
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2006

Engineering Enterprise Software Systems with Interactive UML Engineering Enterprise Software Systems with Interactive UML

Models and Aspect-Oriented Middleware Models and Aspect-Oriented Middleware

Paul Nguyen
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Nguyen, Paul, "Engineering Enterprise Software Systems with Interactive UML Models and Aspect-
Oriented Middleware" (2006). Master's Projects. 124.
DOI: https://doi.org/10.31979/etd.w5h3-m7b2
https://scholarworks.sjsu.edu/etd_projects/124

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/124?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Engineering Enterprise Software Systems with Interactive

UML Models and Aspect-Oriented Middleware

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Paul H. Nguyen

Copyright © 2006

Paul H. Nguyen

All Rights Reserved

Abstract

Large scale enterprise software systems are inherently complex and hard to maintain. To deal

with this complexity, current mainstream software engineering practices aim at raising the level of

abstraction to visual models described in OMG’s UML modeling language. Current UML tools,

however, produce static design diagrams for documentation which quickly become out-of-sync with the

software, and thus obsolete. To address this issue, current model-driven software development

approaches aim at software automation using generators that translate models into code. However, these

solutions don’t have a good answer for dealing with legacy source code and the evolution of existing

enterprise software systems.

This research investigates an alternative solution by making the process of modeling more

interactive with a simulator and integrating simulation with the live software system. Such an approach

supports model-driven development at a higher-level of abstraction with models without sacrificing the

need to drop into a lower-level with code. Additionally, simulation also supports better evolution since

the impact of a change to a particular area of existing software can be better understood using simulated

“what-if” scenarios. This project proposes such a solution by developing a web-based UML simulator

for modeling use cases and sequence diagrams and integrating the simulator with existing applications

using aspect-oriented middleware technology.

Acknowledgements

I would to thank my research advisor, Dr. Robert Chun, for encouraging me to follow my dreams

and providing the support and coaching to help me get there. In 1990, I graduated from San Jose State

from the Computer Science department with the knowledge I needed to carry my career in the industry

for ten years. In 2000, I came back to SJSU, seeking a Masters to prepare for the next ten. Standing

here now, six years since the start of that journey, and looking back; I am confident that this work will

help me reach that goal. But, to my pleasant surprise, I ended up with more than I could have imagined.

Dr. Chun, you have taught me how to make the best of my talents, how to focus my research and let

creativity drive the work, and most importantly, how to make contributions back to into the field. This,

I expect, will live with me beyond that ten year goal I had originally projected. It will live with me for

the rest of my life. And for this, I am forever grateful.

I would also like to thank Dr. Lee Chang and Dr. Suneuy Kim for reviewing my work and

providing valuable feedback. In addition, I am grateful to Dr. Chang for the intense but worthwhile

semester with UML, Patterns, and Refactoring in the CMPE 221 course – the result of which formed

some of the motivation for my research.

And last but not least, no person can make a journey such as this without strong family support.

To my beautiful wife, Mai-Tram, for your sacrifices those last six years; and, to my wonderful two

children, Audrey and Pascal, who have been wondering why their dad always stays up late at night…

To you, I dedicate this work.

This journey was a family effort, and I could not have made it here without your love and support.

To my advisors and family, many thanks again for your support.

--Paul

Table of Contents
1. INTRODUCTION.. 6

1.1 TOWARDS MODEL-DRIVEN SOFTWARE DEVELOPMENT ... 6
1.2 CHALLENGES IN THE SOFTWARE INDUSTRY ... 7
1.3 THE EVOLUTION OF ABSTRACTION: A BRIEF HISTORY.. 9

2. CURRENT STATE-OF-THE ART .. 16

2.1 MODEL-DRIVEN DEVELOPMENT & SOFTWARE FACTORIES .. 16
2.2 NAKED OBJECTS & BABYUML... 18
2.3 ASPECT-ORIENTED PROGRAMMING... 20

3. MOTIVATION... 22

3.1 ENTERPRISE SOFTWARE .. 22
3.2 KEY PROBLEMS .. 23
3.3 EXTRACTING SYSTEM MODELS: A PRACTICAL APPROACH TO DEALING WITH TODAY’S PROBLEMS. ... 25
3.4 ACTIVE MODELS: HOPE FOR THE FUTURE... 29

4. TOWARDS INTEGRATED ACTIVE SYSTEMS.. 33

4.1 TRADITIONAL SOFTWARE DEVELOPMENT & MODEL-DRIVEN ARCHITECTURE (MDA)... 33
4.2 DOMAIN-SPECIFIC SOFTWARE DEVELOPMENT... 34
4.3 METATOOLS FOR DOMAIN-SPECIFIC LANGUAGES.. 35
4.4 SOFTWARE DEVELOPMENT WITH ACTIVE SYSTEMS ... 36

5. THE EXPERIMENT ... 37

5.1 SCOPE OF EXPERIMENT & INVESTIGATION... 38
5.2 THE METAMODEL ... 39
5.3 A DOMAIN SPECIFIC LANGUAGE FOR DESCRIBING USE CASES... 40
5.4 JBOSS AOP .. 40
5.5 WEB INTERFACE FOR INTERACTIVE UML DIAGRAMS.. 40

6. EXPERIMENTAL PLATFORM AND RESEARCH PROTOTYPE ... 41

6.1 OVERVIEW OF ARCHITECTURE .. 41
6.2 DSL LANGUAGE DESIGN & IMPLEMENTATION .. 42
6.3 DIAGRAMS AND DOCUMENT GENERATION .. 52
6.4 MODELING & SIMULATION.. 56

7. CASE STUDIES... 60

7.1 OVERVIEW OF CASE STUDIES .. 60
7.2 CASE STUDY A: ACTIVE USE CASE DOCUMENTS .. 61
7.3 CASE STUDY B: BLACK BOX SYSTEMS INTEGRATION VIA WEB SERVICES.. 71
7.4 CASE STUDY C: REFACTORING DATABASE ACCESS CODE TO THE HIBERNATE FRAMEWORK... 75

8. ANALYSIS ... 89

9. CONCLUSION... 93

10. RELATED AND FUTURE WORK.. 95

11. APPENDICES .. 97

11.1 SAMPLE UI SCREENS FROM THE RESEARCH PROTOTYPE.. 97
11.2 METAMODEL .. 103
11.3 DSL SYNTAX AND EXAMPLES... 104
11.4 SOFTWARE TOOLS AND DEVELOPMENT FRAMEWORKS USED... 107

12. TABLES AND FIGURES.. 108

13. REFERENCES... 110

Page 6 of 113

1. Introduction

1.1 Towards Model-Driven Software Development

Over the past two decades, the software industry’s strive towards the goal of engineering

software based on reusable components has been met with many challenges. Although much progress

has been made with the introduction of C++ in the late 80’s and the mainstream adoption of object-

orientation with Java during the 90’s, software reuse today still falls short of our expectations. An

evolutionary new technology has been gaining popularity in recent years bringing new promise to

software reuse. This new paradigm known as Aspect-Oriented Programming (AOP) addresses the

modularization of “cross-cutting concerns” which have eluded solutions by current object-oriented

techniques. Initial work in AOP research has been focused on programming language features lead by

Xerox PARC’s AspectJ programming language. But recently, AOP’s impact has spread into other areas

of software with some notable developments which include: integrating aspects in middleware,

applying aspects in analysis and design methods, and leveraging aspects in generative application

frameworks.

Perhaps, one of the most promising areas of synergy for AOP is in model-driven development.

Two competing approaches aim to take the future of software development on different paths. Model-

Driven Architecture (MDA™) from the OMG takes a top-down approach focusing on evolving UML to

a full-fledged general purpose programming language supported by tools that generate code from UML.

On the opposite end is Software Factories, which combines a number of best practices including

software product lines and domain-specific models. In stark contrast to MDA, Software Factories

focuses on building reusable domain-specific frameworks from the ground up and providing meta-tools

Page 7 of 113

to help create specialized modeling environments and domain-specific programming languages which

target this framework.

1.2 Challenges in the Software Industry

There is no single development, in either technology or management technique,
which by itself promises even one order-of-magnitude improvement within a
decade in productivity, in reliability, in simplicity.

-- Frederick Brooks

In 1986, Frederick Brooks published an IFIPS paper titled “No Silver Bullet”, which was later

republished in IEEE Computer Magazine in 1987 [18]. In the article, he posed a challenge to the

software engineering industry to disprove his prediction that in 10 years, no new programming paradigm

or technique could bring even one order of magnitude of improvement in productivity. The main

driving force behind’s Brook’s predication is the realization that software is complex by nature and that

improvements can only be made by stepwise and persistent progress through evolution. Brooks further

explains that there exists a promising body of work which “attack the conceptual essence” of software

complexity. These include: software reuse via buy vs. build, requirements refinement via rapid

prototyping, organically growing software via incremental development, and a focus on “people” by the

cultivation of great conceptual designers. Much like “Moore’s Law” in hardware engineering that has

thus far stood ground with the test of time, Brooks’ prediction held true during that decade. But, what

about the decade that followed? And, how is software engineering today in 2006?

In the 1995 reprint of “The Mythical Man-Month”, Brooks included “No Silver Bullet” as an

addendum and additional chapters on selected opinions and responses to his original paper [19]. The

report reconfirmed Brooks predictions citing major problems with software reuse due in part to business

organizational issues, lack of incentive discouraging investment in reuse of object-oriented components,

Page 8 of 113

poor documentation, and the advent of generic system software (such as the database management

system) minimizing the need to reuse in the application code.

As for the question of where Software is today, Jason Bloomberg’s article on Web Services and

Service-Oriented Architecture titled “Software’s Dirty Little Secret” [20] summaries the current status

quo in three points. First, compared to the “high-tech” hardware industry where general purpose

computers are built on the “meta-requirement” of programmability, software is very “low-tech”. That

is, software is currently built for a very specific purpose and remains very much a craft-based industry.

Second, Bloomberg further points out that commercial off-the-shelf (COTS) software packages are

inflexible requiring users to adapt their behavior and work to the limitations of the software. Third,

Bloomberg argues for a redefinition of “Software Quality” different from those put forth by Six Sigma

and ISO 9001. Bloomberg writes:

We must take a step back, so that we can judge software quality based upon its
flexibility and agility, rather than how few defects it has, or how well-documented
the process of creating it might be.

Thus, like “Moore’s Law”, Brooks’ prediction remains unchallenged, even a decade beyond his

original deadline. The software industry, as a whole, is then left then to deal with complexity in

progressive steps, resolving with the conclusion that there will never be a “Silver Bullet”.1

If each technology or technique alone can not deliver at least a 10 fold improvement within 10 years,

perhaps as Brooks suggests, the answer lies in a multi-disciplinary, multi-paradigm approach. What

then, are the promising emerging technologies of the current decade that holds promise to propel the

software industry forward in productivity? Is there synergy? What are some of the integration

1 Every once in a while, a new technology always comes along claiming to be the next “Silver Bullet”.

Page 9 of 113

challenges? In section 3, this work explores this further in three promising research areas: Model-

Driven Development, Software Product Lines, and Aspect-Oriented Programming. But, before looking

ahead, the next section discusses the progress made to date and reflect on past challenges and lessons

learned.

1.3 The Evolution of Abstraction: A Brief History

Since the beginning of computing, programming languages have been an indispensable tool in

the battle against complexity. As the problem space presents itself through experience, language

designers built abstractions into languages from lessons learned, steadily marching closer to the problem

domain, and creating the tools to aid in the solution to ever harder problems. The general trend has been

focused on abstractions close to the hardware and computing environment fueled by the exponential

grow of computing power, faster networks, and global reach to end users. The following discussion

presents a summary of findings from Schorsch & Cook’s report in the Journal of Defense Software

Engineering titled “Evolutionary Trends of Programming Languages” [21] in the context of other

notable developments and progress in the software industry.

 The major trends identified in [21] will be discussed in the context of developments in

computing hardware, and progress in system software and end-user interaction (i.e. GUI’s and the

Internet). The points of discussion are along the lines of:

1. What problem was solved?

2. What was the level of abstraction introduced?

3. How did those abstractions relate to other developments?

4. What were some examples?

Page 10 of 113

1.3.1 Evolutionary Trends in Programming Languages

1.3.1.1 Machine-Independent Programming

The first generation languages were expressed in machine language in a form that can be directly

executed. This forced the programmer to work in the language of the hardware close to the instruction

set of the Central Processing Unit (CPU). As the hardware evolved, however, programs must be

rewritten in the new CPU instruction set. Later evolutions to second and third generation languages

progressed further from the hardware to free software from the confines of the computing device. The

second generation high-level assembly languages raised the bar to symbolic machine instructions which

was later followed by progress in third generation languages which abstracted away the CPU instruction

set.

Table 1. Summary of Contributions from Machine-Independent Programming

Challenge Problem Contribution Examples Context
Invent a programmable
computer.

• General purpose
computing machine.

• Turing Complete
• Von Neumann

Architecture

ENAIC, EDSAC, IBM 701 First generation low-level
machine code for machines
of the 1940’s and 1950’s.

Program in “Symbols”,
rather than bits.

• High-Level “Symbolic”
Machine Language.

IBM S/360 Second generation assembler
code of 1960’s.

Make programs portable
across hardware.

• Evolution of control
structures: Fortran
“Goto”, structured
programming (Algol),
case statements,
generalized loops, tasks
and co-routines,
exception handling,
parallel programming

• Data structures:
floating-point, logical
data types (i.e. chars,
strings, booleans, arrays,
records, abstract data
types, etc…

Fortran, COBOL, Algol,
Ada, Pascal, C, etc…

Third generation, high-level
languages from 1950’s to
current time.

Page 11 of 113

1.3.1.2 The Rise of Virtual Machines

Before the advent of the modern virtual machines as exemplified in the Java JVM and Microsoft

Dot-Net CLR, high-level languages developed along two parallel paths of the “interpreter” vs. the

“compiler”. The primary reasons for this split were due to the problems the languages were designed to

solve which influenced the trade-off between expressiveness of abstractions vs. performance and

complexity of compiler design. Early versions of interpreted languages focused on different

computational models. For example, Lisp explored the Functional, and Prolog explored the Logic

computational models. It is interesting to note, that these two paths have essentially converged with the

creation the modern virtual machine and just-in-time compilers such as the Java JVM/JIT. The

invention of the Java JVM, was a huge leap in machine independence, raising the bar not just above

hardware, but also the operating system software.

Table 2. Summary of Contributions of Virtual Machines

Challenge Problem Contribution Examples Context
Abstract away the operating
system, programming
language, and/or
computational model.

• Intermediate machine
language

• Machine and OS
Independence (Java)

• Language Independence
(Dot-Net CLR)

• Alternative
Computational Models
(Lisp, Prolog)

Lisp, Prolog, Pascal P-Code,
Java JVM, Dot-Net CLR

A long history from the
1960’s to date.

1.3.1.3 Programming Language Interoperability & Domain-Specific Languages

High-Level programming languages have emerged (as previously discussed) along two

evolutionary paths: those that are typically interpreted and closer to a problem domain, and those that

are typically compiled to native assembly code. In general, the languages closer to the problem domain

Page 12 of 113

are also known as Domain-Specific Languages (DSL), while those that are more optimized for hardware

and focus on solving general problems are also classified as General-Purpose Languages (GPL). This

gives rise to the issue of interoperability amongst the languages. In the ideal world, a developer should

be able to pick the best tool for the problem. To make this possible, solutions tackle the problem from

two angles: 1). Interoperate amongst GPL’s, and 2). Integrate DSL’s with GPL’s.

Table 3. Summary of Contributions from Programming Language Interoperability & Domain-Specific Languages

Challenge Problem Contribution Examples Context
Interoperability amongst
GPL’s.

1. Calls to external
libraries in a different
language

2. External data exchange
3. Share code libraries

across languages
4. Shared Classes and

Objects

1. Most have some
capability, but data
exchange problematic.
Ada does a better job.

2. Machine-Independent
data standards (EDI,
XML)

3. DLL, COM, CORBA,
Web Services (i.e.
SOAP/SOA)

4. Dot-Net CLR

The age of 3GL’s and
beyond.

Integration of DSL’s with
GPL’s.

1. “Glue” Scripting
Languages

2. DSL Embedded in GPL
3. Scripting Languages

used by software or
frameworks developed
in a GPL

1. Perl incorporating
features of sh, sed, &
awk.

2. TCL in C, Embedded
SQL, JavaScript in Java

3. JavaScript, HTML,
XML, etc… for web
frameworks, GUI
components,
configuration, data
exchange, etc…

Significant developments
during the 1980’s and
1990’s.

1.3.1.4 Increasing Modularity

Breaking up a complex problem into smaller easier to solve problems is a common trait across

engineering fields. The initial modular units in programming languages were functional and data

groupings. This later evolved into encapsulation and information hiding of object-oriented languages,

then to object-oriented frameworks. Current active research in aspect-oriented programming introduces

Page 13 of 113

an additional modular unit orthogonal to objects called Aspects. And, work in software architecture

focuses on coarse-grain modules that make up whole systems or platforms.

Table 4. Summary of Contributions from Increasing Modularity

Challenge Problem Contribution Examples Context
Decompose the problem into
smaller parts.

1. Procedures, Functions,
User defined data types

2. Objects
3. Frameworks
4. Platforms

1. starting with pre-OO
languages like Pascal,
and Ada, C, etc…

2. Simula, Smalltalk, C++,
Java, C#, etc…

3. GUI Frameworks. I.E.
MFC, Swing.

4. J2EE and the Java
Application Server

1970’s to date, with leaps
during the OO era and
currently with AOP.

1.3.2 Other Developments

1.3.2.1 Modeling Languages

The Unified Modeling Language (UML) from the Object Management Group (OMG) is a

standard modeling language with its roots in data modeling, object-oriented languages, and a number of

other modeling disciplines including business process and real-time event driven modeling. A major

contribution of the language is a visual notation that has proven to be a common language amongst

designers. It is difficult today to pick up a software design book without coming across a UML

diagram. This gave rise to the documentation and knowledge distribution of reusable object-oriented

designs in the form of patterns popularized by the “Design Patterns” book [22]. However, UML is not

without its drawbacks. Although it is a standard modeling notation, UML is a general purpose design

language and requires extensions to support concepts of a specific problem domain. Furthermore,

although UML incorporates data modeling concepts, the UML tools in the marketplace have poor

support for database modeling. This is due primarily to the maturity of the data modeling tools and the

Page 14 of 113

impedance mismatch between the concepts of objects and that of the relational model. As such, the

general use of UML is focused on a core subset with a complementary set of additional modeling

practices. Some, however, avoid UML completely. This is understandable, since, not all developers

find visual notations useful preferring instead to use other techniques to capture and understand the

requirements [23].

1.3.2.2 Unix, Linux, and Open Source

The invention of Unix during the 1970’s which coincided with the development of the C

language brought great improvements in productivity to programming in many ways, namely, hardware

portability with good performance and shell scripting with many reusable “little languages”2. But,

perhaps, Unix’s great contribution is yet to come in its later variant in “Linux”. Created in the early

1990’s, Linux targeted the emerging low-cost personal IBM computers. With the introduction of the

web browser in the mid 1990’s and the wide availability of the internet, Linux enabled a new

collaborative network centric software development movement known as “Open Source”. The

significant contribution of this phenomenon is a disruptive form of software reuse and a different

business model for selling software. With the ERP application space largely a failure, new efforts in

Open Source Applications in the ERP space (SurgarCRM) hold great promise for the rise of commodity

software, and hence a potential for mass reuse. This model seems to have already started taking hold,

for example, in software development frameworks and integrated development tools, such as those from

the Apache and Eclipse Foundations.

2 Unix’s shell environment incorporates many small DSL’s which can easily be composed together into many variety of shell programs.

Some of these, for example, include text processing, line editors, and search tools.

Page 15 of 113

1.3.2.3 Co-Evolution of the Application Server and Database Technology

The creation of the Relational Database Management System (RDBMS) based on a research

paper in 1970 by an IBM researcher named Ted Codd liberated programmers from the details of data

access and management. A key contribution was in the specification of a declarative query language

(SQL) that was simple for both end users and developers alike. The declarative nature of SQL

abstracted away the navigational details of data retrieval and allocated the responsibility of data

management and query optimization to the database management system. SQL, as a DSL, used in both

GUI query tools and embedded in GPL’s (like C, C++, and Java) is perhaps one of the most successful

DSL/GPL integration to date. The RDBMS was founded on strong mathematical set theory and

relational algebra, a model that has stood the test of time for business applications to this day. During

the 1990’s, however, other models challenged the relational model. The need to store and manage

objects in a convenient way from within the popular object-oriented language of time (C++) gave rise to

the creation of the ODBMS. There were many heated debates during this time on all fronts from

vendors to practitioners. While the ODBMS vendors were hard at work on standards, the RDBMS

vendors pushed a hybrid-approach and eventually won out over the ODBMS [24]. As a result, in 2001,

the ODBMS standards group disbanded. On the practitioners’ front, a huge cultural divide in design

methodologies caused difficulties on projects and contributed to poor team dynamics and project delays

[25]. In the end, both technologies co-evolved and influenced each other in possible ways. With the

rise of the Java Application server and the J2EE Frameworks, a number of innovative object-relational

mapping approaches were invented to deal with the relational impedance mismatch. In the RDBMS, the

SQL standard evolved to support objects which provided query language support and integrated both the

object and relational models. A new challenger came into the picture in the late 1990’s to early 2000’s;

the native XML database. Unlike the ODBMS vendors, however, XML had a strong standards body

Page 16 of 113

which was quick to adopt XPath and then later XQuery and other related specifications. Furthermore,

the adoption of XML in applications focused on the web presentation, data exchange, and framework

configuration. Thus, XML was not at all a real threat to the RDBMS space. Nevertheless, recent

releases of major RDMBS solutions have incorporated the XML model and specifications (included

query languages) into their products.

1.3.3 Summary and Current Challenges

Programming languages exist to deal with complexity. Over the past 20 years, the main focus

has been to raise the level of abstraction, starting with building blocks close to the hardware in the 50’s

to objects and frameworks of the 90’s and the current times. However, as object-oriented frameworks

have evolved, so has their size in number of modules and classes. Today’s Java J2EE Framework, for

example, handle a gamut of services, from web presentation, to persistence, email, security, messaging,

management, XML processing, and emerging web services technology – to name a few. Likewise, the

Microsoft Dot-Net Framework mirrors the feature set from J2EE, but is still very young and rapidly

changing. As a consequence, application developers are faced with a huge library of components that

are constantly evolving. The advent of integrated software development tools (the IDE) have helped to

a limited degree with context sensitive online help, assistance with coding, and framework code

generation; but, there are too many tools, concern over tool-framework lock-in, and ease-of-use issues.

2. Current State-of-the Art

2.1 Model-Driven Development & Software Factories

The industry is currently seeking simplification by forging yet another attack on complexity on

many fronts. Building on its widely popular modeling language (UML), the OMG’s Model-Driven

Page 17 of 113

Architecture (MDA) proposes to abstract away from current programming languages and application

platform specifics into UML based models. In [26]:

The MDA separates certain key models of a system, and brings a consistent
structure to these models. …models of different systems are structured explicitly
into Platform Independent Models (PIMs), and Platform Specific Models (PSMs).
How the functionality specified in a PIM is realized is specified in a platform-
specific way in the PSM, which is derived from the PIM via some transformation.

This automatic transformation of UML models into executable code is assisted by a tool that can

be considered a high-level compiler. In a nutshell, OMG aims to evolve UML’s documentation centric

usage to a full-fledged programming language. This vision implies the end of programming languages

as we know it! As to be expected, the announcement is seen as a claim to be the new “Silver Bullet”,

while at the same time evoking bad memories of the CASE tools genre in the 80’s. There are strong

arguments against MDA. Martin Fowler and Scott Cook cites fragmentation in the MDA community

itself with three approaches to MDA [27], furthermore, Fowler writes that there is a more pragmatic

Model Driven Development approach (MDD) often confused with MDA. The MDD folks shun UML

but adopt a number of current best practices in software development; namely, software product lines,

frameworks, patterns, and agile practices. One such approach receiving much attention recently is

Microsoft’s “Software Factories”. Rather than use UML, Software Factories [16] aims to create meta-

tools that generate domain-specific languages (graphical or textual) to capture high-level concepts.

These DSL are then supported by specialized editing, debugging, and build-by-assembly tools

reminiscent of software product line approaches. Software Factories also emphasize the creation of a

domain-specific application framework to which the DSL and tools are targeted for code generation.

Both approaches recognized the need to capture domain knowledge in a machine re-usable form;

however, they differ in philosophy. MDA sees the need to model up-front and abstract the process of

Page 18 of 113

transformation to code into standard specifications for tools vendors. Software Factories starts from

existing applications in the domain, extracts out a common framework, and builds custom tools to

support this framework. This is essentially the classic top-down vs. bottom-up design debate. Figure 1.

below depicts the evolution and influences on these two techniques.

Figure 1. Influences on MDA and Software Factories

2.2 Naked Objects & BabyUML

In academia, two notable ongoing researches take a refreshing retro look back to the roots of

object-orientation. Richard Pawson’s PhD Thesis on “Naked Objects” [28] emphasizes domain objects

as behaviorally complete entities interacting directly with users through standardized automatically

Page 19 of 113

generated user-interfaces. This is a contrast to the current practice of class-centric object-oriented

designs. Pawson’s Naked Object system modernizes the original object-oriented design principles from

Simula and Smalltalk. In [28], Pawson writes:

The inventors of Simula had the idea of building systems out of ‘objects’. Each
software object not only knows the properties or attributes of the real-world entity
that it represents, but also knows how to model the behaviour of that entity…

In the original work, each object was seen as being self-contained... - the
attributes of an object were encapsulated with all the necessary behaviours.

Pawson makes a strong argument against the current popular practice of use-case driven approaches and

the model-view-controller pattern. This objects-first thinking is apparent in the Naked Objects

Framework and User Interface where the “Object” is the center of attention and the “Class” takes a back

seat. Although Pawson does not emphasize the use of UML, his work has been shown to be

complementary with the use of current round-trip UML tools, such as Together Control Center [29].

Trygve Reenskaug takes the Naked Objects approach one step further by specifically integrating

UML and Web Services into the architecture and focuses on higher-level of abstractions at the level of

components in his ongoing work with “BabyUML” [30][31]. In Reenskaug’s ECOOP 2004

presentation, he discusses the background and inspiration behind BabyUML [30]. These inspirations

included: Engelbart’s “Augmenting the Human Intellect”, Pawson’s Naked Objects, Shaw’s Basic

English, and current industrial technologies such as distributed components, web services, and UML. In

essence, Reenskaug is attempting to blend the “old” with the “new”. Figure 2. below shows the

influences on BabyUML.

Page 20 of 113

Figure 2. Influences on BabyUML (reproduced from [30])

OMG’s MDA, Microsoft’s Software Factories, Naked Objects, and BabyUML all share one

common theme – the focus on “models” as an important artifact in software development. OMG makes

models the dominant abstraction, Software Factories blends domain modeling with other current best

practices, and leading edge research in Naked Objects and BabyUML takes us back to OOP origins

putting the user at the center of control of objects.

2.3 Aspect-Oriented Programming

In other developments, evolving separately from model driven development is Aspect-Oriented

Programming (AOP) [33]. AOP is based on the principle of separation of concerns [32], and introduces

a new form of modularity (called “aspects”) orthogonal to and complementary with objects. Aspects

can encapsulate cross-cutting concerns that are currently redundant in object-oriented systems. Since

objects focus on encapsulation and modeling behavior of real word entities they represent, system level

concerns such as persistence, transactions, security, and concurrency tend to be intertwined with objects

making reuse difficult. Mik Kersten’s presentation at OOPSLA 2002, shows a diagram highlighting

“tangling of logging code” in red code in the Tomcat servlet engine (Figure 3. below).

Page 21 of 113

Figure 3. Logging not modularized in Tomcat (reproduced from [34])

The main reason for this phenomenon is due to the lack of expressiveness in current object-

oriented programming languages. Cristina V. Lopes, one of the inventors of AspectJ, writes [33]:

Programming languages support a very small set of referential relations. In
particular, reflective references, groups and temporal references are, practically,
inexistent. They can be simulated by combinations of computation and new
nouns. And that’s exactly one of the things that make programs much more
complex than they should be: programmers have to express a rich set of
referencing forms using a very small set of referencing forms. In the process,
intentions get diluted and tangled.

Since late 1990’s, there has been steadily rising interest in aspects both in academia and in

industry. A body of work is mounting, expanding the concept of “Aspects” across the landscape of

software engineering. Areas of research include: architecture [36][35], requirements analysis and

design [36][37][38], cross pollination with use cases [39][3][41][40], integration with software product

lines [42], and others. Interest in the open source community is also widespread. There are numerous

projects focused on extending current languages with aspects features [76], and aspects have also made

Page 22 of 113

their way into frameworks, databases, and tools [45][47][43][44][46][75]. The full impact of the aspect

movement has yet to be realized, since they have not taken hold in large scale enterprise software.

However, with new developments in middleware (JBoss 4.0 & JBoss AOP), the first step has been

taken.

3. Motivation

3.1 Enterprise Software

Integration has been the holy grail of MIS since the early days of computing in
organizations. As early as 1969 Blumenthal proposed an integrated architecture
and a framework for organizational information systems. However, due to the
high level of organizational and technical complexity associated with their
development and implementation, integrated enterprise-wide systems have been
difficult to achieve in practice.

-- Kumar &. Hillegersberg, “ERP experiences and evolution” [48]

Large scale business software systems as embodied in Enterprise Resource Planning (ERP)

software are amongst the most complex software systems currently in use. Enterprise software is

typically delivered to large businesses today from a handful of vendors often with a multitude of options

and configurations in multi-module application suites. Businesses are diverse and constantly evolving

to stay competitive; often, making bold moves which include: acquisitions, internal reorganizations, or

inventing new business models to drive growth. Information systems supported by Enterprise Software

have failed to keep up with the pace of business changes --a condition widely acknowledged in industry

evoking a “cry for change” with new Business/IT alignment initiatives. Although there are business and

organizational issues at play within user organizations, the vendor-customer model is also at fault.

ERP’s are supplied by only a few vendors and the law of “supply-demand” behind the production of

software necessitates creating a highly customizable “generic” product. That is, software is made for

“mass customizations”, not “mass production”. In [48], Kumar and Hillergersberg points out that:

Page 23 of 113

A key premise of ERP systems is the underlying, sometimes unstated, but often
implicitly promoted notion that the reference models in ERP systems embody
best business practices…

While at the abstract level the idea of “universal” best practices may be
seductive, at the detailed process level these mismatches create considerable
implementation and adaptation problems.

“The Reference Models in ERP Systems” -- That is, the “domain model” embedded in the

software -- is too abstract! The solution to enterprise systems calls for a component based industry

where more “specialized” domain-specific models can be bought or built and integrated through

standard interfaces. This has been the focus in recent years with the development of horizontal

application “super platforms” and loosely-coupled integration standards, such as web services.

However, to date, there are still many challenges.

3.2 Key Problems

My own experience integrating and customizing enterprise systems, and the numerous issues (as

cited below) form the motivation for this research:

1. Evolution: The evolution of enterprise software solutions implemented with a mix of packaged

software, home-grown systems, and legacy interfaces poses a challenge for upgrades. The full

impact of such changes is hard to determine because they are not well isolated. As a result,

solutions implemented often require a large migration effort or become obsolete by replacement.

2. Incompatibility: While the technology interoperability issues are well understood and can be

easily studied and corrected, the incompatibility in the information models amongst various

applications developed by different vendors have not been well addressed. Generic data

exchange standards exist, but domain-specific issues are still unresolved. One of the most

difficult problems to solve is the problem of the “dynamic domain model”. A dynamic domain

Page 24 of 113

model is the evolving concepts and business rules represented in the business software itself.

Such models evolved due to internal changes, new software releases from multiple vendors,

and/or high customization within the user organization.

3. Requirements Mismatch: Due to the inflexibility of most software packages, typical

implementations are often done by forcing the business and users to adapt to the software. This,

effectively forces the vendor’s view of the domain model on the business. Unfortunately, users

find other ways to work around the inflexibility by reverting to personal productivity tools. This

is a major problem because this makes portions of the “dynamic domain model” of the business

inaccessible. The problem compounds with each new software release and/or package added to

the mix.

4. Documentation Centric: In an effort to capture and understand the “dynamic model” of the

business, enterprise software implementation projects produce a massive amount of

documentation. Even for model driven teams that fully embrace RUP and UML, the difficulty

and cost in time and effort in updating the documents are often too high. IT resources are limited

and often reallocated to new projects once a solution has been deployed. Furthermore, there are

physical limits in the medium. Comprehensive UML models just don’t fit on a standard page.

At best, if the documents are maintained diligently, they only provide a partial view of the

system.

5. Lack of Isolation between Logical and Physical: Configuration management is challenging in

today’s enterprise systems. The packaging and deployment model of Java Application Servers is

the most troublesome area. Such deployments are typically packaged in a single file, which

actually contains other packages nested within. This makes the package tightly bounded to the

environment configuration, and as a consequence, any change in the environment or the package

Page 25 of 113

can cause instability. There needs to be a seamless separation between the “logical” (i.e the

application) and the “physical” (i.e. the hardware and network configuration).

6. The Asynchronous Nature of Distributed Teams: The nature of today’s large scale software

development teams imposes yet another difficult dimension to the problem. Best practice

prescribes continuous integration and automated tools, but sometimes this is not possible.

Package solutions implementation often requires vendors to make changes and distribute them as

patches and minor releases to the customer during implementation. Unfortunately, this is often

done in isolation.

3.3 Extracting System Models: A Practical Approach to dealing with today’s problems.

To mitigate the risks and address some of the key problems discussed, it follows from agile

practices to focus on the working software and strive to raise the level of understanding amongst the

team. This can be done in part using reverse engineering tools to extract models. However, the tools

that exist today extract only the “static” model. For example, Erwin can generate physical database

models from metadata within the database, and Together can parse Java code and archives to generate

class and static sequence diagrams. Extracting the “dynamic model”; however, is difficult. And, in the

case of J2EE non-existent!

For example, it is possible to extract some dynamic behavior from the system by capturing the

operational contacts of transaction data. The diagram below shows the typical artifacts created in a

forward engineering process [49].

Page 26 of 113

Figure 4. Extracting Operational Contracts (diagram adapted from [49])

Using the system, the actions and flow through a user interface can be performed in a controlled

environment (such as a test system). The focus here is to replay a transaction whose side-effects and

change to the data store is not well understood. This activity is represented by the boundaries in blue

above. Most ERP systems use a RDBMS as its data store. One feature of modern RDBMS is the

presence of “Active Elements”. Active elements like stored procedures and database triggers are often

used to implement complex database integrity constraints. For the purpose of extracting committed

transaction details, database triggers can also be used to audit changes to tables and record the

information needed for the operational contracts in the use case model (in Figure 4). This is essentially

a “black box” reverse engineering approach focused on a subset of the system one use case at a time.

However, the triggers can not be hand written since the number of tables and structure of the columns in

the database is not known in advance. The triggers have to be dynamically generated using the metadata

facilities available in the RDBMS. Fortunately, modern RDBMS, such as Oracle, have this available.

For example, to inspect the tables and columns in the database, one only needs to query against the

USER_TABLES and USER_TAB_COLUMNS dictionary tables.

Page 27 of 113

SQL> desc user_tables

 Name Null? Type

 --- -------- --------------

 TABLE_NAME NOT NULL VARCHAR2(30)

 TABLESPACE_NAME VARCHAR2(30)

 etc…

SQL> desc user_tab_columns

 Name Null? Type

 --- -------- ----------------------------

 TABLE_NAME NOT NULL VARCHAR2(30)

 COLUMN_NAME NOT NULL VARCHAR2(30)

 DATA_TYPE VARCHAR2(106)

Figure 5. Oracle Dictionary Tables For user “tables” and “columns”

With the knowledge of the table names and their columns, database trigger code can be

generated. A template for such a trigger is shown below in Figure 6.

CREATE OR REPLACE TRIGGER DEBUG_TRIGGER_XX

AFTER INSERT OR UPDATE OR DELETE ON TABLE_NAME FOR EACH ROW

DECLARE

IF INSERTING THEN

// generate trace in a log table

END IF;

IF DELETING THEN

// generate trace in a log table

END IF:

IF UPDATING THEN

// generate trace in a log table

END IF;

END ;

Figure 6. Sample Database Trigger Template

In Figure 6. The template takes the table name and generates trigger code for the portions

highlighted in bold. An example of a transaction captured by the triggers is shown below in Figure 7.

Page 28 of 113

 Figure 7. An Example of a committed transaction captured by database triggers.

This information gathering technique helps to validate requirements analysis and captures

existing system behavior into UML diagrams for discussions. An example UML sequence diagram with

operational contracts captured using database triggers is shown in Figure 8. The focus of the diagram is

on the entity object “Password” and the state changes it undergoes based on the sequence of events. The

UML model is also decorated with the “screenshots” of the user interface to emphasize the use case

actions.

Page 29 of 113

Figure 8. Sequence Diagram Showing Operational Contracts Extracted Using Database Triggers.

This is possible due to the power of the Oracle data dictionary, the SQL query language that provides

access to the metadata, and the availability of extensible active elements in the database.

Java also has a Metadata facility and a reflection API. Thus, at least from a conceptual

perspective, it should be possible to reverse engineer a running application from the reflective facility in

the Java Virtual Machine. Unfortunately, the existing reflection API is too limited. For one, there is no

declarative query language (like SQL) for selecting all the classes and objects available. And, second,

there are no active elements comparable to database triggers. Well, at least not until the advent of AOP!

3.4 Active Models: Hope for the Future

An Active Model is a model that is derived from metadata and exists within the software itself.

In the case of the Oracle RDBMS, the metadata used to derive the model is the same data the RDBMS

uses for optimization and enforcement of database structure and constraints. Thus, to be an “Active

Page 30 of 113

Model”, the model describes the structure and behavior of the software it models as well as enforces that

same structure and behavior. Thus, the model lives with the system and is always in sync.

With AOP, we have taken one step forward towards this possibility for Java. Consider for

instance, the popular example of the tracing aspect in AspectJ. Figure 9. shows the code for a tracing

aspect that weaves in tracing behavior for a selected set of classes. This code is conceptually equivalent

to the database triggers template in Figure 6.

 Figure 9. Tracing Aspect in AspectJ with before and after advice on constructors and method calls

 An example of applying the tracing aspect to an existing Java code base is shown below. In the

example, the login page in a web application is presented, and the user provides a user id and password

submitting the authentication request to the server. In the back-end, a servlet engine processes the

request and the AOP enriched code logs the sequence of messages to the console.

Page 31 of 113

Figure 10. Login Scenario Demonstrating Tracing Aspect

 The database trigger example demonstrates “black box” reverse engineering, while the Java

tracing aspect shows how the power of AOP can be used in a “white box” reverse engineering scenario.

Both techniques can be used concurrently to build UML models that represent the system behavior.

However, this process is currently a labor intensive undertaking and is typically done on a small subset

of the system and only when needed.

 The work on Naked Objects [28] and BabyUML [31] has shown us the value of active “domain

models” by relieving the developer from the user interface work and providing the framework for

automatically generating it. The agile practice says, work at the programming language level and

evolve the system with the user – in effect, treating the software system and the model itself as one

entity. UML and MDA proposes to focus only on the higher levels of abstraction and let the tools do all

the transformation work and mapping to programming languages. The software product line approach

as embodied in its current form in Software Factories suggest creating customized domain specific

frameworks and custom domain-specific languages and tools to automate software development. But,

Page 32 of 113

do these approaches help with current chronic problems in current enterprise software development and

integration? In the context of the issues facing the enterprise today, how do these approaches solve

these problems? And, what is the first step towards that goal? Table 5. Summaries the current state-of-

the-art methods against the problems previously discussed in enterprise software.

Table 5. Innovations and Problems that Motivate Active Models

Problems in Enterprise Software: Solution Evolution, Incompatibility, Requirements Mismatch, Documentation Centric,
Isolation of, Logical and Physical Layers in Deployment, and Collaboration amongst Distributed Teams.
Naked Objects and BabyUML • Main strength is in active domain model (Naked Objects) and the focus on

building a UML Virtual Machine (BabyUML).
• Doesn’t address evolution directly, but the roadmap towards a virtual machine

using UML MOF and the focus on large scale components could provide the
framework for work in isolation.

Agile Software Development • Focuses on collaboration in small teams and evolution on a smaller scale (i.e a
single system and not entire integrated solutions)

• Doesn’t address the need for maintaining documentation or technical issues
directly. Emphasizes continuous integration and testing, but doesn’t prescribe
specific tools technology required.

UML and MDA • Main strengths in standard modeling notation, but models to date are static
• Proposes a large scale automation roadmap with MDA, but current focus is on

standards for tools development.
MDD and Software Factories • Expands on agile software development and attempts to scale up to larger teams

• Addresses incompatibility with domain-specific models, but advices custom
notations and tools. Not sure how multiple domains will be integrated.

• Addresses documentation maintenance with model driven generation.
• Not clear how evolution will be solved in the context of enterprise packages.

Tools currently focus on single product family. Not sure how multiple families
and integration with legacy systems will be addressed.

• Suggests new component market approach with meta-tools and domain-specific
frameworks. But, it is currently unclear if any standards will be defined.

What might an active model look like? To answer this question, we need to redefine the notion

of a “model”. In today’s documentation centric world, models in UML are stored in static documents.

These are passive models! But there is a deeper issue behind the analogy we use for them. That is to

say the word “model” doesn’t seem to fit in the context of software. For software, which aims to model

Page 33 of 113

the real world, it seems more appropriate that a model of software should also be software. As such,

today’s UML model is just a “snapshot” --- i.e. a view at a point-in-time.

The notion of a “Virtual Machine” for UML seems promising for Active Models [14][50][17]. It

suggests looking at the current state of meta-models and integrating them with the operating

environment. We have done this before -- in the areas of databases with the relational model and active

database elements. Sometime back object-oriented databases fought to take over the database market,

but lost. Since then, the work in object-oriented application frameworks with respect to databases has

been focused on abstracting the database away and not integrating with it. Today’s RDBMS have

embraced the object-oriented models and more (i.e. supporting multimedia and XML). Perhaps it is

time to unify the application framework with the database.

4. Towards Integrated Active Systems

4.1 Traditional Software Development & Model-Driven Architecture (MDA)

In the traditional software development methods currently in practice, the process of developing

a single system from high-requirements and abstractions to a running executable is done via manual

transformation. As shown in Figure 11, a typical Unified Process, the software development artifacts

include documentation, UML models, and code. As noted, the current practice uses a general-purpose

platform (such as a Java Application Server and Relational Database), a general-purpose modeling

language (UML), and general-purpose programming languages (such as Java or C#). Due to this

emphasis, there exists a large semantic gap between the solution space and the problem space. As a

result, traceability from requirements to solution is often difficult, if not impossible. MDA attempts to

address this by automating most of this manual transformation from the problem space to the solution

space, effectively removing the need to develop in lower-level 3GL languages or to maintain

Page 34 of 113

traceability. In essence, MDA’s main focus is strictly in the problem space and defers all translation

work to automated tools.

4

Problem Space Solution Space

General
Purpose
Platform

Single Solution
Reuses only

Generic Platform (i.e. J2EE)

Solution Components

Documents Specifying Manual Problem Space
To Solution Space Transformation

UML Models to Code (i.e. Java)
Requirements Set

(Natural Language)

General-Purpose
Modeling Language

General-Purpose
Programming Language & Tools

UML IDE

MDA

Traditional & MDA Approaches (OMG, IBM)

Figure 11. Traditional Software Development & MDA approach

4.2 Domain-Specific Software Development

In contrast to single system development and MDA, domain-specific software development

focuses on partial solutions for a family of systems. A high-level language, called the domain-specific

language, attempts to capture core concepts from the problem space and is supported by a generator and

domain-specific platform. These three key elements: the DSL, Generator, and Domain-Specific

platforms work together and provide a total evolving solution for problem space to solution space

mapping and automation. As shown in Figure 12, the “grey” area in the solution space represents the

domain specific “partial solution” which evolves with the generator and DSL as more concepts from the

Page 35 of 113

problem space are understood and generalized. One difficulty with this approach is the complexity and

high-cost of developing the DSL and generator. As a result, this approach is not widely practiced.

5

Problem Space Solution Space

Generate
To

Implementation
Code

General
Purpose
Platform

Domain-Specific
Framework

(of Reusable Assets)

IDE

Specific Application
Components Generated

Domain-Specific Model (DSM)/Domain-Specific Language (DSL)
Used to Declare Configuration for Specific Product

Feature-Model Specifying
Common and Variant Features

Of the Product Family

Domain-Specific
Code Generator

Generator
Transforms
DSL to GPL

Requirements Map
more Naturally To DSL

Traditional Product Line Approach (SEI)

Figure 12. Software Product Lines & Generative Software Development

4.3 Metatools for Domain-Specific Languages

To address the complexity and high-costs of developing DSL tools and languages, a new market

for Metatools (tools that generate tools) is growing. For example, Microsoft’s Software Factories

approach introduces a Software Factory DSM/DSL Tool Generator, a graphical meta modeling

environment for creating custom modeling languages and their editors, debuggers, and generators.

Figure 13 shows how this integrates and extends the work from software product lines and generative

software development.

Page 36 of 113

6

Problem Space Solution Space

Generate
To

Implementation
Code

General
Purpose
Platform

Domain-Specific
Framework

(of Reusable Assets)

IDE

Specific Application
Components Generated

Domain-Specific Model (DSM)/Domain-Specific
Language (DSL) Supported by Custom IDE,

Debuggers, Etc…

Feature-Model Specifying
Common and Variant Features

Of the Product Family

Generator
Transforms
DSL to GPL

Requirements Map
more Naturally To DSL

DSL-IDE

Software Factory
DSM/DSL

Tool Generator

The Software Factories Approach (Microsoft)

Figure 13. Software Factories Tools for Product Lines & Generative Software Development

4.4 Software Development with Active Systems

Active Systems, introduced in this research, represents a convergence of the problem space and

solution space into a highly interactive and dynamic environment. As shown in Figure 14, Active

Systems contain three main sub-systems: Active Documents, Active Models, and Active Database. At

the foundation of this approach is a integrated metamodel managed by the Active Database which

supports declarative programming, model diagram generation, documentation generation, and model

simulation. Inputs to the system are described as “manipulation” and outputs as “projections”.

Traditional approaches and tools can add assets (Active Objects) into the Active Database and new tools

and languages can be used to “manipulate” – i.e. associate and map assets to Active Models and Active

Documentation. The primary benefit to this approach is that it emphasizes system evolution – via asset

“manipulation” and not code “compilation”.

Page 37 of 113

Active System

General
Purpose
Platform

(VM)

ID
E

D
SL

-ID
E

Programming
& Query Tool

Active
Documents

Active Models

Active
Database

M
an

ip
ul

at
io

n
(v

ia
 D

SL
’s

)

Pr
oj

ec
tio

n

Pr
oj

ec
tio

n

Pr
oj

ec
tio

n

Pr
oj

ec
tio

n

Requirements

Domain-Specific
Models

UML Models

Use-Case Spec’s

External
System

Active
Framework

The Active System Approach

Figure 14. Active Systems Integrate Domain-Specific and General-Purpose Development Methods

5. The Experiment

To explore first steps towards the goal of Active Models, let us focus on a few UML diagrams –

the subset most often used in analysis and design. Granted there are other graphical notations, as

suggested in Software Factories, but using UML has some benefits. UML is the most widely used in

enterprise software since it has incorporated the main modeling concepts of the prior generations. Thus,

UML is a good starting point, and the experiment will focus on using three core models: the domain

model, the use case model, and the design model as highlighted by Larman [49] in Figure 15.

Page 38 of 113

Actor

USE CASE
SPEC.

Step 1…
Step 2…
Etc…

Use Case
Diagram

Use Case
Specification

Domain
Model

Design
Model
(Static)

Design
Model

(Dynamic)

Figure 15. UML Models and Their Relationships

The main focus of the experiment will be on the use case and design models. Active Domain

models have been proposed in Naked Objects and will not be highlighted in this work. However, a

discussion on how this work relates with Active Domain Models will be presented in the conclusion.

5.1 Scope of Experiment & Investigation

The scope of the experiment includes the following activities:

• Develop a metamodel for a subset of UML and add additional support for use cases as a basis for

the simulation of active models and generation of HTML documents and Java code.

• Develop a domain-specific language for describing use case specifications and sequence

diagrams to support capturing of requirements

• Leverage the work from JBoss AOP to develop an execution framework for the simulator

Page 39 of 113

• Develop a web-based interface for interacting with the framework, for viewing use case

specifications, and displaying interactive UML diagrams.

• Study the practical application of Active Systems using case studies

5.2 The Metamodel

A relational database schema for the metamodel was developed to support capturing the

metadata for UML Use Cases and Sequence Diagrams. A portion of this metamodel is shown in Figure

16. The main concepts of steps, use case flows, and scenarios are represented in the model. Using a

relational database also provides some added benefits to the research work. Mainly, this benefit comes

from leveraging SQL’s ability to query, join, filter, and transform data from the metadata tables which

provides a good foundation for developing document and code generation facilities.

Figure 16. Metamodel for Use Cases

Page 40 of 113

5.3 A Domain Specific Language for Describing Use Cases

To demonstrate the connection of documentation with software, a dynamically generated use

case specification will be used. HTML and the Web provide an ideal interface medium for this

demonstration. Since there is a growing trend for enterprise software to reach out beyond the

boundaries of the enterprise to partners and customers, enterprise applications are increasingly

supporting the web browser as an interface. HTML, with its roots in documentation generation also

makes this an ideal choice. A SQL-Like DSL will be used to describe the use case and a DSL

interpreter created to generate the proper elements in the use case metamodel.

5.4 JBoss AOP

JBoss AOP is amongst one of the recent entries and next generation dynamic framework in the

AOP arena. The JBoss AOP framework’s “hot deploy” capability is especially useful for this work in

the area of model simulation. In addition, JBoss’s approach of “Pure Java” using reflection and

interception compared to a language extension approach, like AspectJ, makes the immediate practical

value of the framework apparent. The combination of the JBoss AOP framework and the relational

database used in this research effectively approximates an Active System with currently available

technology.

5.5 Web Interface for Interactive UML Diagrams

To investigate the relationship of active models and simulation, the techniques for integration of

AOP and Use Cases [3] will be explored. AOP at the level of Use Cases breaks concepts apart by

defining variation points for their composition as Use case fragments, called “slices”. The approach for

demonstration will use a UML sequence diagram and an interactive session with a modeler for selecting

Page 41 of 113

different variation points. The end result is a sequence diagram generated interactively by selecting use

case extensions.

6. Experimental Platform and Research Prototype

6.1 Overview of Architecture

This section describes the high-level architecture and major open source, research, and off-the-

self components used to build the experimental platform. These components are organized into three

main layers: the database tier, the Java JVM “middleware” tier, and the presentation tier. In the

database tier, an Oracle Database (version 10g) was used as the foundation for managing tables that

make up the metamodel repository and simulation state. Additionally, Oracle was chosen due to the

extensive functionality of active elements in the form of Oracle stored procedures. A few PL/SQL

packages were developed to manage updates to the metamodel, maintain execution state of a session,

and generate diagram code. These diagram code generators create input code for the graph generation

frameworks in the presentation tier. The middle tier contains the Java JVM, JBoss AOP, the interpreter

for the Use Case/UML textual “DSL” language, and a set of components hosted by Apache Tomcat.

These components manage interaction with the end user and include: the main Console Servlet which

takes commands from the end user, and the Oracle XDK components that deal with generating XML

from SQL and transforming them into dynamic HTML documents via XSLT transformation templates.

In the presentation tier, which is hosted by a standard internet browser, the web user interfaces renders

dynamic HTML documents and references generated graphical diagrams. For input from the end user,

there are two main areas of the web user interface: the DSL console and the Simulation console. The

DSL console primarily takes commands and passes this on to the DSL interpreter. The simulation

console allows the end user to single step through a sequence diagram with “next” and “previous”

Page 42 of 113

buttons and renders the resulting UML sequence diagram for each time step. An illustration of this

high-level architecture is shown in Figure 17. Notice, in addition to the toolset developed as part of this

research, standard tools where also used for development. For example, the Eclipse Java IDE was used

to compile Java code, and Oracle SQL*Plus utility used to create tables and compile database stored

procedure packages. The rest of this section discusses the implementation of the research prototype and

the main collaborations amongst the major system components in the experimental platform.

Presentation (Web UI in a Browser)

Oracle Database (10g)

Oracle
SQL*Plus

(Tool)

UML Models

Use-Case Spec’s

Experimental Platform

Eclipse IDE
(Tool) Metamodel

Repository

Diagram
Code

Generators

Model
Diagram

Code

Simulation
State

Java JVM (1.5)

JBoss
AOP

DSL
Interpreter

Tomcat

Dynamic
HTML

Diagram
Generators

DSL
Console

Console
Servlet

XDK
Servlet

XSLT
Templates

Simulation
Console

Oracle
XDK

Figure 17. Architecture of Experimental Platform

6.2 DSL Language Design & Implementation

For the domain specific language, the JavaCC parser generator was used. JavaCC takes a

grammar described in JavaCC’s BNF form and generates Java code for a parser. Inside the JavaCC

grammar file are also customized Java code which invoke a set of classes that make up the DSL

interpreter. For example the code below (Figure 18) shows the starting node in the grammar for the

create use case command. The example code defines a non-terminal CreateUseCaseCommand() which

Page 43 of 113

matches the token <CREATE> followed by the UseCaseExpression() non-terminal, and optionally

(zero-or-more) non-terminals TheSteps() and WithStatements(), consecutively.

void CreateUseCaseCommand() :
{
 theCommand = new CreateUseCaseCommand() ;
}
{
 (
 <CREATE> UseCaseExpression() (TheSteps())? (WithStatements())?
)
 {
 // add code here
 }
}

Figure 18. DSL Non-Terminal For Create Use Case Command

Also shown, is custom Java code enclosed in curly braces, which instantiates the

CreateUseCaseCommand object. This object, referenced by theCommand in subsequent evaluations of

non-terminals, is used to store the parsed data – the details regarding the command itself. An example

of how this is done is shown below (Figure 19) where the actor variable is added to the command object

during the evaluation of the WithStatement branch of CreateUseCaseCommand.

void WithStatements() : {}
{
 (

 With() (ActorVariable() | GoalVariable() | EntryVariable()
| ExitVariable() | ExtensionVariable())+

)
}

void ActorVariable() :
{
 Node n = jjtThis ;
}
{
 (<ACTOR> ("=")? TextLiteral())
 {
 ASTTextLiteral txt = (ASTTextLiteral) n.jjtGetChild(0) ;
 ActorWithVariable actor = new ActorWithVariable(txt.getText()) ;
 ((UseCaseCommand)(theCommand)).addVariable(actor) ;
 }
}

Figure 19. Example of JavaCC Integration with Java DSL Interpreter Objects

The interpreter for the DSL contains five commands which implement the UseCaseCommand interface

(Figure 20). Once the parser (generated by JavaCC) validates the correctness of a command, the parser

instantiates and completes the set of required and optional properties selected for the command. Each

Page 44 of 113

command, as specified by the parent interface of UseCaseCommand, the Command interface,

implements the execute() method which will be invoked by the Console Servlet.

Figure 20. DSL Interpreter Command Class Diagram

Upon execution, the command object creates the appropriate metadata in the metamodel

repository for the command and invokes the diagram code generator. A sequence diagram that

illustrates this collaboration is shown in Figure 21. The parser, interpreter, metamodel repository, and

diagram code generators work together to capture the use case specification into a repository for use in

document and diagram generation. The following sections will cover the implementation specifics for

each of the commands in the prototype. Most of the commands where not implemented to their fullest

extent as specified in the design, but enough of their features were implemented to support the research

Page 45 of 113

work. For example, while the parser is complete, the interpreter will ignore parts of the command in

some cases.

ActorModeler

DSL
Console

Console
Servlet

DSL
Interpreter

Diagram
Code

Generators

Metamodel
Repository

Model
Diagram

Code

create use case…

parse

success

run cmd

execute create
metadata

generate diagram code create
diagram
code

success
success

success

Figure 21. UML Sequence Diagram for DSL Interpretation

6.2.1 Create Use Case

The main purpose of the Create Use Case command is to allow a modeler to express and create a

typical use case specification. Recall, from the metamodel, a use case contains actors, goal, flows,

steps, and many other elements. This is captured in a database schema diagram (as shown in Figure 16.

Metamodel for Use Cases). The DSL interpreter classes that support this command is shown in Figure

22. This is basically an object-oriented equivalent to the relational metamodel. The

CreateUseCaseCommand is the main workhorse of the group and is responsible for managing

collections of different types of command options (Steps, Extensions, and Variables). This class also

has the execute() method, which when invoked, effectively “interprets” the command and creates the

appropriate metadata.

Page 46 of 113

Figure 22. Object Model For Create Use Case Command (Class Diagram)

Another important method that all UseCaseCommand classes must implement is the dump() method.

This method is used to dump the state of a command to the console to aid in debugging and validation of

parser instantiation of command parameters. An example of this method is shown in Figure 23.

Figure 23. Debug dump() method in Create Use Case Command

Page 47 of 113

Class: CreateUseCaseCommand
Use Case ID: buy_product
Use Case Description: Customer wants to buy a product from the online store.
Steps:
 [9] = Customer fills in credit card information and places order
 [8] = System calculates total cost (including shipping) and displays payment options
 [7] = Customer fills in shipping information (address, next-day or 3-day delivery, etc.)
 [6] = System displays check out screen asking for shipping information
 [5] = Customer goes to check out
 [4] = System acknowledges selection
 [3] = Customer selects items to buy
 [2] = System displays catalog
 [10] = System authorizes purchase and displays confirmation
 [1] = Customer browses catalog to select items to buy
With Variables:
 [ACTOR] = Customer
 [GOAL] = Buy Product(s)
Extensions:
 [check_out] = 5
 [authorize_purchase] = 9

Figure 24. Example Create Use Case Command & Parser Results

Figure 24 shows an example create use case command and the result from parsing shown by calling the

dump() method. Once the command is properly instantiated, as shown, by the properties set in the

command object, the command can be invoked via a call to the execute() method. As shown previously

in the sequence diagram (Figure 21), the execute call does two things. First, the metadata for the

command is created in the metamodel repository; and, second, the diagram code (i.e. code for generating

images) is updated to represent the command. In this case, the diagram code for a use case command is

a “black box” sequence diagram. In some cases, the command object (depending on its type) may also

invoke the diagram generator to create the image. Or, alternatively, can defer the generation of images

to a later time when a modeler wishes to “view” the diagram. As shown in the code (Figure 25), the

create use case command invokes the diagram generator via a system call. More details with regards to

the diagram generator and the document/diagram generation collaboration are covered in Section 6.3.

Results
From
Parsing
Confirmed
via call
to dump()

Page 48 of 113

Figure 25. Portions of the execute() command for Create Use Case Command

The remaining commands implemented follow the same basic design. The following section will

present their design and implementation details specific to each command. However, the Delete Use

Case command will be skipped in the discussion because the implementation is trivial.

6.2.2 Update Use Case

The Update Use Case command shares much in common with the Create Use Case command.

That is, this command can add/remove actors, use case steps, with variables, and all the optional

parameters; but, the implementation of this command currently in the research prototype does not

support this feature3. Rather, the emphasis of the implementation is on the additional “special”

responsibility this command has – the ability to describe the dynamic design model as sequence

diagrams for a use case. As such, the example below (Figure 26) demonstrates the command with a

single sequence diagram message.

3 Alternatively, the “Delete Use Case” command used in conjunction with the “Create Use Case” command can be used instead of update.

Calls to create
metadata

Call to generate
diagram

Page 49 of 113

Figure 26. Example Update Use Case Command

Figure 27. Object Model for Update Use Case Command (Class Diagram)

The object model in Figure 27 implements the command with a collection of MessageNode

objects. Upon the invocation of execute(), the message nodes are scanned and inserted into the

metamodel repository. In addition, this command also supports removing messages from the sequence

diagram. This is represented by the opType internal state which is set by the parser when a user types in

“… remove main scenario message” instead of “… add main scenario message”.

6.2.3 Create Use Case Extension

Figure 28 shows an example of a Create Use Case Extension command. Use Case Extensions in

this research differs from the traditional use case extension. One main difference is the explicit

representation of aspect-oriented concepts. In the example, the notion of AOP “joinpoints”, “pointcuts”,

and “advice” are represented. This command also combines the capability to define external use case

steps (i.e. similar to the Create Use Case command) with the definition of internal sequence diagram

Page 50 of 113

messages (i.e. similar to the Update Use Case command). These messages represent “execution

fragments” that can be inserted into the base execution flow of some other use case. As shown, the

example extends the buy_product use case at the check_out extension point before the execution of the

message at that point.

Figure 28. Example Create Use Case Extension Command

The object model in Figure 29 shows how the Create Use Case Extension command is

implemented by the interpreter. A key difference with the Update Use Case command is where the

MessageNodes are associated. In the Update Use Case command, there is only “one” collection of

MessageNodes. For Create Use Case Extension, there is one collection for each advice. In addition,

there is also a collection of ExtendsUseCase objects which represent the logical pointcut mappings to

extension points in base use cases.

Figure 29. Object Model for Create Use Case Extension Command (Class Diagram)

Page 51 of 113

6.2.4 Execute Use Case

Execute Use Case commands have an optional list of extensions as parameters to the command.

When supplied, the semantics for the command says that the simulator should enable these extensions

and include the message fragments define by their advice definition. An example of this command is

shown in (Figure 30). The command requests an execution of the buy_product use case with two

extensions.

Figure 30. Example Execute Use Case Command

The object model for this command is shown in (Figure 31). The implementation is very simple. There

is only a single collection of extensions that are used to create data in the metamodel repository.

However, unlike all the other commands, there is much more to the implementation of this command

than the parsing and interpretation phases. This command initiates a modeling session, switches from

the DSL console to the Simulation Console, prepares an execution plan, and waits for additional

simulation requests. The collaboration model is much more complicated.

Figure 31. Object Model for Execute Use Case Command

Page 52 of 113

 The collaboration for simulation initiated by the Execute Use Case command is shown in Figure

37. The details on the implementation of the simulator will be covered in Section 6.4. For now, it is

worthwhile noting that this collaboration includes the use of the Java JVM (via reflection) and JBoss

AOP – two key components in the design of the simulation environment.

6.3 Diagrams and Document Generation

All the diagram generators used in this research follow a basic usage pattern. They take as input

some ASCII text and generate as output an image in JPG or PNG format. The ASCII text is basically a

DSL (i.e. a language) the diagram generator understands. Various diagram generators were integrated

into the modeling and simulation environment. For use case document sequence diagrams, the sequence

[77] toolkit was used. For use case diagrams, GraphViz [78] was used. For class diagram and sequence

diagrams inside the simulator, UMLGraph [71] was used. The metamodel repository contains all the

information about the different diagram types and can be queried via standard SQL and transformed

with store procedure logic (PL/SQL). This is essentially the function of the diagram code generators

which create the DSL code for diagrams and stores them in the database. With the exception of the

simulation sequence diagrams, the calling mechanism to diagram generators is a system call to a shell

command from within the Java JVM. For the simulation sequence diagrams, the system call approach

did not work and a workaround was implemented. This workaround wrapped the generator with a CGI

script hosted under Apache running on Cygwin. As a result, the generation of simulation sequence

diagrams is very slow, but this can easily be corrected by moving the CGI script to another machine.

Some examples of the diagram DSL code and the generated image are shown below in Figure 32.

Page 53 of 113

ExtensionPoint {
Extension."Step 1"->"Step2"{
 ShippingService."1.1:getShippingOptions()"
 ->"Shipping options and rates"{}
}

}

Sequence Diagram in Sequence Language

Generated Sequence Diagram

Use Case Diagram in GraphViz Dot Language

Generated Use Case Diagram

Sequence Diagram in UMLGraph Language

Generated Sequence Diagram

Figure 32. Examples of DSL Code for Diagram Generators

Page 54 of 113

To generate the diagram, a two phase generation process is used. First, the metadata is queried

and transformed into the appropriate language for the diagram type. This code, the DSL for diagram

generators, is stored into the database. On the second phase, the DSL code is queried from the database

and written into a file on the file system for input into the diagram generators. This makes the process

of generating diagrams generic. To add new diagram types, a generator has to support some textual

diagramming language so a transformation program can be created to transform the metamodel data into

this language. For example, Figure 33, shows a generator for use case diagrams.

 procedure gen_use_case_diagram

 is
 v_output system.use_case_diagram%TYPE ;
 v_interfaces varchar2(2000) ;
 v_actor_id number ;
 begin
 //etc…
 -- add the header
 v_output := 'digraph example {' || crlf ;

 //etc…
 -- generate list of actors
 v_output := v_output || '// Actors' || crlf ;
 v_output := v_output || '{' || crlf ;
 v_output := v_output || 'node [shape=custom, shapefile="Actor.png",' || crlf ;
 v_output := v_output || ' width=.5, height=0.77, fixedsize=true, ' || crlf ;
 v_output := v_output || ' color="#ffffff", label="\n\n\n\n\n\n\N"] ' || crlf ;
 for gen_actors in (select actor from actor where actor_id > 0)
 loop
 v_output := v_output || gen_actors.actor || crlf ;
 end loop ;
 v_output := v_output || '}' || crlf ;
 v_output := v_output || ' ' || crlf ;

 -- generate list of use cases
 v_output := v_output || '// System Use Cases' || crlf ;
 v_output := v_output || 'subgraph clusterSystem' || crlf ;
 v_output := v_output || '{' || crlf ;
 v_output := v_output || 'label="System"; // Name your system here ' || crlf ;

//etc…

 for gen_use_cases in (select use_case_id, name from use_case)
 loop
 v_output := v_output || gen_use_cases.use_case_id

|| ' [label="' || gen_use_cases.name || '"]' || crlf ;
 end loop ;
 v_output := v_output || '}' || crlf ;
 v_output := v_output || ' ' || crlf ;

 // etc…
end ;

Figure 33. Example DSL Code Generator for Use Case Diagrams (partial view)

Page 55 of 113

Once the code for the diagram is ready, it will be used when a user requests to view the diagram. At that

point, the code queried from the database and passed on to the diagram generator to create the diagram

(dynamically) for delivery to the web browser. This collaboration is shown below in Figure 34.

ActorModeler

DSL
Console

Console
Servlet

DSL
Interpreter

Diagram
Generator

Model
Diagram

Code

view diagram

parse

success

run cmd

execute generate
diagram get diagram

code

HTML +
Image

success

HTML
Document
With
Image

diagram
code Model

Image
(JPG)

<<create>>

success

get image file

Figure 34. View Diagram Collaboration

Document generation is done using standard XML to HTML techniques via the XSLT language.

The main framework used to enable this is the Oracle XDK toolkit which includes a Java library and an

XDK Servlet. The Oracle XDK library converts SQL queries into XML documents and passes this data

to the XDK Servlet which applies a presentation Stylesheet (in XSLT). This process is illustrated in

Figure 35 and example code (XDK page and XSLT) for viewing use case documents is shown below in

Figure 36.

Page 56 of 113

ActorModeler

DSL
Console

XDK
Servlet

Oracle
XDK

XSLT
Templates

Metamodel
Repository

view document

query

XML

get doc

get XSLT template

HTML

XSLT Template

HTML
Document

generate document

SQL

Figure 35. View Document Collaboration

Figure 36. View Use Case XDK Page and XSLT Template

6.4 Modeling & Simulation

Since all diagrams and documentation (use cases) are dynamically generated each time the

model is changed by the modeler, the diagrams and documents are updated automatically. Beyond

modeling and diagram generation, the research prototype also supports simulation. The general

Page 57 of 113

collaboration is shown in Figure 37. A sequence diagram is generated one time step at a time as the

modeler interactively clicks the “next” message button. As messages are evaluated, the simulator also

checks to see if a Class in the JVM exists with the call signature of the requested message. If so, the

simulator calls the method and renders the result of the call in the next diagram. Messages are in the

format of UMLGraph sequence diagrams stored in the simulation state area of the database. The data

model of the simulation state tables is shown in Figure 38.

ActorModeler

Simulation
Console

Console
Servlet

Java
JVM

JBoss
AOP

Diagram
Generator

execute
with extension

not found

run cmd

generate diagram

get first message

UML
Sequence
Diagram

(time step 1)

display
execution
diagram

enable extension

Simulation
State

enable aspect

find class
method

next message

found

generate diagram

get next message

find class
method

run cmd

result

invoke

update simulation state with invocation result

get
simulation

state

get
simulation

state

UML
Sequence
Diagram

(time step 2)

display
execution
diagram

Figure 37. Simulation Collaboration (Sequence Diagram)

 At the start of a simulation session, the simulator queries the metamodel repository for the use

case model and sequence diagrams for base use cases and extension use cases (if chosen). This

information is used to form an “execution plan” and stored as a series of messages in the Execution_

Messages table. These messages are used to generate the UMLGraph code for the sequence diagram.

Page 58 of 113

Figure 38. Data Model for Execution State Tables

For example, executing the following command:

execute use case buy_product with extension check_out_extension

Generates the following execution plan (partial view):

Page 59 of 113

The Execution table tracks the current message (i.e. time step) of the sequence diagram. It also holds

fragments of the UMLGraph code for the diagram. For example, after a couple of time steps, the

Execution table contains the following:

The Extension_Messages table holds messages for use case extensions which will be inserted into the

Execution_Messages table when appropriate. That is, the simulator understands aspect-oriented

joinpoints, pointcuts, and advice as declared by the Create Use Case Extension command. The

simulator also updates output messages in the Execution_Messages table after the invocating of a real

Java method. The simulator blends model generation with Java Execution. One feature the simulator

implemented is the handling of errors. If an error occurs, the simulator knows to bypass all subsequent

messages and render the error back to the calling object all the way up the chain. It is possible to catch

these errors and handle them in the simulation, but the research prototype did not implement this feature.

 Java Classes can be hand coded or a boilerplate code for Classes from the model generated by

the research prototype. If the code is generated, the prototype adds a NotImplemented Java annotation to

each method to signal to the simulator that this method has not been implemented. If removed from the

code, the method will be included in the call signature searches during a simulation session. For

example, the code generated for the AuditLog class is shown below.

Page 60 of 113

package app.java ;
public class AuditLog
{

@NotImplemented
public String createLogEntry(String creditCard, String purchaseAmount)
{

 return null ;
}

}

Figure 39. Sample Code Generated by Research Prototype

7. Case Studies

7.1 Overview of Case Studies

Three Case Studies were co-developed along with the use case language and model simulators to

both guide the direction of the research as well as validate the main ideas behind interactive modeling

and simulation. The first case study (Case Study A: Active Use Case Documents) uses a simple use

case and follows the process of creating and modeling the use case as active documents and models.

The second case study (Case Study B: Black Box Systems Integration via Web Services) focuses on

active modeling and simulation, and attempts to create a simulation component that acts a client to a live

web service on the internet. For this case study, the Cybersource Credit Card Payment processing

system was used and the use case from Case Study A was further enhanced with this payment service

component. In the third case study (Case Study C: Refactoring Database Access Code to the Hibernate

Framework), an existing body of source code from a multi-semester-multi-team student project was

used. This case study exhibits real life code maintenance and evolution issues and was tackled as a

coarse-grain refactoring problem. A new database persistent framework (Hibernate) was introduced

into the existing architecture and the gradual migration to this framework explored with the existing

source code. Support for the migration was explored using active models, simulation, and the dynamic

“hot deployment” feature of JBoss AOP.

Page 61 of 113

7.2 Case Study A: Active Use Case Documents

7.2.1 Use Cases in Current UML Tools

Six UML tools were surveyed for their support of use case specifications. All of the tools

provided some support via one or more text fields that are later used for document generation. For

example, in Figure 40, MagicDraw provides numerous fields for specific elements of a use case

specification (i.e. pre condition, multiple flows), while the others (Together, Omondo plugin for Eclipse,

and Rational Software Modeler) all provide only one or two text fields to document the entire use case

specification. The only link to UML models these tools support is an association with the use case in

the Use Case Diagram.

Eclipse + Omondo Plugin Rational Software Modeler

MagicDraw Together Eclipse Edition

Figure 40. Basic Support for Documenting Use Cases

Two of the six tools, Poseidon and Oracle Developer 10g as shown in Figure 41, provide a rich HTML

editing environment. Surprisingly, Oracle Developer 10g, which is more a programming tool than a

Page 62 of 113

UML modeling tool, provides the best support with automatic inclusion of hyperlinks to actors and

related use case extensions.

WYSIWYG HTML EDITIOR
(Poseidon for UML)

WYSIWYG HTML Editor with
Customizable Templates.

(Oracle Developer 10g)

Figure 41. WYSIWYG HTML Editor Support For Use Cases

This short survey of UML tools shows their documentation centric nature which attempts to

encourage writing use case specifications closer to the UML models for document generation with the

UML diagrams. While this helps keep documentation in sync with the models, the tools currently

provide little assistance in managing the associations with UML models and therefore provide little

support for requirements traceability.

7.2.2 Programming Use Cases

Programming UML models with a textual language has not been a popular approach in the

industry currently dominated by graphical modeling tools. While visual diagrams appeal to the

Page 63 of 113

cognitive and pattern matching abilities of the human mind, they also have their drawbacks [52]. With

large scale models, for example, where it is common to see thousands of modeling elements on a canvas,

the drawing medium on a computer screen quickly becomes unusable and the model incomprehensible.

As a matter of fact, UML was not designed only for graphical tools [65]. It is possible to implement a

textual programming language that could be parsed into metadata stored in a repository. The UML

standard, defines such a meta-model – the Meta Object Facility (MOF) [66]. Using a small example

taken from the UML Distilled book [67] (Figure 42).

Figure 42. Buy Product Use Case Specification Document (from [67])

The example code below is the equivalent specification for the Buy Product Use Case described in

Figure 42:

create use case buy_product
 step 1 "Customer browses catalog to…"
 step 2 "System displays catalog"
 step 3 "Customer selects items to buy"
 step 4 "System acknowledges selection"
 step 5 "Customer goes to check out"
 step 6 "System displays check out screen …"
 step 7 "Customer fills in shipping …"
 step 8 "System calculates total …"
 step 9 "Customer fills in credit …"
 step 10 "System authorizes purchase …"
with
 actor "Customer"
 goal "Buy Product(s)"
 extension check_out at step 5

extension authorize_purchase at step 9

Figure 43. Buy Product Use Case Specification using a Declarative Language

Page 64 of 113

At first glance, with the exception of a few key words, the sample code does not differ a great deal with

the use case specification document in Figure 42. Behind the scenes, however, this code was parsed into

metadata stored into a repository. As a result, the metadata can be used to automatically produce HTML

documentation and a UML system sequence diagram. Figure 44, below, shows the generated HTML

document and diagram.

Figure 44. Generated HTML Use Case Document

Furthermore, update commands for the use case also support adding and/or removing individual use

case steps, extension points, or other items such as pre-conditions and post-conditions. If the use case

was elaborated into design models, then the tool can warn the modeler of potential problems or prevent

the change.

Page 65 of 113

7.2.3 A Joinpoint Model for Use Cases

The Use Case Specification language was also designed to express aspects as use case extensions

with a defined join-point model. For example, the example code below (Figure 45) declares semantics

for a credit card authorization failure extension that will only fire when a customer enters an invalid

credit card.

create use case extension audit_authorize_purchase_extension

with

 goal = "Audit authorization failures"

returning error

advice steps

 step 1 = "Get authorization context and create a log…"

 step 2 = "void return (don't change base behavior)"

advice scenario messages

 1.1 from Extension to AuditLog

 requesting createLogEntry with "creditCard",

 "purchaseAmount"

returning "void"

extending

 buy_product at authorize_purchase returning error

Figure 45. Example of a Use Case Extension Declaration

A sequence diagram fragment (UML interaction frame) is automatically generated from the metadata

produced from the create extension command. This is shown below in Figure 46, which demonstrates

the “returning error” join point.

Figure 46. Example of Use Case Extension Sequence Diagram Interaction Frame

The Use Case Specification language supports the following join point model for use case extensions.

Page 66 of 113

(<extension point>)? around|after|before execution

(<extension point>)? returning error

(<extension point>)? returning success

Figure 47. A Jointpoint Model for Use Cases

The partial grammar above (Figure 47) defines join points for use case step execution, return with

success, and return with error. If the extension point is omitted, then the join point is defined at the use

case level rather than at the use case step associated with the extension point. Note, as recommended in

[3], the execution step for the extension point is defined in the base use case rather than the extension

use case. This provides more flexibility as changes in the base use case can be done without impacting

the definition of extension use cases.

7.2.4 Interactive UML Diagrams

Sequence diagrams can be modeled interactively, one message at a time as shown below in

Figure 48, which defines three messages for the Buy Product base use case. While this may seem an

overkill to code these messages compared to a point-and-click approach of graphical UML tools, the

payoff comes with the simulator where a sequence diagram can be single-stepped through its timeline

and rendered interactively.

update use case buy_product
add main scenario messages
1.1
from Actor to OnlineStore
requesting showCatalog
returning "Online Catalog"

update use case buy_product
add main scenario messages
3.1
from Actor to OnlineStore
requesting selectProducts
with "productList"
returning "void"

update use case buy_product
add main scenario messages
5.1
from Actor to OnlineStore
requesting checkOut
returning "Check Out Screen
with Shipping Information"

Figure 48. Adding Sequence Diagrams to Use Cases

Page 67 of 113

While modeling sequence diagrams, the tool can also track the relationship of the use case with

the domain objects by associating the messages and objects with the use case. As a result, class

diagrams can be generated to show this relationship as shown in Figure 49. The class OnlineStore is

shown to implement a set of methods as dictated by its participation in the buy_product use case

collaboration.

Figure 49. Generated Class Diagram From Use Case Metadata

7.2.5 Execution Paths in Aspect Based Models

Figure 51 shows the simulation screen of the execution of a sequence diagram with an extension

enabled. A modeler can walk forwards or backwards in time and observe the effects of use case

extensions. To enable an extension, a modeler specifies the extension as an option to execution in a

command as follows:

execute use case buy_product with extension check_out_extension

Figure 50. Example Use Case Execution Command with an Extension

If the extension is statically bound (i.e. defined without any guard conditions) then the simulator will

incorporate the interaction frame defined for the extension into the base interaction and display this to

the modeler. On the other hand, if the extension is dynamically bound, such as with a “returning error”

Page 68 of 113

type, then the simulator will only incorporate the extension’s interaction frame if the condition is

detected. Currently, the only way to trigger such a condition is to implement the behavior of the class in

Groovy [70] or Java and have the simulator invoke the code which causes the error.

Figure 51. A Simulation Session with a Returning Error Advise Enabled

7.2.6 Adding Behavior with Groovy Scripts

Using the Groovy scripting language [70], which is integrated with the simulation environment,

a modeler can add behavior to classes interactively and invoke the methods during a simulation session.

This enables the modeler to explore exceptional conditions and alternative flows without having to first

model all the possible paths. That is, a modeler can just start with the main success path and then add

arbitrary error conditions later with code. Figure 52 below shows the Groovy code editing screen for the

AuditLog class.

Call to AuditLog
added by
Returning Error
Advice.

Page 69 of 113

Figure 52. Groovy Code Editor

7.2.7 Integrating Java Code

The simulation system can also detect the existence of a Java class using reflection and invoke

the methods if there is a match in call signature. With this ability, legacy code can be wrapped with

Java classes, or if the application is already in Java, then the simulator can work with the code directly.

In the current research prototype, however, the simulator only supports String types. The main reason

for this is due to the user interface’s limited ability to render different object types for input data to a

Java method invocation. This input request currently is in the form of a single input field which expects

a comma separated list of strings. For example, with the following Java code below which implements

the authorizePayment method for the PaymentService class, the simulator will display the screen as

shown in Figure 53.

Page 70 of 113

public class PaymentService {

String authorizePayment(String creditCard,

String zipCode, String amount)

 {

 if ("1234567890".equals(creditCard) &&

 "11111".equals(zipCode))

 return "Payment Authorized!" ;

 else

 return "ERROR: Payment Not Authorized!" ;

 }

}

Figure 53. Simple Input Dialog for a Java Method

7.2.8 Case Study Summary

The results from this case study reveals that Active Documents as explored using a declarative

language for Use Case Specification provides better support for requirements analysis and change

management. This is primarily achieved using dynamic documentation generation and a model

simulation environment which puts Active Models at the center of the analysis work. Compared to

existing documentation centric Use Case Specifications methods as supported by existing techniques

and UML tools, an Active Document and Active Model provides a more direct association to the

working software and can be more easily maintained and leveraged for system evolution. Furthermore,

incorporation of Early Aspects into the Use Case Specification language enhances the value of Active

Documents and Active Models by rendering the effects of applying aspects to a base scenario in the

sequence diagram.

Page 71 of 113

7.3 Case Study B: Black Box Systems Integration via Web Services

In the past several years, web services and Service-Oriented Architecture (SOA) have been

gaining in popularity and adoption. Many online business systems integrate with external web services

as “black boxes”, incorporating their features seamlessly into internal business processes. Often, during

the requirements analysis phase of a new integration project, these services are readily available for use.

In essence, parts of the “solution space”, as represented by the web services are already built, but

understanding how to use them and incorporating their features into a UML model is difficult. This case

study looks at one such web service, the Cybersource Credit Card Payment service, and attempts to

integrate the service into an interactive UML model (i.e. the sequence diagram for the Buy Product use

case).

7.3.1 The API

Integration often starts with an Application Programmer Interface (API). Understanding the API

requires code level exploration with test client programs. Many service providers make available

sample client code which demonstrates how to call the web service to assist developers in quickly

coming up-to-speed with integration efforts. For example, in the Cybersource SDK for Java [73] details

are available on setup, usage, sample code, and test transactions. In addition, Cybersource makes

available numerous API choices and simulated transaction processors for testing prior to go live. Figure

54 shows the API’s available from the Cybersource website as of January, 2006.

Page 72 of 113

Figure 54. Options and API for Integrating with Cybersource [74]

7.3.2 The Java Code

In the previous case study (Section 7.2.7), a sample Java class, the PaymentService, was

demonstrated with “hard-coded” logic to respond with a “success” or “failure” from incoming messages

on the authorizePayment method. In this case study, the class is re-written to act as a client module to

the Cybersource web service. The new code for this class is shown below in Figure 55.

public class PaymentService {

 public String authorizePayment(String creditCard, String zipCode,
 String amount) throws Exception {

 ICSClient client = new ICSClient() ;

 ICSClientOffer offer = new ICSClientOffer();

 ICSClientRequest request = new ICSClientRequest();

 request.setField("ics_applications", "ics_auth");

 request.setField("merchant_ref_number", "007");

 request.setField("merchant_id", client.getMerchantID());

 /* portions omitted … */

request.setField("customer_cc_number", creditCard);
request.setField("bill_zip", zipCode);
offer.setField("amount", amount);
request.addOffer(offer);

ICSReply reply = client.send(request);

 if (reply.getReplyCode() <= 0) {

return "ERROR: " + ICSException(reply.getErrorMessage());

 } else {

 return "Transaction succeeded";

 }

}
}

Figure 55. Payment Service Java Code for Calling Cybersource

Page 73 of 113

7.3.3 Results

Two simulation runs were done with different transaction inputs for the authorize payment

message. As documented on the Cybersource website a transaction amount of $1500 will simulate a

transaction error. For the two simulation runs, the following inputs were used:

• For the success test: Credit Card = 4111111111111111, Zip code = 95130, Transaction Amount = 125.00.
• For the error test: Credit Card = 4111111111111111, Zip code = 95130, Transaction Amount = 1500.00.

Figure 56 below shows the results of the call to the Cybersource web services rendered as a return

message in the sequence diagram from the call to the authorizePayment method.

A successful test transaction with Cybersource.

A failed test transaction with Cybersource.

Figure 56. Test Results From Calling Cybersoure via Web Services

Page 74 of 113

7.3.4 Case Study Summary

Modeling at many levels of abstractions provides tremendous benefits to the analysis of system

behavior based on a composition of a number of subsystem components. In this case study, a subsystem

component (an external payment service exposed as a web service) was integrated seamlessly into a

modeling environment with minimal effort. In fact, the exact sample code from the service provider was

used with minimal changes. Normally, exploring a service API is done only at a code level when a

developer is trying to understand and use the API. Making this capability available to a modeler allows

for a broader view of the entire software solution. For example, many web services and/or internal

systems can be modeled collectively in this manner. This approach supports better interface design and

comprehension of end-to-end integration scenarios

Although the case study reveals a promising direction, there are still some limitations that were

not addressed by the simulator and further improvements are possible. A more robust data exchange

and messaging protocol could be used to integrate the simulator with existing code. For example, in

order to understand the difference between an “Error” and a “Successful” result, the simulator scans for

the “ERROR” text string within the result message. As such, Java exceptions have to be manually

converted into this convention in the code to signal to the simulator that the result should be treated as

an error. Furthermore, it was evident that some sort of state management is needed at the model level.

One possibility for adding this is with a UML state diagram that tracks the state of the session based on

the inputs and outputs of messages from source to target objects. Another shortcoming also is the lack

of support for asynchronous messaging. Modeling these types of messages will enable a more robust

real time analysis of system properties.

Page 75 of 113

7.4 Case Study C: Refactoring Database Access Code to the Hibernate Framework

In this case study the body of work (source code) from an evolving student project at San Jose

State’s Computer Engineering Department “Software Systems Analysis and Design – CMPE 221”

course was used. Unlike other “single semester” software projects, the results of each semesters work

are passed on to the next in an iterative style of evolution. Each group of students would study the work

of prior semesters from the project documents and source code and then develop enhancements and

refactorings to evolve the code base. The results from three such iterations were studied from the Fall

2003 to Fall 2004 groups. The first team focused on enhancing an existing online DVD rental system,

similar to the NetFlix DVD Rental service. The second team added online Game Rentals; while the

third enhanced the system with Online Advertising.

The main architecture of the application runs on a Java application server (Tomcat) and uses

MySQL as the database. In studying the source code, one major issue with the project became apparent.

Each team took a different approach to managing persistent and object-to-relational mapping. Two

teams took a one-class-has-all-business-objects approach where a huge class with numerous methods for

all domain objects was used to convert messages to SQL queries and commands. The other team took

the approach on the opposite end of the spectrum, where a small utility class managed basic database

access and took as input only SQL queries and commands. In effect, this approach distributes all

database access code to the domain objects themselves. Figure 57 shows the class diagrams of the

database access code. The inconsistent management of object persistence is a common problem

amongst object-oriented applications and many object-relational mapping tools have been developed to

address this. For this case study, one such tool, Hibernate, was used to refactor a portion of the database

access code.

Page 76 of 113

Figure 57. Database Access Classes in CMPE 221 Student Projects

One big class
approach

Small “utility”
class approach

Page 77 of 113

7.4.1 Reverse Engineering To a Use Case

Focusing on the new user registration process for the refactoring, the project documentation was

used to explore the design details -- in particular, a dynamic domain model in the form of a sequence

diagram. One was not to be found in any of the project documentation. This is probably due to the fact

that this part of the system was designed by an earlier team (before the three teams under study).

As a result, a study of the source code was undertaken with the assistance of a dynamically

generated sequence diagram. This dynamically generated diagram was developed as part of the research

prototype due in part to the need for this feature as called for by this case study. The User Interface

screen and resulting sequence diagram from the reverse engineering is shown below in Figure 58 and

Figure 59. This reverse engineering effort differs from current UML tool based approaches which

generate diagrams from source code. The diagram below in Figure 59 was generated from runtime

messages amongst objects in the Java JVM.

Figure 58. New User Registration Screen

Page 78 of 113

Figure 59. Dynamically Generated Sequence Diagram Trace

The results from the dynamic trace reveals two key classes involved in the new user registration

process: the CustomerProfile class and the DatabaseAccessor class. It was also discovered that the key

database table in the MySQL database involved in this transaction is the Customer table. To proceed,

this information helped form a use case for the modeling environment which would be used to explore

the refactoring to the Hibernate framework. Below in Figure 60 is the source code which defines this

use case and the HTML documentation it generates.

Key Methods for
Refactoring

Page 79 of 113

create use case create_account described as "Customer wants to create a new account for the online store"

steps

 step 1 "Customer clicks on create profile link"

 step 2 "System display create account screen asking for new userid and password"

 step 3 "Customer enters login user id and password"

 step 4 "System verifies that the userid has not been taken and displays a profile registration
page"

 step 5 "Customer enters profile information and submits the request"

 step 6 "System display profile confirmation page"

 step 7 "Customer acknowledges the confirmation and submits a request to complete the …"

 step 8 "System displays a successful registration message"

with

 actor "Customer"

 goal "Register for a new account"

 extension new_record at step 3

 described as "System checks for an existing userid and creates a new record if … "

 extension registration_confirmed at step 7

 described as "System receives confirmation and creates the new account"

Figure 60. Create Account Use Case for Refactoring Case Study

From the study of how the current system handles the new user registration scenario, two methods on

the DatabaseAccessor class will be the target for extension and exploration within the active model.

The getUseridNewRecord() and the updateProfile() methods. To prepare for this, two extension points

Page 80 of 113

were introduced into the base use case: new_record and registration_confirmed. Extension use cases

can then be defined to extend the behavior of the current system at these extension points. Two

extension use cases were created for this purpose as shown below from the generated use case diagram

in Figure 61.

Figure 61. Hibernate Extension Use Cases

The Hibernate extension use cases add behavior for creating a new customer record and updating the

customer record, which are two distinct messages within the current system. Additionally, since

Hibernate will handle all of the database access activities, an Oracle database will be used instead of the

currently used MySQL. This situation will more realistically simulate a real life scenario where a core

architecture component (i.e. the Database Server) is changed and the migration of the code base planned

in iterations. The next section will discuss the details of the Hibernate component. This part of the case

Page 81 of 113

study leverages Hibernate in a standard way as specified by Hibernate APIs and technical

documentation.

7.4.2 Creating a New Hibernate Component to Map the Customer Table

An Oracle database table for the Customer data was created mirroring the logical structure of the table

from the MySQL database. Using standard Hibernate tools, a mapping file was created and the Java

class for the Customer object generated. A partial view of these artifacts is shown in Figure 62.

<hibernate-mapping>

<class name="app.hibernate.Customer" table="customer">

<meta attribute="class-description"/>

<id name="user_id" type="int" column="user_id">

<meta attribute="scope-set">protected</meta>

<generator class="increment"/>

</id>

<property name="login" type="string" not-null="true"/>

<property name="password" type="string" not-null="true"/>

<property name="first_name" type="string" not-null="false"/>

<property name="last_name" type="string" not-null="false"/>

<property name="street_address" type="string" not-null="false"/>

Etc…

</class>

<query name="app.hibernate.CustomerByUserid">

<![CDATA[

from app.hibernate.Customer as c

where c.user_id = :uid

]]>

</query>

</hibernate-mapping>

Figure 62. Hibernate Mapping and Generated Java Class

Thus, a new Java Class: Customer was created for use in an application. Using Hibernate, all SQL

queries and commands will be generated by Hibernate or can be customized using the Hibernate

Mapping to
Oracle Table

Generate Java
Class using
Hibernate
Tools

Page 82 of 113

mapping file. One such customization that was done was a query for the Customer object based on

Userid (i.e. Key). This was defined in the mapping file as a named query – i.e.

app.hibernate.CustomerByUserid. A few convenience methods were also added to the Customer object

as class “static” methods to simplify the interaction with the simulation environment. An example of

this is the “updateCustomer()” method which uses the named query to find the Customer object and sets

the attributes of the object for update to the database. A partial view of this method is shown in Figure

63.

Figure 63. UpdateCustomer Method in Hibernate Mapping Component

Page 83 of 113

7.4.3 Using Model Simulating to Test the Refactoring

Using JBoss AOP interceptors, extension code was written to call the Java Hibernate Component

“Customer” to create and update customer data. This code is shown below in Figure 64. Note that the

code targets two different classes, one used in the simulator only (app.java.DatabaseAccessor), and the

other in the existing system (cmpe221.DatabaseAccessor). This technique is equivalent to rewiring

software components at the message level (i.e. the AOP joinpoint).

public Object invoke(Invocation invocation) throws Throwable {

Object[] args = null;

Object result = null;

if (invocation instanceof MethodInvocation) {

MethodInvocation m = (MethodInvocation) invocation;

args = m.getArguments();

String targetClassName = m.getTargetObject().getClass().getName();

System.out.println("TARGET OBJECT CLASS: " + targetClassName);

if ("app.java.DatabaseAccessor".equals(targetClassName)) {
String userid = (String) args[0];

String fname = (String) args[1];

String lname = (String) args[2];

String addr = (String) args[3];

String city = (String) args[4];

String st = (String) args[5];

String zip = (String) args[6];

String email = (String) args[7];

String bday = (String) args[8];

String creditcard = (String) args[9];

Customer.updateCustomer(userid, fname, lname, addr, city, st, zip, email, bday,
creditcard) ;

return "true" ;

}

if ("cmpe221.DatabaseAccessor".equals(targetClassName)) {
result = invocation.invokeNext() ; // invoke the base behavior first

try {

CustomerProfile p = (CustomerProfile) args[0] ;

String userid = (String) p.getUserId() ;

String fname = (String) p.getFirstName() ;

String lname = (String) p.getLastName() ;

String addr = (String) p.getStreetAddress() ;

String city = (String) p.getCity() ;

String st = (String) p.getState() ;

String zip = (String) p.getZipCode() ;

Page 84 of 113

String email = (String) p.getEmail() ;

String bday = (String) p.getBirthday() ;

String creditcard = (String) p.getCreditCardNo() ;

String login = (String) p.getLogin() ;

String password = (String) p.getPassword() ;

userid = Customer.createCustomer(login, password) ;

Customer.updateCustomer(userid, fname, lname, addr, city, st,

zip, email, bday, creditcard) ;

}

catch (Exception e) {}

return result ; // return result from base behavior

}

}

return "false" ;

}

Figure 64. AOP Interceptor Code Calling Hibernate Component

During a simulation session, the invocation of the Hibernate component can be enabled and or

disabled via the execute use case command or directly against the extension object using convenience

methods. Figure 65, below demonstrates the enabling of hibernate features using a convenience method

and the invocation of the updateProfile method which calls Hibernate.

Figure 65. Enabling Hibernate in a Simulation Session

Enable
Hibernate

Get Input from
User, Call
Extension, Which
Calls Hibernate
to Create DB
Record returning
the record key.

Page 85 of 113

The final results from the simulation session are shown below in Figure 66. The two methods:

getUseridNewRecord and updateProfile in the DatabaseAccessor class where invoked with results from

Hibernate shown in the sequence diagram. To validate the test, a query was used to find the record in

the Oracle database to confirm the creation and update of the record by Hibernate.

Figure 66. Simulation Results From Hibernate Case Study

Simulation
Calling
Hibernate. Both
Create and
Update extensions
shown with
results shown in
diagram.

Successful
validation of
results via query
to database.

Page 86 of 113

7.4.4 Hot Deployment of the New Hibernate Component

In the simulation session above, the Hibernate extension was enabled programmatically via

dynamic JBoss AOP features. The code below shows how this is done.

public static void enableExtension() {

 try {

 AdviceBinding binding = null;

 binding = new AdviceBinding("HibernateConfirmProfileExtension",

 " execution(* app.java.DatabaseAccessor->updateProfile(..)) "
 + " ", null);

 binding.addInterceptor(app.java.HibernateConfirmProfileExtension.class);

 AspectManager.instance().addBinding(binding);

 System.out.println("DEBUG: HibernateConfirmProfileExtension Enabled");

 } catch (Exception ex) {

 System.out.println(ex.getMessage());

 }

}

Figure 67. Code that enables Aspects in JBoss AOP

To hot deploy the Hibernate Extension into the existing application, there are no facilities to invoke the

method above. As such, JBoss AOP has a hot deploy configuration file. Within this configuration file,

the aspect can be enabled. When JBoss AOP reads the update, it will enable the extension.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<aop>

<prepare expr="all(app.java.*)"/>

<bind pointcut="execution(* cmpe221.DatabaseAccessor->login(..))">

<interceptor class="app.java.HibernateLoginExtension"/>

</bind>

<bind pointcut="execution(* cmpe221.DatabaseAccessor->updateProfile(..))">

<interceptor class="app.java.HibernateConfirmProfileExtension"/>

</bind>

</aop>

Figure 68. JBoss AOP Hot Deployment Configuration File

Note, in Figure 68, above, the binding pointcut extends CMPE221 classes – the existing code

base. This was all done without modifying a single line in the current code. As a result, the new

Hibernate component can be easily removed, simply with a configuration change in the hot deployment

file.

Page 87 of 113

This case study only shows the migration to Hibernate using one database table and Java class

(i.e. Customer). As such, this is not a comprehensive database persistence solution – additional tables

and classes need to be created and tested. However, to verify whether or not this process actually works

and gathers results for the case study, the existing application must be used. To enable this, the new

Hibernate components have to co-exist with the existing code base. Aspects make this seamless by

adding behavior to existing systems without changing existing functionality – much in the same manner

as a Logging Aspect. The deployment of the Hibernate components were configured to work in

conjunction with existing code by piggy backing on the successful return from a normal create user to

MySQL. The results of a test is shown below, which confirms records created in MySQL and Oracle.

Figure 69. Test Results of Case Study: App Page, Hibernate Logs, & Db Tables with new Records in MySQL and Oracle

Create
Profile in
MySQL
 and Oracle

Transaction
Successful!

Page 88 of 113

7.4.5 Case Study Summary

This case study confirms the main thesis of this research on active models: that working both

from top down (with models and simulation) and bottom up (from the code or via reverse engineering)

better supports systems evolution. The case study’s work started out with the existing code and used

reverse engineering to capture a use case scenario. From there, the existing classes and code was

studied for refactoring (or evolutionary) design options. In the case study, Hibernate was chosen as the

target database persistent management component for the code base to evolve towards. Using model

simulation and the power of aspect-oriented programming (with JBoss AOP) the ease of evolving the

new user registration process was demonstrated.

Some limitations with the current research prototype were also noted. In reviewing the

CMPE221 student code base, various areas of the application and use cases were studied before one was

chosen. The new user registration use case was chosen because evolving that part of the system matches

well with the current capabilities of the prototype and its emphasis on method execution and sequence

diagrams. Other use cases, the Game Login use case (for example), did not match well because it was

designed using the Struts framework based on a state based event driven model. Also, to augment or

change the behaviors of “struts actions” in this framework requires numerous struts context objects,

which is currently not possible to pass to the simulation environment because the prototype only works

currently with simple String types. However, future work could easily address this.

Page 89 of 113

8. Analysis

The results from the case studies and experience from developing and using the research

prototype will be discussed in this section with respect to the challenge problems identified in Section

3.2 Key Problems. To summarize, these problems were:

• Evolution. Enterprise Systems are hard to maintain and evolve and are often replaced.

• Incompatibility. Domain models amongst multi-vendor applications are often incompatible.

• Requirements Mismatch. The problem of the evolving “dynamic domain model”

• Documentation Centric. The out-of-date documentation problem.

• Lack of logical/physical isolation. Configuration management of deployments is a

challenge with Java Application Servers.

• Distributed Teams. Teams are distributed making collaborative work a challenge.

In addition, it is noted that this work currently addresses only a subset of the vision for a fully integrated

Active System. Putting this into context, the work and case studies presented here addresses the

following areas:

Active System

General
Purpose
Platform

(VM)

ID
E

D
SL

-ID
E

Programming
& Query Tool

Active
Documents

Active Models

Active
Database

M
an

ip
ul

at
io

n
(v

ia
 D

SL
’s

)

Pr
oj

ec
tio

n

Pr
oj

ec
tio

n

Pr
oj

ec
tio

n

Pr
oj

ec
tio

n

Requirements

Domain-Specific
Models

UML Models

Use-Case Spec’s

External
System

Active
Framework

The Active System Approach

Figure 70. Areas of Active Systems Covered or Demonstrated in This Work

Covered with
dynamic Use Cases

Partially covered:
subset of UML,
DSL but no query
language.

Case Study A.

Case Study B.

Case Study C.

Page 90 of 113

Evolution

Well modularized solutions are easier to maintain and evolve. Conversely, a system that is not

well modularized can not be maintained and often ends up in an evolutionary “dead end”. At the code

level, agile approaches address this issue with test-driven techniques and refactoring. That is, by

architecturally reorganizing the internals of the software while still maintaining external interfaces, and

validating the refactoring using automated tests. As shown in Case Study C, refactoring can also be

applied at a higher level of abstraction – at the model level -- with the assistance of Active UML

Models. In addition, married with Aspect Oriented Middleware, the refactoring can be incrementally

deployed to coexist with the current functionality. As a result, validation can occur both at the model

level and in the actual system to provide a gradual migration path towards the new architecture.

Incompatibility

Incompatible domain models from multiple vendors were not addressed directly in this research.

However, having a textual programming language to describe UML models and a readily available

simulator for the language will help a great deal in solving this problem. In addition to SDK’s, API’s,

and technical documentation, Vendors of packaged solutions could make available the source code to

the underlying domain models (both static and dynamic) so a customer or value added reseller could

better understand the “semantics” of the model using a simulator. Furthermore, one vendor’s model can

be easily adapted to models of another vendor using the simulator, which could be used to integrate

various “multi-vendor” domain objects prior to actual implementation.

Page 91 of 113

Requirements Mismatch

The problem of the “dynamic domain model” is addressed with Active Documents in this

research. The solution, however, is an aged old programming language approach --basically, focusing

on capturing domain concepts into a declarative “domain specific” language (DSL). The DSL approach

in this research differs, however, from other DSL approaches, since the language itself focuses on the

semantics of UML (which is a general purpose language). Describing requirements (or documents)

using a language could be considered “code”, which is equivalent to the “code first” philosophy in the

Agile Community and the thinking behind “Code as Design” [54].

Documentation Centric

Active Documents addresses the problem of “static documents” in current practice. But a deeper

problem related to static documents is the “static models”. It is my belief, from experience, that the

main reason behind a large amount of technical documentation currently in practice is due primarily to

the fear of complexity, or more precisely, the fear of one’s ability to evolve a complex system. I believe

that less documentation will be needed if we have interactive modeling environments that assist us in

maintaining software systems and automatically generate the latest documents whenever we need them.

Lack of logical and Physical isolation

This problem was described earlier as a key problem to managing the configuration of Java

Application Servers and the deployments of application components. This research did not address this

directly, but can offer a direction towards solving this using the concept of an “Active System”. That is,

the Active System could manage all the physical deployment aspects of the environment, freeing the

development work to only the logical layers. As such, techniques in code generation, configuration

generation, automated build systems, and version control can all be integrated into the physical

Page 92 of 113

infrastructure behind Active Systems. For example, when I create a “Class” in the modeling

environment, and proceed to produce “code” to support the class, I should not have to worry about

compiling this into a Java Class file, packaging it into some JAR file, and deploying this file (along with

a number of configuration files) into a Java Application Container.

Distributed Teams

Collaboration is “key” to the future of software development. And, as the nature of building

complex distributed system force us to work with colleagues from various corners of the world, we must

address this issue! Current software development methodologies have not addressed this issue directly.

The more distributed the team, the less we can feasibly have face-to-face time, and therefore, the more

we tend to documentation centric and waterfall approaches. Although, in the literature, it has been well

argued that waterfall approaches do not work, the solutions to these problems as offered in Agile

approaches do not scale well to large distributed teams who often don’t even speak to one another. The

success of open source software development teams offer some clues to how best to address this issue.

Successful open source project have one thing in common. They all have an automated configuration

management, code management, and regular build system. This not only provides a means to control

the evolution of the software, but also provides a means of communication amongst teams. Every

developer should be able to easily build a “sandbox” of the software and to contribute to the source code

repository without the fear of his/her contribution causing havoc to the developer community at large.

The infrastructure for an Active System could provide all of these benefits, but also provide a modeling

and simulation environment to enable creation of high-levels of abstractions and exploration – i.e. a

sandbox for models!

Page 93 of 113

9. Conclusion

This research investigated interactive modeling with UML diagrams and Aspect-Oriented

middleware. The research prototype explored the feasibility of implementing an integrated “Active

System” using existing open source AOP technology, the Java JVM, and a commercial relational

database system. In three case studies, the prototype was tested against three common problems in

software development. In the first case study, it was shown that dynamic documentation can be easily

generated and maintained when the semantics of the specification is expressed without ambiguity using

a declarative programming language. In the second case study, it was demonstrated that modeling

doesn’t have to just be visual diagrams. When models are dynamic and interactive, the modeling

elements themselves can be executing code, or better yet, live systems. Using the Cybersource

simulation infrastructure, the second case study demonstrated how calling a web service could be

integrated into an interactive sequence diagram. Effectively, the case study shows that when working

with interactive UML models, the level of abstraction can be mixed; that is, the modeling elements can

be pure models, real code, or real systems. In the third case study, it was demonstrated that systems

evolution can be supported with aspect-oriented technology, effectively, rewiring software components.

In the case study, the power of AOP was demonstrated from different aspects. First, AOP can be

leveraged to dynamically reverse engineer a live system. The research prototype implemented this

tracing mechanism using JBoss AOP code and the model diagram generation framework develop as part

of the active documentation facility. Second, AOP can be used in the simulator to explore the system

behavior when aspects are applied. The case study attempted to migrate an existing code base towards a

entirely different database architecture. Such an attempt using traditional software development with

static designs and documentation would be very difficult as the implications of such a change can not be

well understood until code is written. And lastly, the case study shows that system evolution can be

Page 94 of 113

done in small steps using AOP. That is, parts of the new code can co-exist non-intrusively with existing

code and gradually replace existing code over time. Effectively, with AOP, refactoring can be done at a

larger scale.

In implementing the research prototype, it was found that using the Java JVM’s reflective

capabilities requires explicit identification of classes and methods. That is, there were no query

facilities to search for classes. Unlike a database, where the metadata can be queried, the metadata

about objects in the Java JVM can not. This severely limits the power of AOP and forces each AOP

framework to implement their own language for pointcuts specification. In the implementation of the

declarative use case specification language, use case extensions where implemented as aspects. The

metadata for the use case extensions were stored in a relational database and as a result SQL was used to

implement pointcuts for use case extensions. This greatly simplifies working with early aspects in

interactive models. Further evolution of Java’s Reflective capabilities and perhaps integration with a

metadata repository would provide a better platform for implementing an interactive modeling

environment for exploring early aspects.

To sum up, this research work has demonstrated that the combination of interactive modeling

and Aspect-Oriented Middleware provides a powerful combination to tackle the current problems in

software development. Static documents can be active and always up-to-date, UML designs can be

interactive and more faithfully representative of the software, and systems evolution can be better

explored and implemented with confidence.

Page 95 of 113

10. Related and Future Work

This work is based primarily on the work of Ivar Jacobson and Pan-Wei Ng [3] and Diomidis

Spinellis’s Declarative UML rendering library, UMLGraph [71]. As discussed in the introduction, most

model driven development efforts to date (MDA [26] and Software Factories [16]) focus on automated

code generation and very little on simulation. However, a case study on executable use cases in [59]

and research work on testing UML designs [60] uses simulation as an important tool for validation.

More common, are approaches to executing use cases or UML using a virtual machine. For example,

the work on UML virtual machines from Trygve Reenskaug [17], Dirk Riehle, et al. [53], and

Executable Z [57]. The simulator in this research work is tightly integrated with the Java JVM and can

be considered a virtual machine for UML sequence diagrams and Use Cases. However, the main focus

of this research is not to implement a virtual machine that runs all of the UML models, but rather to

bring the dynamic models closer to the code. In essence, the simulator makes very little distinction

between a simulated object, vs. a scripted object in Groovy, vs. an implemented object written in Java.

As such, this research leverages the Java JVM itself as the execution environment.

This work also shares a common goal with the Model-Centric Software Development (MCSD)

work at Lockheed Martin [61], which aims at integrating the models into every aspect of software

development, but, differs in the way it deals with legacy code. In MCSD, reverse engineering is used to

create models from code. In our approach, legacy code is either incorporated directly into the

simulation models or wrapped by a simulated component. In addition, since we work at the JVM

bytecode level, the simulation models can also incorporate third-party components where source code is

not available.

Page 96 of 113

The body of work in generative software development [1] provides many of the techniques used

in this research. Currently, feature models from product line engineering and domain analysis methods

are being considered at the metamodel layer for integration with the use cases and UML models. In

addition, there seems there is considerable synergy and promise in integrating with the Naked Objects

Framework [28] and the further exploration of additional language constructs for expressing design

concepts, such as the UML state diagram, design patterns, or other AOP design techniques [69].

On the user interface front for modeling, additional rendering tools will help provide different

perspectives against the same metamodel. For example, integration with TouchGraph [68] to render

different aspects of the model and link them with one another to provide for a dynamic view of

traceability.

Page 97 of 113

11. Appendices

11.1 Sample UI Screens From the Research Prototype

11.1.1 Dynamic Use Case Document

Page 98 of 113

11.1.2 Interactive UML Model

Page 99 of 113

11.1.3 Simulation Environment

Page 100 of 113

11.1.4 Dynamic Use Case Diagram

Page 101 of 113

11.1.5 Direct Interaction with Java Objects during Modeling

Page 102 of 113

11.1.6 Live System Reverse Engineering to Sequence Diagram

Page 103 of 113

11.2 Metamodel

Page 104 of 113

11.3 DSL Syntax and Examples

create use case reserve_room described as "The use case begins when a customer wants to reserve a room.
(or multiple rooms)"

steps

 step 1 "The customer selects to reserve a room."

 step 2 "The system displays the type of rooms the hotel has and their respective rates."

 step 3 "The customer checks room cost for a desired room type and period of stay."

 step 4 "The system computes the cost and displays the information to the customer."

 step 5 "The customer makes the reservation for the chosen room(s)."

 step 6 "The system reserves the room for the customer and displays the reservation with a
confirmation number and check-in instructions."

with

 actor "Customer"

 goal "Reserve a room"

 extension

 making_reservation at step 5

 described as "Making reservation occurs while the system is checking for room availability
meeting the selection criteria."

Page 105 of 113

update use case reserve_room

 add main scenario messages

 1.1 from System to Screen

 requesting showRoomsAvailable

 returning "List of rooms with rates"

 1.1.1 from Screen to ReserveRoomHandler

 requesting retrieveRooms

 returning "List of rooms with rates"

 1.1.1.1 from ReserveRoomHandler to Room

 requesting retrieveDetails with "room"

 returning "Room details with rates"

 3.1 from System to Screen

 requesting computeCost with "room", "period"

 returning "Final cost for request"

 3.1.1 from Screen to ReserveRoomHandler

 requesting addRoomToReservation with "room"

 returning "void"

 3.1.1.1 from ReserveRoomHandler to Room

 requesting addRoom with "room"

 returning "void"

 3.1.2 from Screen to ReserveRoomHandler

 requesting computeReservationRates

 returning "List of rooms with rates"

 3.1.2.1 from ReserveRoomHandler to Room

 requesting retrieveRates

 returning "Rates"

 5.1 from System to Screen

 requesting makeReservation with "room", "period"

 returning "Confirmation number and instructions"

 5.1.1 from Screen to ReserveRoomHandler

 requesting makeReservation with "room", "period"

 returning "List of rooms with rates"

 5.1.1.1 from ReserveRoomHandler to Room

 requesting updateAvailability

 returning "void"

 5.1.1.2 from ReserveRoomHandler to Reservation

 requesting generateReservationNumber

 returning "void"

 5.1.1.3 from ReserveRoomHandler to Reservation

 requesting createReservation

 returning "void"

Page 106 of 113

create use case extension waitlist_extension

described as "put the customer on a waiting list if no rooms are available"

with

 goal = "a waiting list reserved for the customer"

 entry = "no rooms available"

returning error

 advice steps

 step 1 = "A make reservation request failed due to room unavailability."

 step 2 = "The System creates a pending reservation and returns the details"

 advice scenario messages

 1.1 from Extension to WaitingListHandler

 requesting putCustomerOnWaitList with "customer"

 returning "Waiting list reservation."

 1.1.1 from WaitingListHandler to Reservation

 requesting generateReservationNumber

 returning "reservation number"

 1.1.2 from WaitingListHandler to Reservation

 requesting createPendingReservation with "reservation number"

 returning "Success"

 1.1.3 from WaitingListHandler to WaitingList

 requesting addPendingReservation with "reservation number"

 returning "Success"

extending

 reserve_room at making_reservation returning error

Page 107 of 113

11.4 Software Tools and Development Frameworks Used

• Oracle Database 10g XDK for SQL to XML to HTML document generation

• JBoss AOP Framework (during the course of the research initially worked with 1.0, later updated to 1.1 and
finally at version 1.3)

• Java 1.5 (Tiger) SDK

• Groovy Scripting Language (version 1.0 – JSR05)

• Eclipse (various versions: SDK 2.0, 3.0, 3.1, and Jboss IDE 1.5)

• Tomcat 4.1.30

• Hibernate Framework 2.1.8

• JavaCC Parser Generator Toolkit

• UML and Graph Rendering Frameworks: UMLGraph, Sequence, and GraphViz

Page 108 of 113

12. Tables and Figures

List of Tables
Table 1. Summary of Contributions from Machine-Independent Programming..10
Table 2. Summary of Contributions of Virtual Machines ..11
Table 3. Summary of Contributions from Programming Language Interoperability & Domain-Specific Languages12
Table 4. Summary of Contributions from Increasing Modularity ..13
Table 5. Innovations and Problems that Motivate Active Models..32

List of Figures

Figure 1. Influences on MDA and Software Factories ...18
Figure 2. Influences on BabyUML (reproduced from [30]) ...20
Figure 3. Logging not modularized in Tomcat (reproduced from [34]) ...21
Figure 4. Extracting Operational Contracts (diagram adapted from [49])..26
Figure 5. Oracle Dictionary Tables For user “tables” and “columns”..27
Figure 6. Sample Database Trigger Template ..27
Figure 7. An Example of a committed transaction captured by database triggers..28
Figure 8. Sequence Diagram Showing Operational Contracts Extracted Using Database Triggers.29
Figure 9. Tracing Aspect in AspectJ with before and after advice on constructors and method calls30
Figure 10. Login Scenario Demonstrating Tracing Aspect ..31
Figure 11. Traditional Software Development & MDA approach ...34
Figure 12. Software Product Lines & Generative Software Development...35
Figure 13. Software Factories Tools for Product Lines & Generative Software Development ...36
Figure 14. Active Systems Integrate Domain-Specific and General-Purpose Development Methods.....................................37
Figure 15. UML Models and Their Relationships..38
Figure 16. Metamodel for Use Cases..39
Figure 17. Architecture of Experimental Platform ...42
Figure 18. DSL Non-Terminal For Create Use Case Command ..43
Figure 19. Example of JavaCC Integration with Java DSL Interpreter Objects...43
Figure 20. DSL Interpreter Command Class Diagram ...44
Figure 21. UML Sequence Diagram for DSL Interpretation..45
Figure 22. Object Model For Create Use Case Command (Class Diagram) ..46
Figure 23. Debug dump() method in Create Use Case Command..46
Figure 24. Example Create Use Case Command & Parser Results ..47
Figure 25. Portions of the execute() command for Create Use Case Command ..48
Figure 26. Example Update Use Case Command...49
Figure 27. Object Model for Update Use Case Command (Class Diagram) ..49
Figure 28. Example Create Use Case Extension Command...50
Figure 29. Object Model for Create Use Case Extension Command (Class Diagram) ..50
Figure 30. Example Execute Use Case Command ...51

Page 109 of 113

Figure 31. Object Model for Execute Use Case Command..51
Figure 32. Examples of DSL Code for Diagram Generators..53
Figure 33. Example DSL Code Generator for Use Case Diagrams (partial view) ...54
Figure 34. View Diagram Collaboration ..55
Figure 35. View Document Collaboration..56
Figure 36. View Use Case XDK Page and XSLT Template ..56
Figure 37. Simulation Collaboration (Sequence Diagram)...57
Figure 38. Data Model for Execution State Tables ..58
Figure 39. Sample Code Generated by Research Prototype ...60
Figure 40. Basic Support for Documenting Use Cases ..61
Figure 41. WYSIWYG HTML Editor Support For Use Cases ..62
Figure 42. Buy Product Use Case Specification Document (from [67]) ..63
Figure 43. Buy Product Use Case Specification using a Declarative Language ..63
Figure 44. Generated HTML Use Case Document...64
Figure 45. Example of a Use Case Extension Declaration ...65
Figure 46. Example of Use Case Extension Sequence Diagram Interaction Frame...65
Figure 47. A Jointpoint Model for Use Cases ..66
Figure 48. Adding Sequence Diagrams to Use Cases ..66
Figure 49. Generated Class Diagram From Use Case Metadata...67
Figure 50. Example Use Case Execution Command with an Extension ..67
Figure 51. A Simulation Session with a Returning Error Advise Enabled...68
Figure 52. Groovy Code Editor ..69
Figure 53. Simple Input Dialog for a Java Method ..70
Figure 54. Options and API for Integrating with Cybersource [74]...72
Figure 55. Payment Service Java Code for Calling Cybersource ...72
Figure 56. Test Results From Calling Cybersoure via Web Services...73
Figure 57. Database Access Classes in CMPE 221 Student Projects ...76
Figure 58. New User Registration Screen ..77
Figure 59. Dynamically Generated Sequence Diagram Trace..78
Figure 60. Create Account Use Case for Refactoring Case Study ...79
Figure 61. Hibernate Extension Use Cases...80
Figure 62. Hibernate Mapping and Generated Java Class..81
Figure 63. UpdateCustomer Method in Hibernate Mapping Component...82
Figure 64. AOP Interceptor Code Calling Hibernate Component..84
Figure 65. Enabling Hibernate in a Simulation Session ...84
Figure 66. Simulation Results From Hibernate Case Study ...85
Figure 67. Code that enables Aspects in JBoss AOP ..86
Figure 68. JBoss AOP Hot Deployment Configuration File ..86
Figure 69. Test Results of Case Study: App Page, Hibernate Logs, & Db Tables with new Records in MySQL and Oracle87
Figure 70. Areas of Active Systems Covered or Demonstrated in This Work...89

Page 110 of 113

13. References

[1] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[2] Robert E. Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit. Aspect-Oriented Software Development.
Addison-Wesley, 2005.

[3] Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development with Use Cases. Addison-Wesley, 2005.

[4] Walter Hursch and Cristina Lopes. Separation of Concerns. College of Computer Science, Northeastern University,
1995.

[5] Brett McLaughlin and David Flanagan. Java 1.5 Tiger. O’Reilly Media, Inc. 2004.

[6] Ira R. Forman and Nate Forman. Java Reflection in Action. Manning Publication. 2005.

[7] Harold Ossher and Peri Tarr. Multi-Dimensional Separation of Concerns and the Hyperspace Approach.
Proceedings of the Symposium on Software Architectures and Component Technology: The State of the Art in
Software Development (KLUWER, 2000).

[8] Peri Tarr, Maja D’Hondt, Lodewijk Bergmans, and Cristina Videira Lopes. Workshop on Aspects and Dimensions of
Concern: Requirements on, and Challenge Problems For, Advanced Separation of Concerns. Springer-Verlag,
2000, ECOOP 2000 Workshop Reader. See Workshop website http://trese.cs.utwente.nl/Workshops/adc2000.

[9] Thomas Patzke and Dirk Muthig. Product Line Implementation Technologies – Programming Language View.
IESE-Report No. 057.02/E, 2002.

[10] Stefan Kettemann, Dirk Muthig, and Michalis Anastasopoulos. Product Line Implementation Technologies –
Component Technology. IESE-Report No. IESE-015_03, 2003.

[11] Raul Silaghi and Alfred Strohmeier. Integrating CBSE, SoC, MDA, and AOP in a Software Development Method.
Software Engineering Laboratory, Swiss Federal Institute of Technology, 2003.
See http://icwww.epfl.ch/publications/list.php.

[12] Michalis Anastasopoulos and Dirk Muthig. An Evaluation of Aspect-Oriented Programming as a Product Line
Implementation Technology. Fraunhofer Institute for Experimental Software Engineering (IESE). Springer-Verlag,
2004.

[13] Manali Bhole and Karl Lieberherr. Use Case Modularity using Aspect Oriented Programming. College of
Computer and Information Sciences, Northeastern University, 2004.

[14] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, Nosa Omorogbe. The Architecture of a UML Virtual Machine.
OOPSLA 2001.

[15] R.J.A Buhr, R.S. Casselman, T.W. pearce. Design Patterns with Use Case Maps: A Case Study in Reengineering
an Object-Oriented Framework. Department of Systmes & Computer Engineering, Carleton University, Ottawa
Canada. 1996.

[16] Jack Greenfield, Keith Short, Steve Cook, Stuart Kent. Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Wiley, 2004.

Page 111 of 113

[17] Trygve Reenskaug. A Rudimentary UML Virtual Machine as a Smalltalk Extension. Book Draft. 2004.

[18] Frederick P. Brooks, Jr. No Silver Bullet - Essence and Accidents of Software Engineering. IEEE Computer
Magazine, April 1987.

[19] Frederick P. Brooks, Jr and [co-author]. The Mythical Man-Month. [Publisher], 1995 Edition.

[20] Jason Bloomberg. Software's Dirty Little Secret. ZapThink Document ID: ZAPFLASH-09012004, 2004.

[21] Lt. Col. Thomas M. Schorsch, Ph.D. and David A. Cook, Ph.D.. Evolutionary Trends of Programming Languages.
STSC CrossTalk, Feb 2003.

[22] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[23] Martin Fowler. Is Design Dead? URL: http://www.martinfowler.com/articles/designDead.html (May 2004).

[24] Neal Leavitt . Whatever Happened to Object-Oriented Databases? IEEE Computer, August 2000.

[25] Scott W. Ambler. The Object-Relational Impedance Mismatch. URL:
http://www.agiledata.org/essays/impedanceMismatch.html. (2005).

[26] OMG. Model Driven Architecture - A Technical Perspective. Document number ORMSC 2001-07-01.

[27] Martin Fowler. Language Workbenches and Model Driven Architecture. URL:
http://martinfowler.com/articles/mdaLanguageWorkbench.html. (June, 2005)

[28] Richard Pawson (PhD Thesis). Naked Objects. Department of Computer Science, Trinity College, Dublin. June,
2004.

[29] Dan Haywood. Agile MDA - Naked Objects & Together Control Center. (Presentation). URL:
http://blog.haywood-associates.co.uk/page/DanHaywood.

[30] Trygve Reenskaug. Empowering People with BabyUML (ECOOP 2004 Opening Talk). 2004.

[31] Trygve Reenskaug. The BabyUML Discipline of Programming (DRAFT). October, 2005.

[32] Walter Hürsch and Cristina Lopes. Separation of Concerns. Technical report by the College of Computer Science,
Northeastern University. 1995.

[33] Cristina Lopes. Aspect-Oriented Programming A Historical Perspective. ISR Technical Report # UCI-ISR-02-5.
December, 2002.

[34] Mik Kersten. AspectJ - The Language and Development Tools (OOPSLA2002 Demo). URL: http://aspectj.org.

[35] Lihua Xu, Hadar Ziv, Debra Richardson, Zhixiong Liu. Towards Modeling Non-Functional Requirements in
Software Architecture. Early Aspects at AOSD, 2005.

[36] Early Aspects: The Current Landscape. Technical Report, Lancaster University. February, 2005.

[37] Survey of Aspect-Oriented Analysis and Design Approaches. AOSD Europe, 2005.

[38] Siobhan Clarke and Elisa Banlassad. Aspect-Oriented Analysis and Design: The Theme Approach. Addison-
Wesley, 2005.

Page 112 of 113

[39] João Araújo and Ana Moreira. An Aspectual Use-Case Driven Approach. Departamento de Informática, Faculdade
de Ciências e Tecnologia. 2003.

[40] Manali Bhole and Karl Lieberherr. Use Case Modularity using Aspect Oriented Programming. College of
Computer and Information Sciences, Northeastern University, Boston, MA. 2004.

[41] Ivar Jacobson. Use Cases and Aspects – Working Seamlessly Together. IBM, 2003.

[42] Gary Chastek and John D. McGregor. Early Aspects in Software Product Line in Product Production. Aspects &
Product Lines Workshop at SPLC, 2005.

[43] Mik Kersten. AOP@Work - AOP tools comparison, Part 1. IBM DevWorks, 2005. URL: http://www-
128.ibm.com/developerworks/java/library/j-aopwork1/.

[44] Mik Kersten. AOP@Work - AOP tools comparison, Part 2. IBM DevWorks, 2005. URL: http://www-
128.ibm.com/developerworks/library/j-aopwork2/.

[45] Devon Simmonds, Sudipto Ghosh, and Robert France. An Aspect Oriented Model Driven Architecture Framework
for Middleware Transparency. AOSD, 2003.

[46] Adrian Colyer. AOP@Work - Dependency injection with AspectJ and Spring. IBM DevWorks, 2005. URL:
http://www-128.ibm.com/developerworks/java/library/j-aopwork13.html.

[47] Mariano Cilia, Michael Haupt, Mira Mezini, Alejandro Buchmann. The Convergence of AOP and Active Databases
Towards Reactive Middleware. GPCE, 2003.

[48] Kuldeep Kumar and Jos van Hillegersberg. ERP Experiences and Evolution. Communications of the ACM, April
2000/Vol. 43, No. 4.

[49] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the
Unified Process, Second Edition. Prentice Hall, 2001.

[50] Marc J. Balcer. An Executable UML Virtual Machine (Presentation, 2003). URL:
http://www.ModelCompilers.com.

[51] J.Bhasker. A VHDL Primer, 3rd Ed. Prentice Hall, 1998.

[52] Diomidis Spinellis. On the Declarative Specification of Models. IEEE Software, March/April 2003.

[53] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, Nosa Omorogbe. The Architecture of a UML Virtual Machine.
OOPSLA 2001.

[54] Code as Design: Three Essays by Jack W. Reeves. (1992-2005). Online Article at Developer Dot Star. URL:
http://www.developerdotstar.com/mag/articles/reeves_design_main.html

[55] R.M. Greenwood, I. Robertson, R.A. Snowdon, B.C. Warboys. Active Models in Business. Proceedings 5th.
Conference on Business Information Technology CBIT '95.

[56] Oliver Radfelder, Martin Gogolla: On Better Understanding UML Diagrams through Interactive Three-
Dimensional Visualization and Animation, ACM Press, New York, 2000.

[57] Grieskamp, W.; Lepper, M.; Using use cases in Executable Z. Formal Engineering Methods, 2000. ICFEM 2000.
Third IEEE International Conference on 4-6 Sept. 2000 Page(s):111 – 119.

Page 113 of 113

[58] OMG MDA Guide. Version 1.0.1 (03-06-01). URL: http://www.omg.org/docs/omg/03-06-01.pdf.

[59] Jens Bæk Jørgensen, Claus Bossen, Executable Use Cases: Requirements for a Pervasive Health Care System,
IEEE Software, vol. 21, no. 2, pp. 34-41, Mar/Apr, 2004.

[60] Dinh-Trong, S. Ghosh, R. B. France, M. Hamilton, and B. Wilkins (2005), UMLAnT: An Eclipse Plugin for
Animating and Testing UML Designs, Eclipse Technology Exchange Workshop, in conjunction with OOPSLA, San
Diego, USA.

[61] John M. Slaby and Steven D. Baker. Model-Centric Software Development. IEEE Computer, Feb 2006.

[62] Behzad Karim. Behavioral Software Architecture Language. The Architecture Journal, Journal 6, 2006.

[63] Robert Wigetman and Jurgen Moortgat. Know Your UML with XML. Oracle Magazine, Jan-Feb 2006.

[64] Craig Larman. Applying UML and Patterns. Prentice Hall PRT, 3rd Edition, 2004.

[65] Conrad Bock. UML Without Pictures. IEEE Software, September/October 2003.

[66] OMG MOF Core Specification Version 2. URL: http://www.omg.org/technology/documents/formal/MOF_Core.htm.

[67] Martin Fowler, Kendall Scott. UML Distilled: A Brief Guide to the Standard Object Modeling Language, 2nd
edition. Addison-Wesley Professional. (August 25, 1999).

[68] TouchGraph. URL: http://www.touchgraph.com/.

[69] Siobhan Clarke and Elisa Baniassad. Aspect-Oriented Analysis and Design: The Theme Approach. Addison-
Wesley Professional. (March, 2005).

[70] Groovy Programming Language. URL: http://groovy.codehaus.org/.

[71] UMLGraph. URL: http://www.spinellis.gr/sw/umlgraph/.

[72] Scott W. Ambler. The Object Primer: Agile Model-Driven Development with UML 2.0. Cambridge University
Press, 3rd Edition, 2004.

[73] CyberSource SDK for Java 3.7.12, December 2005. URL: http://www.cybersource.com.

[74] Cybersource Integration Options: http://www.cybersource.com/support_center/implementation/downloads/.

[75] Eclipse. URL: http://www.eclipse.org

[76] Aspect-Oriented Software Development. URL: http://www.aosd.net

[77] Sequence Diagram Generator. URL: http://www.zanthan.com/itymbi/archives/cat_sequence.html

[78] GraphViz. URL: http://www.research.att.com/sw/tools/graphviz/

[79] Generating UML Use Case Diagrams with GraphViz DOT. URL:
http://www.iua.upf.es/~dgarcia/DotUseCases/DotUmlUseCases.html

	Engineering Enterprise Software Systems with Interactive UML Models and Aspect-Oriented Middleware
	Recommended Citation

	Microsoft Word - cs298report-v3.3.doc

