San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2006

Engineering Enterprise Software Systems with Interactive UML
Models and Aspect-Oriented Middleware

Paul Nguyen
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

6‘ Part of the Computer Sciences Commons

Recommended Citation

Nguyen, Paul, "Engineering Enterprise Software Systems with Interactive UML Models and Aspect-
Oriented Middleware" (2006). Master's Projects. 124.

DOI: https://doi.org/10.31979/etd.w5h3-m7b2

https://scholarworks.sjsu.edu/etd_projects/124

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/124?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Engineering Enterprise Software Systems with Interactive

UML Models and Aspect-Oriented Middleware

A Writing Project
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree
Master of Science
by

Paul H. Nguyen

Copyright © 2006

Paul H. Nguyen

All Rights Reserved

Abstract

Large scale enterprise software systems are inherently complex and hard to maintain. To deal
with this complexity, current mainstream software engineering practices aim at raising the level of
abstraction to visual models described in OMG’s UML modeling language. Current UML tools,
however, produce static design diagrams for documentation which quickly become out-of-sync with the
software, and thus obsolete. To address this issue, current model-driven software development
approaches aim at software automation using generators that translate models into code. However, these
solutions don’t have a good answer for dealing with legacy source code and the evolution of existing

enterprise software systems.

This research investigates an alternative solution by making the process of modeling more
interactive with a simulator and integrating simulation with the live software system. Such an approach
supports model-driven development at a higher-level of abstraction with models without sacrificing the
need to drop into a lower-level with code. Additionally, simulation also supports better evolution since
the impact of a change to a particular area of existing software can be better understood using simulated
“what-if” scenarios. This project proposes such a solution by developing a web-based UML simulator
for modeling use cases and sequence diagrams and integrating the simulator with existing applications

using aspect-oriented middleware technology.

Acknowledgements

I would to thank my research advisor, Dr. Robert Chun, for encouraging me to follow my dreams
and providing the support and coaching to help me get there. In 1990, I graduated from San Jose State
from the Computer Science department with the knowledge I needed to carry my career in the industry
for ten years. In 2000, I came back to SJISU, seeking a Masters to prepare for the next ten. Standing
here now, six years since the start of that journey, and looking back; I am confident that this work will
help me reach that goal. But, to my pleasant surprise, I ended up with more than I could have imagined.
Dr. Chun, you have taught me how to make the best of my talents, how to focus my research and let
creativity drive the work, and most importantly, how to make contributions back to into the field. This,
I expect, will live with me beyond that ten year goal I had originally projected. It will live with me for

the rest of my life. And for this, I am forever grateful.

I would also like to thank Dr. Lee Chang and Dr. Suneuy Kim for reviewing my work and
providing valuable feedback. In addition, I am grateful to Dr. Chang for the intense but worthwhile
semester with UML, Patterns, and Refactoring in the CMPE 221 course — the result of which formed

some of the motivation for my research.

And last but not least, no person can make a journey such as this without strong family support.
To my beautiful wife, Mai-Tram, for your sacrifices those last six years; and, to my wonderful two

children, Audrey and Pascal, who have been wondering why their dad always stays up late at night...
To you, I dedicate this work.

This journey was a family effort, and I could not have made it here without your love and support.

To my advisors and family, many thanks again for your support.

--Paul

1.

9.

10.

11.

12.

13.

Table of Contents

INTRODUCTION 6
1.1 TOWARDS MODEL-DRIVEN SOFTWARE DEVELOPMENTcccciiiiiiuutieeeeeeiiitereeeeeeeeiisseeeseseeeisasesesesesissssseesessisssseseesssssssssessenssssseees 6
1.2 CHALLENGES IN THE SOFTWARE INDUSTRY
1.3 THE EVOLUTION OF ABSTRACTION: A BRIEF HISTORY
CURRENT STATE-OF-THE ART 16
2.1 MODEL-DRIVEN DEVELOPMENT & SOFTWARE FACTORIESuuvviiiiiiiieiiieieeeeeeeiieeeeeeeeeeaaeeeeeeeeeeaveeeeeeeeeasaseeeeeseesnreseeesensnsnneees 16
2.2 NAKED OBJECTS & BABYUML......ooiiiiiiiiiiietic ettt ettt ettt e e e et e e et e e e esebeeeeabaeeanssaeeensseeeassaeeenssaeeansseeessssaeansseeennnes 18
2.3 ASPECT-ORIENTED PROGRAMMINGuuuviiieeeeiiittreeeeeeeeiiueeeeeeeeeiisseeeeeeaeeisssseseseesesssssesesaeasssseseseessissssseeesasssssssseseensassssseseennnes 20
MOTIVATION 22
3.1 ENTERPRISE SOFTWAREcocuuvvtteeeeeeittteeeeeeeeiiseeeeeeeeeeissseeseeeesisssssaseeaeessssssseseeatsssssesesasassssseseseenissssseeseeneassssseseseenssssesesesnsssnees
3.2 KEY PROBLEMSuuttitiiiieiieitteeee e e eeeetteeeeeeeeeetaeeeeeeeeeetaaeaeeeeeeatasasaaeeeeeessssaeeeeeeasasasaaeeeeasssssseeeeeeassssssaeeeeaessseseeeeeensreseeesennssrnees
33 EXTRACTING SYSTEM MODELS: A PRACTICAL APPROACH TO DEALING WITH TODAY’S PROBLEMS.
34 ACTIVE MODELS: HOPE FOR THE FUTUREcoiiititiiiiieeiitieeee e e eeeittee e e eeeetteeeeeeeeeeaaaaeeeeeeeetaaaaeeeeeeeassseseeeeeensssaseeeseenassseeeeeeaaes
TOWARDS INTEGRATED ACTIVE SYSTEMS 33
4.1 TRADITIONAL SOFTWARE DEVELOPMENT & MODEL-DRIVEN ARCHITECTURE (MDA)....c.cccoiiiiniiniiiiiiininenieeceeec e 33
4.2 DOMAIN-SPECIFIC SOFTWARE DEVELOPMENTccceiiittttteeeeeeiiiteeeeeeeeeeitsreseseeeeeisseseseseeessssssesesesesssssessensssssseesesssssssssseseensssseses 34
4.3 METATOOLS FOR DOMAIN-SPECIFIC LANGUAGESutttiiiiieeeiieeeiieeeeitteeesiteeeetteeesssteessseesassseessseeeessessssseeesssseesssssesssssesesnsseens 35
4.4 SOFTWARE DEVELOPMENT WITH ACTIVE SYSTEMSuvviiiiiiiiitrteeeeeeeeiiteeeeeeeeetiseseeeseeesisssesesesesisseseeessssissssesesesesisssssseseesssssssesesns 36
THE EXPERIMENT 37
5.1 SCOPE OF EXPERIMENT & INVESTIGATIONccvieeeieeiuteeeeeeeeeiitreeeeeeeeetissseeeeeeenissseeeseeeeesssssesessansssessseseeseassssseseseeaisssseseseennsssresesens
5.2 THE METAMODELuvvviiieeeieiiieeeeeeeeeeiaieeeeeeeeecineeeeeeeeeennrneaeens
53 A DOMAIN SPECIFIC LANGUAGE FOR DESCRIBING USE CASES
5.4 TJBOSS AP ...t ettt e e bt e et e e abe e e e tbee e e bt e e e tbte e e tbaeeanttee e abeee e tbaeeantbaeeenteeestaeeannes
5.5 WEB INTERFACE FOR INTERACTIVE UML DIAGRAMSouvviiiiiiiiiiiiee e eeeeititeeeeeeeeetaeeeeeeeeeaaaeeeeeeeeesassseeeeeeeassreeeseeeessseseeeeenssnreees
EXPERIMENTAL PLATFORM AND RESEARCH PROTOTYPE 41
6.1 OVERVIEW OF ARCHITECTUREccceeetuttteeeeeeeiitreeeeeeeeeeissseeeeseeeiisssseeseesesssssssseseeaisssssesesasessssssseseenisssseeseeneesssesesessensssssssesesnsssssens
6.2 DSL LANGUAGE DESIGN & IMPLEMENTATION ..
6.3 DIAGRAMS AND DOCUMENT GENERATION
6.4 MODELING & SIMULATION.uvttteeeeeiiurreeeeeeeeiitseeeeeeeaeeisssseeeseeaeossssseseeaeassssssseseenisssssesesesssssssssesesnisssssseseenmossesseeseensssssesesesmsssssens
CASE STUDIES
7.1 OVERVIEW OF CASE STUDIES ...vvveeeeeeiiitteeeeeeeeiireeeeeeeeeeissseeseeeeaeissseeseeaeessssesesesssesssssesesaserssssssesesstssssssesessmesseseseseenssrssesesesnssssens
7.2 CASE STUDY A: ACTIVE USE CASE DOCUMENTS
7.3 CASE STUDY B: BLACK BOX SYSTEMS INTEGRATION VIA WEB SERVICESccciitiurtteeeeeeiirrreeeeeeeeinreeeeeeeeiisnreeeeeseeiisseseeeeenssssnenes 71
7.4 CASE STUDY C: REFACTORING DATABASE ACCESS CODE TO THE HIBERNATE FRAMEWORKcuvvvieeeeeeiiireeeeeeeeeireeeeeeeeennneens 75
ANALYSIS 89
CONCLUSION 93
RELATED AND FUTURE WORK 95
APPENDICES 97
11.1 SAMPLE UI SCREENS FROM THE RESEARCH PROTOTYPE.........cuuviiieiiiiiiiieeeeeeeeeiteeeeeeeeeeisareeeeeeeseisseseeeseessssseeesesessssssseeeensssssseeeeens
11.2 IMETAMODELeeeiieitteieeeeeeeeeteeee e e eeeteeeeeeeeeeaaaeeeeeeeeeaasaaeeeeeeesasasaeeeeeaasssaaeeeeaesssasaseeeaasseseseseenasssssaeseeeensnseseseeeaessrsseeeeennsrsrees
11.3 DSL SYNTAX AND EXAMPLESccooviiuiiieeeeeeeiireeeeeeeeeciveeennnn
11.4 SOFTWARE TOOLS AND DEVELOPMENT FRAMEWORKS USED
TABLES AND FIGURES 108
REFERENCES 110

1. Introduction

1.1 Towards Model-Driven Software Development

Over the past two decades, the software industry’s strive towards the goal of engineering
software based on reusable components has been met with many challenges. Although much progress
has been made with the introduction of C++ in the late 80’s and the mainstream adoption of object-
orientation with Java during the 90’s, software reuse today still falls short of our expectations. An
evolutionary new technology has been gaining popularity in recent years bringing new promise to
software reuse. This new paradigm known as Aspect-Oriented Programming (AOP) addresses the
modularization of ‘“cross-cutting concerns” which have eluded solutions by current object-oriented
techniques. Initial work in AOP research has been focused on programming language features lead by
Xerox PARC’s Aspect] programming language. But recently, AOP’s impact has spread into other areas
of software with some notable developments which include: integrating aspects in middleware,
applying aspects in analysis and design methods, and leveraging aspects in generative application

frameworks.

Perhaps, one of the most promising areas of synergy for AOP is in model-driven development.
Two competing approaches aim to take the future of software development on different paths. Model-
Driven Architecture (MDA™) from the OMG takes a top-down approach focusing on evolving UML to
a full-fledged general purpose programming language supported by tools that generate code from UML.
On the opposite end is Software Factories, which combines a number of best practices including
software product lines and domain-specific models. In stark contrast to MDA, Software Factories

focuses on building reusable domain-specific frameworks from the ground up and providing meta-tools

Page 6 of 113

to help create specialized modeling environments and domain-specific programming languages which

target this framework.

1.2 Challenges in the Software Industry

There is no single development, in either technology or management technique,
which by itself promises even one order-of-magnitude improvement within a
decade in productivity, in reliability, in simplicity.

-- Frederick Brooks

In 1986, Frederick Brooks published an IFIPS paper titled “No Silver Bullet”, which was later
republished in IEEE Computer Magazine in 1987 [18]. In the article, he posed a challenge to the
software engineering industry to disprove his prediction that in 10 years, no new programming paradigm
or technique could bring even one order of magnitude of improvement in productivity. The main
driving force behind’s Brook’s predication is the realization that software is complex by nature and that
improvements can only be made by stepwise and persistent progress through evolution. Brooks further
explains that there exists a promising body of work which “attack the conceptual essence” of software
complexity. These include: software reuse via buy vs. build, requirements refinement via rapid
prototyping, organically growing software via incremental development, and a focus on “people” by the
cultivation of great conceptual designers. Much like “Moore’s Law” in hardware engineering that has
thus far stood ground with the test of time, Brooks’ prediction held true during that decade. But, what

about the decade that followed? And, how is software engineering today in 2006?

In the 1995 reprint of “The Mythical Man-Month”, Brooks included “No Silver Bullet” as an
addendum and additional chapters on selected opinions and responses to his original paper [19]. The
report reconfirmed Brooks predictions citing major problems with software reuse due in part to business

organizational issues, lack of incentive discouraging investment in reuse of object-oriented components,

Page 7 of 113

poor documentation, and the advent of generic system software (such as the database management

system) minimizing the need to reuse in the application code.

As for the question of where Software is today, Jason Bloomberg’s article on Web Services and
Service-Oriented Architecture titled “Software’s Dirty Little Secret” [20] summaries the current status
quo in three points. First, compared to the “high-tech” hardware industry where general purpose
computers are built on the “meta-requirement” of programmability, software is very “low-tech”. That
is, software is currently built for a very specific purpose and remains very much a craft-based industry.
Second, Bloomberg further points out that commercial off-the-shelf (COTS) software packages are
inflexible requiring users to adapt their behavior and work to the limitations of the software. Third,
Bloomberg argues for a redefinition of “Software Quality” different from those put forth by Six Sigma

and ISO 9001. Bloomberg writes:

We must take a step back, so that we can judge software quality based upon its
flexibility and agility, rather than how few defects it has, or how well-documented
the process of creating it might be.

Thus, like “Moore’s Law”, Brooks’ prediction remains unchallenged, even a decade beyond his
original deadline. The software industry, as a whole, is then left then to deal with complexity in

progressive steps, resolving with the conclusion that there will never be a “Silver Bullet”.!

If each technology or technique alone can not deliver at least a 10 fold improvement within 10 years,
perhaps as Brooks suggests, the answer lies in a multi-disciplinary, multi-paradigm approach. What
then, are the promising emerging technologies of the current decade that holds promise to propel the

software industry forward in productivity? Is there synergy? What are some of the integration

! Every once in a while, a new technology always comes along claiming to be the next “Silver Bullet”.

Page 8 of 113

challenges? In section 3, this work explores this further in three promising research areas: Model-
Driven Development, Software Product Lines, and Aspect-Oriented Programming. But, before looking
ahead, the next section discusses the progress made to date and reflect on past challenges and lessons

learned.

1.3 The Evolution of Abstraction: A Brief History

Since the beginning of computing, programming languages have been an indispensable tool in
the battle against complexity. As the problem space presents itself through experience, language
designers built abstractions into languages from lessons learned, steadily marching closer to the problem
domain, and creating the tools to aid in the solution to ever harder problems. The general trend has been
focused on abstractions close to the hardware and computing environment fueled by the exponential
grow of computing power, faster networks, and global reach to end users. The following discussion
presents a summary of findings from Schorsch & Cook’s report in the Journal of Defense Software
Engineering titled “Evolutionary Trends of Programming Languages” [21] in the context of other

notable developments and progress in the software industry.

The major trends identified in [21] will be discussed in the context of developments in
computing hardware, and progress in system software and end-user interaction (i.e. GUI’s and the

Internet). The points of discussion are along the lines of:
1. What problem was solved?
2. What was the level of abstraction introduced?
3. How did those abstractions relate to other developments?

4. What were some examples?

Page 9 of 113

1.3.1 Evolutionary Trends in Programming Languages

1.3.1.1 Machine-Independent Programming

The first generation languages were expressed in machine language in a form that can be directly

executed. This forced the programmer to work in the language of the hardware close to the instruction

set of the Central Processing Unit (CPU).

As the hardware evolved, however, programs must be

rewritten in the new CPU instruction set. Later evolutions to second and third generation languages

progressed further from the hardware to free software from the confines of the computing device. The

second generation high-level assembly languages raised the bar to symbolic machine instructions which

was later followed by progress in third generation languages which abstracted away the CPU instruction

set.

Challenge Problem

Contribution

Table 1. Summary of Contributions from Machine-Independent Programming

Context

Invent a programmable
computer.

e General purpose
computing machine.

e Turing Complete

e Von Neumann
Architecture

ENAIC, EDSAC, IBM 701

First generation low-level
machine code for machines
of the 1940’s and 1950’s.

Program in “Symbols”, e High-Level “Symbolic” | IBM S/360 Second generation assembler
rather than bits. Machine Language. code of 1960’s.
Make programs portable e Evolution of control Fortran, COBOL, Algol, Third generation, high-level

across hardware.

structures: Fortran
“Goto”, structured
programming (Algol),
case statements,
generalized loops, tasks
and co-routines,
exception handling,
parallel programming

e Data structures:
floating-point, logical
data types (i.e. chars,
strings, booleans, arrays,
records, abstract data
types, etc...

Ada, Pascal, C, etc...

languages from 1950’s to
current time.

Page 10 of 113

1.3.1.2 The Rise of Virtual Machines

Before the advent of the modern virtual machines as exemplified in the Java JVM and Microsoft
Dot-Net CLR, high-level languages developed along two parallel paths of the “interpreter” vs. the
“compiler”. The primary reasons for this split were due to the problems the languages were designed to
solve which influenced the trade-off between expressiveness of abstractions vs. performance and
complexity of compiler design. Early versions of interpreted languages focused on different
computational models. For example, Lisp explored the Functional, and Prolog explored the Logic
computational models. It is interesting to note, that these two paths have essentially converged with the
creation the modern virtual machine and just-in-time compilers such as the Java JVM/JIT. The
invention of the Java JVM, was a huge leap in machine independence, raising the bar not just above

hardware, but also the operating system software.

Table 2. Summary of Contributions of Virtual Machines

Challenge Problem Contribution Examples Context
Abstract away the operating | ¢ Intermediate machine Lisp, Prolog, Pascal P-Code, | A long history from the
system, programming language Java JVM, Dot-Net CLR 1960°s to date.

language, and/or

. e Machine and OS
computational model.

Independence (Java)

e Language Independence
(Dot-Net CLR)

e Alternative
Computational Models
(Lisp, Prolog)

1.3.1.3 Programming Language Interoperability & Domain-Specific Languages

High-Level programming languages have emerged (as previously discussed) along two
evolutionary paths: those that are typically interpreted and closer to a problem domain, and those that

are typically compiled to native assembly code. In general, the languages closer to the problem domain

Page 11 of 113

are also known as Domain-Specific Languages (DSL), while those that are more optimized for hardware
and focus on solving general problems are also classified as General-Purpose Languages (GPL). This
gives rise to the issue of interoperability amongst the languages. In the ideal world, a developer should

be able to pick the best tool for the problem. To make this possible, solutions tackle the problem from

two angles: 1). Interoperate amongst GPL’s, and 2). Integrate DSL’s with GPL’s.

Table 3. Summary of Contributions from Programming Language Interoperability & Domain-Specific Languages

Challenge Problem

Interoperability amongst
GPL’s.

J Contribution

Calls to external
libraries in a different
language

External data exchange

Share code libraries
across languages

Shared Classes and
Objects

Examples

Most have some
capability, but data
exchange problematic.
Ada does a better job.

Machine-Independent
data standards (EDI,
XML)

DLL, COM, CORBA,
Web Services (i.c.
SOAP/SOA)

Dot-Net CLR

Context

The age of 3GL’s and
beyond.

Integration of DSL’s with
GPL’s.

“Glue” Scripting
Languages

DSL Embedded in GPL
Scripting Languages
used by software or

frameworks developed
in a GPL

Perl incorporating
features of sh, sed, &
awk.

TCL in C, Embedded
SQL, JavaScript in Java

JavaScript, HTML,
XML, etc... for web
frameworks, GUI
components,
configuration, data
exchange, etc...

Significant developments
during the 1980’s and
1990’s.

1.3.1.4 Increasing Modularity

Breaking up a complex problem into smaller easier to solve problems is a common trait across
engineering fields. The initial modular units in programming languages were functional and data
groupings. This later evolved into encapsulation and information hiding of object-oriented languages,

then to object-oriented frameworks. Current active research in aspect-oriented programming introduces

Page 12 of 113

an additional modular unit orthogonal to objects called Aspects. And, work in software architecture
focuses on coarse-grain modules that make up whole systems or platforms.

Table 4. Summary of Contributions from Increasing Modularity

Challenge Problem ‘ Contribution Examples Context
Decompose the problem into | 1. Procedures, Functions, 1. starting with pre-OO 1970’s to date, with leaps
smaller parts. User defined data types languages like Pascal, during the OO era and
2. Objects and Ada, C, etc... currently with AOP.
Frameworks 2. Simula, Smalltalk, C++,
Java, C#, etc...
4. Platforms
3. GUI Frameworks. LE.
MFC, Swing.

4. J2EE and the Java
Application Server

1.3.2 Other Developments

1.3.2.1 Modeling Languages

The Unified Modeling Language (UML) from the Object Management Group (OMG) is a
standard modeling language with its roots in data modeling, object-oriented languages, and a number of
other modeling disciplines including business process and real-time event driven modeling. A major
contribution of the language is a visual notation that has proven to be a common language amongst
designers. It is difficult today to pick up a software design book without coming across a UML
diagram. This gave rise to the documentation and knowledge distribution of reusable object-oriented
designs in the form of patterns popularized by the “Design Patterns” book [22]. However, UML is not
without its drawbacks. Although it is a standard modeling notation, UML is a general purpose design
language and requires extensions to support concepts of a specific problem domain. Furthermore,
although UML incorporates data modeling concepts, the UML tools in the marketplace have poor

support for database modeling. This is due primarily to the maturity of the data modeling tools and the

Page 13 of 113

impedance mismatch between the concepts of objects and that of the relational model. As such, the
general use of UML is focused on a core subset with a complementary set of additional modeling
practices. Some, however, avoid UML completely. This is understandable, since, not all developers
find visual notations useful preferring instead to use other techniques to capture and understand the

requirements [23].

1.3.2.2 Unix, Linux, and Open Source

The invention of Unix during the 1970’s which coincided with the development of the C
language brought great improvements in productivity to programming in many ways, namely, hardware
portability with good performance and shell scripting with many reusable “little languages™. But,
perhaps, Unix’s great contribution is yet to come in its later variant in “Linux”. Created in the early
1990’s, Linux targeted the emerging low-cost personal IBM computers. With the introduction of the
web browser in the mid 1990’s and the wide availability of the internet, Linux enabled a new
collaborative network centric software development movement known as “Open Source”. The
significant contribution of this phenomenon is a disruptive form of software reuse and a different
business model for selling software. With the ERP application space largely a failure, new efforts in
Open Source Applications in the ERP space (SurgarCRM) hold great promise for the rise of commodity
software, and hence a potential for mass reuse. This model seems to have already started taking hold,
for example, in software development frameworks and integrated development tools, such as those from

the Apache and Eclipse Foundations.

2 Unix’s shell environment incorporates many small DSL’s which can easily be composed together into many variety of shell programs.

Some of these, for example, include text processing, line editors, and search tools.

Page 14 of 113

1.3.2.3 Co-Evolution of the Application Server and Database Technology

The creation of the Relational Database Management System (RDBMS) based on a research
paper in 1970 by an IBM researcher named Ted Codd liberated programmers from the details of data
access and management. A key contribution was in the specification of a declarative query language
(SQL) that was simple for both end users and developers alike. The declarative nature of SQL
abstracted away the navigational details of data retrieval and allocated the responsibility of data
management and query optimization to the database management system. SQL, as a DSL, used in both
GUI query tools and embedded in GPL’s (like C, C++, and Java) is perhaps one of the most successful
DSL/GPL integration to date. The RDBMS was founded on strong mathematical set theory and
relational algebra, a model that has stood the test of time for business applications to this day. During
the 1990’s, however, other models challenged the relational model. The need to store and manage
objects in a convenient way from within the popular object-oriented language of time (C++) gave rise to
the creation of the ODBMS. There were many heated debates during this time on all fronts from
vendors to practitioners. While the ODBMS vendors were hard at work on standards, the RDBMS
vendors pushed a hybrid-approach and eventually won out over the ODBMS [24]. As a result, in 2001,
the ODBMS standards group disbanded. On the practitioners’ front, a huge cultural divide in design
methodologies caused difficulties on projects and contributed to poor team dynamics and project delays
[25]. In the end, both technologies co-evolved and influenced each other in possible ways. With the
rise of the Java Application server and the J2EE Frameworks, a number of innovative object-relational
mapping approaches were invented to deal with the relational impedance mismatch. In the RDBMS, the
SQL standard evolved to support objects which provided query language support and integrated both the
object and relational models. A new challenger came into the picture in the late 1990’s to early 2000’s;

the native XML database. Unlike the ODBMS vendors, however, XML had a strong standards body

Page 15 of 113

which was quick to adopt XPath and then later XQuery and other related specifications. Furthermore,
the adoption of XML in applications focused on the web presentation, data exchange, and framework
configuration. Thus, XML was not at all a real threat to the RDBMS space. Nevertheless, recent
releases of major RDMBS solutions have incorporated the XML model and specifications (included

query languages) into their products.

1.3.3 Summary and Current Challenges

Programming languages exist to deal with complexity. Over the past 20 years, the main focus
has been to raise the level of abstraction, starting with building blocks close to the hardware in the 50’s
to objects and frameworks of the 90’s and the current times. However, as object-oriented frameworks
have evolved, so has their size in number of modules and classes. Today’s Java J2EE Framework, for
example, handle a gamut of services, from web presentation, to persistence, email, security, messaging,
management, XML processing, and emerging web services technology — to name a few. Likewise, the
Microsoft Dot-Net Framework mirrors the feature set from J2EE, but is still very young and rapidly
changing. As a consequence, application developers are faced with a huge library of components that
are constantly evolving. The advent of integrated software development tools (the IDE) have helped to
a limited degree with context sensitive online help, assistance with coding, and framework code

generation; but, there are too many tools, concern over tool-framework lock-in, and ease-of-use issues.

2. Current State-of-the Art

2.1 Model-Driven Development & Software Factories

The industry is currently seeking simplification by forging yet another attack on complexity on

many fronts. Building on its widely popular modeling language (UML), the OMG’s Model-Driven

Page 16 of 113

Architecture (MDA) proposes to abstract away from current programming languages and application

platform specifics into UML based models. In [26]:

The MDA separates certain key models of a system, and brings a consistent
structure to these models. ...models of different systems are structured explicitly
into Platform Independent Models (PIMs), and Platform Specific Models (PSMs).
How the functionality specified in a PIM is realized is specified in a platform-
specific way in the PSM, which is derived from the PIM via some transformation.

This automatic transformation of UML models into executable code is assisted by a tool that can
be considered a high-level compiler. In a nutshell, OMG aims to evolve UML’s documentation centric
usage to a full-fledged programming language. This vision implies the end of programming languages
as we know it! As to be expected, the announcement is seen as a claim to be the new “Silver Bullet”,
while at the same time evoking bad memories of the CASE tools genre in the 80’s. There are strong
arguments against MDA. Martin Fowler and Scott Cook cites fragmentation in the MDA community
itself with three approaches to MDA [27], furthermore, Fowler writes that there is a more pragmatic
Model Driven Development approach (MDD) often confused with MDA. The MDD folks shun UML
but adopt a number of current best practices in software development; namely, software product lines,
frameworks, patterns, and agile practices. One such approach receiving much attention recently is
Microsoft’s “Software Factories”. Rather than use UML, Software Factories [16] aims to create meta-
tools that generate domain-specific languages (graphical or textual) to capture high-level concepts.
These DSL are then supported by specialized editing, debugging, and build-by-assembly tools
reminiscent of software product line approaches. Software Factories also emphasize the creation of a
domain-specific application framework to which the DSL and tools are targeted for code generation.
Both approaches recognized the need to capture domain knowledge in a machine re-usable form;

however, they differ in philosophy. MDA sees the need to model up-front and abstract the process of

Page 17 of 113

transformation to code into standard specifications for tools vendors. Software Factories starts from
existing applications in the domain, extracts out a common framework, and builds custom tools to
support this framework. This is essentially the classic top-down vs. bottom-up design debate. Figure 1.

below depicts the evolution and influences on these two techniques.

DOD-STD-2167A Adaptive
1988 Development SCRUM
Spiral Model \-._________’ MIL-STD-498 Dsom 2000 2002
. 1994 1998
1986 e, RUP
— XP Crystal
y 138 000 2002
Draco —_— FODA (SEJ) —iy Product Lines (SEl)
Parnas 1350 U 1994+
Program .
Families i 0&2:1";:‘;?1992 Business Process
1976 ' SOMA, OPEN
Graham et al. 1991, 1997
a4
CRC Cards Booch
Data Modeling Becketa, 1989 1991 \.
ERD, Codd et al
1980 1 Rumbauch et al. Bl
1997-2004
1991 \
= /-/ MDA
Design Patterns i
Catalysis
1999 JBOSS
Frameworks GUI Builders (IDE) ~ e / Open Source
v J2EE, et al:-. Middleware
. » Ty /
c > Ctt > Java » Software
AspectJ Factories
: B ADP. e A
o » Visual Basic
c# FERT————LL
/__. PHP _\.
Unix Perl Linux Mysal “LAMP" 0per_| So‘urct:
Apache Applications
GNU Unix
1970°s 1980°s 1990°s 2000's

Evolutionary Trends

Figure 1. Influences on MDA and Software Factories

2.2 Naked Objects & BabyUML

In academia, two notable ongoing researches take a refreshing retro look back to the roots of
object-orientation. Richard Pawson’s PhD Thesis on “Naked Objects” [28] emphasizes domain objects

as behaviorally complete entities interacting directly with users through standardized automatically

Page 18 of 113

generated user-interfaces. This is a contrast to the current practice of class-centric object-oriented
designs. Pawson’s Naked Object system modernizes the original object-oriented design principles from

Simula and Smalltalk. In [28], Pawson writes:

The inventors of Simula had the idea of building systems out of ‘objects’. Each
software object not only knows the properties or attributes of the real-world entity
that it represents, but also knows how to model the behaviour of that entity...

In the original work, each object was seen as being self-contained... - the
attributes of an object were encapsulated with all the necessary behaviours.

Pawson makes a strong argument against the current popular practice of use-case driven approaches and
the model-view-controller pattern. This objects-first thinking is apparent in the Naked Objects
Framework and User Interface where the “Object” is the center of attention and the “Class” takes a back
seat. Although Pawson does not emphasize the use of UML, his work has been shown to be

complementary with the use of current round-trip UML tools, such as Together Control Center [29].

Trygve Reenskaug takes the Naked Objects approach one step further by specifically integrating
UML and Web Services into the architecture and focuses on higher-level of abstractions at the level of
components in his ongoing work with “BabyUML” [30][31]. In Reenskaug’s ECOOP 2004
presentation, he discusses the background and inspiration behind BabyUML [30]. These inspirations
included: Engelbart’s “Augmenting the Human Intellect”, Pawson’s Naked Objects, Shaw’s Basic
English, and current industrial technologies such as distributed components, web services, and UML. In
essence, Reenskaug is attempting to blend the “old” with the “new”. Figure 2. below shows the

influences on BabyUML.

Page 19 of 113

Basic English Lisp Logo

N 1 pd
Objects Fy Dynabook Augment
i e v \
Smalltalk/Squeak
Distribution
Naked Objects Web Services
BabyUML

Figure 2. Influences on BabyUML (reproduced from [30])

OMG’s MDA, Microsoft’s Software Factories, Naked Objects, and BabyUML all share one
common theme — the focus on “models” as an important artifact in software development. OMG makes
models the dominant abstraction, Software Factories blends domain modeling with other current best
practices, and leading edge research in Naked Objects and BabyUML takes us back to OOP origins

putting the user at the center of control of objects.

2.3 Aspect-Oriented Programming

In other developments, evolving separately from model driven development is Aspect-Oriented
Programming (AOP) [33]. AOP is based on the principle of separation of concerns [32], and introduces
a new form of modularity (called “aspects”) orthogonal to and complementary with objects. Aspects
can encapsulate cross-cutting concerns that are currently redundant in object-oriented systems. Since
objects focus on encapsulation and modeling behavior of real word entities they represent, system level
concerns such as persistence, transactions, security, and concurrency tend to be intertwined with objects
making reuse difficult. Mik Kersten’s presentation at OOPSLA 2002, shows a diagram highlighting

“tangling of logging code” in red code in the Tomcat servlet engine (Figure 3. below).

Page 20 of 113

& 'Ei

* logging in org.apache.tomcat
— red shows lines of code that handle logging
— not in just one place

— not even in a small number of places aspecti org

Figure 3. Logging not modularized in Tomcat (reproduced from [34])
The main reason for this phenomenon is due to the lack of expressiveness in current object-

oriented programming languages. Cristina V. Lopes, one of the inventors of Aspect], writes [33]:

Programming languages support a very small set of referential relations. In
particular, reflective references, groups and temporal references are, practically,
inexistent. They can be simulated by combinations of computation and new
nouns. And that’s exactly one of the things that make programs much more
complex than they should be: programmers have to express a rich set of
referencing forms using a very small set of referencing forms. In the process,
intentions get diluted and tangled.

Since late 1990’s, there has been steadily rising interest in aspects both in academia and in
industry. A body of work is mounting, expanding the concept of “Aspects” across the landscape of
software engineering. Areas of research include: architecture [36][35], requirements analysis and
design [36][37][38], cross pollination with use cases [39][3][41][40], integration with software product
lines [42], and others. Interest in the open source community is also widespread. There are numerous

projects focused on extending current languages with aspects features [76], and aspects have also made

Page 21 of 113

their way into frameworks, databases, and tools [45][47][43][44][46][75]. The full impact of the aspect
movement has yet to be realized, since they have not taken hold in large scale enterprise software.
However, with new developments in middleware (JBoss 4.0 & JBoss AOP), the first step has been

taken.

3. Motivation

3.1 Enterprise Software

Integration has been the holy grail of MIS since the early days of computing in
organizations. As early as 1969 Blumenthal proposed an integrated architecture
and a framework for organizational information systems. However, due to the
high level of organizational and technical complexity associated with their
development and implementation, integrated enterprise-wide systems have been
difficult to achieve in practice.

-- Kumar &. Hillegersberg, “ERP experiences and evolution” [48]

Large scale business software systems as embodied in Enterprise Resource Planning (ERP)
software are amongst the most complex software systems currently in use. Enterprise software is
typically delivered to large businesses today from a handful of vendors often with a multitude of options
and configurations in multi-module application suites. Businesses are diverse and constantly evolving
to stay competitive; often, making bold moves which include: acquisitions, internal reorganizations, or
inventing new business models to drive growth. Information systems supported by Enterprise Software
have failed to keep up with the pace of business changes --a condition widely acknowledged in industry
evoking a “cry for change” with new Business/IT alignment initiatives. Although there are business and
organizational issues at play within user organizations, the vendor-customer model is also at fault.
ERP’s are supplied by only a few vendors and the law of “supply-demand” behind the production of
software necessitates creating a highly customizable “generic” product. That is, software is made for

“mass customizations”, not “mass production”. In [48], Kumar and Hillergersberg points out that:

Page 22 of 113

A key premise of ERP systems is the underlying, sometimes unstated, but often
implicitly promoted notion that the reference models in ERP systems embody
best business practices...

While at the abstract level the idea of “universal” best practices may be
seductive, at the detailed process level these mismatches create considerable
implementation and adaptation problems.

“The Reference Models in ERP Systems” -- That is, the “domain model” embedded in the
software -- is too abstract! The solution to enterprise systems calls for a component based industry
where more “specialized” domain-specific models can be bought or built and integrated through
standard interfaces. This has been the focus in recent years with the development of horizontal
application “super platforms” and loosely-coupled integration standards, such as web services.

However, to date, there are still many challenges.

3.2 Key Problems

My own experience integrating and customizing enterprise systems, and the numerous issues (as

cited below) form the motivation for this research:

1. Evolution: The evolution of enterprise software solutions implemented with a mix of packaged
software, home-grown systems, and legacy interfaces poses a challenge for upgrades. The full
impact of such changes is hard to determine because they are not well isolated. As a result,

solutions implemented often require a large migration effort or become obsolete by replacement.

2. Incompatibility: While the technology interoperability issues are well understood and can be
easily studied and corrected, the incompatibility in the information models amongst various
applications developed by different vendors have not been well addressed. Generic data
exchange standards exist, but domain-specific issues are still unresolved. One of the most

difficult problems to solve is the problem of the “dynamic domain model”. A dynamic domain

Page 23 of 113

model is the evolving concepts and business rules represented in the business software itself.
Such models evolved due to internal changes, new software releases from multiple vendors,

and/or high customization within the user organization.

Requirements Mismatch: Due to the inflexibility of most software packages, typical
implementations are often done by forcing the business and users to adapt to the software. This,
effectively forces the vendor’s view of the domain model on the business. Unfortunately, users
find other ways to work around the inflexibility by reverting to personal productivity tools. This
is a major problem because this makes portions of the “dynamic domain model” of the business
inaccessible. The problem compounds with each new software release and/or package added to

the mix.

Documentation Centric: In an effort to capture and understand the “dynamic model” of the
business, enterprise software implementation projects produce a massive amount of
documentation. Even for model driven teams that fully embrace RUP and UML, the difficulty
and cost in time and effort in updating the documents are often too high. IT resources are limited
and often reallocated to new projects once a solution has been deployed. Furthermore, there are
physical limits in the medium. Comprehensive UML models just don’t fit on a standard page.
At best, if the documents are maintained diligently, they only provide a partial view of the

system.

Lack of Isolation between Logical and Physical: Configuration management is challenging in
today’s enterprise systems. The packaging and deployment model of Java Application Servers is
the most troublesome area. Such deployments are typically packaged in a single file, which
actually contains other packages nested within. This makes the package tightly bounded to the
environment configuration, and as a consequence, any change in the environment or the package

Page 24 of 113

can cause instability. There needs to be a seamless separation between the “logical” (i.e the

application) and the “physical” (i.e. the hardware and network configuration).

6. The Asynchronous Nature of Distributed Teams: The nature of today’s large scale software
development teams imposes yet another difficult dimension to the problem. Best practice
prescribes continuous integration and automated tools, but sometimes this is not possible.
Package solutions implementation often requires vendors to make changes and distribute them as
patches and minor releases to the customer during implementation. Unfortunately, this is often

done in isolation.

3.3 Extracting System Models: A Practical Approach to dealing with today’s problems.

To mitigate the risks and address some of the key problems discussed, it follows from agile
practices to focus on the working software and strive to raise the level of understanding amongst the
team. This can be done in part using reverse engineering tools to extract models. However, the tools
that exist today extract only the “static” model. For example, Erwin can generate physical database
models from metadata within the database, and Together can parse Java code and archives to generate
class and static sequence diagrams. Extracting the “dynamic model”; however, is difficult. And, in the

case of J2EE non-existent!

For example, it is possible to extract some dynamic behavior from the system by capturing the
operational contacts of transaction data. The diagram below shows the typical artifacts created in a

forward engineering process [49].

Page 25 of 113

Use-Caso Modol

Operation: makeMewSake

Process Sale e FAkn
NewSake() Post-condions

1. Cusiomsss > "

arrivos syslem o

By = avants f _H'E"t’!m ,\'
3. Cashior * - "'..'_‘_'1 q'“"‘";"" -
[enters item \ === u Dpnra'.::f'.\.-an'.nﬂtem }

-

“ il 4
= endSale()

T o Post-condstions
= A SalesLinel oerlancs

shiwas oreated

makePayment
{arrsoaant)

Use Casos Systom Sequence Diagrams Contracts

iy ST g LS8 COas0E,
regquiremernds that must be
satisfied by the design of the
soffware

sowmd idens and inspiration for the post-
condilfions derve from he use cases

Figure 4. Extracting Operational Contracts (diagram adapted from [49])
Using the system, the actions and flow through a user interface can be performed in a controlled
environment (such as a test system). The focus here is to replay a transaction whose side-effects and
change to the data store is not well understood. This activity is represented by the boundaries in blue
above. Most ERP systems use a RDBMS as its data store. One feature of modern RDBMS is the
presence of “Active Elements”. Active elements like stored procedures and database triggers are often
used to implement complex database integrity constraints. For the purpose of extracting committed
transaction details, database triggers can also be used to audit changes to tables and record the
information needed for the operational contracts in the use case model (in Figure 4). This is essentially
a “black box” reverse engineering approach focused on a subset of the system one use case at a time.
However, the triggers can not be hand written since the number of tables and structure of the columns in
the database is not known in advance. The triggers have to be dynamically generated using the metadata
facilities available in the RDBMS. Fortunately, modern RDBMS, such as Oracle, have this available.
For example, to inspect the tables and columns in the database, one only needs to query against the

USER _TABLES and USER_ TAB_ COLUMNS dictionary tables.

Page 26 of 113

SQL> desc user_tables

Name Null? Type

TABLE NAME NOT NULL VARCHAR2 (30)
TABLESPACE NAME VARCHAR2 (30)
etc..

SQL> desc user_tab_columns

Name Null? Type

TABLE NAME NOT NULL VARCHARZ (30)

COLUMN_NAME NOT NULL VARCHAR2 (30)

DATA TYPE VARCHAR2 (106)

Figure 5. Oracle Dictionary Tables For user “tables” and “columns”

With the knowledge of the table names and their columns, database trigger code can be

generated. A template for such a trigger is shown below in Figure 6.

CREATE OR REPLACE TRIGGER DEBUG_TRIGGER XX
AFTER INSERT OR UPDATE OR DELETE ON TABLE_NAME FOR EACH ROW
DECLARE
IF INSERTING THEN

// generate trace in a log table
END IF;
IF DELETING THEN

// generate trace in a log table
END IF:
IF UPDATING THEN

// generate trace in a log table
END IF;

END ;

Figure 6. Sample Database Trigger Template
In Figure 6. The template takes the table name and generates trigger code for the portions

highlighted in bold. An example of a transaction captured by the triggers is shown below in Figure 7.

Page 27 of 113

Database Transaction Log

Mo |
23160 1271242005 11:42:27 TPDATE FGT_RF_REPORT_ENGINE
23161 12/12/2005 12:42:4 TPDATE TPT_FERZON_LOG

Database Transaction Log Detail No. 23160 Operation: UPDATE Tahle: FGT_RP_REF ORT_ENGINE

CI_MAME crystal tnterprise 9 ras edition crystal enterprise 9 ras edition

DESCRIFTION Crystal Enterprise @ RAS Edition Crystal Enterptise @ RAS Edition

FLAGE 0000000000 0000000000

jin] rptegl00000000000001 rpteg00000000000001

TAVA CLARE MNAME com. saba repott. crystal CristaldReportA dapter cot.saba report. eryetal Crirstal0ReportA dapter

HAME Crystal Enterprise O RAS Edition Crystal Enterptise O RAS Edition

PROPERTIES reportFilel ocation= rasServerlame=; reporiFilelocation=C\SabaWebweb\CtWeb raslerverN ame=ussclmsrep0lt. hds com;
TIME 3T AMP ts 1240464613

Database Transaction Log Detail No.23161 Operation: UPDATE Tahle: TPT_PERSON_LOG Time: 12/12/2005 12:42:4
BAD_LOGIN_CTR 0 0

ID empl000000000001 000 emplo000000000001000

LOGGED_ON 11-28-05 03:51:14 11-28-05 03:51:14

LOGIN_CTR 0 0

Figure 7. An Example of a committed transaction captured by database triggers.

This information gathering technique helps to validate requirements analysis and captures
existing system behavior into UML diagrams for discussions. An example UML sequence diagram with
operational contracts captured using database triggers is shown in Figure 8. The focus of the diagram is
on the entity object “Password” and the state changes it undergoes based on the sequence of events. The
UML model is also decorated with the “screenshots” of the user interface to emphasize the use case

actions.

Page 28 of 113

SEQ-RO01
Part A
115403

Password

‘ User/Ul | Req App ‘Authsrvlue Profile ‘ ’ Idantity |

AccessProtectedResource() H
|

- - —mmmmm o]
.

[olo
00,

i | Authenticate(userid, passward)
i ValidateCredentials{userid, password)
: |
: | Credentials Invalid } ’
o e oy
_ | ipasverdocied) | 3
- Login Again Authentication Falled | PasswordNatlockes | B
- e —————————— T P === T
i I 1]
1 I]
| Login(userid, password) : i i } } } e @
I password) | ValidateCredentialsussrid, password) !]
!
t T l'
User Repeats Failed Atiempts Until Lockout b __ | Credemileivald ’
-} IsPasswordLocked() } 1
i Authentication Failed | PasswordNolLoded |]
i e e e B e Rt L
| ! i i ! 4
| Login(userid, password) | | | | 5
— ! Iy
d |
H Authenticate(userid, passward) ValidateCredentials(userid, password) } |
: |
]
i Credentials Invalid } 1
e I
— sPasswordlocked) | i
.]
~= Reditect loRecover Password | Password Locked Password Locked T]
|- | e ok S Ll
Lo I

Figure 8. Sequence Diagram Showing Operational Contracts Extracted Using Database Triggers.
This is possible due to the power of the Oracle data dictionary, the SQL query language that provides

access to the metadata, and the availability of extensible active elements in the database.

Java also has a Metadata facility and a reflection API. Thus, at least from a conceptual
perspective, it should be possible to reverse engineer a running application from the reflective facility in
the Java Virtual Machine. Unfortunately, the existing reflection API is too limited. For one, there is no
declarative query language (like SQL) for selecting all the classes and objects available. And, second,

there are no active elements comparable to database triggers. Well, at least not until the advent of AOP!

3.4 Active Models: Hope for the Future

An Active Model is a model that is derived from metadata and exists within the software itself.
In the case of the Oracle RDBMS, the metadata used to derive the model is the same data the RDBMS

uses for optimization and enforcement of database structure and constraints. Thus, to be an “Active

Page 29 of 113

Model”, the model describes the structure and behavior of the software it models as well as enforces that

same structure and behavior. Thus, the model lives with the system and is always in sync.

With AOP, we have taken one step forward towards this possibility for Java. Consider for

instance, the popular example of the tracing aspect in Aspect]. Figure 9. shows the code for a tracing

aspect that weaves in tracing behavior for a selected set of classes. This code is conceptually equivalent

to the database triggers template in Figure 6.

import
import
import
import

public

java.io.Filedutpucitream;
java.io.PrincStream;
java.io.FileMotFoundException:
org.aspect].lang.JoinPoint;

aspect Tracinglspect {

pointcut classes(): within| cmpe2Zl.* | ||

within(edu.sjsu.engr.cmpeiZZl.presentation.* | ||
within(edu.sjsu.engr.cmpeZZl.action.* | ||
within(edu.sjsu.engr.cmpeiZil.form.* |

pointcut constructors|(): executioninew())

pointout methods(): execution(* *({..)] ;

bhefore (Exception e): handler (Exception) &£& args(e)] {

}

System.out.println("Exception Throwh: "™ + e.toltringi())
System.out.println(thisdoinPoint.tolong3tringi)
System.out.println(thisdoinPointStaticPart.gecSignature () .getheclaringType () .getlame (])

hefore () : classes() £& constructors() |

}

doTraceEntry (thisdoinPoint, true);

after(): classes|) £& constructors()

}

doTraceExic (thisdoinPoint, true):;

before () : classes() &£& methods()] {

}

doTraceEntry (thisdoinPoint, false):

after(): classes() £&£ wethodsi() |

}

doTraceExit (thisdoinPoint, false):;

Figure 9. Tracing Aspect in AspectJ with before and after advice on constructors and method calls

An example of applying the tracing aspect to an existing Java code base is shown below. In the

example, the login page in a web application is presented, and the user provides a user id and password

submitting the authentication request to the server. In the back-end, a servlet engine processes the

request and the AOP enriched code logs the sequence of messages to the console.

Page 30 of 113

.......... A

--> eqecution(ResultSet cmpe221.GameDatabaseAccessor.query(String)) (select user_id from custamer

=1 S50 In - Microsoft Intarmet Expiorer ane where password = 'player’ and login = 'player’)
B 8 e Dgerie ek pep L4 <-- enecution(ResultSet crnpe221.GameDatabaseAccessor.query(String)]
%) () [@ [@uwer [Bliween: @) @-E 8- OUE 3 - eHecutiFm(edu.sj.su.engr.cmp2221.presentat\Pn‘IPageCUntthStateO)O.ff constructor
= <-- enecution(edu.sjzu.engr.cmpe221.presentation.IPageContextStata(l) ¥ constructar
Aatrert i iz focabont B8 ompedZ | amel ogn ke =) o wr g nosarma = --> erecution(edu,sisu.engr.cmpe221.presentation PageContext(11() /f constructor
f --+ executionfedu.sjsu.engr.cmpe22i.presentation IPage ContextState 10 /f constructor

.. |[partions omitted]

--» eqecutionfedu.sjsu.engr.crpe221.presentation, IPage ContentState 0101 /f constructor
«-- enecution(edu.sjzuengrcmpe221.presentation.IPage ContentState()) 4 constructar
-- execution(void edu.sjsu.engr.cmpe221.presentation.Page Contert. setlnitial State())10
=-- execution(void edu,sjsu,engr.cmpe221.presentation.PageContexstsetnitialSrate())
--# enecution(void edusjsuengricmpe221.presentation.Page ContentisetloginPageState ()0
<-- execution(void edu,sjsu.engr.crmpe22 1 .presentation,PageContext.setloginPageState ()
--# execution(void edu.sjsu.engricmpe221.presentation.Page Contest.debugPrintToConsole(()
<-- enacution(void edu.sjsu.engr.cmpe221 . presentation.PageContext.debugPrintToConsole))
<-- execution(void edu,sjsu.engr.crmpe221.presentation,PageContextloginSuccess()
--= enecutionlvoid cmpe221 SystemConfigFiles setDbPraperties(String))(C1WCMPE2 2 14Application
\db.properties)
<-- execution(void cmpe221.SystemConfigFiles.setDbProperties(String))
| -~ auecutionfusid cmpe221 SystemConfigFilas satStrategyProparties(String))(C:L\CMPEZ2 14 Application
Sign_ln-‘ i strategy.properties)
I =-- enecution(void cmpe221,5ystemConfigFiles.setStrategyProperties(String))

Triggers > enecution(uoid crmpe221 SystemConfigFiles.debugPrnt()()
acinglAspect. <-- execution(void cmpe221.5ystemConfigFiles.debugPrint()
anrrnl\tmﬂrﬂmm | - enecution(String cmpe221.schedule.scheduleDisplayAd(String, String, Stringl)(GameLogingsp,

Wertical-Left-Bottorn, null)
. --+ execution(Arraylist cmpe221,schedule.getdliReservedSlots(String, String))(Gameloginjsp, Yertical-
e B et Left-B ottom)
--> execution(ArrayList cmpe22 1. AdvertizeDatabaseAccessorgetallReservedSlots(String,
51 Dome, i s o pagt A Lacal intrases String))(Gamelogingsp, Yertical-Left-Bottam)
=-- executionArrayList crpe2Z 1. AdvertiseDatabasedccessor.getallReservedSlots(String, String))
=-- execution(Arraylist cmpe2Zl.zchedule.getAllReservedSlots(String, String))
--% ewecution(String cmpe221.schedule.getCurrentSlot()]

Figure 10. Login Scenario Demonstrating Tracing Aspect
The database trigger example demonstrates “black box™ reverse engineering, while the Java
tracing aspect shows how the power of AOP can be used in a “white box” reverse engineering scenario.
Both techniques can be used concurrently to build UML models that represent the system behavior.
However, this process is currently a labor intensive undertaking and is typically done on a small subset

of the system and only when needed.

The work on Naked Objects [28] and BabyUML [31] has shown us the value of active “domain
models” by relieving the developer from the user interface work and providing the framework for
automatically generating it. The agile practice says, work at the programming language level and
evolve the system with the user — in effect, treating the software system and the model itself as one
entity. UML and MDA proposes to focus only on the higher levels of abstraction and let the tools do all
the transformation work and mapping to programming languages. The software product line approach
as embodied in its current form in Software Factories suggest creating customized domain specific

frameworks and custom domain-specific languages and tools to automate software development. But,

Page 31 of 113

do these approaches help with current chronic problems in current enterprise software development and

integration? In the context of the issues facing the enterprise today, how do these approaches solve

these problems? And, what is the first step towards that goal? Table 5. Summaries the current state-of-

the-art methods against the problems previously discussed in enterprise software.

Table 5. Innovations and Problems that Motivate Active Models

Problems in Enterprise Software: Solution Evolution, Incompatibility, Requirements Mismatch, Documentation Centric,
Isolation of, Logical and Physical Layers in Deployment, and Collaboration amongst Distributed Teams.

Naked Objects and BabyUML

Main strength is in active domain model (Naked Objects) and the focus on
building a UML Virtual Machine (BabyUML).

Doesn’t address evolution directly, but the roadmap towards a virtual machine
using UML MOF and the focus on large scale components could provide the
framework for work in isolation.

Agile Software Development

Focuses on collaboration in small teams and evolution on a smaller scale (i.c a
single system and not entire integrated solutions)

Doesn’t address the need for maintaining documentation or technical issues
directly. Emphasizes continuous integration and testing, but doesn’t prescribe
specific tools technology required.

UML and MDA

Main strengths in standard modeling notation, but models to date are static

Proposes a large scale automation roadmap with MDA, but current focus is on
standards for tools development.

MDD and Software Factories

Expands on agile software development and attempts to scale up to larger teams

Addresses incompatibility with domain-specific models, but advices custom
notations and tools. Not sure how multiple domains will be integrated.

Addresses documentation maintenance with model driven generation.

Not clear how evolution will be solved in the context of enterprise packages.
Tools currently focus on single product family. Not sure how multiple families
and integration with legacy systems will be addressed.

Suggests new component market approach with meta-tools and domain-specific
frameworks. But, it is currently unclear if any standards will be defined.

What might an active model look like? To answer this question, we need to redefine the notion

of a “model”. In today’s documentation centric world, models in UML are stored in static documents.

These are passive models! But there is a deeper issue behind the analogy we use for them. That is to

say the word “model” doesn’t seem to fit in the context of software. For software, which aims to model

Page 32 of 113

the real world, it seems more appropriate that a model of software should also be software. As such,

today’s UML model is just a “snapshot” --- i.e. a view at a point-in-time.

The notion of a “Virtual Machine” for UML seems promising for Active Models [14][50][17]. It
suggests looking at the current state of meta-models and integrating them with the operating
environment. We have done this before -- in the areas of databases with the relational model and active
database elements. Sometime back object-oriented databases fought to take over the database market,
but lost. Since then, the work in object-oriented application frameworks with respect to databases has
been focused on abstracting the database away and not integrating with it. Today’s RDBMS have
embraced the object-oriented models and more (i.e. supporting multimedia and XML). Perhaps it is

time to unify the application framework with the database.

4. Towards Integrated Active Systems

4.1 Traditional Software Development & Model-Driven Architecture (MDA)

In the traditional software development methods currently in practice, the process of developing
a single system from high-requirements and abstractions to a running executable is done via manual
transformation. As shown in Figure 11, a typical Unified Process, the software development artifacts
include documentation, UML models, and code. As noted, the current practice uses a general-purpose
platform (such as a Java Application Server and Relational Database), a general-purpose modeling
language (UML), and general-purpose programming languages (such as Java or C#). Due to this
emphasis, there exists a large semantic gap between the solution space and the problem space. As a
result, traceability from requirements to solution is often difficult, if not impossible. MDA attempts to
address this by automating most of this manual transformation from the problem space to the solution

space, effectively removing the need to develop in lower-level 3GL languages or to maintain

Page 33 of 113

traceability. In essence, MDA’s main focus is strictly in the problem space and defers all translation

work to automated tools.

Traditional & MDA Approaches (OMG, IBM)

Requirements Set i Single Solution
(Natural Language) UML Models to Code (i.e. Java) Reuses only
i H Generic Platform (i.e. J2EE)

4 - ———— '
[IHELICNEEE S Solution Space

General
Purpose

General-Purpose Solution Components

General-Purpose Programming Language & Tools

Modeling Language

Documents Specifying Manual Problem Space
To Solution Space Transformation

Figure 11. Traditional Software Development & MDA approach
4.2 Domain-Specific Software Development

In contrast to single system development and MDA, domain-specific software development
focuses on partial solutions for a family of systems. A high-level language, called the domain-specific
language, attempts to capture core concepts from the problem space and is supported by a generator and
domain-specific platform. These three key elements: the DSL, Generator, and Domain-Specific
platforms work together and provide a total evolving solution for problem space to solution space
mapping and automation. As shown in Figure 12, the “grey” area in the solution space represents the

domain specific “partial solution” which evolves with the generator and DSL as more concepts from the

Page 34 of 113

problem space are understood and generalized. One difficulty with this approach is the complexity and

high-cost of developing the DSL and generator. As a result, this approach is not widely practiced.

Traditional Product Line Approach (SEI)

Domain-Specific Model (DSM)/Domain-Specific Language (DSL)
Used to Declare Configuration for Specific Product Domain-Specific
i Framework
(of Reusable Assets)

Domain-Specific

Code Generator Solutioﬁ”épace

Problem sz-__x‘ée
i / :: \

Generate
To
Implementation
Code

General
Purpose
Platform

Generator
o Transforms
................. - DSL to GPL

Specific Application
Components Generated

Feature-Model Specifying
Common and Variant Features
Of the Product Family

Requirements Map
more Naturally To DSL

Figure 12. Software Product Lines & Generative Software Development
4.3 Metatools for Domain-Specific Languages

To address the complexity and high-costs of developing DSL tools and languages, a new market
for Metatools (tools that generate tools) is growing. For example, Microsoft’s Software Factories
approach introduces a Software Factory DSM/DSL Tool Generator, a graphical meta modeling
environment for creating custom modeling languages and their editors, debuggers, and generators.
Figure 13 shows how this integrates and extends the work from software product lines and generative

software development.

Page 35 of 113

The Software Factories Approach (Microsoft)

Domain-Specific Model (DSM)/Domain-Specific
Language (DSL) Supported by Custom IDE,
Debuggers, Etc...

Software Factory
DSM/DSL Domain-Specific

Tool Generator Framework
(of Reusable Assets)

Problem Space P S

Generate
To
Implementation
Code

General
Purpose
Platform

Generator
Transforms
.............. DSL to GPL

Specific Application
Components Generated

Feature-Model Specifying
Common and Variant Features
Of the Product Family

Requirements Map
more Naturally To DSL

Figure 13. Software Factories Tools for Product Lines & Generative Software Development
4.4 Software Development with Active Systems

Active Systems, introduced in this research, represents a convergence of the problem space and
solution space into a highly interactive and dynamic environment. As shown in Figure 14, Active
Systems contain three main sub-systems: Active Documents, Active Models, and Active Database. At
the foundation of this approach is a integrated metamodel managed by the Active Database which
supports declarative programming, model diagram generation, documentation generation, and model
simulation. Inputs to the system are described as “manipulation” and outputs as ‘“projections”.
Traditional approaches and tools can add assets (Active Objects) into the Active Database and new tools
and languages can be used to “manipulate” — i.e. associate and map assets to Active Models and Active
Documentation. The primary benefit to this approach is that it emphasizes system evolution — via asset

“manipulation” and not code “compilation”.

Page 36 of 113

The Active System Approach

. Use-Case Spec’s
Requirements

Active System

.......... D Active

Documents

Domain-Specific : " - § —_—
Models H

Active H
Database ::

.| Programming
& Query Tool

General
Purpose
Platform

(VM)

External

Active
Framework

Figure 14. Active Systems Integrate Domain-Specific and General-Purpose Development Methods

5. The Experiment

To explore first steps towards the goal of Active Models, let us focus on a few UML diagrams —
the subset most often used in analysis and design. Granted there are other graphical notations, as
suggested in Software Factories, but using UML has some benefits. UML is the most widely used in
enterprise software since it has incorporated the main modeling concepts of the prior generations. Thus,
UML is a good starting point, and the experiment will focus on using three core models: the domain

model, the use case model, and the design model as highlighted by Larman [49] in Figure 15.

Page 37 of 113

Domain

Use Case Use Case
Diagram Specification

USE CASE "
SPEC.
Step 1...
Step2... |guunanun

Actor O Etc...

Design
A, Model

s i (Dynamic)

Design
Model
(Static)

Figure 15. UML Models and Their Relationships

The main focus of the experiment will be on the use case and design models. Active Domain
models have been proposed in Naked Objects and will not be highlighted in this work. However, a
discussion on how this work relates with Active Domain Models will be presented in the conclusion.

5.1 Scope of Experiment & Investigation
The scope of the experiment includes the following activities:

e Develop a metamodel for a subset of UML and add additional support for use cases as a basis for

the simulation of active models and generation of HTML documents and Java code.

e Develop a domain-specific language for describing use case specifications and sequence

diagrams to support capturing of requirements

e Leverage the work from JBoss AOP to develop an execution framework for the simulator

Page 38 of 113

e Develop a web-based interface for interacting with the framework, for viewing use case

specifications, and displaying interactive UML diagrams.

e Study the practical application of Active Systems using case studies

5.2 The Metamodel

A relational database schema for the metamodel was developed to support capturing the
metadata for UML Use Cases and Sequence Diagrams. A portion of this metamodel is shown in Figure
16. The main concepts of steps, use case flows, and scenarios are represented in the model. Using a
relational database also provides some added benefits to the research work. Mainly, this benefit comes
from leveraging SQL’s ability to query, join, filter, and transform data from the metadata tables which

provides a good foundation for developing document and code generation facilities.

EXTENSION
extension_id: VARCHARZ(258) (FK)
baze_usze_case_id: WARCHARZ(255) (FI)
extenszion_uze_case_id: WARCHARZ(ZES) (FI)

EXTEMSION_POINT

extenszion_id: VARCHARZ(Z55)
baze_use_case_id: WARCHARZZES) (FK)

name: VARCHARZZES) ‘

s
==

description: WARCHARZ(G000)
step_szeq: HUMBER

%

USE_CASE MODEL
uze_case_model_id: NUMBER

.

ACTOR
actor_id: NUMBER

actor: WARCHARZ(255)
dezeription: WVARCHARZ(2E5)

¥

model_name: WARCHARZ(Z5S)

USE_CASE

uze_case_id: WARCHARZ(ZES)
uze_case_model_id: NUMBER (FK)

-

BASE_USE_CASE
baze_use_caze_id: WVARCHARZ(ZSS)

uze_case_jd: WARCHARZZES) (FI)
uge_case_model_id: MUMBER (FK)

name: WARCHARZ(ZES)
uze_case_type_code: CHARCTI(FE)
description: WARCHARZ(E000)
actar_id: MUMBER (FK)
goal_id: NUMBER (FI)
actor: WARCHARZ(ZES)
goal: VARCHARZ(255)
entry: WARCHARZ(ZE5)
exit: VARCHARZ(Z55)

USE_CASE_TYFE
use_case_type_code: CHAR(T)

name: WARCHARZ(ZE5)

ACTOR_G0ALS
actor_id: NUMBER (FK)
o B goal_id: NUMBER (FK)

EXTEMSION_USE_CASE
extension_use_case_id: WARCHARZ(ZSS)

MESSAGES
messzage_id: HUMBER

uze_case_id: WARCHARZ(ZES) (FI)
uze_case_model_id: NUMBER (FK)

USE_CASE_STEFS
‘ Hlow_id: WARCHARZ(Z55) (FI)

step_zeq: NUMBER
uze_case_id: WARCHARZ(ZES) (FI)
uze_case_model_id: NUMBER (FK)

description: WARCHARZ(G000)
subject: CHAR(T)

name: WARCHARZ(ZES)
wbject: CHAR(T)

USE_CASE_FLOW
flow_id: VARCHAR2(ZE5) ‘

—r—%
GOAL

goal_id: HUMBER
goal: VARCHARZ(255)

use_case_jd: WARCHARZ(Z55) (FK)
uze_case_model_id: HUMBER (FK)

name: WARCHARZ(Z55)
sequence_diagram: WARCHARZ(A000)

|

SCEMARID

seenadrio_jid: WARCHARZ(ZES)
flow_id: VARCHARZ(255) (FK)
uze_case_jd: WARCHARZZSS) (FK)

description: WARCHARZ(ZES)
use_case_model_id: MUMBER (FK)

parent_message_id: NUMBER (FK)
seenario_id: VARCHARZ(258) (FI) (Ak1 1)
flovu_id: VARCHARZIZES) (FIK) (AK1.2)
use_case_id: VARCHARZ(2E5) (FK) (AK1.3)
uze_case_model_id: NUMBER (FK) (Ak1.9)
node_id: WARCHARZ(255) (AK1.5)
step_szeq_in: MUMBER

step_seq_out: HUMBER

deseription: WVARCHARZZE55)
method_name: WARCHARZ(Z55)
fram_object: VARCHARZ{255)

to_object: VARCHARZ(ZES)

input: VARCHARZ(255)

sutput: VARCHARZ(255)

exoeption: WARCHARZ(ZES)

I

‘
scendrio_name: WARCHARZ(ZES)
sequence_diagram: WARCHARZ(4000)

Figure 16. Metamodel for Use Cases

Page 39 of 113

5.3 A Domain Specific Language for Describing Use Cases

To demonstrate the connection of documentation with software, a dynamically generated use
case specification will be used. HTML and the Web provide an ideal interface medium for this
demonstration. Since there is a growing trend for enterprise software to reach out beyond the
boundaries of the enterprise to partners and customers, enterprise applications are increasingly
supporting the web browser as an interface. HTML, with its roots in documentation generation also
makes this an ideal choice. A SQL-Like DSL will be used to describe the use case and a DSL

interpreter created to generate the proper elements in the use case metamodel.

5.4 JBoss AOP

JBoss AOP is amongst one of the recent entries and next generation dynamic framework in the
AOP arena. The JBoss AOP framework’s “hot deploy” capability is especially useful for this work in
the area of model simulation. In addition, JBoss’s approach of “Pure Java” using reflection and
interception compared to a language extension approach, like Aspect], makes the immediate practical
value of the framework apparent. The combination of the JBoss AOP framework and the relational
database used in this research effectively approximates an Active System with currently available

technology.

5.5 Web Interface for Interactive UML Diagrams

To investigate the relationship of active models and simulation, the techniques for integration of
AOP and Use Cases [3] will be explored. AOP at the level of Use Cases breaks concepts apart by
defining variation points for their composition as Use case fragments, called “slices”. The approach for

demonstration will use a UML sequence diagram and an interactive session with a modeler for selecting

Page 40 of 113

different variation points. The end result is a sequence diagram generated interactively by selecting use

case extensions.

6. Experimental Platform and Research Prototype

6.1 Overview of Architecture

This section describes the high-level architecture and major open source, research, and off-the-
self components used to build the experimental platform. These components are organized into three
main layers: the database tier, the Java JVM “middleware” tier, and the presentation tier. In the
database tier, an Oracle Database (version 10g) was used as the foundation for managing tables that
make up the metamodel repository and simulation state. Additionally, Oracle was chosen due to the
extensive functionality of active elements in the form of Oracle stored procedures. A few PL/SQL
packages were developed to manage updates to the metamodel, maintain execution state of a session,
and generate diagram code. These diagram code generators create input code for the graph generation
frameworks in the presentation tier. The middle tier contains the Java JVM, JBoss AOP, the interpreter
for the Use Case/UML textual “DSL” language, and a set of components hosted by Apache Tomcat.
These components manage interaction with the end user and include: the main Console Servlet which
takes commands from the end user, and the Oracle XDK components that deal with generating XML
from SQL and transforming them into dynamic HTML documents via XSLT transformation templates.
In the presentation tier, which is hosted by a standard internet browser, the web user interfaces renders
dynamic HTML documents and references generated graphical diagrams. For input from the end user,
there are two main areas of the web user interface: the DSL console and the Simulation console. The
DSL console primarily takes commands and passes this on to the DSL interpreter. The simulation

console allows the end user to single step through a sequence diagram with “next” and “previous”

Page 41 of 113

buttons and renders the resulting UML sequence diagram for each time step. An illustration of this
high-level architecture is shown in Figure 17. Notice, in addition to the toolset developed as part of this
research, standard tools where also used for development. For example, the Eclipse Java IDE was used
to compile Java code, and Oracle SQL*Plus utility used to create tables and compile database stored
procedure packages. The rest of this section discusses the implementation of the research prototype and

the main collaborations amongst the major system components in the experimental platform.

N

Experimental Platform

sentation (Web Ul in a Browser)

Dynamic Diagram Simulation DSL
HTML Generators Console Console

Use-Case Spec’s

.

Java JVM (1.5) Tomcat

XDK
S Servlet
—— “‘v' JBoss DSL
I - AOP Interpreter Oracle XSLT
hitE XDK emplates]

Oracle Database (10g)

Console
Servlet

. Oracle
Metamodel | Simulation || Di2gram Model SQL*Plus
Code Diagram (Tool)

K e SLate Generators Code

Figure 17. Architecture of Experimental Platform

Eclipse IDE
(Tool)

6.2 DSL Language Design & Implementation

For the domain specific language, the JavaCC parser generator was used. JavaCC takes a
grammar described in JavaCC’s BNF form and generates Java code for a parser. Inside the JavaCC
grammar file are also customized Java code which invoke a set of classes that make up the DSL
interpreter. For example the code below (Figure 18) shows the starting node in the grammar for the

create use case command. The example code defines a non-terminal CreateUseCaseCommand() which

Page 42 of 113

matches the token <CREATE> followed by the UseCaseExpression() non-terminal, and optionally
(zero-or-more) non-terminals TheSteps() and WithStatements(), consecutively.

void CreateUseCaseCommand ()
{
theCommand = new CreateUseCaseCommand () ;
}
{
(
<CREATE> UseCaseExpression () (TheSteps())? (WithStatements())?
)
{
// add code here
}
}

Figure 18. DSL Non-Terminal For Create Use Case Command
Also shown, 1is custom Java code enclosed in curly braces, which instantiates the
CreateUseCaseCommand object. This object, referenced by theCommand in subsequent evaluations of
non-terminals, is used to store the parsed data — the details regarding the command itself. An example
of how this is done is shown below (Figure 19) where the actor variable is added to the command object

during the evaluation of the WithStatement branch of CreateUseCaseCommand.

void WithStatements () : {}
{
(
With() (ActorVariable() | GoalVariable() | EntryVariable ()
| ExitVariable () | ExtensionVariable())+
)
}

void ActorVariable ()
{
Node n = jjtThis ;
}
{
(KACTOR> ("=")? TextLiteral())
{
ASTTextLiteral txt = (ASTTextLiteral) n.jjtGetChild(0) ;
ActorWithVariable actor = new ActorWithVariable(txt.getText ())
((UseCaseCommand) (theCommand)) .addVariable (actor)

’

Figure 19. Example of JavaCC Integration with Java DSL Interpreter Objects
The interpreter for the DSL contains five commands which implement the UseCaseCommand interface
(Figure 20). Once the parser (generated by JavaCC) validates the correctness of a command, the parser

instantiates and completes the set of required and optional properties selected for the command. Each

Page 43 of 113

CreateUseCaseC

-useCaselD:String
-useCaseDescription:String
-useCaseBteps:Hashtable
-withExtensions:Hashtable
-withariables:Hashtable

interface

+CreatelseCaseCommand()
+execute(void

+dump g void
+setUseCaselDival:String)void
+getUseCaselD):String
+setUseCaseDescriptionival:String
+addStepistep:UseCaseStep)void
+addExtension{extivithExtension)
+addvariabledvariithvariable) voic

Command

+executa) volid
+curmpl okl

ExecutellseCaseCommand

-useCaselD:Btring
-withExtensions:Hashtable
+ExecuteUseCaseCommands
+executedvoid

+dump)void

+setUseCaselDival Btringhvoid
+yetUseCaselD(Sting
+getExtensionsd:Hashtahle
+getliseCaseMName(:Siring
+setlseCaseDescriptionival String
+addStepistepUseCaseStepivaid
+addvariabletvarwithvariablepvoic
+addExtension(extwithExdension)s

command, as specified by the parent interface of UseCaseCommand, the Command interface,

implements the execute() method which will be invoked by the Console Servlet.

UpdateUseCaseCommand

-useCaselD:String
-opType:OperationType
-1t lodes TreeMap

+UpdateUseCaseCommandy
+executevoid

+durmp):void
+setUseCaselDival:String) void
+getlUseCaselDi:Sting
+setUseCaseDescriptionfval:String
+addStepistep:UseCaseStep)void
+addExtensioniextWithExtension)s
+addvariabledvariithyariable) voic

3 / +addMessageMode(Messageno
i / +setOperationTypefval:OperationTy
\\ i -removeMessages{)void

Y 4 ~addMessages)void
\\ ‘/ ~generateMLvold
| |
interface
UseCaseCommand

+setiselasal Ofvalsting void
+getliseCasel D). Siing
+setiseCaseDescriptiontval Sting
+addStepsten UseCaseSten) vioid
+addExtensionfext: WithExtension):
+acicilariablelvar WithV ariabie) vo

DeleteUseCaseCommand
-useCaselD:String

+DeletelseCaseCommandy
+executed:void

+dump(aoid
+setUseCaselDival:String)void
+petlseCaselD]:Siing
+setUseCaseDescription(val:String
+addStepistep:UseCaseStep)void
+addExtension({extWithExtension)»
+addvariablevar\WithVariable)voic

CreateUseCaseExtensionComrmang

-useCaselD:String
-useCaseDescription:String
-returningErroradvice: ReturningErre
-returningSuccessAdvice:Returning
-heforeExecutionAdvice:BeforeExec
-afterExecutionAdvice:AfterExecution
-withariables:Hashtahle
-extendsUseCases Hashtable
+CreatellseCaseExtensionComm:
+execute) void

+dump{oid
+setUseCaselDival:Stingvoid
+getlUseCaszelD]:String
+sell)seCaseDescription{val:Strinc
+addvariablelvarWithVariable)vaic
+addExtendsUseCaselvarExends
+setReturningErraradvicetadvice: R
+setReturningSuccessAdvice(advic
+setBeforeExecutionAdviceladvice:
+setafterExecutionAdvicedadvic e:Aft
+addExtension(extWithExtension):
+addStepistep:UseCaseStep)void

Figure 20. DSL Interpreter Command Class Diagram

Upon execution, the command object creates the appropriate metadata in the metamodel
repository for the command and invokes the diagram code generator. A sequence diagram that
illustrates this collaboration is shown in Figure 21. The parser, interpreter, metamodel repository, and
diagram code generators work together to capture the use case specification into a repository for use in
document and diagram generation. The following sections will cover the implementation specifics for
each of the commands in the prototype. Most of the commands where not implemented to their fullest

extent as specified in the design, but enough of their features were implemented to support the research

Page 44 of 113

work. For example, while the parser is complete, the interpreter will ignore parts of the command in

Some Cases.

create use case,
—_—

run cmd

DSL Console DSL Metamodel padren Model
Console Servlet Interpreter Repository Eode PIERED
Generators Code
Medeler H H H H H H

parse

success

execute H
el create

metadata

create

generate diagram code
success H code
success D
success R

Figure 21. UML Sequence Diagram for DSL Interpretation

6.2.1 Create Use Case

The main purpose of the Create Use Case command is to allow a modeler to express and create a
typical use case specification. Recall, from the metamodel, a use case contains actors, goal, flows,
steps, and many other elements. This is captured in a database schema diagram (as shown in Figure 16.
Metamodel for Use Cases). The DSL interpreter classes that support this command is shown in Figure
22. This is basically an object-oriented equivalent to the relational metamodel. The
CreateUseCaseCommand 1s the main workhorse of the group and is responsible for managing
collections of different types of command options (Steps, Extensions, and Variables). This class also
has the execute() method, which when invoked, effectively “interprets” the command and creates the

appropriate metadata.

Page 45 of 113

UseCaseCommand

-useCaseSteps:Hashtable
-withExtensions Hashtable
Hashtahle

UseCaseStep
CreatelUseCaseCommand
-numberint
-useCaselD:Sting - i
-useCaseDescription:String o

+UgeCaseStepumintdesc:Sting
+petMum{:String
+getDescription():String

ActorWithVariable
-theValue:String

+ActorithVariabla(value:String)
+getvalue(ustring
+gefType(Withvariable VarType

+CreatelseCaseCommand(
+execute(void

+dump(void
+setUseCaselD(val:Siring)void
+getlseCaselD(:Sting

+setUseCaseD :String)void

‘WithExtension
-atllseCaseStepint=0
-extensionName String

tring

+WithExtension(step:int)

\\\ +addStepistep:UseCaseStep)void WithExt:) st .
+WithExtension(name:String,step:i
~. +addExtension(extWithExtension) vaid N o 9.512p
+T ensioninanme: strin.
s +addvariable(variwithivariable)void ! »
\\ +oethame(:String
e +getSten(:Siring
Goalith\/ariable S +sethlame(name:String)vaid
. o
-thevalue:String 1 +setStep(step:int void

interface
WithVariahle

+getDescripian():String
+getDescriptiongval String) woid

+GoalWith\ariable (value: String)
+getvalue):Sting
+yetTypeQunithariable varType

- ——— 1

+getlaive]:String
+gelTypen Varlype
T

Entryith\fariable
-theValue:Sring
+EntryWithVariable(value:String)
+getvalue(rstring
+gefType(Withvariable VarTyne

ExitWithy:
-theValug:String
+Exitiithvariable (value:Siring)
+getvalue(rSiring

~geiType(Withvariable YarType

Figure 22. Object Model For Create Use Case Command (Class Diagram)
Another important method that all UseCaseCommand classes must implement is the dump() method.
This method is used to dump the state of a command to the console to aid in debugging and validation of

parser instantiation of command parameters. An example of this method is shown in Figure 23.

public void dumpi) {
System. out.println{ =
System.out.println{ "Class: " + this.getClass().getNanei)) ;
System.out.println{ "Use Case ID: “ + this.useCazell } ;
System. out.println{ "Use Case Description: " + this.useCaseDescription) ;
System.out.println({ "Stepa: ") :
if | this.useCaseSteps != null)
for (Emumeration k=this.useCaseSteps.keys() ! k.hasMoreElementa() ;)
{ String key = (String) E.nextElementi) ;
String value = ([(UseCaseStep)this.useCaselteps.getikey)).getDescription() »
System.out.printin{ " [+eey+"] = " + value) :

R

}
System.out.printlni "Tith Variahles:
if | this.withVariables != null |
for (Emumeration k=this.withVariables.keys() ; k.hasMoreElements() ;)
{ String key = (String) k.nextElement{) :
String value = {(VithVarishlejthis.with¥ariables.get(key)).getValue{] ;
System.out.printin(= ["+keg+™] = 7 + value) ;

T

}

System.out.println{ "Extensions: ") ;

if | this.withFxtensions '= null)

for (Enumeration k=this.withExtensions.keys(]

{ String key = (String) k.nextElement() ;
String wvalue = ((WithExtension)this.withExtensions.get(key)).gecitep(] !
System.out.printin{ " [+eey+™] = " + walue |

; k.hasMoreElements() ;|

}

System.out.println("Database Conficuration:
FrameworkTools.Database. dumpConfig()

System.out.println(="

T

Figure 23. Debug dump() method in Create Use Case Command

Page 46 of 113

create use case buy_product described as "Customer wants to buy a product from the online store.” Class: CreateUseCaseCommand

steps .
step 1 "Customer browses catalog to select items to buy" Use Case ID: buy_product

step 2 "System displays catalog® Use Case Description: Customer wants to buy a product from the online store.
step 3 "Custamer selects items to buy" StepS'
step 4 "System acknowledges selection” .
step 5 "Customer goes to check out’ [9] = Customer fills in credit card information and places order
step 6 "System displays check out screen asking for shipping information” _ . . I . .
step 7 "Customer fills in shipping information (address, next-day or 3-day delivery, ete..)" [8] - SyStem calculates total cost (InCIUdIng Shlpplng) and dlsplays payment OptIOHS
step & "System calculstes total cost (includina shipning) and displays payment: otions” [7] = Customer fills in shipping information (address, next-day or 3-day delivery, etc.)
step 9 "Customer fills in credit card information and places order _ . X N .
step 10" System authorizes purchase and displays confirmation” [6] = System displays check out screen asking for shipping information
uith I [5] = Customer goes to check out
goal "Buy Product(s)" '0.. [4] = System acknowledges selection
extension check_out at step 5 * = i
descrihed as "System displays check out screen with shipping information” ’0. [3] Customer_ selects items to bUy
extension authorize_purchase at step 9 ',. [2]= System displays catalog
e s Results *e,, [10]= System authorizes purchase and displays confirmation
From 4 _ [1]= (_Justomer browses catalog to select items to buy
Parsing With Variables:

[ACTOR] = Customer

Sign:ZTQd [GOAL] = Buy Product(s)
Extensions:
to dump() [check_out] = 5

[authorize_purchase] = 9

Figure 24. Example Create Use Case Command & Parser Results

Figure 24 shows an example create use case command and the result from parsing shown by calling the
dump() method. Once the command is properly instantiated, as shown, by the properties set in the
command object, the command can be invoked via a call to the execute() method. As shown previously
in the sequence diagram (Figure 21), the execute call does two things. First, the metadata for the
command is created in the metamodel repository; and, second, the diagram code (i.e. code for generating
images) is updated to represent the command. In this case, the diagram code for a use case command is
a “black box” sequence diagram. In some cases, the command object (depending on its type) may also
invoke the diagram generator to create the image. Or, alternatively, can defer the generation of images
to a later time when a modeler wishes to “view” the diagram. As shown in the code (Figure 25), the
create use case command invokes the diagram generator via a system call. More details with regards to

the diagram generator and the document/diagram generation collaboration are covered in Section 6.3.

Page 47 of 113

public void execute(] throws Exception {

-‘----.IlllIlllllllllllllll......
an® Tag,
"y

J/ generate gl:&p?uc
String v_usecaseld = this.useCaselD ; String gangmd = "I: /TJJDRKSPACEIEcllpsE/PIUtUt.ypEmetamUdEl/GenUmlSeq cud T
String v_usecasedesc = this.useCaseDescriprion ; System. out. Dmilhn { "Runming UML Sequence Generator...™) ; --‘
String v_actor = { ({WithVarishle)withVarishles.get{"ACTOR"}) == mull » " : ({ » an®
String v_goal = { ((WithVariable)withVarisbles.get("GOAL")) == null 2 "™ : {({Wi :::;:l:sﬂgtzpliﬁ:;; (ge?u.::l:e.(]. .E;E:?q;f;:l;l; .] asmnm "' ammmns®
String v_entry = [((WithVariahle)withVariahles.get|"ENTRY"} ERREEIN (4
String vﬁexi\: = (L A Wirvan shao maraereck e a. g R T)) - T ¢ s p.waitFor() ¢ .
... if [p.exitValue() == 0) -
String cmg { call pkg.create use case [7, 7, 7, 7, 7, ?) " { -
FraneworkTob e Database. execute_procedure| ond, v_usecaseid, v‘@AEEdESC, v_ac System.out.println{ "UML Sequence Diagram Generation Succeeded!™) ;
1:(uususa:ase#:ép!--mﬂl.i.........-----"‘ & .
for (Emmeration k=this.useCaseSteps.keys() ; k.hasMoreElements() ;J‘ ! =
{ String key = (String) k.nextElement() : % else -
String value = [{UseCaseStep)this.useCaseSteps. getikey)). gEtDE!l:Ilptant { L
System‘q,m PR T et ' Aok LR 4T PES ia . Inputdtrean erritrean = p.getErrorStrean() ; :
cnd =¢%®call pkg.create_use_case step [7, 2, 2] }" " 2 for [int j = errStream.available(); 3»0; i+) :
l;‘ranegork'rouls Databasze. execute_procedure| cmd, v use-ce:s?‘d‘g%; varae : System.out.write| errStream.read(]) :
1fttn15mchrxcens1oﬂ's Ilumu-----.....--- “ -‘ } =
for (Emmeration k=this.withExtensions.keys() ; k.hasMoreElements(] ;) “ ' H
{ String key = (Strlmy] k.nextElement() . catch (Exception e}{
String value = ((WithExtension)this.withExtensions.get(key)). gec&‘ep " System. out.println(e | ; Call to generate
String desc = [(WithE hig-u ions. get (key)). gawescnpﬁomj | .
SYS‘tmmE hln:myﬁ?iwm[+kayﬁ§t§x€ vEﬂL!E'J... % . dlagram
cnde®"{ call pkg.create_extension point [2, 7, 7, ? | " " * Calls to create

x;-ram%'npx.'rnnls Datsbase. execute_procedure| cud, key, w use&s!;“aim; =l metadata

/% generate blackbox sequence diagram */

Figure 25. Portions of the execute() command for Create Use Case Command

The remaining commands implemented follow the same basic design. The following section will

present their design and implementation details specific to each command. However, the Delete Use

Case command will be skipped in the discussion because the implementation is trivial.

6.2.2 Update Use Case

The Update Use Case command shares much in common with the Create Use Case command
That is, this command can add/remove actors, use case steps, with variables, and all the optional

parameters; but, the implementation of this command currently in the research prototype does not

support this feature’. Rather, the emphasis of the implementation is on the additional “special”

responsibility this command has — the ability to describe the dynamic design model as sequence

diagrams for a use case. As such, the example below (Figure 26) demonstrates the command with a

single sequence diagram message.

3 Alternatively, the “Delete Use Case” command used in conjunction with the “Create Use Case” command can be used instead of update

Page 48 of 113

AN
v

update use case buy_product

add main scenario messages

711

from OnlineStore to ShippingService

requesting checkPrice with "products”, "fromaAddress", "toAddress", "deliveryType"
returning "total cost and estimated delivery date"

Figure 26. Example Update Use Case Command

UseCaseCommand -nodelD:String
UpdateUseCaseCommand -fromQbject:String
-ugeCaselD:String -toOhject:5ting
-opType:OperationType -methodCall:String
-messagetodes Treehlap -result:String
+UpdatelUseCaseCaommandd +MessageNoded
+executedvoid +sethlodelD val:String) void
+dumpgvoid) +setFramObjectival: String) void
+seIUSECase\D(\raI.S.trlng)vcud o +getToobjectival: String)vaid
+getliseCaselDString o2 +sethethodCallral String)void
+setlseCaseDescriptionival:String)void +3etMessageResulttval:String)void
+addStepistep:UseCaseStep)vaid +addArg(val:String)void
+addExension(exdWithExtension) void +getModelD(:Sting
+addVariabledvarWithariable):void +getFromOhject: Sting
+addh MNaodein:M MNaode)void +getToObjectiy String
+setOperationTypedval: OperationType)void +gethethadCall):String
-removeMessaQESQZVDid +getMessageResult):String
-addhMessagesvoid +gethumargsint
-generatel ML vaid +getArgfidiinty:String
+gethrgs(:Object]

Figure 27. Object Model for Update Use Case Command (Class Diagram)

The object model in Figure 27 implements the command with a collection of MessageNode
objects. Upon the invocation of execute(), the message nodes are scanned and inserted into the
metamodel repository. In addition, this command also supports removing messages from the sequence
diagram. This is represented by the opType internal state which is set by the parser when a user types in

“... remove main scenario message” instead of “... add main scenario message”.

6.2.3 Create Use Case Extension

Figure 28 shows an example of a Create Use Case Extension command. Use Case Extensions in
this research differs from the traditional use case extension. One main difference is the explicit
representation of aspect-oriented concepts. In the example, the notion of AOP “joinpoints”, “pointcuts”,

and “advice” are represented. This command also combines the capability to define external use case

steps (i.e. similar to the Create Use Case command) with the definition of internal sequence diagram

Page 49 of 113

messages (i.e. similar to the Update Use Case command). These messages represent “execution

fragments” that can be inserted into the base execution flow of some other use case. As shown, the

example extends the buy product use case at the check out extension point before the execution of the

message at that point.

create use case extension check_out_extension
described as "Get current shipping options from service provider"
with
goal = "Ensure that the latest shipping options are available at check out"
before execution
advice steps
step 1 = "Get current shipping options available”
step 2 = "List of shipping options and prices {delivery type, current rates, ete..)"
advice scenario messages
1.1 from Extension to ShippingService
requesting get=ShippingOptions
returning "Shipping options and rates"
extending
buy_product at check_out before execution

Figure 28. Example Create Use Case Extension Command
The object model in Figure 29 shows how the Create Use Case Extension command is
implemented by the interpreter. A key difference with the Update Use Case command is where the
MessageNodes are associated. In the Update Use Case command, there is only “one” collection of
MessageNodes. For Create Use Case Extension, there is one collection for each advice. In addition,
there is also a collection of ExtendsUseCase objects which represent the logical pointcut mappings to

extension points in base use cases.

LiseCaseCammand
Crusalisl Bt ass s omman

UseCageCxtensioniice Massagaioa

-uselazeiliGiing

-baforaFeacutinnddvce HatarakacSansice
-sfterSeeutinnAdce AerCxecubonAmice

ashtable

«Caratelised
=exacutalvoid
gump{eid

saddExdendsliseCosedar ExdendsUseCase) void

EuterisionSommindl)

scripliongrel Shing) void
whvariable)void

-useCazellsing
-opType Operation Type

sllseCaseBrdensionidived
+eeutedroud

-afdMessage s
gernETELIMLY) void
rdumaivold

~nodell:stnng

framObject Slring

e linn Slring “object Sting
“retEmingEmorAdnce RetumingEmarkdnce -methodCaltSing
BET Feturn

| -rissull Siring
‘Mezsagetodel
~salMudeiD el Sting) woid

Hval:Stnglvolg
:Stringlvold

*atMathndCallivsl Stnng) woid

st s iRl
{nkessageho

vl seCaselDival Slring) void
+zetadnce ypaival- Stringiovoid

~ardiEalensinn{l WilhEsension) i
=adeFieplslep UselaseStep)vaid

+satEdensionFointival:Stng)vaid
reetCeecutionType(val CxecutionTy

1..-j:

Hval: Sinng) vl

~iaelidhrg vl Shring) i
+gethlodelDg Swing
+pelFrmOhieci) Bling
+getTolbect:sn
+getMethodCalldy Saring
+getMrssageHeSLE) Eing

eladhiceRetumngs cepvoid fo sl ipetisecaseinn Sting UseCasastap +gethurnargs iint
t €l BESAMAL sgetEalensionPaird() Blring “rurbering ~guelhag(id inf) lring
ssulHEaE R BnAaC HEO F RSO sqetExecution el Exetution Trpe -gescriplion:Siing ~getargslObjact]
*getAmert: AerE: vold sgelled aselDival Slrng) void ap(rurnont fa s Siing

Figure 29. Object Model for Create Use Case Extension Command (Class Diagram)

Page 50 of 113

6.2.4 Execute Use Case

Execute Use Case commands have an optional list of extensions as parameters to the command.
When supplied, the semantics for the command says that the simulator should enable these extensions
and include the message fragments define by their advice definition. An example of this command is
shown in (Figure 30). The command requests an execution of the buy product use case with two

extensions.

execute use case buy_product
with extensions check out extension,
audit_authorize_purchase_extension

Figure 30. Example Execute Use Case Command
The object model for this command is shown in (Figure 31). The implementation is very simple. There
is only a single collection of extensions that are used to create data in the metamodel repository.
However, unlike all the other commands, there is much more to the implementation of this command
than the parsing and interpretation phases. This command initiates a modeling session, switches from
the DSL console to the Simulation Console, prepares an execution plan, and waits for additional

simulation requests. The collaboration model is much more complicated.

UseCaselommand

ExecutelUseCaseCommand WithExtension
-useCaselD:String -atUseCasestepint=0
-withExtensions:Hashtable -extensionMame:String
+ExecutellseCaseCommand) -description:String
+executed void +HiithExtensionistep:int)
+dump dovoid . +iithExtensioniname:String, step:il
+setlUseCaselDival:String)void Q—U +WithExtension{narne: String)
+getUseCaselD:Sting +gethlamed:String
+getExdensions(:Hashtable +getStep (i String
+getlseCaseMamel:String +sethlamelname:String)void
+setlseCaseDescription(val String)void +setStep(step:int)void
+addStep(step:UseCaseStep)void +getDescription(:String
+addvariahlefearwithiariable)void +setDescriptionfal String) void
+addExtension{extWithExension)void

Figure 31. Object Model for Execute Use Case Command

Page 51 of 113

The collaboration for simulation initiated by the Execute Use Case command is shown in Figure
37. The details on the implementation of the simulator will be covered in Section 6.4. For now, it is
worthwhile noting that this collaboration includes the use of the Java JVM (via reflection) and JBoss

AQOP — two key components in the design of the simulation environment.

6.3 Diagrams and Document Generation

All the diagram generators used in this research follow a basic usage pattern. They take as input
some ASCII text and generate as output an image in JPG or PNG format. The ASCII text is basically a
DSL (i.e. a language) the diagram generator understands. Various diagram generators were integrated
into the modeling and simulation environment. For use case document sequence diagrams, the sequence
[77] toolkit was used. For use case diagrams, GraphViz [78] was used. For class diagram and sequence
diagrams inside the simulator, UMLGraph [71] was used. The metamodel repository contains all the
information about the different diagram types and can be queried via standard SQL and transformed
with store procedure logic (PL/SQL). This is essentially the function of the diagram code generators
which create the DSL code for diagrams and stores them in the database. With the exception of the
simulation sequence diagrams, the calling mechanism to diagram generators is a system call to a shell
command from within the Java JVM. For the simulation sequence diagrams, the system call approach
did not work and a workaround was implemented. This workaround wrapped the generator with a CGI
script hosted under Apache running on Cygwin. As a result, the generation of simulation sequence
diagrams is very slow, but this can easily be corrected by moving the CGI script to another machine.

Some examples of the diagram DSL code and the generated image are shown below in Figure 32.

Page 52 of 113

ExtensionPoint {
Extension."Step 1"->"Step2"{
ShippingService."1.1:getShippingOptions()"
->"Shipping options and rates"{}

y & ||shipping options and rats:

ShippingSernvice

ExtensionPoint | | Extension

}

Sequence Diagram in Sequence Language

Generated Sequence Diagram

Bl usecase. dot - WordPad

Ele Edit Wew Insert Format Help

Dl Sk & =B B

audit_suthorize purchase extension [label="iudit Authorize Purchase Extension’®
Return Product [lsbel="Return Product”]
}

Hibemzte NewCustomer Extension

Hibemzte Confim Profile Extension

/f Uses

edge [arrovhead=none, colorshklack, stylesbold, fontsize=9] ;

Customer —» create_account

Customer —> game_login
Customer —> movie_login
Adwin -> check_status
Customer -» buy product Hikemate Login E xtersion
Adwin -» Return Product

Customer

Buy Product

/! Extensions
{ Check Out Extension
edge [arrowtail=normal, label="<<extends>>", dir=hack]
wavie_login -> hibernate_login extension

buy_product -> audit_suthorize_purchase_extension i

Check Staus

buy_product -> check out_extension At Autharize Puchase Exension
creste_account -> hibernate new_custower_extension
create_account -> hihernate_confirm profile extension Adimin RGN

i

i
< m]

Far Help, press F1

|
=

Use Case Diagram in GraphViz Dot Language Generated Use Case Diagram

B umiseq. pic - WordPad
File Edt Wew Insert Format Help

el S 4 @B B i
ctar

:
=
il
o
2
o
[
>

P3
copy "umlgraph.pict:
boxwid=1.0; showCatalog)

maxpswid=22;
maxpsht=22;

Online Catalog

define objects
actor (4, "ictor™)
object (Z1,":onlinestor™)

step() Generated Sequence Diagram

#message body

actiwve (4]

stepl)

active (Z1)

message (&, Z1, "showCatalogi] ™)
rmessage (Z1, 4, "Online Catalog™)
inactive (Z1)

stepl]

#footer
complete (4)
complete (Zl]|
.PE

|€

For Help, press F1

Sequence Diagram in UMLGraph Language

Figure 32. Examples of DSL Code for Diagram Generators

Page 53 of 113

To generate the diagram, a two phase generation process is used. First, the metadata is queried
and transformed into the appropriate language for the diagram type. This code, the DSL for diagram
generators, is stored into the database. On the second phase, the DSL code is queried from the database
and written into a file on the file system for input into the diagram generators. This makes the process
of generating diagrams generic. To add new diagram types, a generator has to support some textual
diagramming language so a transformation program can be created to transform the metamodel data into

this language. For example, Figure 33, shows a generator for use case diagrams.

procedure gen_use_case_diagram

is
v_output system.use_case_diagram%TYPE ;
v_interfacesvarchar2(2000) ;
v_actor_id number ;
begin
Iletc...
-- add the header
v_output := 'digraph example {' || crlf;

Iletc...
-- generate list of actors
v_output := v_output || '// Actors' || crlf ;
v_output := v_output || '{' || crlf ;
v_output := v_output || 'node [shape=custom, shapefile="Actor.png"," || crlf ;
v_output :=v_output||' width=.5, height=0.77, fixedsize=true, ' || crlf ;
v_output :=v_output || ' color="#ffffff", label="\n\n\n\n\n\n\N"] " || crif ;
for gen_actors in (select actor from actor where actor_id > 0)
loop
v_output := v_output || gen_actors.actor || crif ;
end loop ;
v_output := v_output || ' || crlf ;
v_output := v_output || "' || crlf ;

-- generate list of use cases

v_output := v_output || '// System Use Cases' || crif ;

v_output := v_output || 'subgraph clusterSystem' || crlf ;

v_output := v_output || '{'|| crlf ;

v_output := v_output || 'label="System"; // Name your system here ' || crif ;

Iletc...
for gen_use_cases in (select use_case_id, name from use_case)
loop
v_output := v_output || gen_use_cases.use_case_id
|| [label=" || gen_use_cases.name || "] || crlf ;
end loop ;
v_output := v_output || '} || crlf;
v_output := v_output || "' || crlf ;
Il etc...
end;

Figure 33. Example DSL Code Generator for Use Case Diagrams (partial view)

Page 54 of 113

Once the code for the diagram is ready, it will be used when a user requests to view the diagram. At that
point, the code queried from the database and passed on to the diagram generator to create the diagram

(dynamically) for delivery to the web browser. This collaboration is shown below in Figure 34.

DSL Console DSL Diagram Model
Diagram
Console Servlet Interpreter Generator Code
Medeler H ! ! H H

. view diagram

—_—]
H run cmd H
parse
success H
D :
execute
= generate i
diagram get diagram
code
diagram
code Model
leeecenaninannd Image
(JPG)
success <<create>> :
HTML success D
i Document D -
: With - T = .
i image HTML + H H get itmage file
H Image D
F PPTPT PP PRPTPS DR S

Figure 34. View Diagram Collaboration

Document generation is done using standard XML to HTML techniques via the XSLT language.
The main framework used to enable this is the Oracle XDK toolkit which includes a Java library and an
XDK Servlet. The Oracle XDK library converts SQL queries into XML documents and passes this data
to the XDK Servlet which applies a presentation Stylesheet (in XSLT). This process is illustrated in
Figure 35 and example code (XDK page and XSLT) for viewing use case documents is shown below in

Figure 36.

Page 55 of 113

Oracle
Console Servlet XDK Templates
Meodeler

view documept, a8 ' gy

—— get doc "

: ‘e M H

: L et query :

H isaL

: XML

get XSLT itemplate * -
E qee"" ..e...". E
: Ris :
: . XSLT Tenﬂplate o :
- * -
: L . H
: "Emmmm H
: I generaje document
: HTML
: DU : :
H HTML el H H
¢ Document H : :
D

Figure 35. View Document Collaboration

EE

B view.usecase.xsql - Notepad

fle Edt Fomat Yew Help Fle Edt Format Wew Help

e7xml wersion="1.0"7 ~ <table class="WsoNormalTable c10" bord cellspacing="o" -~

=7xml-styleshest type="text/xs1" href="usecase.xs1" 7» cellpaddin width: o' %
<tr clas

axsgliguery connection="pnguyen” xmins:xsgl="urn:oracle-xsgl"> <td widtl ' walign="top" class='c2's

select
use_case_id as usecase_id,

name a5 USECAsE_hame, zr

description as usecase_description, i topt class='cs' align="left's

actor as actor, il

aaal as goal, 1 * a1 EFCs

entry as entry_condition, = " id="tables"s

exit as exit_tondition,

cursor (SME(t <td-<font face="arial Marrow' size="2"»<xsl:ivalue-of select="/ROWSET//ROW[1]AUSECASE_ID' </

use_case_model_id| | '.'||use_case_id||*. ' ||flowid||'."||step_seq as step_id,
description as step_description,
step_seq as step_seq
from use Case_steps s
where 5. TTow_1d = ‘main’
and s.use_case_id = u,use_case_i
d suse_case_model_id = u.use_case_model_id

='c5 align="left's
g e/t
order by step_seq

eft's

= rable1n"s
) steps,
Sl - <rtdsefont face="arial Marrow' size="z'socsl:value-of select="/ROWSET//ROW[1] AUSECASE_NAME' />
extension_id as extension_id, </:ab1e></ i
name as_extension_n. </tds
Gescription as extens:sn_description, <
step_seq as step_seq
from extension_point . "
e R S e e Q134T TeF T ROWSET//RON[1] AUSECASE_DESCRIPTION">
and extension_id != ‘usecase’] “ropt class='cs' align="left's
) extensions
e)Des(l{wstw one/Be/pe ey
where use_case_id = '{@d}' and use_case model_id = 0 0 o e 100] e EAB £ 11"

</xsql:querys ctdaefont Tace="srial Narrow' size="2"sexsl:value-of select=" ROWSET//ROW[1] /USECASE_DESCRIP

</t
</rable>
<ytd

=] <ftre

< >

Figure 36. View Use Case XDK Page and XSLT Template

6.4 Modeling & Simulation

Since all diagrams and documentation (use cases) are dynamically generated each time the
model is changed by the modeler, the diagrams and documents are updated automatically. Beyond

modeling and diagram generation, the research prototype also supports simulation. The general

Page 56 of 113

collaboration is shown in Figure 37. A sequence diagram is generated one time step at a time as the
modeler interactively clicks the “next” message button. As messages are evaluated, the simulator also
checks to see if a Class in the JVM exists with the call signature of the requested message. If so, the
simulator calls the method and renders the result of the call in the next diagram. Messages are in the
format of UMLGraph sequence diagrams stored in the simulation state area of the database. The data

model of the simulation state tables is shown in Figure 38.

Simulation Console Java JBoss Diagram Simulation
Console Serviet JVM AOP Generator State
Medeler

execute

: with extension : enable extenslon
H run cmd : H
enable aspect D
get first me$age D
find class
method H : : H

umL _
Sequence display not found et
execution simulation

.Dlagram diagram generate d!,agram = state
& (time step 1) 2 2
. ernnnnnrnnns : : -

I next message i

: run emd get next message }
find class D
method = H H H
umL diepl update simujation state with inyocation result
Sequence ispiay = n ~
execution H . H get

Diagram N H generate diagram . . H
H . diagram - - H
i (tmestep2) | | TPITR : : i | state ,l:l
T rrrasnannrnann T H H

Figure 37. Simulation Collaboration (Sequence Diagram)
At the start of a simulation session, the simulator queries the metamodel repository for the use
case model and sequence diagrams for base use cases and extension use cases (if chosen). This
information is used to form an “execution plan” and stored as a series of messages in the Execution

Messages table. These messages are used to generate the UMLGraph code for the sequence diagram.

Page 57 of 113

EXECUTION_STEPS

session_id: VARCHARZ(255) (FK)
step: NUMBER

exe_seq: NUMBER

call_level: HUMBER

node_id: VARCHARZ(ZES) (AK1.1)
from_object: VARCHARZ(Z5S5)
to_object: VARCHARZ(ZES)
method_name: WVARCHARZ(2ES)
input: VARCHARZ(2E5)

vutput: VARCHARZ(2SS)

description: WARCHARZ{M000)
inbound_meszage: WARCHARZZES)
outbound_message: WARCHARZ(Z5S)

EXECUTION_OBJECTS

abject_id: VARCHARZ(255)

session_id: VARCHARZ(ZS51 (FK)
component_id: WARCHARZZES) (AK1.1)
extension_id: VARCHARZ(ZSS)
used_in_base: CHAR(1)

exe_stack

exe| steps]

EXECUTION
sassion_id: WARCHARZ(2ES)

scenario_id: VARCHARZ(ZSS)

flow_id: VARCHARZ(255)

use_case_id: VARCHARZZED)
use_case_model_id: NUMBER
exe_diagram_code: WVARCHARZ(G000)
curment_msg_seq: WARCHARZ(Z55)
current_node_id: WARCHARZZSS)
current_stack_ptr: HUMBER
axe_diagram_hdr VARCHARZ{1000)
exe_diagram_footer: WARCHARZ(1000)
max_mzg_seq: HUMBER

extenzion_id: WARCHARZ(Z55)

exe_msgs

EXECUTION_MESSAGES

session_id: VARCHARZ(255) (FK)
msg_seq: NUMBER

node_id: VARCHARZ(255)
from_object: VARCHARZZES)
to_object WARCHARZ(255)
message: WARCHARZ(Z5S)
active: VARCHARZ(ZES)
call_level: NUMBER

return: CHAR(T)

ip: CHARCT)

method: VARCHARZ(255)
input: VARCHARZ(1000)
autput: WARCHARZ(1000)
step: NUMBER

extension_msg_seq: HUMBER T
axtenzion_node_id: VARCHARZ(255)
extension_stad_ptr NUMBER
extenzion_max_seq: WARCHARZ(2S5)
execution_result: WARCHARZZSS)

I

EXECUTION_STACK
stack_location: NUMBER
segsion_id: VARCHARZ(ZES) (FK)
mmessage: WARCHARZ(Z55)
inactive: VARCHARZ(ZE5)
call_level: HUMBER

EXTENSION_MESSAGES
zession_id: WARCHARZ(Z55) (FI)
extension_id: VARCHARZ(25S) (FK)
msg_seq: NUMBER

node_id: WARCHARZ(Z55)
from_object: WARCHARZ(255)
extension_advice: VARCHARZZES)
to_abject: WARCHARZ(255)

e,

EE_

_fnsgs

EXTENSION_STEFS

session_id: VARCHARZ(ZES) (FK)
extension_id: VARCHARZ(Z55) (FK)
step: NUMBER

exe_seq: NUMBER

call_level: HUMBER
extension_advice: WARCHARZZSS)
node_id: VARCHAR2(255)
from_object: VARCHARZ(Z5S)
to_object: VARCHARZ(255)
method_name: WVARCHARZ(ZES)
input VARCHARZ(255)

autput: VARCHARZ(255)

description: WARCHARZ(1000)
inbound_meszage: WARCHARZ(Z5S)

outbound_message: VARCHARZ(ZES)
L

axt_steps

EXECUTION_EXTENSIONS

exfensions

session_id: VARCHARZ(ZES) (FI)
extenszion_id: WARCHARZ(255)

type: VARCHARZ(2E85)
point: WARCHARZ(25S)
step: HUMBER

goal: WARCHARZ(ZE5)

enabled: CHAR(T)

extension_class: VARCHARZZES)

adwice: VARCHARZ(ZE5S)

deseription: WVARCHARZ(255)

ki

message: WARCHARZ(Z55)
active: VARCHARZ(255)
call_lewel: HUMBER
return: CHARCT)

ship: CHAR(T)

method: VARCHARZ(255)
input: WARCHARZ(1000)
output: VARCHARZ(1000)

Figure 38. Data Model for Execution State Tables

For example, executing the following command:

execute use case buy product with extension check _out_extension

Actor
2
3 il Actor
4
5 5.1 Actor
&
7 7.1 Actar
3 7.1 onlinestare

SG_SEQ FROM_OBJECT | TO_OBJE

Generates the following execution plan (partial view):

message

OnlineStore {71, "shawCatalog)")

rmessage(Z1,4,"Online
Catalog™y

message
(A,21,"selectProducts
{productList)"y

Onlinestare

rmessage(Z1,a, void")

OnlineStors messageld, 21, "checkout
o
rmessage(Z1,8,"Check
Ot Screen with Shipping
Infarmation™)

MEs530
(a,Z1,"entershipping
(address, deliveryType)")

Onlinestare

message
(21,22, "checkPrice
(products, fromaddress,
toAddress,
deliveryType))

ShippingService

Page 58 of 113

active(Z1) 1

inactive(Z1) 1 Y
active(Z1) 1 M
inactive(Z1) 1 K
active(Z1) 1 M
inactive(Z1) 1 Y
active(Z1) 1 M
active(Z2) 2 M

showCatalog

M

M selectProducts
M

M checkout

]

M entershipping
M checkPrice

The Execution table tracks the current message (i.e. time step) of the sequence diagram. It also holds
fragments of the UMLGraph code for the diagram. For example, after a couple of time steps, the

Execution table contains the following:

USE_CASE_ID (USE_CASE_MODEL_ID | EXE_DIAGRAM_CODE CURRENT_MSG_SEQ

#message body active(d) step)
active(Z1) message
buy_product] (8,21, "showCatalogl)") rmessage Z

(Z1,8,"0nline Catalog") inactive(Z1)

stepi)
The Extension _Messages table holds messages for use case extensions which will be inserted into the
Execution Messages table when appropriate. That is, the simulator understands aspect-oriented
joinpoints, pointcuts, and advice as declared by the Create Use Case Extension command. The
simulator also updates output messages in the Execution Messages table after the invocating of a real
Java method. The simulator blends model generation with Java Execution. One feature the simulator
implemented is the handling of errors. If an error occurs, the simulator knows to bypass all subsequent

messages and render the error back to the calling object all the way up the chain. It is possible to catch

these errors and handle them in the simulation, but the research prototype did not implement this feature.

Java Classes can be hand coded or a boilerplate code for Classes from the model generated by
the research prototype. If the code is generated, the prototype adds a NotImplemented Java annotation to
each method to signal to the simulator that this method has not been implemented. If removed from the
code, the method will be included in the call signature searches during a simulation session. For

example, the code generated for the AuditLog class is shown below.

Page 59 of 113

package app.java ;

public class AuditLog

{
@NotImplemented
public String createlogEntry(String creditCard, String purchaseAmount)
{

return null ;

}

Figure 39. Sample Code Generated by Research Prototype

7. Case Studies

7.1 Overview of Case Studies

Three Case Studies were co-developed along with the use case language and model simulators to
both guide the direction of the research as well as validate the main ideas behind interactive modeling
and simulation. The first case study (Case Study A: Active Use Case Documents) uses a simple use
case and follows the process of creating and modeling the use case as active documents and models.
The second case study (Case Study B: Black Box Systems Integration via Web Services) focuses on
active modeling and simulation, and attempts to create a simulation component that acts a client to a live
web service on the internet. For this case study, the Cybersource Credit Card Payment processing
system was used and the use case from Case Study A was further enhanced with this payment service
component. In the third case study (Case Study C: Refactoring Database Access Code to the Hibernate
Framework), an existing body of source code from a multi-semester-multi-team student project was
used. This case study exhibits real life code maintenance and evolution issues and was tackled as a
coarse-grain refactoring problem. A new database persistent framework (Hibernate) was introduced
into the existing architecture and the gradual migration to this framework explored with the existing
source code. Support for the migration was explored using active models, simulation, and the dynamic

“hot deployment” feature of JBoss AOP.

Page 60 of 113

7.2 Case Study A: Active Use Case Documents

7.2.1 Use Cases in Current UML Tools

Six UML tools were surveyed for their support of use case specifications. All of the tools
provided some support via one or more text fields that are later used for document generation. For
example, in Figure 40, MagicDraw provides numerous fields for specific elements of a use case
specification (i.e. pre condition, multiple flows), while the others (Together, Omondo plugin for Eclipse,
and Rational Software Modeler) all provide only one or two text fields to document the entire use case
specification. The only link to UML models these tools support is an association with the use case in

the Use Case Diagram.

i

MagicDraw Together Eclipse Edition

]

e Case propertes

Eclipse + Omondo Plugin Rational Software Modeler

Figure 40. Basic Support for Documenting Use Cases
Two of the six tools, Poseidon and Oracle Developer 10g as shown in Figure 41, provide a rich HTML

editing environment. Surprisingly, Oracle Developer 10g, which is more a programming tool than a

Page 61 of 113

UML modeling tool, provides the best support with automatic inclusion of hyperlinks to actors and

related use case extensions.

.. WYSIWYG HTML EDITIOR
R (Poseidon for UML)
SR
L1 _.v:lw'.-- e !?!J:i- - &
= Orexle_Desekpes Log Cark Acce: Jus - Projectipe —‘ roctet ahom _wsc faX:])

Fe EN Ten Sewth taws Mn Debn Lescn Hedw Vs ok Wnde b
BoE8 0-0- 9 BE /4 aSda- P- $-DETAE

Extends: |

WYSIWYG HTML Editor with
Customizable Templates.
(Oracle Developer 10g)

E oot Readng on he Ui Wekirlang.os
[——

: 0
toweres [ndex [rewth oyt (8]

Figure 41. WYSIWYG HTML Editor Support For Use Cases
This short survey of UML tools shows their documentation centric nature which attempts to
encourage writing use case specifications closer to the UML models for document generation with the
While this helps keep documentation in sync with the models, the tools currently

UML diagrams.

provide little assistance in managing the associations with UML models and therefore provide little

support for requirements traceability.

7.2.2 Programming Use Cases

Programming UML models with a textual language has not been a popular approach in the

industry currently dominated by graphical modeling tools. While visual diagrams appeal to the

Page 62 of 113

cognitive and pattern matching abilities of the human mind, they also have their drawbacks [52]. With
large scale models, for example, where it is common to see thousands of modeling elements on a canvas,
the drawing medium on a computer screen quickly becomes unusable and the model incomprehensible.
As a matter of fact, UML was not designed only for graphical tools [65]. It is possible to implement a
textual programming language that could be parsed into metadata stored in a repository. The UML
standard, defines such a meta-model — the Meta Object Facility (MOF) [66]. Using a small example

taken from the UML Distilled book [67] (Figure 42).

i Buy a Product
Goal Level: Sea Level

: Main Success Scenario:
. Customer brow: atal i lects item

IR
i 2. Customer goes to check out

3. Customer fills in zhipping information (address; next-day or 3-day delivery)

4. System presents full pricing infarmation, including shipping

5. Customer fills in credit card inforrmation

6. System authorizes purchase

7. System confirms sale immediately

B. System sends confirming e-mail 1o customer

Extensions:

3a: Customer is regular customar

.1: System displays current shipping, pricing, and billing information

.2: Customer may accept or override these defaults, returns to MSS at step 6
Ba: System fails to authorize credit purchase

1 Customer may reenter credit card information er may cancel

Figure 42. Buy Product Use Case Specification Document (from [67])
The example code below is the equivalent specification for the Buy Product Use Case described in
Figure 42:

create use case buy product

step 1 "Customer browses catalog to.."
step 2 "System displays catalog"
step 3 "Customer selects items to buy"
step 4 "System acknowledges selection”
step 5 "Customer goes to check out"
step 6 "System displays check out screen .."
step 7 "Customer fills in shipping .."
step 8 "System calculates total .."
step 9 "Customer fills in credit .."
1

step 10 "System authorizes purchase .."
with

actor "Customer"

goal "Buy Product(s)"

extension check out at step 5

extension authorize purchase at step 9

Figure 43. Buy Product Use Case Specification using a Declarative Language

Page 63 of 113

At first glance, with the exception of a few key words, the sample code does not differ a great deal with
the use case specification document in Figure 42. Behind the scenes, however, this code was parsed into
metadata stored into a repository. As a result, the metadata can be used to automatically produce HTML
documentation and a UML system sequence diagram. Figure 44, below, shows the generated HTML

document and diagram.

r ~
= http: f flocalhost 9090 /Frototype/metamodel/view. usecase. xsglfid=lhuy_product - Microsoft Internet Explorer 008
File Edit View Favorites Tools Help o

Y- (3 (@) [@) @seer @reons @ @ E @-FOE DS
Address ’4;1 hittp:/flocalhost: 3090 Prototy pe/metamadel/view, secase. xsqlzid=buy _praduct :] **h Go Links @ Bookmarks »
vesLEpuOn Custormer wars t bury a produict for the anline store T
Actor Customer
Goal Buy Product(s] m
i |
ManFiow | grmg }
Step 1 Custorer browses catulog o select s to buy |
Step 2 System displays catalog t
step 3 Custorer selecs ters 1 by |
Step 4 System acknowledges selecton |
Step 5 Custormer goes 1o check out |
Step 6 System displays check out screen asking for shipping information ;
step 7 Customer il in shipping information (address, nextday o 3-dzy delivery, ete?) |
Step & System calculates tofal cost (including shipping) and displays payment options |
Step 9 Customer il in credit card inforralion and places order U
step 10 System auforizes purchase and displays confirmaion
Extensions | e
chech out System displays check out screen wilh shipping information (Exzension poim defined 3 s7ep 5
authorize purchase System authorizes purchase [Extension point defined st step §)

Customer System

Step 1: Customer browses catalog to select items o buy

“«
&] Done & Lacal intranet

EN

Figure 44. Generated HTML Use Case Document
Furthermore, update commands for the use case also support adding and/or removing individual use
case steps, extension points, or other items such as pre-conditions and post-conditions. If the use case
was elaborated into design models, then the tool can warn the modeler of potential problems or prevent

the change.

Page 64 of 113

7.2.3 A Joinpoint Model for Use Cases

The Use Case Specification language was also designed to express aspects as use case extensions
with a defined join-point model. For example, the example code below (Figure 45) declares semantics
for a credit card authorization failure extension that will only fire when a customer enters an invalid
credit card.

create use case extension audit authorize purchase_extension
with
goal = "Audit authorization failures"
returning error
advice steps
step 1 = "Get authorization context and create a log.."
step 2 = "void return (don't change base behavior)"
advice scenario messages
1.1 from Extension to AuditLog
requesting createlLogEntry with "creditCard",
"purchaseAmount"
returning "void"
extending

buy product at authorize purchase returning error
Figure 45. Example of a Use Case Extension Declaration
A sequence diagram fragment (UML interaction frame) is automatically generated from the metadata
produced from the create extension command. This is shown below in Figure 46, which demonstrates

the “returning error” join point.

retwrming ervor flow

| ExTensionPnint| | Extension |

1.1 createl oaEntry(creditCard, purchaseAmount),

| Step 2

Figure 46. Example of Use Case Extension Sequence Diagram Interaction Frame

The Use Case Specification language supports the following join point model for use case extensions.

Page 65 of 113

(<extension point>)? around|after|before execution
(<extension point>)? returning error

(<extension point>)? returning success
Figure 47. A Jointpoint Model for Use Cases
The partial grammar above (Figure 47) defines join points for use case step execution, return with
success, and return with error. If the extension point is omitted, then the join point is defined at the use
case level rather than at the use case step associated with the extension point. Note, as recommended in
[3], the execution step for the extension point is defined in the base use case rather than the extension
use case. This provides more flexibility as changes in the base use case can be done without impacting

the definition of extension use cases.

7.2.4 Interactive UML Diagrams

Sequence diagrams can be modeled interactively, one message at a time as shown below in
Figure 48, which defines three messages for the Buy Product base use case. While this may seem an
overkill to code these messages compared to a point-and-click approach of graphical UML tools, the
payoff comes with the simulator where a sequence diagram can be single-stepped through its timeline

and rendered interactively.

update use case buy_product
| Custamer | | Sysiem | Crilinedioreg id1d main scenario messages
o 1.
| Step1 ‘.“"‘ from Actor to OnlineStore
1.1: showCataloq() “-" requesting showCatalog
Online Catalog _ _ _ _ _ _ _________ returning "Online Catalog"
| Step 2
| Step3 update use case buy_product
3.1: selectProductsiproductlist) add main scenario messages
goid ey, 3.1
Siep 4 "*=ua] from Actor to OnlineStore
””” requesting selectProducts
| Sten s, with "productList"
5.1: checkQut() returning "void"
Check Out Screen with Shipping Informationk v,
| Step 6 ‘e,
o R update use case buy_product
Step 7 e, add main scenario messages
L Stzp s kK o, | 51
Step 9 *q from Actor to OnlineStore
I requesting checkOut
Step 0 returning "Check Out Screen
with Shipping Information"

Figure 48. Adding Sequence Diagrams to Use Cases

Page 66 of 113

While modeling sequence diagrams, the tool can also track the relationship of the use case with
the domain objects by associating the messages and objects with the use case. As a result, class
diagrams can be generated to show this relationship as shown in Figure 49. The class OnlineStore is
shown to implement a set of methods as dictated by its participation in the buy product use case

collaboration.

ainterfaces
buy_product

Actor +checkOut() : String
+enterShipping(address : String, deliveryType : String) : String
+placeOrder(creditCard : String) : String
i +selectProducts(productlList : String) : String
\ +showCatalog() : String

\ A
. 4

|

CnlineStore

+checkOut() : String

+enterShipping(address : String, deliveryType : String) : String
+placeOrder(creditCard : String) : String
+selectProducts(productList : String) : String

+ showCatalog() : String

Figure 49. Generated Class Diagram From Use Case Metadata

7.2.5 Execution Paths in Aspect Based Models

Figure 51 shows the simulation screen of the execution of a sequence diagram with an extension
enabled. A modeler can walk forwards or backwards in time and observe the effects of use case
extensions. To enable an extension, a modeler specifies the extension as an option to execution in a
command as follows:

execute use case buy product with extension check out extension

Figure 50. Example Use Case Execution Command with an Extension
If the extension is statically bound (i.e. defined without any guard conditions) then the simulator will
incorporate the interaction frame defined for the extension into the base interaction and display this to

the modeler. On the other hand, if the extension is dynamically bound, such as with a “returning error”

Page 67 of 113

type, then the simulator will only incorporate the extension’s interaction frame if the condition is
detected. Currently, the only way to trigger such a condition is to implement the behavior of the class in

Groovy [70] or Java and have the simulator invoke the code which causes the error.

| oninestor | | :shippirgss | | DAy =T audtiag

3 §>—|C-

showCataloay
| | '

Tha Catakg | 1 !

|t . i i '

| \
sqlgctProductsimoductig | i

i
b= = B = =

shackO)

gutShippingOptions()

Erapping oatiore ard raotc
=

Check Dul £ Treen with Stepping | ormation E E Ca” to AUdItLOg
o | |] added by
sntertbipping(asiress, daiifedTyps) ; ; : Returning Error
shackPrivedproph]cts, fromAddrass, 188 ddr

£ dalveryType) | Advice.

wsl and asdinaled delyan
Il i i e

Wt

Toi @ ot and pay rent op
8= .

|

'
! .
.

LT
H - Tua, .
pacaumencremar] o 3 .,
i] *
authorzePayment{crediCard, zipode, Aoy i .
- LS
1 .
1 .
.
| n
U
- i . [o
. :-E'-_D_F: ?;?'T':ﬂlr-l'll Audhried . . o

Ya, '

LY P s

EFRGR: Payment Mot Authoyi el i] |
[S] |

---r
'
'
]
]
i
i
i
]
]
i
]
i

*

Figure 51. A Simulation Session with a Returning Error Advise Enabled

7.2.6 Adding Behavior with Groovy Scripts

Using the Groovy scripting language [70], which is integrated with the simulation environment,
a modeler can add behavior to classes interactively and invoke the methods during a simulation session.
This enables the modeler to explore exceptional conditions and alternative flows without having to first
model all the possible paths. That is, a modeler can just start with the main success path and then add
arbitrary error conditions later with code. Figure 52 below shows the Groovy code editing screen for the

AuditLog class.

Page 68 of 113

(a=) http:/ flocalhost: 3090,/ Prototype/servietf ConsoleServiet?edit_class=Auditlog - Microsoft Internet Explorer (’_') O 6

File Edit Miew Favorites Tools Help 3
] N HEE R @ @) @B 8- FOH DS
Address (@] http:/localhast: 9090 PratatypefservlstfConsoleServiet redic_class=AuditLog ﬂ **b Go Links @ »

.
-

sintarfaces
audit_authorize_purchase_extension

+createLogEntry(creditCard : String, purchaseAmount : String) : String

&

AuditLog

+createLogEntry(creditCard : String, purchaseAmount @ String) : String

| sawe]
class AuditLog

String createLog($tring creditCard, String purchaseAmount) { retum “Log Entry Created™}
String listLogy) { retum "The Log.." }
H

&) Done &) Local intranet 4

Figure 52. Groovy Code Editor

7.2.7 Integrating Java Code

The simulation system can also detect the existence of a Java class using reflection and invoke
the methods if there is a match in call signature. With this ability, legacy code can be wrapped with
Java classes, or if the application is already in Java, then the simulator can work with the code directly.
In the current research prototype, however, the simulator only supports String types. The main reason
for this is due to the user interface’s limited ability to render different object types for input data to a
Java method invocation. This input request currently is in the form of a single input field which expects
a comma separated list of strings. For example, with the following Java code below which implements
the authorizePayment method for the PaymentService class, the simulator will display the screen as

shown in Figure 53.

Page 69 of 113

=" P fiocalivast SO Frooatype/servies/Cansalesenvier - Moroaaft lcemes Explarer nAe
D Lo gew Tpwee Dess e P

ana =[] - (%] (8] [@) &]swen [Brweers @] @-E & -FOE D3

public class PaymentService ({ Tﬂ m.‘xmm;;:x:::u::n::»...sm.m; s Ymh: 'r

String authorizePayment(String creditCard, OntacarclePrmenrios s e i oo, et} (224 i

String zipCode, String amount) i

| |

if ("1234567890".equals(creditCard) && Haod 'WWM:_-E L

"11111".equals (zipCode)) I ‘L‘w‘n“ i

r . |

return "Payment Authorized!" ; wtesib ro:amm:-- S T E

else ot .-44-.1.«:...»..|.|.r.«[:‘_|..s. i
return "ERROR: Payment Not Authorized!" ; ‘:,..,u._| s o

Figure 53. Simple Input Dialog for a Java Method

7.2.8 Case Study Summary

The results from this case study reveals that Active Documents as explored using a declarative
language for Use Case Specification provides better support for requirements analysis and change
management. This is primarily achieved using dynamic documentation generation and a model
simulation environment which puts Active Models at the center of the analysis work. Compared to
existing documentation centric Use Case Specifications methods as supported by existing techniques
and UML tools, an Active Document and Active Model provides a more direct association to the
working software and can be more easily maintained and leveraged for system evolution. Furthermore,
incorporation of Early Aspects into the Use Case Specification language enhances the value of Active
Documents and Active Models by rendering the effects of applying aspects to a base scenario in the

sequence diagram.

Page 70 of 113

7.3 Case Study B: Black Box Systems Integration via Web Services

In the past several years, web services and Service-Oriented Architecture (SOA) have been
gaining in popularity and adoption. Many online business systems integrate with external web services
as “black boxes”, incorporating their features seamlessly into internal business processes. Often, during
the requirements analysis phase of a new integration project, these services are readily available for use.
In essence, parts of the “solution space”, as represented by the web services are already built, but
understanding how to use them and incorporating their features into a UML model is difficult. This case
study looks at one such web service, the Cybersource Credit Card Payment service, and attempts to
integrate the service into an interactive UML model (i.e. the sequence diagram for the Buy Product use

case).

7.3.1 The API

Integration often starts with an Application Programmer Interface (API). Understanding the API
requires code level exploration with test client programs. Many service providers make available
sample client code which demonstrates how to call the web service to assist developers in quickly
coming up-to-speed with integration efforts. For example, in the Cybersource SDK for Java [73] details
are available on setup, usage, sample code, and test transactions. In addition, Cybersource makes
available numerous API choices and simulated transaction processors for testing prior to go live. Figure

54 shows the API’s available from the Cybersource website as of January, 2006.

Page 71 of 113

a Hpnonsfol Communicating Payment |IIfOIIII(ITIOIIIO CyberSource
¥ Roll rto see a one-line surmmary or click to find information, documentation and downloads.,
Comgare options or see a simple diagram of how each works,

Virtual

Terminal

EASY INTERMEDIATE MORE ADVANCED

Figure 54. Options and API for Integrating with Cybersource [74]
7.3.2 The Java Code

In the previous case study (Section 7.2.7), a sample Java class, the PaymentService, was
demonstrated with “hard-coded” logic to respond with a “success” or “failure” from incoming messages
on the authorizePayment method. In this case study, the class is re-written to act as a client module to
the Cybersource web service. The new code for this class is shown below in Figure 55.

public class PaymentService ({

public String authorizePayment (String creditCard, String zipCode,
String amount) throws Exception {

ICSClient client = new ICSClient () ;
ICSClientOffer offer = new ICSClientOffer();
ICSClientRequest request = new ICSClientRequest();
request.setField("ics_applications", "ics_ auth");
request.setField("merchant ref number", "007");
request.setField("merchant id", client.getMerchantID());
/* portions omitted .. */
request.setField("customer cc number", creditCard);
request.setField("bill zip", zipCode) ;
offer.setField ("amount"™, amount);
request.addOffer (offer);
ICSReply reply = client.send(request);
if (reply.getReplyCode () <= 0) {

return "ERROR: " + ICSException (reply.getErrorMessage());
} else {

return "Transaction succeeded";

Figure 55. Payment Service Java Code for Calling Cybersource

Page 72 of 113

7.3.3 Results

Two simulation runs were done with different transaction inputs for the authorize payment
message. As documented on the Cybersource website a transaction amount of $1500 will simulate a

transaction error. For the two simulation runs, the following inputs were used:

o For the success test: Credit Card=4111111111111111, Zip code = 95130, Transaction Amount = 125.00.
e For the error test: Credit Card = 4111111111111111, Zip code = 95130, Transaction Amount = 1500.00.

Figure 56 below shows the results of the call to the Cybersource web services rendered as a return

message in the sequence diagram from the call to the authorizePayment method.

| onlinestor ‘ | :shippingse | ‘ ‘paymentsar |
Actor T T T | :onlinestor | | :shippingse | ‘ ‘paymentsar
Actar

ct T T T | auditlog
il i : m | i i i
showCat alog() - | E E L : : :
Online Catalog i ! showCatalog() i | i
e L 1 | 1
1 : ; Online Catalog i ! i
™ I I .- o L) ! !
salactProducts{productlisf) ! ! L i | |
! ! !
void : i salgctProductsiproductlist I ' !
_________ L | | - ! I !
4 : : ol : : !
1 I e iy e T 1 1 1
checkout) | | i 1 1 1
1 1 " 1 1 1
\ q
Check put With Standard ghipping i i checkout) ! E E
J'_ : : getShipping Optionsi) : :
enterShipping(address, del.'ErewType) ! 1 Bhipping options and rate | i
3 o i i R sl
checkPrice(profycts, fromAddress, toAddrdss, deliveryType) : | : :
I | ! |
totdf 1 (Out Screen wth UPS, FEDEX, arjd|Standard Shipping ' i i
; i .- - o | ! !
' : i : : :
(1]
Tot I‘n'st_a_nii paymert n__lnns oot guuns Ih LN N ~ ..i enter3hippingtaddress, delivp Ty pe) ' i i
! !
: ‘t' i :'0‘ checkPrice(p rofilcts, fromAddress, toA ddrdss, delivery Type) ! !
|
| ! 0‘ totg) date | i
authar |zePayrrerrt(cred|l|Card. ZipCode, amount) [Y A [ot v i b o ; : :
Transacﬂud succeeded : | : :
------------- L . Totdl post and payment optfons | | |
A i e [- - — - - - L i I 1
L | |
. “‘¢ i “‘--lllli:-ll..... ! !
] [y . .
...IIIIIII-“ pateorder(tr\iﬂlécd'ﬂ i ..O |
“ author izePaﬁfrrEm(credr!ICard‘ ZipCode, amount) '
* |
. i createl
. !
[;S (F ol s e
. o L] ! L] :
|
A SUCCGSSfUI teSt transaCtlon wi Cybersource' g ERROR: gom.cybersource. cs.base. EquEmwunICSExcepliun: AV S|chyeck failed : i
* e o Tl e o by S ol o o o o B s e) * i
* i ! o* !
|
cybersource. |ck.hase exce'pbuglg Exception: AVS checkfailedl :‘ " :
. . . [+ = - = — = — = L] |
L .
A failed test transaction with Cybersource. "taa, : aust®® .
U i "saggmumunt® ! |

Figure 56. Test Results From Calling Cybersoure via Web Services

Page 73 of 113

7.3.4 Case Study Summary

Modeling at many levels of abstractions provides tremendous benefits to the analysis of system
behavior based on a composition of a number of subsystem components. In this case study, a subsystem
component (an external payment service exposed as a web service) was integrated seamlessly into a
modeling environment with minimal effort. In fact, the exact sample code from the service provider was
used with minimal changes. Normally, exploring a service API is done only at a code level when a
developer is trying to understand and use the API. Making this capability available to a modeler allows
for a broader view of the entire software solution. For example, many web services and/or internal
systems can be modeled collectively in this manner. This approach supports better interface design and

comprehension of end-to-end integration scenarios

Although the case study reveals a promising direction, there are still some limitations that were
not addressed by the simulator and further improvements are possible. A more robust data exchange
and messaging protocol could be used to integrate the simulator with existing code. For example, in
order to understand the difference between an “Error” and a “Successful” result, the simulator scans for
the “ERROR” text string within the result message. As such, Java exceptions have to be manually
converted into this convention in the code to signal to the simulator that the result should be treated as
an error. Furthermore, it was evident that some sort of state management is needed at the model level.
One possibility for adding this is with a UML state diagram that tracks the state of the session based on
the inputs and outputs of messages from source to target objects. Another shortcoming also is the lack
of support for asynchronous messaging. Modeling these types of messages will enable a more robust

real time analysis of system properties.

Page 74 of 113

7.4 Case Study C: Refactoring Database Access Code to the Hibernate Framework

In this case study the body of work (source code) from an evolving student project at San Jose
State’s Computer Engineering Department “Software Systems Analysis and Design — CMPE 2217
course was used. Unlike other “single semester” software projects, the results of each semesters work
are passed on to the next in an iterative style of evolution. Each group of students would study the work
of prior semesters from the project documents and source code and then develop enhancements and
refactorings to evolve the code base. The results from three such iterations were studied from the Fall
2003 to Fall 2004 groups. The first team focused on enhancing an existing online DVD rental system,
similar to the NetFlix DVD Rental service. The second team added online Game Rentals; while the

third enhanced the system with Online Advertising.

The main architecture of the application runs on a Java application server (Tomcat) and uses
MySQL as the database. In studying the source code, one major issue with the project became apparent.
Each team took a different approach to managing persistent and object-to-relational mapping. Two
teams took a one-class-has-all-business-objects approach where a huge class with numerous methods for
all domain objects was used to convert messages to SQL queries and commands. The other team took
the approach on the opposite end of the spectrum, where a small utility class managed basic database
access and took as input only SQL queries and commands. In effect, this approach distributes all
database access code to the domain objects themselves. Figure 57 shows the class diagrams of the
database access code. The inconsistent management of object persistence is a common problem
amongst object-oriented applications and many object-relational mapping tools have been developed to
address this. For this case study, one such tool, Hibernate, was used to refactor a portion of the database

access code.

Page 75 of 113

AdvertiseD: .

+getinstance(:AdvertiseDatabases
+disConnectDBvoid
+adveriserLogin{oginname:String
+AdveriserBxists{user_name:Strin
+updateAdvProfiledadvprofile:Adver
+gethlewAdvidiogin:String)int
+reserves|ot{ady_id:String,slot_id.£
+srchAvailableSiotsisiotP osn:Strin
+getPageDescipageid:Siring):Strin
+gearchUnusedSiotsListiady_id:St
+adhewhdiimagefile:String, slot:Str
+getContentType O3 lotiselectedSic
+checkContentDuplication{content:
+getallReservedSiots(pageNama:t
+getAd(slotid: String, content String):

annroach

+getSlotvyidth{slotid String).dauble
+getSIntH eight(slotid: Stingy: double

One big class

GameDatahaseAccessor

+getinstance(:GameDatabaseAcc
+disconnect(void

+guern(guery:String):ResultSet
;:execute(query:String):bDolean

N

C

+getinstance().Conneclionhanage

Small “utility”

class approach

‘e

.
.
3
.
>

-

7

&
N D
]

‘.QBUHSTQI’]CB DatabaseAtcess

'+disCDnnectDElO:void .|
+adveniserLogin(Ioginname:Strmg'
+stafflogin{loginnarme:String pwd:5
+loginfloginname; String, pwd:Strinc
+usertameExistsiuser_narne:Strit
+AdvertiserExists{user_name:Strin

+getTableContentsttableMame: St
+getProfilefuserd:String):Custome
+updateAdvProfiletadvprofile:Adver
+updateProfilefprofile: CustomerPre
+getUserdMewR ecard(login: String
+isDvdRentedByCustomer{custid:in
+getRentedDvdByCustomer{custid
+getUserdinReguestauens (dvdid:
+3ddDVD (dvdld:String,userld:int, gt
+reponlostOrDefectDyDidydld: St
+rentDVD (dvdld:String,userld:inty:h
+returnCyDidvd|d:String,userid:ing
+returnDWDiu s erd:String, dvdld: Stri
+checkDYDAvailability(dvd [d: String)
+decrerment@uantity(dvdid:String): b
+getMaxDVDhyUserldiuserid:Strine
+getaxDVDbyMemberTypeype: S
+insertCrderiuserld:String, dvdld: 5t
+addDVDOrder(orderObj: Order,ord
+getCurrentlueuePosition{userld:
+updateRequeststatus(userld: Strir
+insenRequestiuserid:String, dvdld
+inserReguestiuserid:String,dvdld
+removeRequestEntryfrequestid:in
+checkRequestyalidityuserd:Strin
+gethlexttueueld{dvdld:String):int

+shipout{userld:String, dvdld:String;
+remaoveF rormWorkOrderuserd: St
+alreadyRequested{userld:String, d
+alreadyProcessiuserid:String,dvdl
+DWDeiniorkOrderQueueBylserl
+isCurrentlylnyorkOrderQueue(us
+getF avoriteMovie TypeF romDB{us:
+getDYDListUsingF avoriteMovie Ty

+mainiargy. Strinaivoid

+releaseConnection{conn:Connect
+releaseAllConnections(void

ConnectionPool

+ConnectionP ool {driveriame:Strin
+releaseConnection{conn:Connect
+releaseAllConnectionsgovoid

connection:Connection

+getDVDList{sgl:String) ArrayList
+getRentedDvDList(userld:String).
+getvovieCategon(dvdld:String):5t
+getCategorList{rentedDVDList:Ar
+updateStafilLastDateSysUsed(dat
+pdateLastiDateSysUsed{dateney
+getCustomerMame(userld: String)
+getF avoriteType{userld:String):Stri
+getBirthDay(userd:String):java.util
+getlastloginDate{userld: String)j:
+getRentalHistory(useriD: String).Ar
+getCverDuelist{userlD:String):Arr
+getDVDSpecification(dydid: String
+isEntitledToF reeRental{promotior
+maingares:Strinal):void

+gettlewAdvld(login: String)int
+reserveslotfady_id:String slot_id:E
e srehavailableSiots(slotPosh: Strire
“getPageDesc(pagewd.String).Strﬂ

+§earchUnusedS\otsLlsl(adv_lli"St
+aUJ\IewAd(imageﬂ\e.Btring,s\ufStr
)

Figure 57. Database Access Classes in CMPE 221 Student Projects

Page 76 of 113

7.4.1 Reverse Engineering To a Use Case

Focusing on the new user registration process for the refactoring, the project documentation was
used to explore the design details -- in particular, a dynamic domain model in the form of a sequence
diagram. One was not to be found in any of the project documentation. This is probably due to the fact

that this part of the system was designed by an earlier team (before the three teams under study).

As a result, a study of the source code was undertaken with the assistance of a dynamically
generated sequence diagram. This dynamically generated diagram was developed as part of the research
prototype due in part to the need for this feature as called for by this case study. The User Interface
screen and resulting sequence diagram from the reverse engineering is shown below in Figure 58 and
Figure 59. This reverse engineering effort differs from current UML tool based approaches which

generate diagrams from source code. The diagram below in Figure 59 was generated from runtime

messages amongst objects in the Java JVM.

3 DVD Rental System - Microsoft Internet Explorer

File Edit ‘iew Favorites Tools Help

@ek - () |ﬂ @ _.ﬁ /IT\JSEarEh 'f‘\'(Favuntas e - :_’, @ - @ o R I 8

Address ‘-’Ej http:flocalhost:2090/cmpe 221 fProfileForm. jsp |B| Go | Links ej Bookmarks &=

Movie Rentals

Yaur profile has errors!! Flease Correct.

First Mame: [Test

|
Last Mame: [User |
Street Address: |123 Ore Wwashinton Square |
City: [5an Jose |

State: [Ca |
|

|

|

|

Home
— Ziprode: (35130

Email Address: [cmpe2? @sisu edu
Birthday: [138510-31
Credit Card No: [#111111111111111

Favorite Mowie Type: | SciFi [v]

Favorite Actor: [who |

Favorite Director: | |
Ilike to see new releases advertised until they are days old

(" Submit Profile)

&] Done

Not a member? Sign up!

gl
PRSNETCRTE S Sy

&) Local intranet

Figure 58. New User Registration Screen

Page 77 of 113

|cmpe221.Customer@3b5587 | | cmpe221.DatabaseAccessor@54782a | [cmpe221.CustomerProfilz @1 14011

/ """"""""""""""

gatFirstiama()
Jest .
getlastMameal()
Jser
etStrestAddress()

Key Methods for
Refactoring

natFincmdal)

Figure 59. Dynamically Generated Sequence Diagram Trace

The results from the dynamic trace reveals two key classes involved in the new user registration
process: the CustomerProfile class and the DatabaseAccessor class. It was also discovered that the key
database table in the MySQL database involved in this transaction is the Customer table. To proceed,
this information helped form a use case for the modeling environment which would be used to explore
the refactoring to the Hibernate framework. Below in Figure 60 is the source code which defines this

use case and the HTML documentation it generates.

Page 78 of 113

create use case create account described as "Customer wants to create a new account for the online store"

steps

page"

with

"System display create account screen asking for new userid and password"

not been taken and displays a profile registration

step 1 "Customer clicks on create profile link"
step 2

step 3 "Customer enters login user id and password"
step 4 "System verifies that the userid has

step

step
step

actor "Customer"
goal "Register for a new account"

extension new record at step 3

"Customer enters profile information and submits the request"

5

step 6 "System display profile confirmation page"
7 "Customer acknowledges the confirmation and submits a request to complete the .."
8

"System displays a successful registration message"

described as "System checks for an existing userid and creates a new record if .. "

extension registration confirmed at step 7

described as "System receives confirmation and creates the new account"

Eile Edit Uiew Faworites Took Help

TeHd3

v| B Go ks &]Bookmarks WP Vahoo! ¥ Vahoo! Mal

USE CASE SPECIFICATION

Customer wants o crests 3 new account for the online store

e -D - R a ® Pows Trees H - 9 -
Address -E'_} http:f flocalhost: 9090fProtokypefinds::. html
| toos | todes |
Metarmodel Use Cases o creste_account
Console [# Extensions
? Name

S0L (L) Diagram Create Account

WS (Docs) Classes Description

Trace [x] Objects [#]

Translog [+ Beference Actor Customer

Goal Register for a new account
execite | | clear
oo Fowster |
Step 1
Step 2
Step 3
Step 4
Step 5
Step b
RESULT

Step 7
Step &

Cuslomer clicks on create profie link

System display create accourt screen asking for new userid and password

Customer enters login user id and passward

System weriies that the userid has not been taken and displays a profie regisraion page
Cuslomer enters profle information and submits the request

System display profle corfirmation page

Cuslomer acknowledges the corfirmation and submits 3 request io complete the
regisration

System displays 3 successhul registaion message

registration_contimed

new record

Extensi
onsions | y——

System receives confirmation and creates the new account (Extension point defined &t
stap)

System checks for an exdsting userid and creates a new record f one does not exist
(Extension point defined at step 3)

% &) Local intranet
E = o e e

Figure 60. Create Account Use Case for Refactoring Case Study

From the study of how the current system handles the new user registration scenario, two methods on

the DatabaseAccessor class will be the target for extension and exploration within the active model.

The getUseridNewRecord() and the updateProfile() methods. To prepare for this, two extension points

Page 79 of 113

were introduced into the base use case: new record and registration _confirmed. Extension use cases
can then be defined to extend the behavior of the current system at these extension points. Two
extension use cases were created for this purpose as shown below from the generated use case diagram

in Figure 61.

Hibemae NewCustomer Exension

i Hihemae Corfim Profile Extension

Custamer Maonie Login

Hibemate Login E dersion

Buy Product

Check Out Extension

Check Staus

:i Avudlit Autherize Purchase Extension

Admin Return Produd

Figure 61. Hibernate Extension Use Cases
The Hibernate extension use cases add behavior for creating a new customer record and updating the
customer record, which are two distinct messages within the current system. Additionally, since
Hibernate will handle all of the database access activities, an Oracle database will be used instead of the
currently used MySQL. This situation will more realistically simulate a real life scenario where a core
architecture component (i.e. the Database Server) is changed and the migration of the code base planned

in iterations. The next section will discuss the details of the Hibernate component. This part of the case

Page 80 of 113

study leverages Hibernate in a standard way as specified by Hibernate APIs and technical

documentation.

7.4.2 Creating a New Hibernate Component to Map the Customer Table

An Oracle database table for the Customer data was created mirroring the logical structure of the table
from the MySQL database. Using standard Hibernate tools, a mapping file was created and the Java

class for the Customer object generated. A partial view of these artifacts is shown in Figure 62.

<hibernate-mapping>

Ble [dt perch Gpuote Heb
SOLsPLus: Release TO.1.0.2.0 - Production an Thu Npr & BY:RS:56 2OB4 =

<class name="app.hibernate. Customer" table="customer"> Copursant (c) 1982, 2004, Oracle. M1 rights reserved.

_n

<meta attribute="class-description"/>

Mapping to 18q Enterprise Fditian Release 10.1.0.2.8 Productisn
i Data Mining options

<id name="user_id" type="int" column="user id"> Oracle Table e

Mull? Type

—_n,

<meta attribute="scope-set">protected</meta> 1T NN imnesc1

HOT HULL VARCHARZ(15}
UAREHAR? {15}

" FIRST HAME UARCHAR? (20}
<generator class="increment"/> LOST_RANE URREHAK2(20)
STHEET_ADDRESS UARCHAR2 {20}
‘ ‘ CIIY\‘ Uﬂﬂli"ﬁl:l(‘!)
</id> Ztrcone UAREIARZ(1 1)
EMAIL UARCHARZ (30)
. . CREDET CARD UARCHARZ {15}
<property name="login" type="string" not-null="true"/> Mo uasciaga is)
IHTEREST UARCHARZ {100}
<property name="password" type="string" not-null="true"/> FAUORLTE_DIRITTOR vaRGHARE (20)
p p y p yp g BUDS_IH_POSSESSTOH HUMDER{11)
PUDS_TH_QUEVE HUMOER(11)
<property name="first_name" type="string" not-null="false"/> SA3 REFORE_STALE s
LAST_OATE_CUST_USED_S¥5 ontE
<property name="last_name" type="string" not-null="false"/> sa> | -
Ll L]
<property name="street_address" type="string" not-null="false"/>
Etc " S - it ipvn i 08
L — e ———
ML e &8 B-0-%- % NG ™y g fr = [B B
</class> Bi -2 - 5
R Aotk DL N

[T package app.nibecnate:
“impoct java.io.Zesialicsbles

<query name="app.hibernate. CustomerByUserid">

tmplements Seelalizsnle |

<![CDATA[

from app.hibernate. Customer as ¢

-....‘

where c.user_id = :uid

1= Generate Java
</query> Class using
Hibernate

</hibernate-mapping>
PP Tools

Figure 62. Hibernate Mapping and Generated Java Class
Thus, a new Java Class: Customer was created for use in an application. Using Hibernate, all SQL

queries and commands will be generated by Hibernate or can be customized using the Hibernate

Page 81 of 113

mapping file. One such customization that was done was a query for the Customer object based on

Userid (i.e.

Key).

This was defined in the mapping file as a named query — i.e.

app.hibernate. CustomerByUserid. A few convenience methods were also added to the Customer object

as class “static” methods to simplify the interaction with the simulation environment. An example of

this is the “updateCustomer()” method which uses the named query to find the Customer object and sets

the attributes of the object for update to the database. A partial view of this method is shown in Figure

63.

e

"Java - Customer.java - Eclipse SDE

File Edit Source Refactor Mavigate Search Project Run Window Help

;2 AOPSRC
B2 AOPSRCL.5

----- 1 CaseStudy
i CMPE221

----- T EprofileModels
----- 1.7 HelloAspeckl

----- 7 HellodavaTiger
----- -7 HelloPlugin

----- 7 HelloTomcat

----- 7 CrderFulfillrment
----- 7 projectlead . net
----- 17 Prototype

..... 107 SpaceiWar

----- 7 WebServiceClient

8% outline

BV e w
app.hibernate |-
import declarati = |
Custamer
o user_jd:I
login : Skri
password
firsk_name
last_name
street_ady| |

- O]

&

-rle s & 8 %-0-%-[%- EHFGE- | B
B vl v oy
[# Packa [J] DatabaseAccessor....)] HibernatehMewCusta. ..] HibernateConfirmp. .
public static wvoid updateCustomer |
=) <'==={> S3tring userid, 3tring fname, 3tring lnsme, 3tring addr, 3String city,

String st, 3tring =zip,
J throws Exception {

String email, String bday, S3tring creditcard

Transaction tx = null;
Jession session = null;
SessionFactory sessionFactory = null;

try {

System.out.printlni

LV T R . N B SO 5 I o R S o N € N G = O €
i

fuserid.=s " touserid M "o+
"fname = " + fname + " " +
40 "lname = " + lname + " " +
41 "addr = " + addr + " " +
4z REdEge B ograreaoieR W g
43 k& W g e
44 "zip = " + zip + " " +
45 "hday = " + bday + " " +
46 "email = " + email + " " +
47 "oocard = " + creditecard + "M

System.out.println("DEBUG: Config Setup™) :

52 Configuration config = new Configurationf():;

H; System.out.println|{ "DEBUG: Add Customer.class™) ;

config.addClass (Customer .class) ;

System. out.println({ "DEBUG: Create Session™)

zessionFactory = config.buildSessionFactoryi(): [~

[l o j

‘Writable Smart Insert 281

Figure 63. UpdateCustomer Method in Hibernate Mapping Component

Page 82 of 113

7.4.3 Using Model Simulating to Test the Refactoring

Using JBoss AOP interceptors, extension code was written to call the Java Hibernate Component
“Customer” to create and update customer data. This code is shown below in Figure 64. Note that the
code targets two different classes, one used in the simulator only (app.java.DatabaseAccessor), and the
other in the existing system (cmpe22l.DatabaseAccessor). This technique is equivalent to rewiring
software components at the message level (i.e. the AOP joinpoint).

public Object invoke (Invocation invocation) throws Throwable {
Object[] args = null;
Object result = null;

if (invocation instanceof MethodInvocation) {

MethodInvocation m = (MethodInvocation) invocation;

args = m.getArguments () ;

String targetClassName = m.getTargetObject ().getClass () .getName () ;
System.out.println ("TARGET OBJECT CLASS: " + targetClassName) ;

if ("app.java.DatabaseAccessor".equals (targetClassName)) {

String userid = (String) args[O0];
String fname = (String) args[l];
String lname = (String) args[2];
String addr = (String) argsI[3];
String city = (String) argsl[4];
String st = (String) args[5];

String zip = (String) args|[6];

String email = (String) args([7];
String bday = (String) args[8];
String creditcard = (String) argsl[9];

Customer.updateCustomer (userid, fname, lname, addr, city, st, zip, email, bday,
creditcard) ;

return "true" ;

if ("cmpe22l.DatabaseAccessor" .equals (targetClassName)) {
result = invocation.invokeNext () ; // invoke the base behavior first
try {

CustomerProfile p = (CustomerProfile) args[0] ;

String userid = (String) p.getUserId() ;

String fname = (String) p.getFirstName() ;

String lname = (String) p.getLastName () ;

String addr (String) p.getStreetAddress() ;

String city = (String) p.getCity() ;
String st = (String) p.getState() ;
String zip = (String) p.getZipCode() ;

Page 83 of 113

String email = (String) p.getEmail() ;

String bday = (String) p.getBirthday() ;

String creditcard = (String) p.getCreditCardNo() ;

String login = (String) p.getLogin() ;

String password = (String) p.getPassword() ;

userid = Customer.createCustomer (login, password) ;
Customer.updateCustomer (userid, fname, lname, addr, city, st,

zip, email, bday, creditcard) ;

catch (Exception e) {}

return result ; // return result from base behavior

return "false"
Figure 64. AOP Interceptor Code Calling Hibernate Component
During a simulation session, the invocation of the Hibernate component can be enabled and or
disabled via the execute use case command or directly against the extension object using convenience
methods. Figure 65, below demonstrates the enabling of hibernate features using a convenience method

and the invocation of the updateProfile method which calls Hibernate.

File Edit Wew Faverites Tools Help :.l
e - P - x & "] p Search) Favorites & M-& @ -5 @ ﬁ :\:’3 3
address | @] hitp:focahost: 9090 Prototypefindecbied 2o unks &l eackmarks WP Vahoo! | ¥P vahoo! pai
T L L llll........ =
- gy
s sun® 3 i Tay = r
| oo | bodeis | < prevy o % | Use Case: Create Account {Main Scenario) e e, | ouit
Metamodel Use Cases * L] h] .,
. L
Corsale [Exensions .“ Cust: Profile caling DatabaseA updateProfiel userid, fname, Iname, addr, city, st %o
*
Enable S0L (ML) A N zip, email, bday, crediteard) | = el
15 (Docs; Classes ¥
H’b rnat. = " userid, fname, Iname, hd
lbernate Trace [i] Objects [#] . E &
AN addr, city, st, zip, 2,john, doe, 123 Main, San Jose, CA, 98765, jonndoe@myemail.com, 1999-01-22, 123 K
Lrangiog (4 Beference ’.. email, bday, crediteard “‘
s J* \
2pp.java.CustomeProfile @1233662 .'... “‘I‘-
app igragm RSB I y ,l... --l--‘-‘
‘gﬁ. ava.DatabaseAccessw@agssgeﬁ, "t asssssssssmassmmsnmnent®
. 7S
4
R ‘e Get Input from
. [
D 2pp Jjava.Database Accassor@ag6eed ;
. e . User, Call
0 . .
: ~diabletibanate A Extension, Which
+login .
: +enableHibermate - | website | ‘ customerpr | ‘ :databaseac Calls Hibernate
- +qetlizerldNenRecord : Actor T T
n +updateProfile n M ; H H to Create DB
L " | |
. o at 1 ! .
. . il ! ! Record returning
“ shableHibemnste | y Create Profile Pag ' '
,,,,,,,, |
P :) ~ i T LYo the record key.
" Hibemate Enabled with » 4 -t . ! e, ~
‘. extensions: Login, New .‘ refati Profile(login, passidrd) “‘ 3 ! '.’ /
Customer, Confim *
< = * gell ¥ ! *
A ghnR), | A
. Update o 4 . /
75 < = getl)st ¥ /
ay .
Tapmnn® ‘0 ‘O
3 . 3
., T g% 3
. . .®
& L T Tt L & Loz imtranst

Figure 65. Enabling Hibernate in a Simulation Session

Page 84 of 113

The final results from the simulation session are shown below in Figure 66. The two methods:
getUseridNewRecord and updateProfile in the DatabaseAccessor class where invoked with results from
Hibernate shown in the sequence diagram. To validate the test, a query was used to find the record in

the Oracle database to confirm the creation and update of the record by Hibernate.

‘ “wehsite ‘ ‘ scustomerpr ‘ ‘ .databaseac ‘
Actor T

l
I LLL LTS
LA "y
s 1T,
.

ord)
rldiewRecord{login, pa

crefpte Profilelogin, pasa[/ird)
getseridrewRecord(login,

| .

“

ay abe®
"tagmummnnn®’

Update extensions
shown with

/ results shown in
! RRRLT diagram.

-llIl-lllllll4lllll..
LE]
Ty
«
‘e

userid !
ol ks ek e | . .
' | Simulation
1 I .
Ribfile Registration Pdg ! : Calling
ot — - - — - — - N
g ; i Hibernate. Both
i 753 1] 1
submit(formD ata) 1 ! Create and
: i
1 !
1]
1 1
1

v
*
LT nNE2 P [S 4-C003 38
BT SCHEMA: cmpe22]
. L Gy
s[ciry[stare | ziecd
= < Successful
et Enatéed wath . N
o S validation of
results via query
b= g to database.

Figure 66. Simulation Results From Hibernate Case Study

Page 85 of 113

7.4.4 Hot Deployment of the New Hibernate Component

In the simulation session above, the Hibernate extension was enabled programmatically via
dynamic JBoss AOP features. The code below shows how this is done.

public static void enableExtension() {
try f{
AdviceBinding binding = null;
binding = new AdviceBinding ("HibernateConfirmProfileExtension",
" execution (* app.java.DatabaseAccessor->updateProfile(..)) "
+ " ", null);
binding.addInterceptor (app.java.HibernateConfirmProfileExtension.class);
AspectManager.instance () .addBinding (binding) ;
System.out.println ("DEBUG: HibernateConfirmProfileExtension Enabled");
} catch (Exception ex) {

System.out.println (ex.getMessage());

Figure 67. Code that enables Aspects in JBoss AOP
To hot deploy the Hibernate Extension into the existing application, there are no facilities to invoke the
method above. As such, JBoss AOP has a hot deploy configuration file. Within this configuration file,
the aspect can be enabled. When JBoss AOP reads the update, it will enable the extension.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<aop>

<prepare expr="all (app.java.*)"/>

<bind pointcut="execution (* cmpe22l.DatabaseAccessor->login(..))">
<interceptor class="app.java.HibernateLoginExtension"/>

</bind>

<bind pointcut="execution (* cmpe22l.DatabaseAccessor->updateProfile(..))">
<interceptor class="app.java.HibernateConfirmProfileExtension"/>

</bind>

</aop>

Figure 68. JBoss AOP Hot Deployment Configuration File
Note, in Figure 68, above, the binding pointcut extends CMPE221 classes — the existing code
base. This was all done without modifying a single line in the current code. As a result, the new

Hibernate component can be easily removed, simply with a configuration change in the hot deployment

file.

Page 86 of 113

This case study only shows the migration to Hibernate using one database table and Java class
(i.e. Customer). As such, this is not a comprehensive database persistence solution — additional tables
and classes need to be created and tested. However, to verify whether or not this process actually works
and gathers results for the case study, the existing application must be used. To enable this, the new
Hibernate components have to co-exist with the existing code base. Aspects make this seamless by
adding behavior to existing systems without changing existing functionality — much in the same manner
as a Logging Aspect. The deployment of the Hibernate components were configured to work in
conjunction with existing code by piggy backing on the successful return from a normal create user to

MySQL. The results of a test is shown below, which confirms records created in MySQL and Oracle.

e

e LB e fpew Dem e “ -
-9 REP P K BSE-TOHIS

O L LT s e —— =] o s) okt W i Y il Y

Movie Rentals PP———

3 T J
] Dae
Sy 123 Fant Strewt
4 : B P

= Som Jore
= S CA
Zgosde EIRGS
Ensl pleniimyeim o
Bethday 19851031

» Create
Profile in
MySQL
R and Oracle E ——

bl R T [e

Movie Rentals
| SCHEMA: cmpe221

2 Vam memberihap profibe 1 apdatsd
| Emecule Quory
-
R
& .
o

Transaction

Successful!
RESULTS

e]

Figure 69. Test Results of Case Study: App Page, Hibernate Logs, & Db Tables with new Records in MySQL and Oracle

Page 87 of 113

7.4.5 Case Study Summary

This case study confirms the main thesis of this research on active models: that working both
from top down (with models and simulation) and bottom up (from the code or via reverse engineering)
better supports systems evolution. The case study’s work started out with the existing code and used
reverse engineering to capture a use case scenario. From there, the existing classes and code was
studied for refactoring (or evolutionary) design options. In the case study, Hibernate was chosen as the
target database persistent management component for the code base to evolve towards. Using model
simulation and the power of aspect-oriented programming (with JBoss AOP) the ease of evolving the

new user registration process was demonstrated.

Some limitations with the current research prototype were also noted. In reviewing the
CMPE221 student code base, various areas of the application and use cases were studied before one was
chosen. The new user registration use case was chosen because evolving that part of the system matches
well with the current capabilities of the prototype and its emphasis on method execution and sequence
diagrams. Other use cases, the Game Login use case (for example), did not match well because it was
designed using the Struts framework based on a state based event driven model. Also, to augment or
change the behaviors of “struts actions” in this framework requires numerous struts context objects,
which is currently not possible to pass to the simulation environment because the prototype only works

currently with simple String types. However, future work could easily address this.

Page 88 of 113

8. Analysis

The results from the case studies and experience from developing and using the research

prototype will be discussed in this section with respect to the challenge problems identified in Section

3.2 Key Problems. To summarize, these problems were:

o Evolution. Enterprise Systems are hard to maintain and evolve and are often replaced.

o Incompatibility. Domain models amongst multi-vendor applications are often incompatible.

® Requirements Mismatch. The problem of the evolving “dynamic domain model”

o Documentation Centric. The out-of-date documentation problem.

o Lack of logical/physical isolation. Configuration management of deployments is a

challenge with Java Application Servers.

o Distributed Teams. Teams are distributed making collaborative work a challenge.

In addition, it is noted that this work currently addresses only a subset of the vision for a fully integrated

Active System. Putting this into context, the work and case studies presented here addresses the

following areas:

Requirements

Active Syst
Case Study A. / ctive System
— OUE .' Active
Documents
\m] |:| H
« 5 ‘
o A
= l
Case Study B. - ."‘... . Q Actlve Models
[f' tans ¢ |:| s

-
S m
)
External_ ¢ ®|
® systeh®

The Active System Approach

‘
‘

K2 - Aclve

X -
L

o, oF ﬂahase
General
Purpose
Ph!’orm

Active
Framework

Use-Case Spec’s

s
SR,

& Qua'y Tool

Covered with
dynamic Use Cases

Partially covered:
subset of UML,
DSL but no query

lanouace.

Case Study C.

Figure 70. Areas of Active Systems Covered or Demonstrated in This Work

Page 89 of 113

Evolution

Well modularized solutions are easier to maintain and evolve. Conversely, a system that is not
well modularized can not be maintained and often ends up in an evolutionary “dead end”. At the code
level, agile approaches address this issue with test-driven techniques and refactoring. That is, by
architecturally reorganizing the internals of the software while still maintaining external interfaces, and
validating the refactoring using automated tests. As shown in Case Study C, refactoring can also be
applied at a higher level of abstraction — at the model level -- with the assistance of Active UML
Models. In addition, married with Aspect Oriented Middleware, the refactoring can be incrementally
deployed to coexist with the current functionality. As a result, validation can occur both at the model

level and in the actual system to provide a gradual migration path towards the new architecture.
Incompatibility

Incompatible domain models from multiple vendors were not addressed directly in this research.
However, having a textual programming language to describe UML models and a readily available
simulator for the language will help a great deal in solving this problem. In addition to SDK’s, API’s,
and technical documentation, Vendors of packaged solutions could make available the source code to
the underlying domain models (both static and dynamic) so a customer or value added reseller could
better understand the “semantics” of the model using a simulator. Furthermore, one vendor’s model can
be easily adapted to models of another vendor using the simulator, which could be used to integrate

various “multi-vendor” domain objects prior to actual implementation.

Page 90 of 113

Requirements Mismatch

The problem of the “dynamic domain model” is addressed with Active Documents in this
research. The solution, however, is an aged old programming language approach --basically, focusing
on capturing domain concepts into a declarative “domain specific” language (DSL). The DSL approach
in this research differs, however, from other DSL approaches, since the language itself focuses on the
semantics of UML (which is a general purpose language). Describing requirements (or documents)
using a language could be considered “code”, which is equivalent to the “code first” philosophy in the

Agile Community and the thinking behind “Code as Design” [54].
Documentation Centric

Active Documents addresses the problem of “static documents™ in current practice. But a deeper
problem related to static documents is the “static models”. It is my belief, from experience, that the
main reason behind a large amount of technical documentation currently in practice is due primarily to
the fear of complexity, or more precisely, the fear of one’s ability to evolve a complex system. I believe
that less documentation will be needed if we have interactive modeling environments that assist us in

maintaining software systems and automatically generate the latest documents whenever we need them.
Lack of logical and Physical isolation

This problem was described earlier as a key problem to managing the configuration of Java
Application Servers and the deployments of application components. This research did not address this
directly, but can offer a direction towards solving this using the concept of an “Active System”. That is,
the Active System could manage all the physical deployment aspects of the environment, freeing the
development work to only the logical layers. As such, techniques in code generation, configuration

generation, automated build systems, and version control can all be integrated into the physical

Page 91 of 113

infrastructure behind Active Systems. For example, when I create a “Class” in the modeling
environment, and proceed to produce “code” to support the class, I should not have to worry about
compiling this into a Java Class file, packaging it into some JAR file, and deploying this file (along with

a number of configuration files) into a Java Application Container.
Distributed Teams

Collaboration is “key” to the future of software development. And, as the nature of building
complex distributed system force us to work with colleagues from various corners of the world, we must
address this issue! Current software development methodologies have not addressed this issue directly.
The more distributed the team, the less we can feasibly have face-to-face time, and therefore, the more
we tend to documentation centric and waterfall approaches. Although, in the literature, it has been well
argued that waterfall approaches do not work, the solutions to these problems as offered in Agile
approaches do not scale well to large distributed teams who often don’t even speak to one another. The
success of open source software development teams offer some clues to how best to address this issue.
Successful open source project have one thing in common. They all have an automated configuration
management, code management, and regular build system. This not only provides a means to control
the evolution of the software, but also provides a means of communication amongst teams. Every
developer should be able to easily build a “sandbox” of the software and to contribute to the source code
repository without the fear of his/her contribution causing havoc to the developer community at large.
The infrastructure for an Active System could provide all of these benefits, but also provide a modeling
and simulation environment to enable creation of high-levels of abstractions and exploration — i.e. a

sandbox for models!

Page 92 of 113

9. Conclusion

This research investigated interactive modeling with UML diagrams and Aspect-Oriented
middleware. The research prototype explored the feasibility of implementing an integrated “Active
System” using existing open source AOP technology, the Java JVM, and a commercial relational
database system. In three case studies, the prototype was tested against three common problems in
software development. In the first case study, it was shown that dynamic documentation can be easily
generated and maintained when the semantics of the specification is expressed without ambiguity using
a declarative programming language. In the second case study, it was demonstrated that modeling
doesn’t have to just be visual diagrams. When models are dynamic and interactive, the modeling
elements themselves can be executing code, or better yet, live systems. Using the Cybersource
simulation infrastructure, the second case study demonstrated how calling a web service could be
integrated into an interactive sequence diagram. Effectively, the case study shows that when working
with interactive UML models, the level of abstraction can be mixed; that is, the modeling elements can
be pure models, real code, or real systems. In the third case study, it was demonstrated that systems
evolution can be supported with aspect-oriented technology, effectively, rewiring software components.
In the case study, the power of AOP was demonstrated from different aspects. First, AOP can be
leveraged to dynamically reverse engineer a live system. The research prototype implemented this
tracing mechanism using JBoss AOP code and the model diagram generation framework develop as part
of the active documentation facility. Second, AOP can be used in the simulator to explore the system
behavior when aspects are applied. The case study attempted to migrate an existing code base towards a
entirely different database architecture. Such an attempt using traditional software development with
static designs and documentation would be very difficult as the implications of such a change can not be

well understood until code is written. And lastly, the case study shows that system evolution can be

Page 93 of 113

done in small steps using AOP. That is, parts of the new code can co-exist non-intrusively with existing
code and gradually replace existing code over time. Effectively, with AOP, refactoring can be done at a

larger scale.

In implementing the research prototype, it was found that using the Java JVM’s reflective
capabilities requires explicit identification of classes and methods. That is, there were no query
facilities to search for classes. Unlike a database, where the metadata can be queried, the metadata
about objects in the Java JVM can not. This severely limits the power of AOP and forces each AOP
framework to implement their own language for pointcuts specification. In the implementation of the
declarative use case specification language, use case extensions where implemented as aspects. The
metadata for the use case extensions were stored in a relational database and as a result SQL was used to
implement pointcuts for use case extensions. This greatly simplifies working with early aspects in
interactive models. Further evolution of Java’s Reflective capabilities and perhaps integration with a
metadata repository would provide a better platform for implementing an interactive modeling

environment for exploring early aspects.

To sum up, this research work has demonstrated that the combination of interactive modeling
and Aspect-Oriented Middleware provides a powerful combination to tackle the current problems in
software development. Static documents can be active and always up-to-date, UML designs can be
interactive and more faithfully representative of the software, and systems evolution can be better

explored and implemented with confidence.

Page 94 of 113

10. Related and Future Work

This work is based primarily on the work of Ivar Jacobson and Pan-Wei Ng [3] and Diomidis
Spinellis’s Declarative UML rendering library, UMLGraph [71]. As discussed in the introduction, most
model driven development efforts to date (MDA [26] and Software Factories [16]) focus on automated
code generation and very little on simulation. However, a case study on executable use cases in [59]
and research work on testing UML designs [60] uses simulation as an important tool for validation.
More common, are approaches to executing use cases or UML using a virtual machine. For example,
the work on UML virtual machines from Trygve Reenskaug [17], Dirk Riehle, et al. [53], and
Executable Z [57]. The simulator in this research work is tightly integrated with the Java JVM and can
be considered a virtual machine for UML sequence diagrams and Use Cases. However, the main focus
of this research is not to implement a virtual machine that runs all of the UML models, but rather to
bring the dynamic models closer to the code. In essence, the simulator makes very little distinction
between a simulated object, vs. a scripted object in Groovy, vs. an implemented object written in Java.

As such, this research leverages the Java JVM itself as the execution environment.

This work also shares a common goal with the Model-Centric Software Development (MCSD)
work at Lockheed Martin [61], which aims at integrating the models into every aspect of software
development, but, differs in the way it deals with legacy code. In MCSD, reverse engineering is used to
create models from code. In our approach, legacy code is either incorporated directly into the
simulation models or wrapped by a simulated component. In addition, since we work at the JVM
bytecode level, the simulation models can also incorporate third-party components where source code is

not available.

Page 95 of 113

The body of work in generative software development [1] provides many of the techniques used
in this research. Currently, feature models from product line engineering and domain analysis methods
are being considered at the metamodel layer for integration with the use cases and UML models. In
addition, there seems there is considerable synergy and promise in integrating with the Naked Objects
Framework [28] and the further exploration of additional language constructs for expressing design

concepts, such as the UML state diagram, design patterns, or other AOP design techniques [69].

On the user interface front for modeling, additional rendering tools will help provide different
perspectives against the same metamodel. For example, integration with TouchGraph [68] to render
different aspects of the model and link them with one another to provide for a dynamic view of

traceability.

Page 96 of 113

11. Appendices

11.1 Sample UI Screens From the Research Prototype

11.1.1 Dynamic Use Case Document

Views into Meta
] Tecks - Mcissen iaeist Exp Madel... b [-0E]
Fis EE Yeow Focaies Toof USE CESES g
puct - X O Features = G- 3
Aot] Wbp e sl RIS Cumpunems w 00 Lok) Bociearin W Vehoo! Y9 Viehoo bl
Cu“figuraﬁun USE CASE SPECFCATION - |
Etc... Lt
N [
Daeciiplisn i o i B sy I L i I i i S0 08 P e Active
— Documents
il an
Console for bt L Ll_se Ca_ses
Declarative i / Derived directly
Programming [7 from Meta
with A DSL T T .
Hap 1 Tk cousiorl el I il i 08
LT T sl clisgirys trom o 0f roucees e Fuid P, i roear Pl s
Eep ¥ Tha cusicersin chacic, oo cond b & derred (oo bype nd period o sy
Sep | T 4y gl Mo 06l B chegiinyd W s s Pl D il
g T cusiomes mepl. i tetarvalon oo e chossn room{)
e Tha Tyl reérsar et B oo ke B ko
Trak ririira ibn & Sl 10 Pab CUnNrl sl s OOITRON Ml] S -
L PO
The Pasulbs... 2] The s cous Iermarclen.
B - ocnriame fonciwtcn |
Lxderalan [oriarption
Pascest: | T T T
£ . -) N _ i . ‘j-l.lh'ﬂ_rﬂ:“

Page 97 of 113

11.1.2 Interactive UML Model

-

(=]

file [dn Wiew Fyeorites Tok Help

|E!!II:I: | el - @ @ @ E-]itu:h i_;!ruamu |E D- IE|] -:E @ q ﬂ ‘3

Agddress .]m;xmmahnt:mfﬁmtm'!ﬁux.hﬂ

| ool | Meta biodels |
Doifee Browatr L Cines
Coewgnd Corsnls Exiemiong
SOLHTME 00 Emlees
SOLOMMY 0 Ay COsde)

Direct

Manipulation of
Meta Model via
DSsL
Programiming

&) oone

] o co | Unks] Sookmaris “r Vahoo! ¥ Vahoo! Mal

Beserve Room
ID: razarva_room Descripticor: Tha wsa cass bagins whan a customar wimfs 10 resorra & roo)

Generated UML
[Rasaned view from Meta
Model

1.1: showRocmeAvailabled

11 teiaveDatatelroof
o detajls with rates

sfgfroomywinogtes

slgfrepmendnrates

1,1 eomputéCostiraom. parind

11,15 addRoemToResenadenirosm

3111 addRoomiroom) &
ok

P e iin e e
L1 sompuisRessnasoniateal

AL naveRases0 |
Prtey ___________

31 of FOnnS wilh rates

Inalcogtforoeguesl. _ _ . __

ko

¥
BoA i uno_—_u.-u,.n.qr o
-

510 makeReservationiionm. parod

& Lecal imranea

Page 98 of 113

11.1.3 Simulation Environment

= hip: / flecalnst 9090/ Frofkype serviat/Consoleserviet - Mrosoft Intermet Explarer 068
fe [dit Wiew Fgeorites Took Help f
Snea - (2] - (%] [€) (8] &sewer @rwores (6] 6)-E S -~ QW 3
Agdress @8] hetp:fjiocahost: 9090 Frotobyps uervist)ConsolsSarviet ﬂ wah Go | Linkz @] Booimz ¥
-
(cprov) (poaton) Use Case: Reserve Room (Main Scenario) (o) m

sExecution of Model via Run-Time Code Generation {i.e. For Use Cases,
Scenarios, etc...}

Java 1.5 Programming Language { Annotations), JBoss AOP, and the Java
Reflection API

*Integrate with Design Models and Implementation Code via Meta Data Support in

! | ‘Rasarv eR comHandlar | h Room

relriey eRoo ms()

q ratriv aDatails{room)
Room datails with rates

Lisd of reoms with rales

i of rooms with rate

al

] Done & Local intranet

Page 99 of 113

11.1.4 Dynamic Use Case Diagram

3 4
) Tools - Microsoft Internet Explorer 006
File Edit View Favorites Tools Help |
Do -7 - (0 B @ Diower Do @ @@ 5 - D Q8 D
Address @] htp:/flacalhost: 9090 Protatypefindex, html E ssb Co | Links @& Bockmarks "¥P Vahoo! i

|___ooks | Hodels |
Eriiser Lse Cases
| Console Extensions
S0L (L) Diagran
WS (Docs Classes
Java tuery Objects
! Check Order
Demo Agp Roles Audit Authorize Purchase E dension
Cuslomer Buy Product
. Check Out Extension
‘create use case I
‘heck _order described |
as "Customer wmnts to !
heck order status_" i
with |
actor 'Customer" |
goal "Check Order |
‘Status" }
|
L
&] Done & Local intranet P

Page 100 of 113

11.1.5 Direct Interaction with Java Objects during Modeling

File

2 Tools - Microsoft Internet Explorer

Edit Wiew Favorites Tools

Help

O © HRA® Puo e @ 2 2 39-UOE DB

Address [{&] hitp: flocalhost:3090iPrototypefindesc himl

Go I Links &] Bookmarks ¥ Yahoo! ¥ Yahoo! Mai

BEE
L

Tooks | Hodels |

Use Case: Buy Product (Main Scenario)

|E3

[

4 Local intranet

Metatmorsl Us Cases
Consile [#] Extensions
0L ML) Diiaciram
5 ;Docs: Classes
Trace [x] Ohjects 7]
‘ onlinestor ‘ ‘ shippingse ‘ ‘ paymantssr ‘ ‘ auditlog
ctir T T T T
m I I I I
app.Java.OnlineStore@1044978 ! | | |
app.ava P avmentSe rice @G acta showCatalog) ! ! !
app.javaAuditLog @1e9d17e I I I
i8va Shipping Semwics @1509260 | Onine Catalog | | | | |
i i i
" | | |
19 ctProducts(productist) 1 1 1
app java Payment Service@sEacta void ! ! !
PaymertSarvice R - | | |
I i i i
+authorizePayment . ! ! !
checkO) | i |
I I
Q=S hippingO ption s(! !
autherizePayment [— - | |
EARRRRRARRRERTRA] S‘hmpmg options and rats \ |
95766 i i i
| | |
220 <Out Screen th UPS, FEDEX, arjd[Standard Shinping | ! !
I [= s an i I I
| | | |
Transaction succeeded . I ! !
e , delivRIyType) ! | |
i i
checkPrice(arofiucts, fromAddress, toAddrgss, deliveryType) ! !
tatg date | i
I I
| i 1
Total [post and payment optjons ! | 1
[*--—==--=- an | | 1
I I i i
o i I I
L BESCRNREBRIWOVE S | OwenF

Page 101 of 113

O™ i 0 1Eram

11.1.6 Live System Reverse Engineering to Sequence Diagram

T i e st 11

Enginee

D¥namit

Reve
ring

Page 102 of 113

11.2 Metamodel

FEATURE TYPE
[featurs_type: VARCHAR2{255) |
| feature_type_name: VARCHAR2{255) |

INTERFACE_OPERATIONS

oper_id: VARCHAHZLZE\E
interface_id: VARCHAR2(255) (FK)

| oper_name: VARCHAR2(255) |

STATE_MODEL

class_id: VARCHAR2(255) (FK)

Feature Groups: Feature Types:
1. exactly one 1. common

2. zero or one 2 optional

3. at least one

4. zero or more 4 default

3. parameterized (todo)

6. feature group
FEATURE_GROUP
[featur=_group_type: VARCHAR2(255) |
|ieah.e . proup_name: VARCHARZ(255)

Feature/Use Case Category:

1. kernel
2 optional
3. variation point

¥
FEATURE
feature_id: VARCHAR2{255)
feature_group_type: VARCHARD(255) (FK)
K,

WVARIATION_POINTS

wariation_point_id: VARCHARZ(255)
usecase_id: VARCHAR2{255) (FK)

A

INTERFACE

nterface_id: VARCHAR2{255)

name: VARCHAR2(255)

&

attr_e

CLASS

ATTRIBUTE

typs: VARCHAR2{255)

To Do's:

1. output can be class

2. attribute type can be class

3. state model [events, states,
connection to operations)

OFERATIONAL SEMANTICS

name: VARCH.'\RZ(ZSE‘

output: VARCHAR2(255)
exception: VARCHAR2{255)

To Do's:

1. class invariance
2. operational contracts

Luanaim _point_name: VARCHAR2(255)

EXTENSION_SITE

Extension. i VARCHARA(235) (FH)

—E4] feature CWARC pE—
ieamjmvmm) (FK) |
feature_name: VARCHAR2{255) f
rl;_ | MPLEMENTS
i class_jd: VARCHAR2(255) (FK)
cEaTURE UsE cal nterface_id: VARCHAR2(255) (FK)
feature_jd: VARCHARZ(255) (FK) ;
usecase_id: VARCHAR2(255) (FK)
variation_point_id: VARCHARZ{255) (FK)
| category: VARCHAR2(255)
USE_CASE FLOW
El‘% flow, xt\.rmcum:zs.ﬁ}
usscase_jd: VARCHARZ(258) (FK)
_name: VARCHARZ(265
USE_CASE lm Y l J
usecase_jd: VARCHARD(255) |
usecase_name: VARCHARZ(258)
usecase_d J - VARCHARZ(4000
= H actor: VARC 55} J
goal: VARCHAR2(265)
tion: VARCHA S
i sondon: VARCS : USE_CASE_FLOW STEP

USE_CASE_EXTENSION

Lmdu\snn_mude: VARCHARZ(255) (FK} J

_id: VARCHAR?{255)

usecase i

class_id: VARCHAR2(255)

OPERATION

‘oper_id: VARCHARD(255)
class_id: VARCHARZ|25E) (FK)

vARCHngztsﬁ\J[F K)

Exhnsnuﬂlﬂne\!

Exhnsnuﬂ 1_type: \MRCHARZ[ZE&}
goal: VARG HAR2(255)

jfion: VARCHAR2({255)
exit_condition: VARCHAR2{255)

55)

_mode: VARCHAR?2(255)

EXTEMSION Mof

| extension_mode_description: VARCHAR?2(255) |

Extension Modes:

1. before
2_ after
3. around

Types of extensions:

1. single step

EXTENSION_MESSAGES

role_description: VARCHARZ{255) l

MESSAGES |

oper_name: YARCHARZ(ZE5)

2. multi-step (todo)

3. entire use case (todo)

4. behavioral properties
(e.g. logical event) (todo)

&

message_seq: NUMBER
extension_id: VARCHAR2{255) (FK)

Page 103 of 113

11.3 DSL Syntax and Examples

create use case reserve room described as "The use case begins when a customer wants to reserve a room.

(or multiple rooms)"
steps
step
step

step
step

step 6 "The system reserves the room for the customer and displays

confirmation number and check-in instructions."

with
actor "Customer"
goal "Reserve a room"
extension

making reservation at step 5

described as "Making reservation occurs while the

meeting the selection criteria."

-

"The customer selects to reserve a room."

"The customer makes the reservation for the chosen room(s)."

= Tools - Microsoft Internet Explorer

File Edit Miew Favorites Tools Help

[a]back = [»| - [x] [&] [@] [a]search [@]Favorites

(®)- |

SO-OYE 3

Address @] hetp:flocalhost: 3090/Protatypefindex,html

the

1
2

step 3 "The customer checks room cost for a desired room type and period of stay."
4 "The system computes the cost and displays the information to the customer."
5

system 1is checking for room

"The system displays the type of rooms the hotel has and their respective rates."

reservation with a

availability

66ee

ﬂm@um@mmmwmmwmmm

Active Hodels

USE CASE SPECIFICATION

Thie use case beging when a customer wants o reserve a room. (or muliple rooms)

Brotiser Use Cases B
i reserve_room
Corsile Extensions
I = Name Reserve Room
QL ML Classes
Juh Console Objects Description
Demo App Database -
Actor Customer
Goal

[esecute | (clear | Reserve aroom

Main Flow
) Foustes ___Joescripton |

Step1 The customer selects o reserve a room.
Step 2 The: system displays the type of rooms the hotel has and thelr respective rates
Step 3 The customer checks roam costfor a desired room type and period of stay
Stepd The system computes the cost and displays the infarmation to the customer.
Step § The customer makes the reservation for the chosen rooms).
The system reserves the room far the customer and displays the reservation with 3
FRESTLT: Stepf confirmation number and check-in instructions.
making reservation Making reseration nccur.s uuhilg the system is checking for room availabilty meeting te
fing resenrtion selection criteria. (Extension point defined &t step &)
usecase Use Case Level Extension.
. T =)
&] Done &J Local intranet

Page 104 of 113

.i
I
|
|
|
|
|
|
|
W

update use case reserve_room

add main scenario

1.1 from

1.1.1 from

1.1.1.1 from

3.1 from

3.1.1 from

messages
System to Screen
requesting showRoomsAvailable
returning "List of rooms with rates"
Screen to ReserveRoomHandler
requesting retrieveRooms
returning "List of rooms with rates"
ReserveRoomHandler to Room
requesting retrieveDetails with "room"
returning "Room details with rates"
System to Screen
requesting computeCost with "room", "period"
returning "Final cost for request"
Screen to ReserveRoomHandler
requesting addRoomToReservation with "room"

returning "void"

3.1.1.1 from ReserveRoomHandler to Room

3.1.2 from

requesting addRoom with "room"
returning "void"

Screen to ReserveRoomHandler
requesting computeReservationRates

returning "List of rooms with rates"

3.1.2.1 from ReserveRoomHandler to Room

5.1 from

5.1.1 from

requesting retrieveRates
returning "Rates"
System to Screen
requesting makeReservation with "room", "period"
returning "Confirmation number and instructions”
Screen to ReserveRoomHandler
requesting makeReservation with "room", "period"

returning "List of rooms with rates"

5.1.1.1 from ReserveRoomHandler to Room

requesting updateAvailability

returning "void"

5.1.1.2 from ReserveRoomHandler to Reservation

requesting generateReservationNumber

returning "void"

5.1.1.3 from ReserveRoomHandler to Reservation

requesting createReservation

returning "void"

Page 105 of 113

(=) Taols - Microsoft Internet Explorer 006

File Edit iew Favorites Took Help Es
[«feack « [] - [x] [&] (@) [&]searcn [@]Favories @ Lo s, S
Address @http:tﬂn:a\hnst:eneufpmtntypafundex.html B #*k Go Links @ Bookmarks “¥p Yahoo! “¥? Yahoo! Mail
-
Reserve Room N
Erauser Use Casos ID: raserve_yoom Description: The use case beging when a customer wanis o reserve a room. (or mulfipls rooms)
LConsole Exdensions
S0l (HThL) Features Customer [| System Screen ResernveRoomHandler Room | | Reservation
SOL (ML Classes Step 1
Jhd Console Ohjects 1.1: showRoomsAvailabla()
Demo App Database 111 retrisveRooms()
1.1.1.1: retrieveDetails(room),
o [Room details with rates
exeute) (clear) | List of rooms with rates |
| Listofrooms with rates |
Step2_ |
Step 3
3.1: computeCastiroom, period)
3.1.1: addRoomTaof ion(roon),
3.1.1.1: addRoom(room)
woid _ _ _ __ ________
poid |
3.1.2: computeResevationRates()
BESULT: 3.1.2.1: retrieveRates() '
Rates __ __________
| Listof rooms with rates |
| Final costforrequest _ _____ _ _ |
| Step 4_ |
Step 5
5.1 makeF ion(room, period)
5.1.1: makeReservation{room, period)
5.1.1.2; generateR: WMUmber() -
I > woid z
&] Done & Local intranet

create use case extension waitlist_ extension

described as "put the customer on a waiting list if no rooms are available"

with
goal = "a waiting list reserved for the customer"
entry = "no rooms available"

returning error
advice steps

step 1 = "A make reservation request failed due to room unavailability."

step 2 "The System creates a pending reservation and returns the details"
advice scenario messages
1.1 from Extension to WaitingListHandler
requesting putCustomerOnWaitList with "customer"
returning "Waiting list reservation."
1.1.1 from WaitingListHandler to Reservation
requesting generateReservationNumber
returning "reservation number"
1.1.2 from WaitingListHandler to Reservation
requesting createPendingReservation with "reservation number"
returning "Success"
1.1.3 from WaitingListHandler to WaitingList
requesting addPendingReservation with "reservation number"
returning "Success"
extending

reserve _room at making reservation returning error

Page 106 of 113

K=

File Edit “iew Faworites Tools Help

|Z|Back | ‘zl ‘El |E| ‘zlsurch |E‘Fa\mr\tes

Tools - Microsoft Interner Explorer

D ®EE - e 3

Address | &] http:jflacalhost:9090)Protatypefindex html

sctive Hodels

Bromser Use Cases
Console. Extensions
SOL (HTML Feabures
SOL ML Classes
Juhd Console Uhjects
Demo App Database

| execute | (clear)

ﬂ ssb Go | Links @ Bookmarks “¥P Yahoo! WP Yahoo! Mail

USE CASE SPECIHCATION

L] watist_exdension

Name iaitist Exdension

Description putthe customer on & wating list Fho rooms are awailabls
Actor ExtensionPaint

Goal

a maiting list reserved for the customer

Returning Error

fowstep ____Joescrpton |

Step1 A make raservation requestfailed due to room unavaiabilty
Step2 The System creates a pending reservation and retuns the details

Extends

Pointcut Deseription

Making reservation oceurs while the system is checking for room availability meefing the

eserve_room
= selection criteria.. This Extension ocours at extension point: making_res encaiion

EESULT:
retrning error flow
ExtensionPoint
a C
&] Done

[Extensian]

WaitingListHandler

WaltingList

1.1.1: generateReservationhul
reservation number

AiJ Microsoft Office OneNote 2003

The screen clipping was created successfully,

YYou can view the screen clipping in a side note window, or
paste it inko your notes o into other programs,

11.4 Software Tools and Development Frameworks Used

e Oracle Database 10g XDK for SQL to XML to HTML document generation

@
@

e JBoss AOP Framework (during the course of the research initially worked with 1.0, later updated to 1.1 and

finally at version 1.3)

e Java 1.5 (Tiger) SDK

e Groovy Scripting Language (version 1.0 — JSR05)

e Eclipse (various versions: SDK 2.0, 3.0, 3.1, and Jboss IDE 1.5)

e Tomcat4.1.30

e Hibernate Framework 2.1.8

e JavaCC Parser Generator Toolkit

e UML and Graph Rendering Frameworks: UMLGraph, Sequence, and GraphViz

Page 107 of 113

————————————x,

12. Tables and Figures

List of Tables
Table 1. Summary of Contributions from Machine-Independent Programming..............ceceeeverieiiiinineeieieee e 10
Table 2. Summary of Contributions of Virtual MacChinesccceeciiiiiiiiierieeee ettt ne e 11
Table 3. Summary of Contributions from Programming Language Interoperability & Domain-Specific Languages............. 12
Table 4. Summary of Contributions from Increasing MOAUIATILYcceeruiriieicierierieie ettt sreeee e enne e 13
Table 5. Innovations and Problems that Motivate Active MOdElS..........c.oouiiiiiiiiiiiiieeee e 32
List of Figures
Figure 1. Influences on MDA and SOftWare FACIOTIESc.eeouiriiiiiiieiieeie ettt ettt ettt te e e ee e e 18
Figure 2. Influences on BabyUML (reproduced from [307])cceeciiiiiiiieiieiieiiiie ettt ettt steeste e eseesaessaesseeseeenseenns 20
Figure 3. Logging not modularized in Tomcat (reproduced from [34])ccooiiiiiiiiiii e 21
Figure 4. Extracting Operational Contracts (diagram adapted from [49]).......cccoviiriiniieiiieiieieseeeee e 26
Figure 5. Oracle Dictionary Tables For user “tables” and “COIUMNS...........ccoooiiiiiiiriei et 27
Figure 6. Sample Database Trig@er TeMPLALEc.cccverieriieiiieieiiesiereeieete sttt e st ste v e seeesteesbeesbeessesssessaessaesseesseessesssesssenns 27
Figure 7. An Example of a committed transaction captured by database trigers.cceerureierieriieieeieeie e 28
Figure 8. Sequence Diagram Showing Operational Contracts Extracted Using Database Triggers.cccceveververeerieeeennenne 29
Figure 9. Tracing Aspect in Aspect] with before and after advice on constructors and method callsc.ccoveerieiieinnne 30
Figure 10. Login Scenario Demonstrating TraCing ASPECLccuerverierieriieiierterieeteeteseeesteesseesseessesssesseesssesseessesssesssessesseenns 31
Figure 11. Traditional Software Development & MDA approachcoooiiiiiiieii it 34
Figure 12. Software Product Lines & Generative Software Development.cccveovieiiiiiniinienieiieieeie e 35
Figure 13. Software Factories Tools for Product Lines & Generative Software Developmentccccoeoevieiienienreieneene 36
Figure 14. Active Systems Integrate Domain-Specific and General-Purpose Development Methods..........ccccccevevencninennee. 37
Figure 15. UML Models and Their RelationShipPs.........ccverieiieieriiiieiiee ettt ettt et sne s eeeaeeeesnee e 38
Figure 16. Metamodel fOr USE CaSES......cc.eccviiieiiirieriietieteeteesteesteeteestesseesteesseessesssesstesseesseesseesseessesssesssesssessesssesssesssesssesssenns 39
Figure 17. Architecture of Experimental PLatformoooooiiiiiiiii ettt 42
Figure 18. DSL Non-Terminal For Create Use Case COMMANAcceeeuiiiiiieiieniieiieieeeeeeesieeteeseesessneseeesseeseessesssessnenns 43
Figure 19. Example of JavaCC Integration with Java DSL Interpreter ObJectS.........covierieiierienienieieieee et 43
Figure 20. DSL Interpreter Command Class DIAZIAIMNc.eecvieieiiirieiieeieiieseeseesieeteeeteeseesseesseesseessesssesssesseesseessesssesssesseenns 44
Figure 21. UML Sequence Diagram for DSL INterpretation..........coceerueerierieiieniet ettt eeeee e ne 45
Figure 22. Object Model For Create Use Case Command (Class DIiagram)ccceeveevieieeierieniiesieeeeseeseesseeseesessesenenns 46
Figure 23. Debug dump() method in Create Use Case COmMMAN...........cccceeruieiiieiiieiiiniieeiiesieeie ettt ee e seee s e enee e 46
Figure 24. Example Create Use Case Command & Parser RESUILSccivviiiiiiiiniiiniiciieieeeeeecee ettt 47
Figure 25. Portions of the execute() command for Create Use Case Commandcceereererienienieniesesee e e eee e 48
Figure 26. Example Update Use Case COMMEANG...........ceccvieeiirieriieniieieiiesiesteesteeseetesseesseesseessesssesseesssessssssesssesssesssesssesseenns 49
Figure 27. Object Model for Update Use Case Command (Class Diagram)cccceeveeriieierieniierieeieeiesiieseeiesee e 49
Figure 28. Example Create Use Case Extension COmMMANd...........c.cccveruieriieriiiieiieiienie et eteeeesteesteesseessesssesseesseessesssesssessnenns 50
Figure 29. Object Model for Create Use Case Extension Command (Class Diagram)ccceeeereereerienoienieneeneene e 50
Figure 30. Example Execute Use Case COMMEANGceeovieiiieiiiiiiieiiieiieeestesieesteesteesvesseesseesseessesssesssesseesseessesssesssesssesseenns 51

Page 108 of 113

Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.

Object Model for Execute Use Case COMMANG...........ceevrieiieeierieiieniieieeiesteseesteeseesseessesssesseesseessesssessaessessseenes 51
Examples of DSL Code for Diagram GeNETatorS..........eecueeueiruieriieieeieeteeieesieesteeste e eeee e seeeseeeneeenteeneeeneesseesseenes 53
Example DSL Code Generator for Use Case Diagrams (partial VIEW)ccceveverieriieriieienieneeieeeeeeeseesee e 54
View Diagram COIADOTATIONceuiiuieieieieeit ettt etie ettt ettt et et e te e eesaeeseee bt enaeemeesseesseeseenteenseensesneesseesseennes 55
View Document CollabOration.co.eoiiiriririeieietesie sttt ettt sttt ettt ettt sbe bt et et e besbesbeeaeeneas 56
View Use Case XDK Page and XSLT TemPIAteccccevieriieiieiieieeiieieee ettt 56
Simulation Collaboration (Sequence DIAGram).........c.eccueriierierieerieiiieiieseeseesteeeeseesseesseesseessesseesseesseesseessesssesseesns 57
Data Model for EXecution State TabIesccoeierieriieiieieeieeiese ettt ee sttt ettt eneeeneesneesneeees 58
Sample Code Generated by ReSearch ProtOtyPe.......c.ecieriieiiieiiieiiiieiiese ettt ettt sreesbeebeesaessnesene e 60
Basic Support for Documenting USE CaSEScceruieruieruieiieientieitienieeteeeesieesteesseeaeeneesseesseesseenseensesnsesseesseesseenses 61
WYSIWYG HTML Editor SUpport FOT USE CaSESccvirierrieiieiieieeieseesieeieeteseeeseeesseesesssesssesssesssesssessessseenes 62
Buy Product Use Case Specification Document (from [67])c.veeeereerieierie ettt 63
Buy Product Use Case Specification using a Declarative Languagec.cccevvevieriieriieiieieneeeere e see e sveenes 63
Generated HTML Use Case DOCUMENL.ccueiuieiiieiieie et eiesttete et eeee et et e it e e estesseesseesseensesneesneesneesseaseenseenseas 64
Example of a Use Case Extension DeClarationc.cciecvieieeieiienieeiesiesieseeste e ere e sreesseesseessesssessnesseesseesns 65
Example of Use Case Extension Sequence Diagram Interaction Frame............ccocoevveiiiiiniinienieneeecenceceee 65
A JoIntpoint MOAE] fOT USE CASES ..o.vvevieiiiiiiieiiieiteeie et et ete et eteebeeae s e e steesteessessaesssesseesseesseesseesseessesssesssessensses 66
Adding Sequence Diagrams t0 USE CaASEScueeuieruieriieitieiieieeiesieesteeteetesee st e steeteeeesneesatente e teenteeneesneesseesneenns 66
Generated Class Diagram From Use Case Metadata...........c.ocvevvieriieiirieiienienie et seeeseee e eseesseessesssessnessaessnesnas 67
Example Use Case Execution Command with an EXtENSIONcccoeiieriiiiiiiieiienieeee e 67
A Simulation Session with a Returning Error Advise Enabled...........ccooovvviiiiiiiiiniiiciceeeeeee e 68
GIOOVY COAC EItOT ... ittt ettt ettt et et e st e et et e s e eaeesbeeseenseemsesmeesneesseanseenseenseeneenneens 69
Simple Input Dialog for @ Java MEthodccouiiiiiiiiieiciiciece ettt teesbeebeesseesnesnne e 70
Options and API for Integrating with Cybersource [74].......ccveierierieiieieeieeie ettt 72
Payment Service Java Code for Calling CyDEISOUICEccvievieieiieriieiieieeteeteetee e ereeereessesseesseesseessesssesseesssesns 72
Test Results From Calling Cybersoure via Web SEIVICES.ceeruerierierierieeieeeiesieesie et eeeeneeseee e eeeeneesneesneesseenees 73
Database Access Classes in CMPE 221 Student Projectscc.ecierierierieiieiieseesie ettt esreesesesesaeseeseenes 76
New User REZISIIAtION SCIEEMc.eeiieiieiiietieieete ettt e st ste ettt et eeeeess e te et e eneeesaeeseeaseeseeseenseeneesneesneenseenes 77
Dynamically Generated Sequence DiIagram TTACE.........ccievirierieriieiieieiieseeste e eeesee e esseeseesseesseessesssesseesseeses 78
Create Account Use Case for Refactoring Case StUAYocueeoueeieiieiieiiee ettt 79
Hibernate EXtENSION USE CaSES......cuertirtirtiriirtiriieitetetente st st sttt et et e e st et e s be st e ebe e st esten s e besbesbeebeeseententenbesbesseeneeneas 80
Hibernate Mapping and Generated Java Classcoeeruieriieieeienierieerie ettt ettt enteeneesneesreesneeees 81
UpdateCustomer Method in Hibernate Mapping COMPONENL..........cc.eeveeierierrierreeiereeseeseesseesseeseessesseesseessesssens 82
AOP Interceptor Code Calling Hibernate COMPONENT..........cccueeieiieriierierieeie ettt eeeeeee e e ee e sneesreeseeenees 84
Enabling Hibernate in @ SImulation SESSIONccverviecuieiieieeiesieesieeteeteseeseesteeseesseessesseesseessesssesssesssesseesseesses 84
Simulation Results From Hibernate Case StUAYcceeoiiiiiiiiieieeeeeee ettt 85
Code that enables ASPects N JBOSS APcooiiiiiiiiiiieiiecieieeie ettt se e sbeeseesseesbeessessaesseesseesns 86
JBoss AOP Hot Deployment Configuration Fileccoooiiiiiieiieiiecesee e 86
Test Results of Case Study: App Page, Hibernate Logs, & Db Tables with new Records in MySQL and Oracle 87
Areas of Active Systems Covered or Demonstrated in This Workcoccooiiiiiiiiiiiiieee e 89

Page 109 of 113

13. References

[1] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[2] Robert E. Filman, Tzilla Elrad, Siobhan Clarke, and Mehmet Aksit. Aspect-Oriented Software Development.
Addison-Wesley, 2005.

[3] Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development with Use Cases. Addison-Wesley, 2005.

[4] Walter Hursch and Cristina Lopes. Separation of Concerns. College of Computer Science, Northeastern University,
1995.

[5] Brett McLaughlin and David Flanagan. Java 1.5 Tiger. O’Reilly Media, Inc. 2004.

[6] Ira R. Forman and Nate Forman. Java Reflection in Action. Manning Publication. 2005.

[7] Harold Ossher and Peri Tarr. Multi-Dimensional Separation of Concerns and the Hyperspace Approach.
Proceedings of the Symposium on Software Architectures and Component Technology: The State of the Art in
Software Development (KLUWER, 2000).

[8] Peri Tarr, Maja D’Hondt, Lodewijk Bergmans, and Cristina Videira Lopes. Workshop on Aspects and Dimensions of

Concern: Requirements on, and Challenge Problems For, Advanced Separation of Concerns. Springer-Verlag,
2000, ECOOP 2000 Workshop Reader. See Workshop website http://trese.cs.utwente.nl/Workshops/adc2000.

[9] Thomas Patzke and Dirk Muthig. Product Line Implementation Technologies — Programming Language View.
IESE-Report No. 057.02/E, 2002.

[10] Stefan Kettemann, Dirk Muthig, and Michalis Anastasopoulos. Product Line Implementation Technologies —
Component Technology. IESE-Report No. IESE-015 03, 2003.

[11] Raul Silaghi and Alfred Strohmeier. Integrating CBSE, SoC, MDA, and AOP in a Software Development Method.
Software Engineering Laboratory, Swiss Federal Institute of Technology, 2003.
See http://icwww.epfl.ch/publications/list.php.

[12] Michalis Anastasopoulos and Dirk Muthig. An Evaluation of Aspect-Oriented Programming as a Product Line
Implementation Technology. Fraunhofer Institute for Experimental Software Engineering (IESE). Springer-Verlag,
2004.

[13] Manali Bhole and Karl Lieberherr. Use Case Modularity using Aspect Oriented Programming. College of
Computer and Information Sciences, Northeastern University, 2004.

[14] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, Nosa Omorogbe. The Architecture of a UML Virtual Machine.
OOPSLA 2001.

[15] R.J.A Buhr, R.S. Casselman, T.W. pearce. Design Patterns with Use Case Maps: A Case Study in Reengineering
an Object-Oriented Framework. Department of Systmes & Computer Engineering, Carleton University, Ottawa
Canada. 1996.

[16] Jack Greenfield, Keith Short, Steve Cook, Stuart Kent. Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Wiley, 2004.

Page 110 of 113

[17] Trygve Reenskaug. A Rudimentary UML Virtual Machine as a Smalltalk Extension. Book Draft. 2004.

[18] Frederick P. Brooks, Jr. No Silver Bullet - Essence and Accidents of Software Engineering. IEEE Computer
Magazine, April 1987.

[19] Frederick P. Brooks, Jr and [co-author]. The Mythical Man-Month. [Publisher], 1995 Edition.
[20] Jason Bloomberg. Software's Dirty Little Secret. ZapThink Document ID: ZAPFLASH-09012004, 2004.

[21] Lt. Col. Thomas M. Schorsch, Ph.D. and David A. Cook, Ph.D.. Evolutionary Trends of Programming Languages.
STSC CrossTalk, Feb 2003.

[22] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns — Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[23] Martin Fowler. Is Design Dead? URL: http:/www.martinfowler.com/articles/designDead.html (May 2004).

[24] Neal Leavitt . Whatever Happened to Object-Oriented Databases? IEEE Computer, August 2000.

[25] Scott W. Ambler. The Object-Relational Impedance Mismatch. URL:
http://www.agiledata.org/essays/impedanceMismatch.html. (2005).

[26] OMG. Model Driven Architecture - A Technical Perspective. Document number ORMSC 2001-07-01.

[27] Martin Fowler. Language Workbenches and Model Driven Architecture. URL:
http://martinfowler.com/articles/mdal.anguageWorkbench.html. (June, 2005)

[28] Richard Pawson (PhD Thesis). Naked Objects. Department of Computer Science, Trinity College, Dublin. June,
2004.

[29] Dan Haywood. Agile MDA - Naked Objects & Together Control Center. (Presentation). URL:
http://blog.haywood-associates.co.uk/page/DanHaywood.

[30] Trygve Reenskaug. Empowering People with BabyUML (ECOOP 2004 Opening Talk). 2004.
[31] Trygve Reenskaug. The BabyUML Discipline of Programming (DRAFT). October, 2005.

[32] Walter Hiirsch and Cristina Lopes. Separation of Concerns. Technical report by the College of Computer Science,
Northeastern University. 1995.

[33] Cristina Lopes. Aspect-Oriented Programming A Historical Perspective. ISR Technical Report # UCI-ISR-02-5.
December, 2002.

[34] Mik Kersten. Aspectd - The Language and Development Tools (OOPSLA2002 Demo). URL: http://aspectj.org.

[35] Lihua Xu, Hadar Ziv, Debra Richardson, Zhixiong Liu. Towards Modeling Non-Functional Requirements in
Software Architecture. Early Aspects at AOSD, 2005.

[36] Early Aspects: The Current Landscape. Technical Report, Lancaster University. February, 2005.
[37] Survey of Aspect-Oriented Analysis and Design Approaches. AOSD Europe, 2005.

[38] Siobhan Clarke and Elisa Banlassad. Aspect-Oriented Analysis and Design: The Theme Approach. Addison-
Wesley, 2005.

Page 111 of 113

[39] Jodo Araujo and Ana Moreira. An Aspectual Use-Case Driven Approach. Departamento de Informatica, Faculdade
de Ciéncias e Tecnologia. 2003.

[40] Manali Bhole and Karl Lieberherr. Use Case Modularity using Aspect Oriented Programming. College of
Computer and Information Sciences, Northeastern University, Boston, MA. 2004.

[41] Ivar Jacobson. Use Cases and Aspects — Working Seamlessly Together. IBM, 2003.

[42] Gary Chastek and John D. McGregor. Early Aspects in Software Product Line in Product Production. Aspects &
Product Lines Workshop at SPLC, 2005.

[43] Mik Kersten. AOP@Work - AOP tools comparison, Part 1. IBM DevWorks, 2005. URL: http://www-
128.ibm.com/developerworks/java/library/j-aopwork1/.

[44] Mik Kersten. AOP@Work - AOP tools comparison, Part 2. IBM DevWorks, 2005. URL: http://www-
128.ibm.com/developerworks/library/j-aopwork?2/.

[45] Devon Simmonds, Sudipto Ghosh, and Robert France. An Aspect Oriented Model Driven Architecture Framework
for Middleware Transparency. AOSD, 2003.

[46] Adrian Colyer. AOP@Work - Dependency injection with AspectJ and Spring. IBM DevWorks, 2005. URL:
http://www-128.ibm.com/developerworks/java/library/j-aopwork 13.html.

[47] Mariano Cilia, Michael Haupt, Mira Mezini, Alejandro Buchmann. The Convergence of AOP and Active Databases
Towards Reactive Middleware. GPCE, 2003.

[48] Kuldeep Kumar and Jos van Hillegersberg. ERP Experiences and Evolution. Communications of the ACM, April
2000/Vol. 43, No. 4.

[49] Craig Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and the
Unified Process, Second Edition. Prentice Hall, 2001.

[50] Marc J. Balcer. An Executable UML Virtual Machine (Presentation, 2003). URL:
http://www.ModelCompilers.com.

[51] J.Bhasker. A VHDL Primer, 3rd Ed. Prentice Hall, 1998.
[52] Diomidis Spinellis. On the Declarative Specification of Models. IEEE Software, March/April 2003.

[53] Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, Nosa Omorogbe. The Architecture of a UML Virtual Machine.
OOPSLA 2001.

[54] Code as Design: Three Essays by Jack W. Reeves. (1992-2005). Online Article at Developer Dot Star. URL:
http://www.developerdotstar.com/mag/articles/reeves_design_main.html

[55] R.M. Greenwood, I. Robertson, R.A. Snowdon, B.C. Warboys. Active Models in Business. Proceedings Sth.
Conference on Business Information Technology CBIT '95.

[56] Oliver Radfelder, Martin Gogolla: On Better Understanding UML Diagrams through Interactive Three-
Dimensional Visualization and Animation, ACM Press, New York, 2000.

[57] Grieskamp, W.; Lepper, M.; Using use cases in Executable Z. Formal Engineering Methods, 2000. ICFEM 2000.
Third IEEE International Conference on 4-6 Sept. 2000 Page(s):111 — 119.

Page 112 of 113

[58] OMG MDA Guide. Version 1.0.1 (03-06-01). URL: http://www.omg.org/docs/omg/03-06-01.pdf.

[59] Jens Bak Jorgensen, Claus Bossen, Executable Use Cases: Requirements for a Pervasive Health Care System,
IEEE Software, vol. 21, no. 2, pp. 34-41, Mar/Apr, 2004.

[60] Dinh-Trong, S. Ghosh, R. B. France, M. Hamilton, and B. Wilkins (2005), UMLART: An Eclipse Plugin for
Animating and Testing UML Designs, Eclipse Technology Exchange Workshop, in conjunction with OOPSLA, San
Diego, USA.

[61] John M. Slaby and Steven D. Baker. Model-Centric Software Development. IEEE Computer, Feb 2006.

[62] Behzad Karim. Behavioral Software Architecture Language. The Architecture Journal, Journal 6, 2006.

[63] Robert Wigetman and Jurgen Moortgat. Know Your UML with XML. Oracle Magazine, Jan-Feb 2006.

[64] Craig Larman. Applying UML and Patterns. Prentice Hall PRT, 3™ Edition, 2004.

[65] Conrad Bock. UML Without Pictures. IEEE Software, September/October 2003.

[66] OMG MOF Core Specification Version 2. URL: http://www.omg.org/technology/documents/formal/MOF_Core.htm.

[67] Martin Fowler, Kendall Scott. UML Distilled: A Brief Guide to the Standard Object Modeling Language, 2nd
edition. Addison-Wesley Professional. (August 25, 1999).

[68] TouchGraph. URL: http://www.touchgraph.com/.

[69] Siobhan Clarke and Elisa Baniassad. Aspect-Oriented Analysis and Design: The Theme Approach. Addison-
Wesley Professional. (March, 2005).

[70] Groovy Programming Language. URL: http://groovy.codehaus.org/.

[711 UMLGraph. URL: http://www.spinellis.gr/sw/umlgraph/.

[72] Scott W. Ambler. The Object Primer: Agile Model-Driven Development with UML 2.0. Cambridge University
Press, 3" Edition, 2004.

[73]1CyberSource SDK for Java 3.7.12, December 2005. URL: http://www.cybersource.com.

[74] Cybersource Integration Options: http://www.cybersource.com/support_center/implementation/downloads/.

[75]Eclipse. URL: http://www.eclipse.org

[76] Aspect-Oriented Software Development. URL: http://www.aosd.net

[77]Sequence Diagram Generator. URL: http://www.zanthan.com/itymbi/archives/cat_sequence.html

[78] GraphViz. URL: http://www.research.att.com/sw/tools/graphviz/

[79] Generating UML Use Case Diagrams with GraphViz DOT. URL:
http://www.iua.upf.es/~dgarcia/DotUseCases/DotUmlUseCases.html

Page 113 of 113

	Engineering Enterprise Software Systems with Interactive UML Models and Aspect-Oriented Middleware
	Recommended Citation

	Microsoft Word - cs298report-v3.3.doc

