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ABSTRACT 
 
 
SVG—a W3C XML standard—is a relatively new language for describing low-level 
vector drawings. Due to its cross-platform capabilities and support for events,  SVG may 
potentially be used in interactive GUIs/graphical front-ends. However, a complete and 
full-featured widget set for SVG does not exist at the time of this writing. I have 
researched and implemented a framework which retargets a complete and mature raster-
based widget library—the JFC Swing GUI library—into a vector-based display substrate: 
SVG. My framework provides SVG with a full-featured widget set, as well as 
augmenting Swing’s platform coverage. Furthermore, by using bytecode instrumentation 
techniques, my Swing to SVG bridging framework is transparent to the developers—
allowing them to implement their user interfaces in pure Swing.  
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I   INTRODUCTION 
 
 
I.1 The Problem 

SVG[1] is a relatively new standard XML "picture format" and may potentially be used 
in interactive graphical front-ends. SVG's markup allows the user to describe vector 
drawings using primitives such as paths, rectangles, and groups. In addition to that, SVG 
provides event handling mechanisms that conform to the DOM level 2[10] and level 
3[11] Event standards.  
 
Due to its cross-platform capabilities and support for events, SVG may potentially be 
used in interactive graphical front-ends. However, the problem is that there exists no 
complete and full-featured widget set for SVG at the time of this writing. 
  
 
I.2 The Proposed Solution 

The solution is to retarget rendering and event information from an existing full-featured 
and complete widget library into SVG. I also wanted the solution to be in Java because of 
its extensibility and ubiquity. In order to perform retargeting, the widget set must be 
written in Java, open-source, extensible, and have a clear separation between the widget 
set and the underlying rendering and event system. If possible, the widget set code should 
be left unadultered.  
 
Upon researching several available Java widget sets, I chose the JFC Swing[3] GUI 
Framework. 
 
Why the Swing framework? Sun’s Swing framework offers a complete desktop GUI 
solution mainly geared towards the desktop developer. Here are some Swing features: 

- Cross-platform for desktop operating systems 
- Written in Java, making it accessible and extensible by developers 
- Can be run with just the minimum requirement for Java: using the Sun JVM (Java 

Virtual Machine) without any special extensions 
- Bundled with Sun's standard JDK for development purposes 
- The most prevalent Java GUI toolkit  

 
There are other GUI frameworks such as SWT[17],  that is also partially written in Java, 
but fail to have clear separation between rendering code and native operating system 
code. Retargeting SWT into SVG means that we would have to re-implement the whole 
widget set, which is what I am trying to avoid. 
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I therefore designed and implemented the JUICE (Java User Interface Component 
Extension) framework as a solution to the non-existent SVG widget set problem. JUICE 
allows Java Swing widgets such as buttons, textfields, etc. to be used in SVG, thus 
offering a mature existing complete widget set to be used for GUI development in SVG.  
 
I.2.1 Background  

SVG (Scalable Vector Graphics)  is a W3C standard XML markup language that is used 
to describe vector illustrations. Vector-based formats differ from raster-based formats 
(e.g., GIF, PNG, TIFF) in that vector representation is resolution independent.  SVG can 
be rendered equally well on the web, desktop, and mobile devices. 
 
JFC (Java foundation Classes) / Swing is the most prevalent Java GUI Toolkit today. 
Swing is extensible, which allows third party developers to develop Swing components 
and extensions. There exists a plethora of third party components, extensions, and 
applications for Swing.  
 
I.2.2 Prior Work 

Prior work with SVG has attempted to address the lack-of-widget technology gap by 
creating SVG-native widgets from scratch. Although these efforts may eventually prove 
fruitful, none to date has been able to provide a complete widget library that has 
localization, font, and look-and-feel support. 
 
SVG developers customarily take the ad-hoc approach to widget construction: designing 
and implementing specialized widgets that are restricted to one particular application; 
Lewis, et al.[9] constructed widgets for a GUI specifically designed for genome data 
visualization.  
 
Lindsey[8] created a sample buttons-only SVG widget, however this set requires low-
level SVG customization and low-level SVG event handling callbacks. 
 
Chatty, et al.[4] have combined a vector-based widget toolkit with a user interface 
designer to create a desktop user interface that is vector based. However, the designer still 
has to define the primitive interactions. For example, to create a pushbutton, the 
developers must define all the possible button state images such as the button idle SVG 
image, the button pressed SVG image, button over SVG image, etc. The developer then 
also has to explicitly link all of the states. Chatty’s framework is feature-incomplete 
compared to Java Swing; for example, there is no layout management, there is no simple 
way to change the look-and-feel for all the widgets, no support for accessibility, and no 
easy extensibility. 
 
Fettes, et al.[6] succeeded in building a Java-based SVG User Interface framework 
created from scratch, however, this is a recent effort and the features are also incomplete 
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compared to the Swing framework—which has been improved since its public 
introduction in 1998. Not only that, but the users now must learn a new framework in 
order to develop SVG applications. 
 
I.2.3 Motivation 

Publishing to SVG has several benefits: 
- SVG is an open standard 
- SVG is XML: declarative markup 
- SVG is vector-based, making it infinitely zoomable 
- There exists SVG viewers for desktop and mobile platforms. 

  
Thus, if we have a widget set for SVG we can create user interfaces that are zoomable, 
and transformable through the use of XSLT. Transformability of user interfaces is 
important for delivery to multiple platforms, especially mobile platforms which usually 
have limited screen resolution. The transformations can be executed on the client-side as 
demonstrated by Marriot, et al.[5]. 
 
Swing is an excellent candidate for bridging because of its rich features, user-friendliness, 
wide acceptance, and extensibility. My framework, JUICE, allows Swing developers to 
code in Swing but display in SVG, thus obtaining the benefits of both Swing and SVG. 
 
 
I.3 Challenges 

JUICE is an experiment in marrying two different rendering paradigms: raster(bitmap) 
based rendering and vector based rendering. The challenges listed below are mostly 
based on consolidating the differences between the two technologies: 
 

- Swing is designed to be run on a raster-based display, while SVG is vector-based. 
- Integrating two different repaint/painting methodologies: 
 

Raster (SVG)Vector 
Concerned with screen-pixel 

management  
Concerned with vector object 

management  
One-to-one relation between pixels 
on the screen and the drawing data 

A vector object does not directly 
correspond to pixels on the screen. 
These pixels are determined by the 

current transformation matrix which 
can include scaling, shearing, etc.  

‘Dirty rectangle’ detection. A 
‘dirty rectangle’ is an area of the 
screen that needs to be updated.  

‘Dirty object’ detection. A ‘dirty 
object’ is an object which properties 

have changed. This also includes 
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removal and addition of new objects  
Screen areas that have been 

repainted over are lost.  
Objects that are hidden by other objects 
are not lost. They are still in the vector 

tree 
Non-declarative Declarative 

 
- Raster event model is one-to-one due to the direct relationship between screen 

pixels and drawing data. SVG (Vector) event model is not one-to-one because of 
the indirect relationship between pixels and vector objects. This is a problem 
because Swing assumes a pixel-based/raster display target. 

- All SVG mouse and keyboard events must be ferried and translated into the 
Swing layer.  

- Since keyboard events depend on focus events, focus events must be ferried as 
well. 

- The internal workings of Swing are undocumented. The programming 
documentation that describes painting, repainting, and events does not indicate 
how the flow is actually implemented inside Swing. 

- We need to understand how our chosen SVG toolkit and viewer, Apache’s 
Batik[2] SVG toolkit works, since it is mostly designed for viewing static SVG 
Documents. 

- Abstracting all this complexity from the user. JUICE must be transparent to the 
user. Programmers implements their GUI using Swing—complete with 
ActionListeners and other callback listeners—and have JUICE handle the 
SVG redirection. 
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II   INTERACTING COMPONENTS 
 
II.1 Swing 

Swing is a multi-platform GUI (Graphical User Interface) toolkit for java desktop 
application developers. Swing is part of the JFC (Java Foundation Classes) which is a 
desktop-application oriented API. Besides Swing, JFC includes APIs for 2D graphics 
rendering, accessibility, and  internationalization. Swing is an extension of the AWT 
(Abstract Window Toolkit) which was the first Java GUI Toolkit.  
 
Swing is implemented entirely in Java on top of Java 2D and AWT. Java 2D provides 
Swing the ability to perform raster drawing operations in an object-oriented manner. 
AWT provides the hooks into the native operating system, thus having support for drag-
and-drop, native windows, frames, dialogs, tooltips, and events. 
 
Swing has a rich set of features such as pluggable look-and-feel, localization, and 
accessibility support. All of these features allows UI developers to make their User 
Interface code portable to other operating systems, without worrying about multiple 
chromes, multiple languages, and accessibility. 
 
Since Swing components are implemented in Java, they are extensible and flexible. The 
developer can create a custom component based on an already existing base Swing 
component, customizing its looks and behavior.  
 
Swing is currently supported in Windows, Linux/Unix, Solaris, and Macintosh operating 
systems. 
 
 
II.1.1 Swing Design 

II.1.1.1 General Design 

Sun's Swing components are platform-independent Java components that are intricately 
tied to the native display and events substrate. This tie is necessary to have the drawing 
instructions be translated onto the screen. Most of the native coupling is provided by the 
underlying AWT toolkit upon which Swing is built. See Figure 1 for a pictorial 
description. 
 
The coupling of Swing with the native operating system is done by using 'peer' classes. 
These peer classes are platform-specific and know how to interact with the underlying 
platform. Swing communicates with relevant peer classes through the use of Java's 
JNI(Java Native Interface) mechanism. 
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Native peer implementations are provided by the AWT toolkit which has a peer for every 
component. Swing only extends the necessary legacy AWT containers such as Window, 
Frame, and Dialog. The rest are all peerless components. 
 

SwingSwing

AWT PeersAWT Peers

Operating SystemOperating System

Device DriversDevice Drivers

HardwareHardware

Java Layer

Operating System Layer

Java to OS Bridge

SwingSwing

AWT PeersAWT Peers

Operating SystemOperating System

Device DriversDevice Drivers

HardwareHardware

Java Layer

Operating System Layer

Java to OS Bridge

 
 

Figure 1: Swing and the OS 

II.1.1.1.1 The Swing Rendering Model 

II.1.1.1.1.1 Heavyweight Components 
Heavyweight components can be defined as Swing components that have corresponding 
native peers. Heavyweight components usually are top-level containers that touches the 
user desktop directly. Examples of heavyweights include but are not limited to: JFrame, 
JWindow, and JDialog(see Figure 2 for an example). Heavyweights rely on the 
native operating system peer to provide them with positioning, z-ordering, clipping, and 
damage rectangle detection. 
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Figure 2: JFrame, JWindow, and JDialog 

 
 
They also share a common trait in that they extend directly from the corresponding AWT 
class, instead of extending JComponent or extending a descendant of JComponent. For 
example, JFrame extends AWT's Frame class. Remember that AWT elements each 
have a corresponding peer. Figure 3: Swing/AWT Inheritance shows the general 
hierarchy of Swing and AWT components. 
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Figure 3: Swing/AWT Inheritance 

 
Heavyweight components obtain their graphics context directly from the operating 
system through their native peers. This allows them to exist directly within the operating 
system's graphical user environment. In AWT, each user interface element, be it a button 
or a text field, has a corresponding peer. This allows buttons direct interaction with the 
operating system. This is not the case in Swing. 
 

II.1.1.1.1.2 Lightweight Components 
Lightweight components can be defined as Swing components that do not have 
corresponding native peers. These peerless components usually are user interface 
elements that can be put inside a top level container. Examples of Lightweights include 
but are not limited to: JButton, JTextField, and JTree. Please look at Figure 4: 
JTextField and JButton for an example. 
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Figure 4: JTextField and JButton 

 
Unlike heavyweight components, lightweight components extend JComponent 
directly. JComponent is Swing's base component for non-top-level components. 
JComponent provides its subclasses with pluggable look and feel, keyboard event 
handling, tool tip handling, accessibility method stubs, bean properties, bordering, double 
buffering, and graphics handling--all in Java.   
 
Swing is based on an MVC-like design (Figure 5: Swing component model and UI 
delegates). This design has one model, and a corresponding UI delegate that does the 
actual drawing. Every Swing component has an associated UI Delegate. Which UI 
delegate to use is determined at runtime by the UI manager based on either the system-
default or user-specified look-and-feel. The UI Delegate is written entirely in Java. 
 

 
Figure 5: Swing component model and UI delegates 
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Once a Swing component is rendered onto the screen, all subsequent UI updates for that 
component goes through one update thread per application. To make the thread 
accessible to users, Swing provides a way to queue update instructions to the single 
Swing thread.  
 
Drawing information in the lightweight components is displayed through the screen by 
borrowing the graphics context of a heavyweight ancestor (Figure 6: Graphics context 
passing).  
 

 
Figure 6: Graphics context passing 

 
 

II.1.1.1.1.3 Graphics Context 
Graphics contexts allows applications to draw component representations straight onto a 
rendering device. The rendering device can be a screen device or a printing device. 
Conceptually, any device will work as long as there is an implementation of the graphics 
context for that device. Most graphics context are implemented natively by the 
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underlying operating system. To make such a graphics context accessible by Java objects, 
the graphics context is wrapped into a Java object through the use of JNI (Java Native 
Interface).  
 
To make all graphics context accessible in the same fashion, all graphics context must 
extend the abstract class Graphics. The abstract Graphics class serves as the visible 
interface to implementors. This abstraction is necessary for Swing to be portable to 
different devices. The Graphics class contains methods that allows its users to give 
primitive drawing instructions such as draw a line, a rectangle, image, to the underlying 
device.  
 
Heavyweight components have their own graphics context provided by their native peer. 
Lightweight components obtain the graphics context from their top-level heavyweight 
ancestor. The Swing component model uses a variant of the Composite design pattern, in 
that every JComponent can be put inside of a Container, but not every 
Container is a JComponent. The containers that are not a JComponent instances 
are usually top-level heavyweight containers. The lightweight descendants then request 
the graphics context from the heavyweights. If the immediate parent is not a 
heavyweight, then that parent will ask its containing parent until a heavyweight ancestor 
is found. But sharing the context means that multiple lightweight components will be 
competing to update the context; this will be a performance bottleneck when multiple 
repaints have to be done. 
 

II.1.1.1.1.4 Painting 
There are two types of painting calls categorized by the initiator: system-initiated 
painting and application-initiated painting.  
 
System-initiated painting is done by the AWT container and can be triggered by either 
the underlying operating system, or by a lightweight. These events usually happens the 
first time a component is being shown, resized, hidden, or destroyed.  
 
Application-initiated painting is triggered by the user by explicitly calling the repaint 
method.  
 
Swing also has extra painting features such as double buffering and transparency support. 
Double buffering support is provided at the component level; however, the double 
buffering properties of a container is usually propagated down. Swing uses the standard 
double-buffering approach by drawing to a single offline buffer before sending any 
information to the screen.  
 
Swing introduces three new painting methods on top of the AWT paint and update 
methods. These methods are: paintComponent, paintBorder, and 
paintChildren.  
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Figure 7: Different paint methods 

 
 
The first method, paintComponent, is the main method that invokes the component's 
UI delegate. It can also contain custom drawing information provided by user extension 
classes. The second method, paintBorder, is responsible for calling the appropriate 
BorderUI class that does the actual rendering. The method paintChildren 
enumerates the visible and partially visible children, and calls their paint method. 
Please look at Figure 7: Different paint methods for a visual overview. 
 
 

II.1.1.1.1.5 UI Delegates 
For Swing components, paint calls paintComponent, which in turns calls the UI 
delegate's update method. Remember that the UI delegate is the one that is responsible 
for the actual drawing of a component. The UI delegate then determines if the component 
needs to be filled, and continues to invoke the UI delegate's paint method. 
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The actual rendering instructions are given inside the UI delegate's paint method. This 
is because Swing was designed to have a pluggable look and feel without changing the 
way the developer interacts with Swing. 
 
 
II.1.1.1.2 The Swing Event Model 

Swing's event model is based on AWT's event model (see Figure 8: The AWT event 
queue). The AWT low level event model is simple. There is one central queue for events, 
and events are being dispatched through a central dispatcher as well. Applications then 
can register listeners to listen to a particular event. 
 

 
Figure 8: The AWT event queue 

 
There are two general types of events: low-level events, and high-level events. Low-level 
events are atomic events such as mouse-down, mouse-up, key-up, and key down. Low-
level events are very basic in nature, and are taken from the operating system as-is. High-
level events are a composition of low-level events. A button’s ActionEvent, for 
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example involves a mouse-down followed by a mouse-up within the button bounds; if the 
mouse-up is registered outside the boundary, the ActionEvent is not fired. 
 



      15

II.2 Apache Batik SVG Framework 

The Batik SVG framework is the first SVG framework that offers a complete set of 
features to support static SVG generation, processing, and rendering. It is developed 
under the Apache Software Foundation license, and conforms tightly to the SVG 
standard.   
 
II.2.1 Batik Design 

The main Batik design consists of two parts, the Batik core-area and the Batik low-level 
area. The Batik core area contains classes that can be used by the developer to process, 
generate, and display SVG. The Batik low-level area contains classes that provide the 
necessary foundation for the core area classes. They perform the actual grunt work for the 
core classes. 
 
II.2.1.1 Core Area Classes 

There are five main Batik core component subsystems. They are: The SVG Generator, 
The Batik transcoder, The Batik SVG DOM API, The Batik JSVGCanvas, and the 
Batik bridge.  
 
The main component of the SVG Generator is SVGGraphics2D. SVG Graphics 2D 
allows Java applications to easily convert raster drawing instructions to vector drawing 
instructions. SVGGraphics2D is a direct replacement for any Java class that uses the 
Java 2D API for rendering. All of this is possible because of the abstract nature of the 
Graphics class that allows for direct substitution. SVGGraphics2D takes in Java 2D 
drawing instructions and converts them into the appropriate SVG DOM representation.  
 
The Batik transcoder subsystem provides translation from an SVG Document or DOM, to 
any supported raster image format. This provides a way for saving an SVG document as 
an image, and also for printing. 
 
The SVG DOM API is an implementation of the SVG W3C standard. As any DOM 
standard, it allows developers to interact directly with the markup document in an object 
oriented fashion. Batik provides a complete static SVG DOM implementation, which 
allows developers to parse, process, and output SVG documents. 
 
JSVGCanvas is a Swing UI component made solely for the purpose of displaying SVG 
documents. JSVGCanvas comes with Interactor classes that allows the user to 
zoom, rotate, and pan the document. There are also Interactor implementations that 
follows hyperlinks, and provide text selection. 
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The Batik bridge subsystem is the bridge that links the SVG DOM with an internal 
representation that is used to display SVG Graphics. This subsystem creates a mapping 
between an SVG DOM element object with its corresponding vector representation. For 
each SVG DOM element, there is a corresponding vector tree which are implemented as 
Batik GVT(Graphics Vector Toolkit) objects. The GVT is part of the Batik low-level 
classes. 
 
 
II.2.1.2 Low Level Classes 

The Batik low-level area classes provides all the groundwork for the functioning of the 
core area classes. They are not meant to be used by developers directly. There are three 
main subsystems: the Graphics Vector Toolkit (GVT), the SVG Renderer, and the SVG 
Parser. 
 
The Graphic Vector Toolkit (GVT) provides a vector-object view of the SVG DOM tree. 
These objects are geared more towards graphics rendering and DOM event handling 
purposes. The GVT objects retain the same structure as their SVG DOM counterpart, and 
are generated by the Batik Bridge Subsystem.  
 
The Batik SVG renderer subsystem is accountable for rendering and repainting of the 
GVT tree. Although the default renderer that comes with Batik is a raster-based renderer, 
the Batik specification states that the renderer is pluggable and is not limited to a raster 
implementation only. The default renderer computes the changed graphics vector tree and 
repaints the necessary are on the screen. Since SVG is vector-based, the renderer must 
also take into account the zoom factor currently being used, since zooming changes what 
pixels will be rendered onto the screen 
 
The Batik SVG parser subsystem is made for reading and parsing SVG documents, 
translating them into the appropriate DOM representation. The parser subsystem is a 
conglomeration of several sub-parsers, which is necessary considering the existence of 
several complex SVG elements with complex attributes such as transform, path, and 
color.  
 
II.2.1.3 JSVGCanvas 

JSVGCanvas is a Swing UI element that allows for rendering SVG documents. 
JSVGCanvas interacts with several different underlying components in the Batik 
framework: the SVG Document Loader, the GVT builder, the GVTRenderer, and the 
UpdateManager. Although Batik supports only static SVG documents, it also allows 
for some dynamic changes to the contained SVG document. This is why all the above 
components are necessary for JSVGCanvas to be able to present an SVG document. 
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JSVGCanvas has one associated SVGDocument object, which comes from loading 
an SVG document and parsing it into an SVG DOM representation. This SVGDocument 
is then translated into vector objects by the GVT builder, and rendered onto the screen by 
the GVT renderer. Subsequent updates are handled by the UpdateManager that 
manages any addition, removal, and changes to the SVG Document associated with the 
JSVGCanvas. 
 
 
II.2.1.4 Update Manager 

The update manager is responsible for handling updates to the SVGDocument 
associated with the JSVGCanvas.  The document is only rendered onto the screen when 
the UpdateManager finishes its scanning cycle. Batik also enforces that any updates 
to the SVG document be done in the UpdateManager thread.  
 
Batik provides a way for developers to access this thread's update queue by either calling 
invokeLater or invokeAndWait, similar Swing. 
 
The UpdateManager monitors its invoke queue for any updates, and performs those 
updates within a certain receiving window—effectively modifying the monitored 
SVGDocument. Once it is done incorporating the changes, the UpdateManager 
signals the renderer to render the updates onto the screen. 
 
The UpdateManager starts asynchronously, which means that the UpdateManager 
may start any time the JSVGCanvas is loaded. This is a problem because all updates 
outside of the update manager's thread will be ignored. But since the UpdateManager 
follows the observer-observable design pattern, we can attach observers to the update 
manager.  The UpdateManager will notify its observers when the UpdateManager 
is started, when an update is currently taking place, when an update is completed, and 
when the manager is being shut down. 
 
As we do not have complete control of the update manager, these listeners provide 
sufficient information to track the progress of Batik in receiving dynamic updates. 
 
 
 
II.2.2 Batik Event Handling 

Batik conforms closely to the DOM event specification. DOM events are platform-
independent, and works on DOM nodes and elements. At the time of the implementation, 
Batik supports both DOM Level 2 and DOM Level 3 events. This means that Batik 
supports mouse events, focus events, and keyboard events on the SVG nodes. 
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III   JUICE (JAVA UI COMPONENT EXTENSION) FRAMEWORK 
 

III.1 High Level Design And Architecture 

There are three main items that the JUICE framework accomplished: 
 

- Take Swing drawing instructions and route it into SVG instead of into the native 
platform.  

- Translate Swing events from the particular SVG viewer rather than directly from 
its peer.  

- Hide the complexity of the framework from the application developer. 
 

 
Figure 9: JUICE high-level design 

 
 
The ‘external entity’ shown in Figure 9: JUICE high-level design above is the user 
code. The figure above contains the core of JUICE, namely the Graphics and Event 
Bridge subsystems. The user code will be instrumented at the bytecode level by JUICE; 
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JUICE replaces the standard classes with custom JUICE classes transparently in order to 
perform all the necessary routing and bridging.  
 
 
III.1.1 Bridging Graphics 

There are several design decisions to consider based on the problem domain. The first 
problem is that Swing drawing instructions are Java 2D instructions, which are raster 
based; the second problem is that Swing is designed based on the assumption that the 
target platform is a raster system. However, SVG is a vector-based system, where some 
of the raster concepts can not be applied. Therefore, there must be a part of the 
framework that translates Swing-generated raster drawing information into SVG DOM 
nodes. Fortunately, the Batik SVGGraphics2D class accomplishes just that. As 
mentioned before in chapter 2, SVGGraphics2D turns Java 2D drawing instructions 
into SVG DOM elements. We then display the contents in the Batik SVG viewer using 
JSVGCanvas. 
 

 
Figure 10: JUICE rendering subsystem 

III.1.2 Bridging Events 

JUICE takes events originating from the SVG Viewer and delivers them to the 
underlying Swing application, where the event will be processed. Therefore the 
interactive SVG viewer must have support for the DOM event standard, which is the 
main event type in SVG. The SVG DOM events will then be translated and sent to the 
Swing layer by JUICE.  
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Figure 11: JUICE event subsystem 

 

III.1.3 User Transparency 

To fully leverage Swing, JUICE must be transparent to the user. The ideal goal is that the 
user implements an application in Swing, and then plugs it into JUICE for SVG platform 
rendering. This is accomplished through bytecode instrumentation/transformation. 
 
 
III.2 Low-Level Design And Implementation 

III.2.1 Bridging Graphics 

III.2.1.1 Preliminary Approach 

The initial rendering approach of JUICE (see Figure 12: Initial rendering approach) is 
simple and is divided into three main steps:  
- JUICE intercepts Swing drawing content from the topmost lightweight container 
- JUICE translates the drawing content from raster to vector using SVGGraphics2D 
- JUICE replaces the SVG DOM of the viewer with the resulting vector tree 
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Figure 12: Initial rendering approach 

First I need to create an SVG Graphics context; this is done by first creating an SVG 
document, then passing it into the SVG Graphics context constructor.  This follows the 
example set in the Batik examples website. 
 
Notice that we do not want double buffering. Double buffering redirects drawing to an 
offscreen buffer; once the process is completed, the offscreen buffer is then transferred to 
an onscreen buffer to be painted onto the screen. 
 
To understand this process better, below is a code snippet from the 
paintWithOffscreenBuffer method of JComponent  
 
 
        Graphics og = offscreen.getGraphics(); 
        Graphics osg = SwingGraphics.createSwingGraphics(og); 
 og.dispose(); 
. 
. 
. 
                    g.setClip(x,y,bw,bh); 
                    g.drawImage(offscreen,x,y,paintingComponent); 
                    osg.translate(x,y); 
. 
. 
. 
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Notice that the above code actually invokes a command to draw an image taken from the 
offscreen buffer into the onscreen buffer. The results for drawing a double buffered 
JComponent in SVG using SVGGraphics2D is the following: 
 
<svg> 
    <g style="font-family:sans-serif; font-weight:bold;" transform="translate(24,402)"> 
      <image xmlns:xlink="http://www.w3.org/1999/xlink" style="clip-
path:url(#clipPath13);" width="310" xlink:show="replace" xlink:type="simple" 
preserveAspectRatio="none" height="192" x="0" y="2" 
xlink:href="data:image/png;base64,iVBORw0KGgoAAAANSUhEUgAAATYAAADACAYAAACOAE8ZAAAgAElEQVR
42uydB7xcZZn/n+m93Xvn9pLeE3roRUFQVixgA1nRFXVXVxQLllUBWf246i4KNhRFLEgVkKYgCDGQkIQkpCckucnt
ZeZO7+3//p73vGfO3MT9N2QF572f8znT7syZM+d8z++pr6kmBjVHczRHc7yGhrm5C5qjOZqjCbbmaI7maI4m2JqjO
ZqjOZpga47maI7maIKtOZqjOZqjCbbmaI7maIKtOZqjOZqjCbbmaI7maI4m2JqjOZqjOZpga47maI7maIKtOZqjOZ
pga47maI7maIKtOZqjOZqjCbbmaI7maI6/0rA2d8H//Lj/+7fQ0OQY9Xd0U/ucJXT6P5x9xGv2bX2WpkfLlIi8RC8
dGKZqNkbxWIQGD4xRIp6goXiKTKUEvzaSTuv/ ... 
. 
. 
. 

 
Notice that the drawing information is treated as embedded raster image information—
PNG encoded in ASCII—because of the double-buffering. Unlike vector elements, raster 
images are not scalable. Since this is not desirable, double buffering must be disabled on 
Swing components. By disabling double buffering, the SVG generated will be pure SVG 
as shown in the following SVG snippet: 
 
<svg> 
<g transform="translate(16,25)" style="fill:rgb(102,102,102); font-family:sans-serif; 
font-weight:bold; stroke:rgb(102,102,102);"> 
      <rect x="0" y="0" width="38" style="clip-path:url(#clipPath56); fill:none;" 
height="38" /> 
      <rect x="1" y="1" width="38" style="clip-path:url(#clipPath56); fill:none; 
stroke:white;" height="38" /> 
      <line x1="0" x2="1" y1="39" style="clip-path:url(#clipPath56); fill:none; 
stroke:rgb(204,204,204);" y2="38" /> 
      <line x1="39" x2="38" y1="0" style="clip-path:url(#clipPath56); fill:none; 
stroke:rgb(204,204,204);" y2="1" /> 
    </g> 
    <g style="fill:rgb(204,204,204); font-family:sans-serif; font-weight:bold; 
stroke:rgb(204,204,204);"> 
      <rect x="0" y="0" width="720" style="clip-path:url(#clipPath57); stroke:none;" 
height="23" /> 
    </g> 
    <g style="fill:rgb(153,153,153); font-family:sans-serif; font-weight:bold; 
stroke:rgb(153,153,153);"> 
      <line x1="0" x2="720" y1="22" style="clip-path:url(#clipPath57); fill:none;" 
y2="22" /> 
    </g> 
    <g transform="translate(169,1)" style="fill:rgb(204,204,204); font-family:sans-serif; 
font-weight:bold; stroke:rgb(204,204,204);"> 
      <rect x="0" y="0" width="63" style="clip-path:url(#clipPath58); stroke:none;" 
height="21" /> 
      <text x="6" y="15" style="clip-path:url(#clipPath58); fill:black; stroke:none;" 
xml:space="preserve">Tool Tips</text> 
      <rect x="40" y="17" width="3" style="clip-path:url(#clipPath58); fill:black; 
stroke:none;" height="1" /> 
    </g> 
. 
. 
. 
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Notice that the items now are all pure vector elements such as rect, line, and text. The 
vector elements are scalable, making this true SVG, instead of just embedding images 
inside SVG. Of course drawing pure vector elements is expensive compared to just 
drawing images, but this is a price that JUICE must pay for the purpose of purity. 
 
The next step is to trigger the repaint of the contained element. Since the 
JuiceContainer itself is a Swing component, it has a paintComponent method. 
In the paintComponent method, the container explicitly calls paint with 
SVGGraphics as a parameter on the contained element.  
 
SVGGraphics2D g = new SVGGraphics2D(doc); 
SVGGeneratorContext genCon = g.getGeneratorContext(); 
genCon.setComment(COMMENT); 
g = new SVGGraphics2D(genCon,false); 
 
panel1.paint(g); 

 
This is the first part of the bridge between Swing and Batik SVG viewer. Remember that 
the SVG viewer we are using is JSVGCanvas.  
 
The second part of the bridge is to replace the main group with the latest rendered 
version. The catch is that the merging must be done in the UpdateManager thread.  
 
canvas.getUpdateManager().getUpdateRunnableQueue().invokeLater( new Runnable(){ 
public void run(){ 
Element oldGroup = canvas.getSVGDocument().getElementById("topLevel"); 
if(oldGroup != null) 
 canvas.getSVGDocument().getDocumentElement().replaceChild(tlgImp,oldGroup); 
} 
}); 

 
This approach has a very high success rate for different ranges of applications because it 
simply takes the top-level rendering information, translates it into SVG, and puts the 
SVG Document into the JSVGCanvas.  
 
But notice that the whole tree will have to be replaced every time there is a call to repaint 
the user interface. Remember that Batik has to convert a SVG DOM representation into a 
GVT, then the GVT has to be rendered onto the screen. Because of the multiple 
conversions going on, the performance degrades. Note also that multiple repaints are not 
uncommon for Swing components, this too contributes to the overall performance 
degradation. 
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III.2.1.2 Current Approach 

III.2.1.2.1  Partial Tree Replacement 

III.2.1.2.2  Subtree Mapping 

If replacing the whole tree is bad, why don't we replace part of it instead? In theory, 
replacing only changed subtrees will increase the rendering speed compared to replacing 
the whole tree.  
 
How do we determine this subtree exactly? One way to do this--while maintaining the 
same approach as before--is to first perform an XML DOM compare of the new tree with 
the old one, save the differences, and only replace the differences.  
 
This is not efficient because: 

- DOM comparison is a graph isometry problem, and fast comparison algorithms 
are usually heuristic based. 

- Most of the time the newly rendered tree is totally different because the 
interleaving of drawing instructions. 

 
This means if we perform the fastest DOM comparison method, on every single repaint, 
we will perform a significant number of operations which will slow down performance 
considerably.  Remember that we actually would like to identify the changed nodes, thus 
we have to walk the tree.  
 
Suppose we have a DOM compare algorithm that is O(m+n)  in time complexity, where 
m,n is the number of nodes in the larger tree and smaller tree respectively. 
 
Let   
N be the set of nodes in the new tree 
M be the set of nodes in the old tree 
S  be the set of nodes in the subtree containing nodes in M that is the same as nodes in N 
 
Notice that S = M ∩ N; also notice that S is the amount of improvement that we can 
actually save. We care more about the new tree instead of the old one; however we would 
like to not replace unchanged nodes if possible.  This means that we still need to integrate 
the difference, and remove the contents of M that is not in S. 
 
  

Operation Steps 
DOM Comparison sizeof(N)+ sizeof(M) 

Number of nodes to remove sizeof(M-S) 
Number of nodes to integrate sizeof(N-S) 

TOTAL nodal operations 2 × (sizeof(N)+sizeof(M)-sizeof(S)) 
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Another way to write the total above is : 
 

2 × sizeof(M ∪ N) 
 
Thus, the best case is achieved when the size S is maximized. Even in that case we still 
end up with a full traversal of either the old or new node sets, which is not very good if 
we factor in multiple repaints coming from multiple containers.  
  
The solution is to map a Swing component to a certain part of the SVG vector tree. That 
means each Swing component is associated with a node in the SVG tree. The benefits of 
this solution are that there is no need to determine which subtree has changed, since the 
components will know where to update already.  
 
The immediate problem is identifying the points to augment this new functionality to the 
Swing components. At first glance the best way is to replace the graphics context and 
have the graphics context be aware of the components. But just replacing the graphics 
context will not work because drawing using the graphics context is a one-way operation, 
meaning the graphics context does not know nor need the information about who is 
currently using the graphics context itself.  
 
Below is an example of the drawLine prototype declaration in the AWT Graphics class 
 
public abstract void drawLine(int x1, int y1, int x2, int y2) 

 
In drawing a line, the graphics context only requires 2 points (x1,y1) and (x2,y2) and 
nothing more. 
 
Thus, there are two general alternatives for mapping subtrees to available Swing 
Components (see Figure 13: Direct and indirect mapping): 

1. Direct mapping; each Swing component Object will be directly mapped to the 
specific DOM subtree it is responsible for 

2. Indirect mapping; each Swing component Object will be mapped to an XML ID 
of the DOM subtree instead of the whole DOM subtree object. 
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Figure 13: Direct and indirect mapping 

 
 
The direct mapping approach has a performance advantage because the DOM object 
itself can be manipulated directly by the Swing component object. But, this approach is 
not practical for cross-viewer use because some viewers’ DOM implementation is not 
written in Java. 
 
By using indirect mapping we can associate the Swing component with the appropriate 
subtree while maintaining cross-viewer interoperability and generality because of XML 
ids. Figure 14: Current rendering approach below outlines the approach discussed in 
this section. 
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Figure 14: Current rendering approach 
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III.2.1.2.3  Graphics Interception Point 

JUICE improves performance by replacing subtrees instead of whole trees by mapping 
Swing components to IDs in the SVG tree. Where does JUICE actually perform this? 
 
To find out where to actually intercept these points, we need to examine the Swing/AWT 
paint workflow. Unfortunately, Sun’s documentation on painting only touches the high-
level overview on how painting works. For obtaining low-level information about 
Swing/AWT painting, we will have to take a look under the hood (i.e. the source code) of  
Swing/AWT. 
 
Let’s take as an example a JButton. Remember that Swing has three additional 
methods for rendering a component in addition to the AWT paint  method.  
 
Each of those methods takes one parameter of type java.awt.Graphics. Let ’s 
examine the flow of paintComponent for example. 
 
It turns out that JButton itself does not have a paintComponent method, but 
JButton inherits that particular method from JComponent directly. 
 
So now let’s take a look at the paintComponent method in JComponent. There are 
two relevant questions that pop up immediately: 
1. Which other methods call this particular method?  
2. Where did the graphics context come from? 
 
Which other methods call this particular method? 
 
Notice that there is a possibility that of an answer for the second question if there is an 
answer to the first question. A search—limited to JComponent—reveals that there are 
two points in which this occurs: 

- the paint method 
- the paintWithOffscreenBuffer method 

 
Both the methods listed above take a graphics context in order to operate. So there is a 
need to search the Swing classes even deeper. After looking at several classes that calls 
the paint method, I found _paintImmediately—a package protected method in 
the JComponent class, which actually calls the method getGraphics to obtain the 
graphics context on the component.  
 
Below is a code snippet from _paintImmediately  
 
. 
. 
Graphics pcg = paintingComponent.getGraphics(); 
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g = SwingGraphics.createSwingGraphics(pcg); 
pcg.dispose(); 
. 
. 
g.setClip(paintImmediatelyClip.x,paintImmediatelyClip.y, 
paintImmediatelyClip.width,paintImmediatelyClip.height); 
paintingComponent.paint(g); 
. 
. 
. 

 
What does getGraphics on JComponent ultimately do? It in turn calls 
Component’s implementation which consults the peer of the component. If the 
component is lightweight, it requests graphics from the parent. If the component is 
heavyweight, it requests graphics from the peer itself. 
 
There are two events that trigger the paint method. The first event is a 
HierarchyEvent, which is propagated down the component tree when the whole 
frame is being shown onto the screen. The sequence of instructions can be observed in 
Figure 15: Hierarchy events and paint. 
 

 
Figure 15: Hierarchy events and paint 

 
The second event would be a DispatchEvent which in turn propagates up to the 
component hierarchy, then back down to trigger paint on the necessary components. This 
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is shown in the sequence diagram in the next figure, Figure 16: Dispatch events and 
paint. 

 
Figure 16: Dispatch events and paint 

By observing both the Swing workflows above, the ideal place to swap is not on the peer 
level, but directly on the paint method level. Overriding paint makes JUICE react 
to any event that may trigger repainting. 
 
III.2.1.2.4  Implementation Details 

The approach to solve the problems above is simple, yet carefully crafted to maximize 
the performance of the JUICE Framework. JUICE takes advantage of Swing processes 
and benefits as much as it can. There are four integral parts to this approach: 
  

1. The Ghost Window (see Figure 17: The ghost window): JuiceWindow  
2. The Special Graphics Context: JuiceGraphics2D 
3. The Replacement JUICE ‘Components’, for example: JuiceJButton for 

JButton 
4. The bytecode transformer 

 

III.2.1.2.4.1 Propagating Hierarchy Events 
Swing distinguishes initial painting and subsequent painting as outlined in a JFC 
article[12] about Swing/AWT painting. Looking into the Swing source code reveals that 
initial painting is triggered by a HierarchyEvent that is propagated when a top level 
container is being shown or modified. This is where the ghost window, JuiceWindow, 
comes in. 
 
JuiceWindow is an invisible JWindow extension, which is necessary for several 
different purposes: 
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- Keeping the proper Swing hierarchy intact. All lightweight Swing components are 
assumed to exist  within a certain top-level parent/ancestor Swing component. 

- Propagation of component visibility and showing; Swing apparently distinguishes 
these notions, but it does not really matter for our intent and purposes.  

- Propagation of hierarchy events. Since JUICE is not actually showing the 
component on the screen, JUICE needs to make Swing think that the components 
are contained in a visible top level container. The way to do this is to imitate the 
way actual Swing top-level containers work.  

 
After looking through Swing source code and performing some experimentation, I found 
that the HierarchyEvent objects generated must be propagated by a top-level 
container to the child components to ensure Swing compatibility. The propagation of 
hierarchy events is also necessary to trigger initial painting. 
 

 
Figure 17: The ghost window 

All the user-programmer components are added by JUICE into JuiceWindow. The 
JuiceWindow is not displayed on the screen; however, JuiceWindow announces 
its visibility to the child components by propagating the appropriate hierarchy events 
down the component tree. This triggers the normal Swing repaint flow and invoke the 
paint method on the child components. 
 

III.2.1.2.4.2 Paint Replacement  
The paint replacement workflow can be summarized in Figure 18: JUICE paint 
workflow. 
 



      33

 
Figure 18: JUICE paint workflow 

 
The special graphics context, JuiceGraphics2D, is required for processing the Swing 
instructions, and embedding them into the SVG tree. This graphics context, coupled with 
the ‘Replacement Juice Components’, allow the ‘Swing component & subtree ID 
coupling’ to be realized. The special graphics context handles: 

- The hierarchy of paint instructions. This means the parent Component↔ child 
Component painting relationship is preserved.  

- Injection of subtrees into the main viewer SVG tree. 
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An added complication is Z-ordering handling. One of the fundamental difference 
between a raster substrate and the SVG tree is the way it handles overpainting (painting 
over). In a raster system, pixels that are painted over are lost. In SVG, vector items that 
are painted over are still there. An easy way to illustrate this is by thinking of raster as a 
bitmap. The bits that are replaced are lost, thus they need to be replaced. When a 
component is hidden, JUICE forces a call to the paint method of the hidden 
component. Observe the sequence diagram in Figure 19: Component hidden paint 
workflow below. 
 

 
Figure 19: Component hidden paint workflow 

Why not just call repaint? Calling repaint does not necessarily invoke paint 
because there is a possibility that the Swing RepaintManager will determine that 
there is no dirty rectangles, thus there is no need to update the screen; this possibility 
occurs when another component paints on top of the hidden component, causing it to be 
hidden. Painting a new object in SVG means appending a new node at the end of the 
vector tree. Unless removed, those hidden nodes will still exist.  
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This is best described in the example of Swing’s JTabbedPane.  Figure 20 is taken 
from a Swing tutorial page[16] on JTabbedPane. 
 

 
Figure 20: JTabbedPane 

Remember that IDs are used to pair a Swing component to an element in the tree. Below 
is a sample user scenario: 
 

1. The first tab is shown for the first time: 
a. A subtree with the ID for the first tab is generated 
b. The item is appended to the end of the main SVG viewer tree. 
c. The contents of the first tab are shown  

2. The user clicks on the second tab 
a. A subtree with the ID for the second tab is generated 
b. The item is appended to the end of the main SVG viewer tree. 
c. The contents of the second tab are shown  

3. The user clicks on the first tab again 
a. A subtree with the ID for the first tab already exists 
b. That subtree is updated with whatever content from the first tab 
c. The contents of the first tab, however, are never shown because the first 

tab SVG subtree comes before the second tab SVG subtree.  
 
The solution to this Z-ordering problem then, is to explicitly remove hidden elements 
from the tree. This ensures that the completely hidden elements are not displayed. Also, 
removing hidden elements from the tree will actually yield a performance improvement 
because the size of the tree is smaller now. Partially obscured components are still drawn 
using a specified clipping path 
 
The graphics context is also responsible for removal of hidden elements. To increase 
efficiency, this is done only when a component is hidden. JUICE takes advantage of 
Swing’s workflow here by listening for events fired when the Swing component is 
hidden. JUICE Components listen for ComponentEvents and reacts to component 
hidden events 
 
All of this graphics rerouting and embedding ID for Swing components is not possible 
without replacement JUICE Components. Most of these replacement components contain 
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redirection code that works together with the JuiceGraphics2D, while piggybacking 
on Swing workflows and UI separation model.  
 
The JUICE replacement is a Swing component that extends the original Swing 
component; for example, a JuiceJButton extends JButton. Each JUICE 
replacement component contains: 

- A replacement paint method; this method swaps the provided Graphics 
object with JuiceGraphics2D, calls paintComponent, 
paintBorder, and paintChildren in the correct order. This is the 
point where all the the Swing Component and SVG Tree ID mapping occurs. 

- A special ComponentListener that listens for component hidden events. 
This listener will signal JuiceGraphics2D to remove the subtree 
associated with the hidden component. 

 
Also remember that all updates such as hiding an element and appending an element to 
the SVG DOM of the viewer must be done inside the UpdateManager thread.  
 
The Java bytecode transformer is responsible of replacing the actual Swing classes with 
the replacement JUICE classes and will be discussed in the next Chapter. 
 

III.2.1.2.4.3 SVG Viewer Connection 
The viewer connection is provided by JuiceContainer, which takes instrumented 
user-implemented classes and provide these classes with a JuiceGraphics2D object. 
The JuiceGraphics2D itself is constructed by the JuiceContainer with a link 
to the viewer’s SVG Document. The viewer also wants all updates to be queued onto its 
UpdateManager queue; this insertion is done by the JuiceContainer as well.  
 
III.2.2 Bridging User Events 

In Swing, user interaction events can be categorized into two major groups: keyboard 
events and mouse events. The DOM Level 2 event model also supports these two types of 
events. The difference is that Swing/AWT events are delivered to the component, while 
DOM events are delivered to the particular DOM node--in our case, the particular SVG 
element. These differences warrant a connection between the SVG element and the 
Swing component it represents.  
 
For mouse events, the simplest approach is to use a transparent SVG rectangle on top of 
the whole application. This means that in the SVG tree, the rectangle must be the last 
element.  
 
 
  <rect x="0" y="0" width="730" style=" opacity:0" id="mainrect" height="649" /> 
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The width and height depends on the application’s width and height respectively. 
Because the Batik SVG viewer supports the DOM Level 2 events standard, it is possible 
for a developer to attach DOM Event listeners to the rectangle during creation.  
 
The code below is taken from the DOM Level 2 specification on EventTarget. 
 
interface EventTarget { 
  void addEventListener(in DOMString type,  
                                      in EventListener listener,  
                                      in boolean useCapture); 
  void removeEventListener(in DOMString type,  
                                         in EventListener listener,  
                                         in boolean useCapture); 
  boolean dispatchEvent(in Event evt) 
                                        raises(EventException); 
}; 

  
The JUICE framework then adds mouse events listeners to the interface. Each listener 
listens for a particular type of events. The supported mouse events from the DOM Level 
2 specification are: click, mouse down, mouse up, mouse over, mouse move, and mouse 
out . Notice that we do not have a mouse drag as in AWT. Mouse drag has to be 
simulated in order for it to work. We need to implement a simple state machine for 
simulating MouseDrag.  
 
The EventListeners will convert the appropriate event into its corresponding Swing/AWT 
event and artificially inject it into the application's event queue. Converting an event 
requires translation from the viewer coodinate system to the Swing coordinate system. 
Remember that SVG is a vector technology, which enables lossless zooming. Batik 
allows for zooming, and rotating the SVG Document. The workflow is described in 
Figure 21 below. 
 

 
Figure 21: The detection rectangle 
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Keyboard events are non-existent in DOM Level 2. But, since Batik also supports DOM 
Level 3 events, the JUICE framework takes advantage of this to intercept, wrap, and 
route appropriate focus and keyboard events using similar methodology as the mouse 
events. For keyboard events to work properly JUICE needs to intercept focus events as 
well. All of this is performed by JuiceContainer, since it is the main link to the 
SVG viewer. 
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IV   JAVA BYTECODE TRANSFORMATION 
 
 
One of the goals of this project is user transparency. This means the user of this 
framework should be able to develop code in Swing, and not be aware of any of the 
existing JUICE Framework classes. The developer then can debug and run the UI 
separate from the framework. Once the code is ready, the framework will take care of 
references to JUICE classes using bytecode Transformation.  
 
The overall objective of bytecode transformation is to replace every use of Swing classes 
with corresponding JUICE Replacement Components. 
 
IV.1 Background 

At first we attempted to replace Swing classes during runtime by using a separate 
classloader that loads my version of the classes. However, these custom classes are 
considered to be not the same class as the original, because it was loaded using a different 
classloader. This breaks typecasting and referencing to that particular class. The system 
classloader does not provide a mechanism for loading classes from bytes on the disk, 
unless we specify a different classloader. But if we do employ this methodology, it will 
restrict the programmer as the programmer is forced to use our specific classloader for 
this to work.  
 
Remember that JUICE needs this for rerouting paint calls from Swing into SVG. 
Subclassing and overriding the paint methods is the solution, but we do not want to 
impose this requirement to the programmer. However, bytecode transformation allows 
changing of the referenced classes without requiring any knowledge of the source code. 
Bytecode transformation is then the solution to this problem. 
 
 
IV.2 Transformation Goals 

There are several goals for the transformation. The first goal is to replace every extension 
of a Swing Component with the corresponding JUICE Component. Figure 22 is an 
example of this. 
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 public class UserWidget extends JButton{ 
. 
. 
} 

public class UserWidget extends JuiceJButton{ 
. 
. 
} 

 
Figure 22: Extension transformation 

 
The second goal is to intercept any constructor calls to a Swing component with the 
corresponding constructor of a JUICE Component. This is possible to do because the 
JUICE Components themselves extend the appropriate Swing classes. Figure 23 is an 
example of this. 
 
 

 JButton aButton = new JButton(); 

JButton aButton = new JuiceJButton();  
Figure 23: Constructor transformation 

 
 
And last but not least, calls to any static methods on a Swing component are redirected to 
operate on the corresponding JUICE Component. This is important, as sometimes static 
calls will return a Swing component too. Figure 24 is an example of this. 
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 Component glue = Box.createGlue(); 

Component glue = JuiceBox.createGlue(); 
 

Figure 24: Static method call transformation 

 
There is no need to modify static field access as the JUICE Replacement Classes will 
inherit the static field values from the extended Swing Classes.  
 
 
IV.3 Why Bytecode Transformation  

There are numerous possibilities in which a user might write a piece of code to invoke a 
Swing construct. A source code lexical transformer—which at first glance might be 
simpler to implement—turns out to be much more complex for our intent and purposes, 
because of these code variations. However, for our current intent, there are not a lot of 
variations in the bytecode structure; for example, a construction call will always start 
with a ‘new’ JVM instruction[13] followed by an ‘<init>’ JVM instruction.  
 
 
IV.4 Implementation 

The user source code is first compiled using any Java compiler that the user chooses. The 
resulting classes are then instrumented on the fly with the aid of the Byte Code 
Engineering Library (BCEL)[14], which is also implemented under the Apache License.  
BCEL provides an object oriented interface to access the underlying Java bytecode; this 
allows developers to manipulate Java bytecode programatically using Java. 
 
IV.4.1 Transformations 

The bytecode transformations that we perform on user code can be put into two main 
categories: interface transformation, and code transformation. Interface transformations 
involve changing the superclass along with any implemented interfaces. Code 
transformation involves modifying the user's code (e.g. inside methods) itself. 
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IV.4.2 Transformation Set 

The transformation set is the set of supported Swing classes that will be transformed into 
JUICE classes.  
 
The transformation set file itself is better described as a mapping between Swing 
components and JUICE components. This transformation set file is a simple text file that 
can be modified as needed. By using a properties file, we enable declarative dynamic 
remapping of source and target classes to be transformed. 
 
IV.4.2.1 User Extension And Interface Transformations 

In Java bytecode, this definition is located on the very top of the *.class file. Below is a 
snippet from Swing’s JButton.class 
 
Compiled from "JButton.java" 
public class javax.swing.JButton extends javax.swing.AbstractButton implements 
javax.accessibility.Accessible{ 
public javax.swing.JButton(); 
  Code: 
   0: aload_0 
. 
. 
. 

 
Notice that the extends is in the very top. JUICE only requires one extension and 
interface transformation: to replace every user extension of a Swing component class 
with the corresponding JUICE component class. The following code snip is taken from 
the JUICE SwingInterfaceScanner transformer class: 
 
if (subRule.containsValue(cg.getClassName()) || cg.isInterface()) { 
continue; 
} 
if (subRule.containsKey(cg.getSuperclassName())) { 
es.changeSuperClass(cg.getClassName(), subRule.getProperty(cg.getSuperclassName())); 
} 

 
The code ignores transformation of Swing interface implementations because we are only 
interested in Swing class extensions. The transformation set is consulted to determine if a 
class is included and continues to switch the extended class to the corresponding target 
class.  
 
IV.4.2.2 User Code Transformations 

For the current framework implementation, there are two user code transformations that 
we are interested in: Swing constructor calls, and Swing static method calls. 
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IV.4.2.2.1 Swing Constructor Calls 

In Java, there is one way to directly invoke a constructor, and that is to use the new 
keyword followed by the constructor and the appropriate parameters.  
 
package mypackage; 
 
import java.util.TreeMap; 
 
public class ChangeMap  { 
 
   public ChangeMap(){ 
 
      Map b = new TreeMap(); 
 
   } 
 
} 

 
The above code will be compiled into Java bytecode, and will look like the following: 
 
Compiled from "ChangeMap.java" 
public class mypackage.ChangeMap extends java.lang.Object{ 
public mypackage.ChangeMap(); 
  Code: 
   0:   aload_0 
   1:   invokespecial   #9; //Method java/lang/Object."<init>":()V 
   4:   new     #11; //class java/util/TreeMap 
   7:   dup 
   8:   invokespecial   #12; //Method java/util/TreeMap."<init>":()V 
   11:  astore_1 
   12:  return 
 
  LineNumberTable:  
   line 12: 0 
   line 14: 4 
   line 20: 12 
  LocalVariableTable:  
   Start  Length  Slot  Name   Signature 
   0      13      0    this       Lmypackage /ChangeMap; 
   12      1      1    b       Ljava/util/Map; 
 
} 

 
Note that the TreeMap construction is actually a new instruction, which is then followed 
by an invokespecial of type <init>. The dup instruction in between the two instructs the 
virtual machine to make a duplicate of the object on the stack. It will exist if we perform 
an assignment operator. So the JUICE transformer need to take care of new and  
invokespecial of type <init> on Swing components.  Every time there is a construction of 
a supported Swing component in the list, we will actually replace the construction with 
the corresponding JUICE Replacement class. 
 
Therefore, replacing Swing constructor calls is a two-step process: 

- replace all calls to the ‘new’ JVM instruction 
- replace all calls to the ‘<init>’ JVM instruction 
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IV.4.2.2.2  Swing Static Method Calls 

The last transformation is the static factory method calls transformation. How does one 
determine static factory methods exactly? The answer is that one does not even need to 
know if a certain static method call is a factory method call or not; just replace every 
static method call on any Swing component with a static call to the appropriate 
replacement JUICE component. This is beneficial for the JUICE framework because: 

- The JUICE replacement component inherits all the static methods and  fields 
from the appropriate Swing class 

- The JUICE replacement component can re-implement the static code if 
needed 

 
By examining the bytecode structure of these calls, JUICE needs to find and replace 
invokestatic instructions. Below is the implementation of the replacement call residing in 
the JUICE SwingMethodCallScanner transformer. 
 
if (invoke.getOpcode() == Constants.INVOKESTATIC) { 
        String className = invoke.getClassName(cpg); 
        if (subRule.containsKey(className)) { 
                String classReplacementName = subRule 
                                .getProperty(className); 
                Type[] argTypes = invoke.getArgumentTypes(cpg); 
 
                oneInstructionHandle.setInstruction(factory 
                                .createInvoke(classReplacementName, invoke 
                                                .getName(cpg), invoke 
                                                .getReturnType(cpg), argTypes, 
                                                Constants.INVOKESTATIC)); 
 
        } 
} 

 
 
IV.4.2.2.3 Transformation Chaining 

The last piece of the puzzle is how to actually apply the above transformations to the user 
code. One could always re-invent the wheel and write one’s own classfile reader and 
directory walker using pure BCEL. But we would like to leverage an existing framework 
called JMangler[15] instead. 
 
JMangler is a bytecode transformation pipelining build on top of BCEL. To use 
JMangler, knowledge of BCEL transformations is required; however, the advantages of 
using JMangler are: 

- JMangler handles the tedious task of iterating through the class files and 
directories 
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- JMangler transformations can be chained and ordered declaratively.  
- Transformation code can be tested independent of each other. 
- The developer just needs to write the transformation as if he/she is 

transforming one class 
 
Unfortunately all the examples given on the website are outdated, and could not be 
applied to the current version.  After looking under the hood of JMangler, and assembling 
bits and pieces of information from forums and mailing lists, I managed to make 
JMangler work for JUICE. 
 
Below is the current JUICE JMangler properties file: 
 
org.cs3.jmangler.bceltransformer.class.transformer1=info.yuwono.classreplace.SwingInterfa
ceScanner 
org.cs3.jmangler.bceltransformer.id.transformer1=SwingInterfaceScanner 
org.cs3.jmangler.bceltransformer.parameter.transformer1=transform.list 
org.cs3.jmangler.bceltransformer.class.transformer2=info.yuwono.classreplace.SwingMethodC
allScanner 
org.cs3.jmangler.bceltransformer.id.transformer2=SwingMethodCallScanner 
org.cs3.jmangler.bceltransformer.parameter.transformer2=transform.list 
org.cs3.jmangler.bceltransformer.class.transformer3=info.yuwono.classreplace.PeepholeOpti
mizer 
org.cs3.jmangler.bceltransformer.id.transformer3=PeepholeOptimizer 
org.cs3.jmangler.bceltransformer.InterfaceTransformer1=SwingInterfaceScanner 
org.cs3.jmangler.bceltransformer.CodeTransformer1=SwingMethodCallScanner 
org.cs3.jmangler.bceltransformer.CodeTransformer2=PeepholeOptimizer 
org.cs3.jmangler.bceltransformer.Settings.verboseON=false 
org.cs3.jmangler.bceltransformer.Settings.startUpMessage=false 
org.cs3.jmangler.bceltransformer.Settings.checkPartialOrder=false 
org.cs3.jmangler.bceltransformer.Settings.dumpClassSet=false 
org.cs3.jmangler.bceltransformer.Settings.classSetSecurityLevel=0 
org.cs3.jmangler.bceltransformer.Settings.maxIterations=10 
org.cs3.jmangler.hook.EnableLoadClass=false 

 
The peephole optimizer is added for fun. This transformer is a modified version of the 
peephole optimizer from the old BCEL example on the official BCEL site. It is modified 
to work with JMangler. 
 
IV.4.2.2.4  Performing The Transformations 

The transformations are performed offline to avoid any performance hit from doing 
online transformations. To facilitate transparency and ease of use, JUICE provides the 
following workflow: 

- the user programmer drops code inside a designated source folder. 
- the user programmer puts their required libraries (jars) inside a designated 

library folder. 
- the user programmer calls runs the build.xml script provided with JUICE 

to compile and transform their code. 
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The ideal goal of all this, is that the user can build and debug the user application in 
Swing, then run it in JUICE easily.   
 

V   LIMITATIONS 
 
The JUICE framework has the following limitations: 

- JUICE currently only runs under the Apache Batik SVG Viewer. 
- Composite elements such as JScrollPane, JSpinner and 

JColorChooser are not supported. These components have other 
component declarations inside, and JUICE could not instrument Java system 
classes because of security and class loading issues. 

- JUICE only supports lightweight components because it does not cover the 
the problem of spawning a new window inside the SVG viewer. For example, 
JDialog is also not supported because its Window is a heavyweight object 
that lives inside the operating system UI display.  

- JUICE does not perform as fast as a native SVG widget implementation 
because of the translations occuring between raster and SVG. 
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VI   CONCLUSION 
 
SVG (Scalable Vector Graphics)  is a W3C standard XML markup language that is used 
to describe vector illustrations. SVG is an ideal format that can be rendered equally well 
on the web, desktop, and mobile devices. Due to its cross-platform capabilities and 
support for events, SVG may potentially be used in interactive graphical front-ends.  
 
Although there has been research into the development of widgets and widget libraries 
for SVG, these prior efforts produced limited widget offerings. None of these offerings to 
date are as complete as Sun’s Swing GUI Toolkit. 
 
Sun’s Swing Framework offers a complete desktop GUI solution mainly geared towards 
the desktop developer. Swing comes with a complete set of widgets with features such as 
pluggable look-and-feel, localization, cross-desktop-platform, and extensibility. 
 
My framework—the JUICE framework—solves this problem by allowing Swing widgets 
to be used in SVG. The JUICE framework solves the non-existence of complete widget 
sets for SVG by extending a complete widget-set: Sun’s Swing.  The goal of the JUICE 
framework is to let the developers code their widgets and callbacks in Swing, without 
worrying about SVG at all.  
 
However, Swing is assumed to be run on a raster display substrate rather than a vector-
based one such as SVG. Consolidating the two requires understanding of the internal 
undocumented Swing painting and event workflows as well as the differences between 
the two paradigms.  
 
Because of the differences between the two paradigms, performance was an initial 
problem for JUICE. The preliminary JUICE implementation used a naïve method of 
bridging Swing into SVG, which rendered the user interface unusable due to bad UI 
response time. After further research and experimentation, the current JUICE approach 
managed to increase performance to an acceptable level by piggybacking on the Swing 
repaint and event workflow, and by using mapping techniques to minimize the updates to 
the SVG tree. 
 
The research and implementation of JUICE demonstrated the problem of retargeting a 
raster object-oriented GUI framework into a vector display substrate. JUICE also 
provided a practical solution to consolidate the different rendering and event handling 
methodology of both the raster—Swing—Object-oriented UI model and XML  
vector—SVG —technologies.   
 
JUICE also applied bytecode instrumentation techniques to achieve user transparency; we 
wanted the users to implement all of their user interface in pure Swing. bytecode 
transformation allows for altering the user class on the binary class-file level. This means 
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that JUICE has the ability to take existing compiled Swing applications, and have them 
run in SVG. JUICE also managed to pipeline and chain the bytecode transformations 
through the use of JMangler, a third-party framework that is based on BCEL. 
 
 
VI.1 Future Work 

 
The current implementation of JUICE only runs on the Apache Batik SVG viewer. But, 
the concept and techniques used can be applied in extending JUICE to support different 
SVG viewers. 
 
Highly composite Swing widget elements are not currently supported in JUICE. This is 
due to Java security restrictions that disallow any modifications to Java system API code.   
 
Drag-and-drop is also another challenge that the current JUICE framework does not 
tackle. Drag-and-drop (DnD) is potentially challenging due to the platform-dependent 
nature of DnD and cross-platform viewer support that JUICE aims to have. 
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