that packing was the most popular

technique (possibly due to the large return on investment virus writers derive by

employing this technique and its simplicity). Encryption and code obfuscation tied for

second place with Rootkits. One possible reason Metamorphism was less commonly seen

could be because the technique is harder to implement in practice than some of the others.

16

This might however change in the future with the proliferation of metamorphic virus

generation toolkits.

Figure 5: Approximate breakdown of malware self defense techniques in 2007 [6]

2.5. Current state of virus detection techniques

Anti-virus technologies today use a variety of techniques to detect viruses. The objectives

of these technologies are to detect viruses with a high degree of accuracy, produce very

17

few false positives, and accomplish the detection process in a reasonable amount of time.

Some of the different detection techniques employed today includes:

• Pattern based detection

• Emulation based detection

• Static analysis based detection

• Heuristics and statistical methods

Below, we briefly discuss each of these techniques.

2.5.1.String scanning or pattern based detection

The most popular technique in anti-virus scanners today is pattern based detection. It is

not as effective as some other techniques but it can be performed more quickly. This

technique involves extracting a unique sequence of bits from a known virus and this

sample is subsequently used like a fingerprint to match against while scanning for

existence of the virus. Care has to be taken when choosing the bit sequence to minimize

the number of false positives and at the same time match the virus and (ideally) possible

variants. Sometimes statistical techniques are also used to extract these patterns. Figure 6

[4] shows an example of a search pattern for the “Stoned“ boot sector virus. In this case,

the bit sequence selected was chosen by observing a behavioral peculiarity of the virus (it

reads the boot sector of the diskette four times, resetting the disk between each try).

18

Figure 6: Stoned virus showing the search pattern 0400 B801 020E 07BB 0002 33C9 8BD1 419C [4]

Second generation pattern based detectors use more advanced techniques such as “smart

scanning” (ignoring nop instructions), using wildcards (allowing skipping of bytes and

byte ranges), generic matching (using a single string to potentially match a family of

viruses), near exact identification (using two search strings instead of one), using a

checksum of a constant range found in the virus body and, finally, the most accurate

methodexact identification (using checksums of all the constant bits found in the

virus).

2.5.2.Emulation based detection

Emulation based detection is a powerful anti-virus technique where the virus is executed

in a controlled environment (a virtual machine, or VM, emulating the instructions of the

real processor and the interface of the operating system) and the behavior of the virus is

observed. This technique is particularly useful with polymorphic and encrypted viruses

where the virus is allowed to decrypt itself and then a snapshot of the decrypted virus can

be captured for analysis from the virtual machines memory structures.

One drawback of emulation-based detection is that the virus execution in the VM

environment can sometimes take relatively long, especially when the virus has many

garbage instructions in a loop. Code optimization techniques are sometimes applied in

such cases for faster execution.

19

2.5.3.Static analysis based detection

Figure 7: Stages in static analysis of virus binaries [15]

In this detection method, heuristic and formal analysis techniques are used to analyze the

virus after it has been taken through several stages of information recovery. The stages in

static analysis are depicted in Figure 7 [15]. The first stage involves disassembling he

virus binary. The most common technique in this step is the linear sweep approach used

in interactive debuggers like IDA Pro. Once the assembly level instructions have been

recovered, the next stage involves determining procedural boundaries and obtaining a

control flow graph (CFG) representation of the program. After this data flow analysis is

performed on the CFG to find out instructions which modify the memory locations or

registers used by other instructions.

Finally in the property verification stage, a directed graph based on the code is compared

with a formal representation of suspicious activities/properties and a determination is

made on whether the program is malicious or benign. Model checking against a finite

state machine representation of the suspicious properties is a common static analysis

approach.

In addition to the detection methods discussed in detail in this chapter, other methods like

statistical analysis and machine learning based methods have also been used. One such

technique (HMMs) will be discussed in detail in the next chapter.

20

3. HIDDEN MARKOV MODELS APPLIED TO
METAMORPHIC VIRUS DETECTION

Metamorphic viruses have an interesting property which make behavioral analysis based

approaches a viable option for detecting these viruses [2]. Specifically – the generational

variants of the same metamorphic virus family despite their differences do share a high

degree of similarity especially when compared to normal files because they tend to differ

a lot from normal files. This can be seen from Figure 8 [2] which shows a comparison of

the average similarity scores computed using HMM for a family of metamorphic viruses

and a set of normal files.

size of bubble = average similarity

NGVCK vs NGVCK

"NGVCK vs
VCL32"

NGVCK vs normal
0.00

0.05

0.10

0.15

0.20

0.25

0.000 0.005 0.010 0.015 0.020
Minimum similarity score

M
ax

im
um

 s
im

ila
rit

y
sc

or
e

NGVCK vs NGVCK
"NGVCK vs VCL32"
NGVCK vs normal

Figure 8: Average similarity score comparison for metamorphic viruses and normal files

Wing Wong and Mark Stamp propose in [2] the application of Hidden Markov Model

(HMM) based statistical analysis to the detection of metamorphic viruses to take

advantage of this property. Their idea is to use a two step approach - HMM based

modeling is first used to represent the statistical properties of a family of metamorphic

viruses (i.e. the model is trained on a metamorphic virus family) and then later the trained

model is used to determine whether a given program is similar to the virus or different.

21

The second phase of this project aims to demonstrate that viruses created by our code

obfuscation engine can be identified by this HMM based method described in [2].

3.1. The Hidden Markov Model (HMM)

Hidden Markov models (HMMs) are state machine based statistical models which can be

used to describe a set of observations generated by a stochastic process. Such processes

(also called Markov processes) can be modeled as a sequence of states, where the

progression to the next state depends solely on the present state but not on the past states.

The underlying stochastic process modeled in a HMM is “hidden” and all we can see is

the sequence of observations associated with the states. The idea here is to make use of

the information observed about the process to gain an understanding of the underlying

Markov process [18]. HMMs are well suited for statistical pattern analysis and have been

applied to solve various problems of this nature including speech pattern analysis and

biological sequence analysis.

3.1.1.Training the HMM

When a HMM is trained on a particular data set the states in the model represent features

of the data set under observation and are associated with a probability distribution for the

set of symbols under observation. The state transitions represent the transition

probabilities between the observed states and have fixed values.

In [2] where HMM was applied to the problem of recognizing metamorphic viruses, the

HMM states corresponded to features of the virus code, while the observations about the

data (in this case metamorphic viruses) were instructions or opcodes making up the virus

program. The idea here was that the HMM should after training be able to detect

similarities between (and assign high probabilities to) the viruses from the same

metamorphic family the model was trained on.

22

3.1.2.Assembly code comparison and scoring

The comparison process used in [2] is graphically depicted in Figure 9 [2]. The process

was first outlined by Mishra in [16] and is based on finding identical opcode sequences in

the two programs. The first step is to extract opcodes from the program (comments,

labels etc are excluded). Each opcode is then assigned a number and the sequence of

opcodes in the two programs is compared to find common subsequences of size three.

The match locations in the code in one program X are then plotted against match

locations in the other program Y. Identical code segments thus appear as line segments

parallel to the main diagonal (for the case where the programs have identical sizes the

main diagonal is the 45 degree line).

Opcode sequences Score

0 call
1 pop
2 mov
3 sub

… m-1 m-1

… score =
n-1 jmp average

% match

0 push 0 n-1 0 n-1
1 mov
2 sub
3 and

…
…

m-1 retn

Program X

Graph of real matches

Pr
og

ra
m

 Y

Pr
og

ra
m

 Y
(lines with length > 5)(matching 3 opcodes)

Assembly programs

Program X

Graph of matches

Program X

Program Y

Figure 9: Method used to compare assembly programs (virus families and benign programs) [2]

In paper [2] Wing Wong presented the results for the above comparison performed on

four different families of viruses (created using 4 different metamorphic virus generation

kits: NGVCK, G2, VCL32, MPCGEN) and a set of normal files. These results are shown

in Figure 10 below. We can see that viruses from the same family score very similar and

the scores are noticeably different from those for the normal files. The MPCGEN and

23

VCL32 families share some overlap in their scores indicating that the generators create

similar viruses and probably perform similar morphing operations. NGVCK clearly

performs much better than the other virus generator kits in creating viruses which look

very different from other viruses and normal files. Interestingly enough it is this

exceptional ability to look different which helps the HMM recognize viruses from this

family

Size of bubble = average similarity

NGVCK

G2
VCL32 MPCGENNormal

0

0.2

0.4

0.6

0.8

1

1.2

-0.2 0 0.2 0.4 0.6 0.8

Minmum similarity score

M
ax

im
um

 s
im

ila
rit

y
sc

or
e

NGVCK
G2
VCL32
MPCGEN
Normal

Figure 10: HMM similarity scores for different metamorphic virus families [2]

In phase three of our experiments we trained the HMM model described in [2] on

metamorphic viruses created by our code obfuscation engine and then determined the

similarity scores for other variants from the same family and also normal files. The

experiment details and results are presented in chapter 5.

24

4. IMPLEMENTATION OF THE METAMORPHIC CODE
GENERATOR

For this project we implemented a code morphing engine in Perl confirming to the

specifications in [1]. This engine was intended to work with any given block of assembly

code.

4.1. Background theory

The authors in [1] advance formal proofs for their specific code morphing suggestions.

Their contention is that the assembly code of the original virus should first be separated

into small blocks of code based on two basic conditions. The first condition being that no

block should end with any kind of jump instruction (JMP, JNZ, JGE etc). The second

condition being that no block should end with a NOP operation. They also require that

the virus carry its own metamorphic engine (i.e. the virus should know how to strip out

the garbage code and re-order the blocks without outside assistance). From a virus

detection point of view it is even harder to detect metamorphic viruses which do not carry

their own metamorphic engine, hence we ignored this restriction in [1] and made the code

morphing engine a separate entity.

After the code is separated into blocks the order of the code blocks has to be randomly

shuffled. After the blocks are shuffled, small blocks of dead code (also known as garbage

code) have to be inserted between the blocks of original code. Dead code is a block of

code which is syntactically correct but semantically irrelevant to the program being

executed. Once the dead code is added, the correct flow of the virus code is controlled by

the result achieved from a mathematical equation which always computes to the same

value. The idea is to use an equation which always results in the same result (condition

always true or always false) but at the same time is a sufficiently complex expression that

it is difficult analyze from assembly code.

25

4.2. Implementation details

For our project we chose a fixed block size of three for simplicity. Care was taken while

splitting the code into blocks to make sure that none of the blocks ended with a jump

instruction or a NOP instruction. If either of these types of instructions happened to be

the last instruction of the block then we included the instruction succeeding the

jump/NOP into the same block.

After the blocks were created, the starting address of each block was stored in an array

and a conditional jump instruction pointing to the next block was added at the end of each

block. This jump instruction was constructed depend on the result of a relatively complex

mathematical equation. Complexity here implies that by manually reading the equation it

is not apparent that the result is always the same for a set of given values. Since the

equation always gives the same result, in all versions of the virus the jump instruction

will always point to the logically correct sequence of blocks. Once these jump statements

were inserted the blocks were randomly shuffled and blocks of dead code were inserted

between blocks.

This project was implemented in three principal modules. The first module was designed

to count the number of lines in the entire block of code and divide the program into

smaller blocks of code. After that the second module stored the program in an array and

appended conditional jump instructions to the end of each code block. The condition used

to determine the value of integer ‘k’ is as follows:

Figure 11: Equation to determine the value of integer 'k'

26

The letter ‘a’ in the above equation refers to any integer value. This equation will always

result in k=1 for even values of ‘a’ and k=2 for odd values of ‘a’. Here the integer k

determines the jump condition. The third module performed the process of obfuscation.

This was achieved in two steps. In the first step some small blocks of dead code were

added at the end of the array storing the generated code blocks. The dead code blocks

used were also the same as the ones mentioned in [1]. They are as follows:

Figure 12: Dead code blocks

In the second step the small blocks of codes were randomly shuffled, in other words the

logical order was changed and the results were stored in a text file. The above process i.e.

the second step of third module was repeated multiple times (124 times in the case of this

project) and the result is stored in different text files. Care was taken while changing the

logical order of the block to ensure that the first block was the same as that in the original

code. According to authors in [1], all metamorphic viruses created by this engine always

have the same entry and exit points/blocks. Hence the virus was not parsed once it has

reached the end of the last block. Though the blocks were linked using the conditional

jumps, the original logical sequence could not be achieved unless the first block was

parsed first. The following sections provide more detailed descriptions of the code

obfuscation process performed in our engine.

4.3. Detailed description of the code obfuscation process

The sequence of transformations performed by our code obfuscation engine is shown in

Figure 13. The virus code is first broken down into fixed size blocks. Blocks of dead code

are then inserted followed by jump statement insertion and reordering of the blocks. Each

step in the transformation will be explained in detail in subsequent sections.

27

Figure 13: Code obfuscation process in our metamorphic engine

The first step in the obfuscation was breaking the code into fixed size blocks (Figure 14).

One important thing that we had to take care of in this stage was to make sure some

sections of the assembly code, which needed to remain together like the .stack and .data

sections, did not get split into different blocks.

Figure 14: Separation of virus code into blocks

28

4.3.1.Jump statement insertion

At the end of the first step the blocks were still all in logically correct order. The next

step after chopping the code into these blocks involved the insertion of jump statements

and this is depicted in the Figure 15 below.

Figure 15: Example of jump statement insertion

4.3.2.Dead code insertion

Once the block of conditional jump instructions were attached at the end of each block

(Figure 16). The blocks were stored in an array where each element in the array is a set of

instructions and at the end of the array more dead code blocks were added. Each dead

code block was stored in a singly array element. This increased the size of the array by

the total number of garbage blocks.

29

Figure 16: Insertion of dead code blocks

4.3.3.Block re-ordering

After the garbage code insertion the blocks were randomly shuffled. Figure 17 shows the

control flow after this shuffle and this can be compared to the original code in Figure 14.

The thing to note here is that the entry point for the virus always needs to be the original

starting block. Thus block 1 being the starting block remains the same for all versions of

the metamorphic virus. Similarly the program always ends with the end of last block and

there is no garbage code or jump introduced after that.

30

Figure 17: Rearrangement of blocks after shuffling

31

5. EXPERIMENT SETUP AND RESULTS

5.1. Experiment setup

Experiment platform: Windows XP, VMware virtual machine

Programming language: Perl5

Dis-assemblers: OllyDbg and IDA pro. (Both free download versions)

Assembler: MASM

Linker: Tlink

Virus generator: PS-MPC Phalcon/Skism mass produced code generator

 Virus scanner (for baseline check): McAfee VirusScan

5.2.Test methodology

The experiments in this project consisted of three major phases. The first phase involved

creating the seed virus required for this project and running baseline checks on the seed

virus using pattern based detectors. Phase two involved running our code obfuscation

engine on the seed virus to generate a family of metamorphic variants of the seed virus.

The final phase involved testing the metamorphic viruses created by our engine using

pattern based detectors and a HMM based detector.

5.2.1.Creation of the seed virus
The virus generator used for creating the seed virus for this project was the

Phalcon/Skism Mass Produced Code Generator (PS-MPC) from vxheavens.com [15].

For this experiment the viruses we created were unencrypted. The PS-MPC virus creator

generated the assembly language code for the virus which we assembled using MASM

assembler and converted into an executable using the Tlink linker. After this the virus

executable was scanned using the McAfee VirusScan scanner which recognized it as a

virus and flagged a warning. Figure 18 shows a screenshot of the result we obtained when

we ran McAfee VirusScan on the virus created using PS-MPC.

32

Figure 18: Seed virus being detected by McAfee VirusScan

5.2.2.Creation of metamorphic variants

After making certain that the seed virus was detected by a pattern based scanner it was

run through our code morphing engine to create metamorphic versions. For the purposes

of our experiment 120 variants of the seed virus were created. The code morphing engine

reads the assembly code for the virus divides the code into blocks and then randomly

shuffles the block order while simultaneously inserting some dead code blocks.

Figure 19 shows a side by side comparison of two variants created by our code

obfuscation engine (VIRUS1.asm and VIRUS2.asm) and illustrates the difference in code

between the metamorphic variants. We can see the labels and the jump instructions

inserted between the blocks and the differences in the block order. It is also evident that

we keep the starting block in the same place.

33

Figure 19: Two metamorphic variants generated by our code morphing engine

After creating the metamorphic variants of the original virus we assembled and linked

these variants using the MASM assembler and Tlink linker and created executables for

each of them (a Perl script was used to automate this process)

5.2.3.Testing metamorphic variants with commercial virus scanners

In the third phase of our experiments the metamorphic viruses created in the second

phase were tested with an off-the-shelf scanner and a HMM based detector.

34

First the metamorphic viruses were scanned using the same scanner (McAfee VirusScan)

used for checking the seed virus and it failed to detect the presence of any virus. Figure

20 shows a screenshot capture of McAfee VirusScan after it was run on the folder

containing the 120 metamorphic virus executables generated by our code obfuscation

engine.

Figure 20: McAfee VirusScan fails to detect our metamorphic viruses

5.2.4.Testing metamorphic variants using HMM based detection

Next our metamorphic viruses were tested against the HMM detector. First the

executables were disassembled using the IDA pro disassembler and these assembly files

were used for training the HMM. Our naming convention was to name all the files

containing virus assembly code with the prefix “IDAN” and to name all the files

containing benign (normal) assembly code with the prefix “IDAR”. Prior to HMM

training the all the training files were in passed through the train-test module to create the

alphabet and input files. The alphabet file contains the different observation symbols

present in the training files and the input file contains the frequency of the observation

symbols in the training files. We divided the 124 virus files into 5 sets of 24 files each as

we performed k-fold HMM validation (in our case 5-fold validation). For each fold we

used 4 sets different metamorphic versions of the original virus for training and creating a

model file and used the 5th set for testing. For this experiment after running the four sets

of IDAN files through the module the value for number of observation symbols were

between 42 ~ 44 and the total number of observation symbols present were between

35

21739 ~ 21959. We trained the files and created the model for 2 states. The number of

iterations was set to be maximum of 800.

5.3. Results

Once the HMM was trained the scores against the model file were obtained for both

normal files and files belonging to the virus family. The scores for the viruses ranged

between -2 to -8 (Appendix A) but for the normal files the scores ranged between -37 to

-190 hence clearly separating the viruses from the normal files.

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0
0 5 10 15 20 25 30

Number of files

Sc
or

e Virus Files
Normal files

 Figure 21: Scatter graph of scores of normal and virus files with one of the model files

Figure 21 shows a scatter graph comparison of the HMM scores for the files from the

metamorphic virus family we created with our engine and the scores for normal (benign)

files. The figure provides a clear validation of the hypothesis in [2] about the property of

metamorphic viruses being very similar to each other and very different from normal

files. Similar results were obtained in all 5-fold validation with their respective model and

test files. The complete results are presented in appendices A and B.

36

6. CONCLUSIONS AND FUTURE WORK

The principal aim of this project was to show that viruses that are provably undetectable

using signature-based scanning, can nevertheless be reliably detected using machine

learning techniques.. To this end we created a code obfuscation engine conforming to the

rules in [1]. According to a proof given in [1], these viruses cannot be detected using

signature-based scanning. This was validated, since the metamorphic viruses created by

our engine were not detected by the same signature-based detectors that had successfully

identified the seed virus the metamorphic variants were created from.

We then demonstrated that the metamorphic viruses created using our code obfuscation

engine could be detected by the HMM based detector described in [2]. This was done by

performing five-fold HMM validation on 120 different metamorphic viruses and

comparing the normalized similarity scores for viruses and normal programs. In all the

cases the score ranges for the viruses were markedly different from those for the normal

files, hence the viruses were identifiable in the HMM method by their similarity scores

alone. In this way we were able to provide empirical proof that metamorphic viruses

undetectable by pattern based scanners can be detected by machine learning based

methods.

A good future research project would be to design a metamorphic virus-creating engine

that can evade both signature-based detection and HMM-based detection. This however

is not a trivial task since it means the virus would have to be highly metamorphic to avoid

signature based detection and at the same time it would also need to look like normal

code (in terms of the statistical signature of its instruction sequence) to evade HMM-

based detection.

37

7. BIBLIOGRAPHY

[1] Jean-Maries Borello and Ludovic Me, “Code Obfuscation Techniques for

Metamorphic Viruses”, Feb 2008,

<http://www.springerlink.com/content/233883w3r2652537/>

[2] Wing Wong and Mark Stamp, “Hunting for Metamorphic Engines”, September

2006

[3] Peter Ferrie and Frederic Perriot, “Detecting Complex Viruses”, December 2004,

<http://www.securityfocus.com/infocus/1813>

[4] Peter Szor, “The art of computer virus research and defence”, February 2005,

Symantec press

[5] Peter Szor and Peter Ferrie, “Hunting for Metamorphic”, September 2001

<http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf>

[6] Alisa Shevchenko, “The Evolution of Self-Defense Technologies in Malware”, July

2007, <http://www.net-security.org/article.php?id=1028&p=1>

[7] Arun Lakhotia, Aditya Kapoor and Eric Uday Kumar, “Are metamorphic viruses

really invincible?”, December 2004,

<http://www.cacs.louisiana.edu/~arun/papers/invincible-part-1-vbtn-dec2004.pdf>

[8] J. Kephart, A. William, “Automatic Extraction of Computer Virus Signatures”,

Proceedings of the 4th International Virus Bulletin Conference, R. Ford, ed., Virus

Bulletin Ltd., Abingdon, England, pp. 178-184, 1994.

<http://www.research.ibm.com/antivirus/SciPapers/Kephart/VB94/vb94-

node1.html>

38

[9] Computer knowledge virus tutorial, “Stealth viruses and Rootkits”,

<http://www.cknow.com/vtutor/StealthVirusesandRootkits.html>

[10] M. Stamp, “A Revealing Introduction to Hidden Markov Models”, January

2004,

<http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf>

[11] virus-scan-software.com, “A history of computer viruses”,

<http://www.virus-scan-software.com/virus-scan-help/answers/the-history-of-computer-

viruses.shtml>

[12] Peter Szor, “Advanced code evolution techniques and computer virus generation

toolkits”, March 2005, <http://www.informit.com/articles/article.aspx?p=366890>

[13] IDA Pro Disassembler, <http://www.datarescue.com/idabase>

[14] Myles Jordan, “Dealing with metamorphism”, Virus Bulletin, October 2002,

<http://ca.com/us/securityadvisor/documents/collateral.aspx?cid=48051>

[15] VX Heavens, <http://vx.netlux.org/>

[16] P. Mishra, “A taxonomy of software uniqueness transformations”, master’s

thesis, San Jose State University, Dec. 2003,

<http://home.earthlink.net/~mstamp1/mss_v.html#masters>

[17] Anti-virus test center, University of Hamburg, Germany, “Profile of Phalcon/Skism

Mass Produced Code Generator”, January 1993,

<http://www.informatik.uni-hamburg.de/AGN/catalog/msdos/html/ps-mpc.htm>

[18] Wikipedia, “Rootkits”, < http://en.wikipedia.org/wiki/Rootkit>

39

APPENDIX A: Normalized HMM Scores for Metamorphic
Viruses and Normal Files

Table1: Scores of files with model file 99_virus_N2_E0.model
SCORES OF FILES WITH N=2

Virus Files Normal Files
-5.5029656 -69.83376868
-2.4325415 -37.87830767
-2.4381414 -73.26371666
-2.4399423 -57.42153619
-2.421805 -47.56689641
-2.452382 -43.65816532
-8.4422612 -48.48792908
-2.4204001 -46.23059133
-2.4159194 -74.50382075
-2.4283433 -44.05335671
-2.4175014 -93.58188728
-2.4455148 -57.92270389
-2.5358185 -88.1007371
-2.428392 -191.0725346
-2.4169905 -65.19475889
-2.4258693 -34.2368562
-2.423987 -43.03456294
-2.5501224 -47.10429071
-2.4327782 -83.10736693
-2.4156856 -76.51210052
-2.4328526 -56.64371914
-2.4408223 -64.4991311
-2.4134945 -61.56445913
-5.5318651 -103.5941142

40

Table2: Scores of files with model file 99_virus_N2_E1.model

SCORES OF FILES WITH N=2
Virus Files Normal Files

-2.42929 -43.0274
-2.42501 -47.0966
-5.49969 -83.1067
-2.4176 -76.5089
-2.41623 -56.6362
-2.42202 -65.2135
-2.41515 -63.3242
-5.53471 -103.593
-2.4268 -79.5003
-2.55107 -75.1983
-2.4392 -70.4338
-2.41701 -42.7951
-2.4177 -50.9171
-2.39951 -62.3496
-2.44303 -41.869
-2.42031 -81.0822
-2.40882 -185.725
-2.42636 -69.1235
-2.41216 -95.3118
-2.43944 -52.4204
-2.42554 -46.5878
-2.41714 -201.674
-2.41746 -102.636
-5.46022 -61.9248

41

Table3: Scores of files with model file 99_virus_N2_E2.model

SCORES OF FILES WITH N=2
Virus File Normal File

-2.4244 -48.3463
-2.45852 -46.1009
-2.44365 -74.423
-2.42288 -43.9442
-2.45275 -93.4728
-2.46126 -57.7988
-2.58164 -88.0005
-2.47875 -190.972
-2.43661 -65.1368
-2.45632 -34.1023
-2.44438 -42.9306
-2.46801 -46.9584
-5.48544 -83.0168
-2.56762 -73.1635
-2.43439 -56.5274
-5.55586 -64.424
-2.45565 -61.4528
-2.45591 -103.484
-2.46459 -78.8726
-2.44951 -72.1967
-5.53626 -70.3457
-2.49845 -42.6742
-2.43378 -50.7948
-2.45301 -61.2119

42

Table4: Scores of files with model file 99_virus_N2_E3.model

SCORES OF FILES WITH N=2
Virus Files Normal Files

-2.47524 -37.7559
-2.46186 -73.0907
-2.47741 -57.2996
-2.46358 -47.4359
-2.4529 -43.5317
-5.56455 -48.3407
-2.45472 -46.0959
-2.45751 -74.4178
-5.55153 -43.9443
-2.42727 -93.4689
-5.57162 -57.7988
-2.45641 -87.9972
-2.46027 -190.97
-2.46253 -65.1378
-2.43879 -34.1018
-2.46136 -42.9281
-2.43016 -46.9541
-5.56507 -83.0078
-2.45594 -73.1561
-5.60275 -56.5262
-2.43937 -64.4218
-2.43402 -61.45
-2.4696 -103.48
-2.46457 -78.875

43

Table5: Scores of files with model file 99_virus_N2_E4.model

SCORES OF FILES WITH N=2
Virus File Normal File
-2.55592 -65.1906
-2.4061 -34.2304
-2.41149 -43.0272
-2.43066 -47.0969
-2.55067 -83.1038
-2.41977 -73.2777
-2.41104 -56.6362
-5.45948 -64.4872
-2.39883 -61.5634
-2.44326 -103.593
-2.43392 -78.9375
-2.41485 -72.2963
-2.45013 -70.4344
-2.41202 -42.7947
-2.41433 -50.9159
-2.42154 -61.3336
-2.42373 -41.8691
-2.41044 -81.0816
-2.42367 -185.724
-2.398 -67.8557

-2.40483 -94.029
-2.39655 -52.4195
-2.42012 -46.5861
-2.46457 -201.673

44

APPENDIX B: Scatter graph representation of HMM Training
and Testing Results

Figure 21: N = 2, E = 0

Figure 22: N =2, E = 1

45

Figure 23: N =2, E = 2

Figure 24: N =2, E = 3

46

Figure 25: N =2, E = 4

47

	Code Obfuscation and Virus Detection
	Recommended Citation

	1.INTRODUCTION
	2.A HISTORY OF VIRUS EVOLUTION FROM A DETECTION AVOIDANCE PERSPECTIVE
	2.1. Stealth viruses
	2.2. Encrypted and Polymorphic viruses
	2.3. Metamorphic viruses
	2.3.1. Obfuscation techniques used in metamorphic viruses
	2.3.2.Metamorphic virus generation toolkits
	2.4. Other malware self-defense techniques (Rootkits, Packers etc)
	2.5. Current state of virus detection techniques
	2.5.1.String scanning or pattern based detection
	2.5.2.Emulation based detection
	2.5.3.Static analysis based detection

	3.HIDDEN MARKOV MODELS APPLIED TO METAMORPHIC VIRUS DETECTION
	3.1. The Hidden Markov Model (HMM)
	3.1.1.Training the HMM
	3.1.2.Assembly code comparison and scoring

	4.IMPLEMENTATION OF THE METAMORPHIC CODE GENERATOR
	4.1. Background theory
	4.2. Implementation details
	4.3. Detailed description of the code obfuscation process
	4.3.1.Jump statement insertion
	4.3.2.Dead code insertion
	4.3.3.Block re-ordering

	5.EXPERIMENT SETUP AND RESULTS
	5.1. Experiment setup
	5.2.Test methodology
	5.3. Results

	6.CONCLUSIONS AND FUTURE WORK
	7.BIBLIOGRAPHY
	APPENDIX A: Normalized HMM Scores for Metamorphic Viruses and Normal Files
	Table1: Scores of files with model file 99_virus_N2_E0.model
	Table2: Scores of files with model file 99_virus_N2_E1.model
	Table3: Scores of files with model file 99_virus_N2_E2.model
	Table4: Scores of files with model file 99_virus_N2_E3.model
	Table5: Scores of files with model file 99_virus_N2_E4.model

	APPENDIX B: Scatter graph representation of HMM Training and Testing Results
	
	
	

