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ABSTRACT
We study dynamical models for elliptical galaxies, deriving the projected kinematic profiles
in a form that is valid for general surface brightness laws and (spherical) total mass profiles,
without the need for any explicit deprojection. We provide accurate approximations of the line
of sight and aperture-averaged velocity dispersion profiles for galaxies with total mass density
profiles with slope near −2 and with modest velocity anisotropy using only single or double
integrals, respectively. This is already sufficient to recover many of the kinematic properties
of nearby ellipticals. As an application, we provide two different sets of mass estimators for
elliptical galaxies, based on either the velocity dispersion at a location at or near the effective
radius, or the aperture-averaged velocity dispersion. In the large aperture (virial) limit, mass
estimators are naturally independent of anisotropy. The spherical mass enclosed within the
effective radius Re can be estimated as 2.4Re〈σ 2

p 〉/G, where 〈σ 2
p 〉 is the average of the squared

velocity dispersion over a finite aperture. This formula does not depend on assumptions such as
mass-follows-light, and is a compromise between the cases of small and large aperture sizes. Its
general agreement with results from other methods in the literature makes it a reliable means to
infer masses in the absence of detailed kinematic information. If on the other hand the velocity
dispersion profile is available, tight mass estimates can be found that are independent of the
mass-model and anisotropy profile. In particular, for a de Vaucouleurs surface brightness, the
velocity dispersion measured at ≈1Re yields a tight mass estimate (with 10 per cent accuracy)
at ≈3Re that is independent of the mass model and the anisotropy profile. This allows us to
probe the importance of dark matter at radii where it dominates the mass budget of galaxies.
Explicit formulae are given for small anisotropy, large radii and/or power-law total densities.
Motivated by recent observational claims, we also discuss the issue of weak homology of
elliptical galaxies, emphasizing the interplay between morphology and orbital structure.

Key words: methods: analytical –methods: numerical – galaxies: kinematics and dynamics –
dark matter.

1 INTRODUCTION

Galaxies are known to contain both luminous and darkmatter (DM).
In particular, DM haloes provide the seeds of galaxy formation, as
baryons cool and fall towards the centres of DM overdensities in
protoclusters, resulting eventually in the luminous, directly observ-
able components. Once gas is converted into stars, the assembly of
central objects proceeds via mergers (Cattaneo et al. 2011; Johans-
son, Naab & Ostriker 2012).

Cosmological DM-only simulations offer predictions as to the
shape, density profile and typical mass of DM haloes (Navarro,
Frenk & White 1996). However, the buildup of baryonic matter

�E-mail: aagnello@physics.ucsb.edu

affects the DMhaloes in which they assemble, through gravitational
interaction between the luminous and dark component. When bary-
onic effects are included in the simulations, these can transfer energy
between the luminous and dark components and alter theDMprofile
through different channels (Abadi et al. 2010; Di Cintio et al. 2014).
In particular, in elliptical galaxies baryonic feedback (Dubois et al.
2013) and virialization of the infalling material (Lackner &Ostriker
2010) can produce a shallower density profile, whereas a slow mass
build-up tends to steepen it (Blumenthal et al. 1986; Lackner &
Ostriker 2010).

When the assembly of central objects is studied with higher-
resolution and smaller-scale simulations, a set of prescriptions must
be adopted to quantify the importance of baryonic feedback, amount
of substructure andmerging rates. These yield distinctive signatures
on the final state, in terms of size and mass of the stellar component

C© 2014 The Authors
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as well as DM content and density profile (Nipoti et al. 2012; Hilz,
Naab & Ostriker 2013; Remus et al. 2013).

Then, investigating theDMprofiles of observed galaxies provides
tests of galaxy formation scenarios. The task is simpler for late-type
galaxies, in which the orbits of the stars are generally near-circular.
In early-type galaxies, the role of the mass profile in the observed
kinematics is degenerate with the orbital distribution of stars. This
is commonly known as the mass-anisotropy degeneracy, and con-
stitutes the main obstacle to robust conclusions on the dynamics of
elliptical galaxies. Equivalently, only the projected observables (sur-
face brightness and line-of-sight velocities) are available, whereas
the dynamics of these systems is characterized by the deprojected,
three-dimensional densities and velocities.

The investigation of DM in elliptical galaxies usually relies on
techniques that construct three-dimensional models and compare
their projected properties to the observational data. This approach
is traditionally implemented via the Jeans equations governing the
velocity moments of the distribution function, adopting or relaxing
the approximation of spherical symmetry (Emsellem, Monnet &
Bacon 1994; Evans& de Zeeuw 1994; Cappellari et al. 2006, 2013).
A more rigorous alternative considers distribution functions and
orbit modelling for the luminous component (Schwarzschild 1979;
Richstone&Tremaine 1984; Bertin et al. 1994; Evans 1994; Carollo
et al. 1995; Krajnović et al. 2005, and references therein), which
has also the advantage of encoding the whole kinematic information
beyond the second velocitymoments (Merritt&Saha 1993;Gerhard
et al. 1998).

When the kinematic information is averaged over some spatial
aperture, such as in integral-field or long-slit spectroscopy of un-
resolved stellar populations, the importance of orbital structure
is reduced. Then, a theoretical framework that naturally encodes
aperture-averaging would put the stress on the adopted physical
model, rather than on the numerical details that are inherent in, for
example, orbit-based descriptions. Within the Jeans formalism in
spherical, the projected velocity dispersion σ p follows from the den-
sity and anisotropy profiles. Mamon & Łokas (2005a) reduced the
expressions for aperture-averaged velocity dispersions from triple
integrals (usually shown in the literature) to single ones in the
isotropic case. Mamon & Łokas (2005b) provided expressions of
σ 2
p in terms of single integrals of mass profile and luminosity den-

sity, for a set of simple anisotropy models. Here, we develop an
approach that operates just within the direct observables, in particu-
lar the surface brightness profile rather than the luminosity density.
This has already been studied by Agnello, Auger & Evans (2013)
in the context of gravitational lensing by early-type galaxies. In
this paper, we extend our earlier formalism to include the role of
anisotropy explicitly within different models.

In Section 2, we present new formulae for line of sight and
aperture-averaged velocity dispersions. Within the approach fol-
lowed here, there is no need to perform any explicit or approximate
deprojection. Section 3 provides simple explicit results, for scale-
free densities or modest anisotropy and/or large radii. We compare
our findings to empirical aperture corrections that are commonly
used elsewhere. We show that some structural properties (such as
kinematic profiles and typical masses; Figs 2 and 6) of early-type
galaxies can be understood by means of simple models, perhaps
even deceptively simple! In Section 4, we present different mass
estimators based on our formalism, exploiting localized measure-
ments of the velocity dispersion (Section 4.1) or aperture averages
(Sections 4.2 and 4.3), and we characterize the possible sources
of error. We sum up our conclusions in Section 5. The methods
illustrated below are particularly useful in the presence of noisy

data (e.g. Paper II in this series) or poor spatial resolution of the
measured kinematics.

2 LINE-OF-SIGHT KINEMATICS

2.1 Preliminaries

We consider spherical models, such that the velocity dispersion
tensor is diagonal in spherical coordinates (r, θ , φ) and the only dis-
tinction is between radial and tangential motions. Let the anisotropy
profile be written as

β(r) = 1 − 〈v2
θ + v2

ϕ〉
2〈v2

r 〉
. (1)

Then, the Jeans equation for supporting the stellar component with
luminosity density ν in a gravitational potential 	 is

∂(ν〈v2
r 〉)

∂r
+ 2βν〈v2

r 〉
r

= −ν
∂	

∂r
. (2)

Our models are stationary (∂t ν = ∂t	 = 0), with neither radial
flows (〈vr〉= 0) norHubble flow.While this hypothesis is acceptable
for the internal dynamics of elliptical galaxies, the application of
the Jeans equations to galaxy clusters requires additional correction
terms (Falco et al. 2013).

Using the shorthand

Jβ (r, s) = exp

[∫ s

r
2β(r ′)

dr ′

r ′

]
(3)

for the integrating factor, equation (2) is easily solved for the radial
velocity dispersion (e.g. van der Marel 1994; An & Evans 2011)

〈v2
r 〉 = G

ν(r)

∫ ∞

r

M(s)ν(s)

s2
Jβ (r, s)ds , (4)

where we have cast the radial force in terms of the enclosed mass
M(r). Observations provide the projected velocity second moment
σ p(R) at radius R, which is given by


σ 2
p (R) = 2

∫ ∞

R

(
1 − β(r)

R2

r2

)
ν(r)〈v2

r 〉rdr√
r2 − R2

(5)

(Binney & Mamon 1982), where 
(R) is the surface brightness.
The luminosity density can be obtained from the surface brightness
profile via Abel deprojection,

ν(r) = − 1

π

∫ ∞

r

∂R(
(R))dR√
R2 − r2

, (6)

and inserted in equation (5). However, it can be useful to have results
that depend directly on the surface brightness profile, without the
need for explicit deprojection, integration of the Jeans equations
and re-projection. This contrasts with other methods, which rely
on numerical or approximate deprojections of fitting profiles, and
therefore is the subject of the following sections.

2.2 Line-of-sight velocity dispersion profiles

Inserting equation (4) in equation (5), and exchanging the orders of
integration, an integration by parts leads to


σ 2
p (R) = 2G

∫ ∞

R

ν(r)M(r)

r2

(√
r2 − R2 + kβ (R, r)

)
dr , (7)

where

kβ (R, x) =
∫ x

R

(2r2 − 3R2)β(r)Jβ (r, x)

r
√

r2 − R2
dr . (8)

MNRAS 442, 3284–3298 (2014)
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The kernel kβ (R, x) has already been expressed in analytical form
by Mamon & Łokas (2005b) for some particular choices of the
anisotropy profile. Equation (7) gives the line-of-sight velocity dis-
persion as a function of projected radius R. The dependence on β

is separated out in the second integral on the right-hand side. We
can re-arrange this result explicitly in terms of the observable stellar
surface brightness 
. First, we note the useful identity

d

dy

∫ y

R

f (x, R)x√
y2 − x2

dx = y

∫ y

R

∂xf (x, R)√
y2 − x2

dx , (9)

which holds true if and only if f(R, R)= 0 and provided the integrals
are well defined. Here, and elsewhere in this section, we defer
the technical details of proofs to Appendix A for the interested
reader. Inserting equation (6) in equation (7), integrating by parts
and exploiting equation (9), we get in the end


σ 2
p (R) = 2G

π

∫ ∞

R

s
(s)
∫ s

R

∂r

(
M(r)

√
r2 − R2/r3

)
√

s2 − r2
drds

+ 2G

π

∫ ∞

R

s
(s)
∫ S

R

∂r

(
M(r)kβ (R, r)/r3

)
√

s2 − r2
drds.

(10)

This gives the line-of-sight velocity dispersion in terms of the ob-
servable 
 as well as model parameters such as the mass M(r) and
anisotropy profile β(r). It replaces the three equations (4)–(6), gen-
eralizes equations (A15) and (A16) of Mamon & Łokas (2005b)
and obviates the need for explicit projections and deprojections
(Mamon & Łokas 2005b, in equation A8). Isotropic models (β = 0)
are all encoded in the first line, whilst the second gives corrections
for anisotropic models (β 	= 0).
Tomake further progress, it is useful to introduce a two-parameter

family of anisotropy profiles

β(r) = β∞
r2

r2 + r2a
. (11)

This class of models allows us to examine systems where the
anisotropy changes gradually from isotropy at the centre to a limit-
ing value of β∞ at large radii, as well as cases where the anisotropy
is fixed at a uniform value (ra → 0). The integrating factor is simply

Jβ (r, s) =
(

s2 + r2a
r2 + r2a

)β∞
(12)

(see Mamon, Biviano & Boué 2013, for the expression of Jβ for
other anisotropymodels). Althoughwewill return to the generalized
form (11) in Section 3, for the moment let us set β∞ = 1 so that
the models are strongly radially anisotropic at large radii. Note that
this corresponds to the ansatz introduced by Osipkov (1979) and
Merritt (1985).

To gain insight, let us start with scale-free total densities, ρ tot ∝
r−γ . This choice is appropriate for elliptical galaxies, at least within
a few effective radii (Treu & Koopmans 2004; Mamon & Łokas
2005b; Gavazzi et al. 2007; Humphrey &Buote 2010). Fig. 1 shows
the typical behaviour of σ 2

p as a function of R, for a de Vaucouleurs
luminous profile in different scale-free total densities, having the
same enclosed mass at the effective radius Re. The line-of-sight ve-
locity dispersion has been normalized to the circular velocity vc(Re)
at the effective radius to highlight the contribution from the mass
profile rather than from overall normalizations. Models with γ > 2
have a falling rotation curve and a declining velocity dispersion at
all radii. When γ < 2 the velocity dispersion increases at small
radii and decreases slowly at large radii. The transition between

Figure 1. Profiles of squared projected velocity dispersion σ 2
p (R) rescaled

to squared circular velocity v2c (Re), as a function of R/Re. Here, 
(R) is a
de Vaucouleurs profile, the total density is ρtot ∝ r−γ and the anisotropy
profile is of Osipkov–Merritt form (equation 11 with β∞ = 1). The density
exponent varies in steps of 0.3 between 1.1 (long-dashed, darkest, thinnest
lines, labelled) to 2.9 (shortest-dash, clearest, thickest lines, labelled); full
lines mark the flat rotation curve case of γ = 2. Different panels correspond
to different values of anisotropy radius ra as in the legends. Top: ra = Re;
middle: ra = 3Re; bottom: ra = 10Re. Pinch points, at which dependence
on the adopted mass model is minimized, are present in each panel, but the
location changes with anisotropy.

MNRAS 442, 3284–3298 (2014)
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these two behaviours happens around γ ≈ 2 (i.e. a flat rotation
curve), although the velocity dispersion profile is not exactly flat.
The exact value of the transition exponent, where σ p(R) is almost
uniform, varies depending on the structural properties (e.g. Sérsic
index and anisotropy).

More important than the shape of single velocity dispersion pro-
files is the existence, for each chosen anisotropy, of a pinch radius
Rσ where any dependence on themass model is minimal (Mamon&
Boué 2010;Wolf et al. 2010). This location changes with anisotropy
β (cf. Fig. 1) and with the Sérsic index. In particular, steeper pro-
files (lower Sérsic indices) produce a smaller variation in Rσ with
β. This fact can be justified in the light of asymptotic behaviours
at small β or large radii, which are discussed in Section 3; we will
exploit that in Section 4.1 to construct a family of mass estimators.

The behaviour of σ p(R) with the effective radius is controlled
essentially by the circular velocity. If Re is increased, the over-
all normalization decreases for γ > 2 [as vc(Re) ∝ R1−γ /2

e ] and
increases for γ < 2. This means that, for a rising (declining) cir-
cular velocity curve, increasing the effective radius will increase
(decrease) the overall magnitude of the velocity dispersion at fixed
R/Re. This phenomenon is clear within scale-free total densities
and uniform anisotropy because, in this case, the only available
length scale is Re and so we can expect σ 2

p (R) to be modulated by
GM(Re)/Re = R2−γ

e (see e.g. Dekel et al. 2005, who give the exact
solutions for scale-free tracers in scale-free total densities).

More elaborate mass models, exhibiting different power-law
regimes in different regions, can be understood in terms of the kine-
matic profiles shown here. For example, a Navarro–Frenk–White
density ρ tot ∝ r−1(1 + r/rs)−2 produces a line-of-sight dispersion
profile that is approximated by the one with γ ≈ 1 at small radii
and γ → 3 at large radii, provided 
(R) declines fast enough with
R. However, in most cases, equation (10) allows for an analytic
evaluation of the inner integral giving the mass-kernel, without any
need for the approximation of scale-free total densities.

2.3 Aperture-averaged velocity dispersions

In practice, kinematics aremeasured over some aperture and blurred
by a point-spread function. Then, the quantity to be compared to
observations is the radial average

σ 2
ap(R) ≡ 2π

∫ R

0 s
(s)σ 2
p (s)ds

L(R)
, (13)

with

L(R) = 2π
∫ R

0
s
(s)ds (14)

being the projected luminosity within R. Averages within radial
annuli or slits can be derived from these formulae by means of
straightforward manipulations.

The triple integrals can be rearranged to express the aperture-
averaged velocity dispersion as a sum of three terms (see Appendix
A)

σ 2
ap(R) = 4πG

3L(R)

(∫ ∞

0
M(r)ν(r)rdr

−
∫ ∞

R

M(r)ν(r)
(r2 − R2)3/2

r2
dr

+ 3 R2
∫ ∞

R

M(r)ν(r)

r2
Zβ (R, r)dr

)
(15)

where we have used the shorthand

Zβ (R, y) =
∫ y

R

Jβ (r, y)β(r)
√

r2 − R2
dr

r
. (16)

The first line gives the virial limit, the second one provides aperture
corrections for β = 0, while the third one expands to the case of
anisotropy β 	= 0. Without the third line, this equation is equivalent
to the isotropic results of Mamon & Łokas (2005a). For computa-
tional purposes, it is useful to replace the stellar density ν in equation
(15) with the stellar surface brightness 
 to obtain

σ 2
ap(R) = 4G

3L(R)

[∫ ∞

0

(s)s

∫ s

0

4πρtot(r)r2√
s2 − r2

drds

−
∫ ∞

R


(s)s
∫ s

R

∂r

(
M(r)(r2−R2)3/2/r3

)
√

s2−r2
drds

+ 3R2
∫ ∞

R


(s)s
∫ s

R

∂r

(
M(r)Zβ (R, r)/r3

)
√

s2−r2
drds

]
.

(17)

The aperture-averaged velocity dispersion σ 2
ap(R) is the outcome of

two factors. The first is the mass model: as expected, higher masses
correspond to higher velocity dispersions at fixed effective radius
Re. The second is the anisotropy, which enters only in the last term
of equation (17) and whose effect on the velocity dispersion has
the same sign as β. This means that the uncertainties on the mass
modelling due to observational errors on the measured velocity
dispersions can be decoupled from the systematic uncertainties that
are encoded in β (e.g. Koopmans et al. 2009; Agnello et al. 2013).
The same remarks hold here for the overall mass normalization and
behaviour with Re.

Fig. 2 shows the behaviour of aperture-averaged velocity disper-
sions σ 2

ap(R) scaled to the values at Re/2 in two cases – namely,
an Osipkov–Merritt profile with β(Re) = 1

2 and an isotropic model
with β = 0 everywhere. The choice of Re/2 is used solely to make

Figure 2. Line-of-sight velocity dispersion, averaged over an aperture of
radius R, as a function of R/Re for a de Vaucouleurs luminosity profile
in scale-free total mass densities, with exponent γ ranging in steps of 0.3
from 1.1 (darkest, thinnest lines, labelled) to 2.9 (lightest, thickest lines,
labelled). The curves are computed using equation (17). Every profile has
been rescaled to the aperture-averaged velocity dispersion within Re/2.
Full lines: Osipkov–Merritt anisotropic models with β(Re) = 1/2; dashed
lines: isotropic models. The grey-shaded region shows the empirical relation
σ ap(R) ∝ R−b, with b = 0.066 ± 0.034 (Cappellari et al. 2006).

MNRAS 442, 3284–3298 (2014)
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comparisons with other work (Cappellari et al. 2006) more imme-
diate.

In general, models with γ ≤ 2 predict an averaged velocity dis-
persion with a minimum at aperture radii between Re/3 and Re/2,
increasing at both small and large apertures, whereas steeper mod-
els produce a monotonically decreasing profile. The median of the
grey-shaded region in Fig. 2, corresponding to the empirical relation
σ 2
ap(R) ∝ R−0.066 (Cappellari et al. 2006), is hardly distinguishable

from a model with a de Vaucouleurs luminous profile, a perfectly
flat rotation curve and β = 0. Models with β(Re) = 1

2 (full lines)
require slightly steeper density profiles to fit the grey band, approx-
imately γ = 2.1 ± 0.1. This small modulation of γ with anisotropy
suggests that, over length scales that are comparable to the effec-
tive radius, nearby elliptical galaxies show weak homology – in
the sense that their dynamical properties are consistent with a total
density scaling like r−2 and just modest radial anisotropy.
However, the median behaviour at radii Re/2≤ R≤ Re is not nec-

essarily indicative of the density profile of single systems, especially
over larger length scales. Analysis of the hot X-ray gas in early-type
galaxies by Humphrey & Buote (2010) supports the approximation
of a scale-free total mass profile out to large radii, but the relative ex-
ponent varies appreciably over their sample. Koopmans et al. (2009)
studied the density exponent γ in 58 galaxies in the SLACS sample
(Bolton et al. 2006). The typical density exponent from gravita-
tional lensing, estimated by means of global scaling relations over
the whole sample, is in the interval γ l = (2.03± 0.07). On the other
hand, on a galaxy-by-galaxy basis the most likely density exponents
occupy a much wider range, with larger intrinsic uncertainties. The
behaviour of γ in individual galaxies and the mean exponent γ l

derived by scaling relations over the whole sample are not directly
related to one another. Then, considerable care should be taken
when the dynamics of individual galaxies is studied, as to avoid the
ecological fallacy of exporting ensemble correlations at the individ-
ual level. If the DM content at large radii is studied, simple analyses
enforcing γ ≈ 2 may bias the inferred DM masses, automatically
favouring the values resulting from a flat rotation curve.

The kinematic and photometric properties of individual galaxies
can deviate appreciably from the simple, average behaviour illus-
trated above. In fact, the collection of profiles shown in Cappellari
et al. (2006), if interpreted in terms of the models shown in Fig. 2,
spans the whole range 1 ≤ γ ≤ 3 and ra ≥ Re. In general, there
is no guarantee that individual systems are isotropic or that γ = 2.
Moreover, the morphology of individual galaxies can vary within
the Sérsic family of profiles (de Vaucouleurs 1948; Sersic 1968)


(R) = 
0 exp
[−bn(R/Re)

1/n
]

, (18)

where bn is defined such thatRe encloses half of the total luminosity.
A convenient expression of bn in n has been provided by Ciotti &
Bertin (1999). The light profiles of some elliptical galaxies can be
better fitted by Sérsic models with an index substantially different
from the de Vaucouleurs value n = 4. That said, the assumption of
weak homology can be taken as a first approximation to infer prop-
erties of the mass profile within Re, before more detailed analyses
are undertaken.

3 ASYMPTOTIC RESULTS

3.1 Line-of-sight velocity dispersion profiles

A convenient aspect of the Jeans formalism is that equations (4)
and (5) involve information only from radii larger than the upper
limits of integration (see e.g. van der Marel 1994; Mamon & Łokas

2005b). In particular, if the stellar density decays fast enough (which
is always the case for elliptical galaxies in practice), the dominant
contribution to the integrals is from radii just slightly greater than
the lower extremes of integration. This turns out to be useful in
practice when handling the effects of anisotropy, since we just need
to consider the anisotropy profile and the mass M(r) near the radii
of interest.

We will now analyse some applications of equation (10). To
this end, we return to the generalization of the Osipkov–Merritt
anisotropy profile given in equation (11). With this choice of β, the
kernel kβ is:

kβ (R, r) = −β(R)

(
r2a + r2

r2a + R2

)β∞ √
r2 − R2

×
[
F

(
1

2
, z

)
+ 2(1 − r2/R2)

3
F

(
3

2
, z

)]
, (19)

where z = (R2 − r2)/(r2a + R2) and F(a, z) is the hypergeometric
function 2F1(a, 1 + β∞, a + 1, z). Appendix B lists the special
cases of β∞ = 1, 1

2 and ra = 0.
For any surface brightness law, the kinematic profile is given by

a double integral where 
(R) is modulated by a kernel that depends
just on the potential chosen. The function kβ can be expanded in
powers of (r2 − R2)1/2 and the expansion to first order is

kβ (R, r) ∼ −β(R)
√

r2 − R2 + ... . (20)

If ν(r), and hence 
(R), decays fast enough with radius R, the next
orders in the expansion can be neglected in a first approximation. If
this is the case, the kinematic profile can be obtained by neglecting
the second line in equation (10) and multiplying the first line by
1 − β(R). This is useful for obtaining asymptotic results at small
and large radii.

An interesting class of results at small and large radii is provided
by scale-free densities, ρ tot(r) = ρ0(r/r0)−γ . At small radii, we
can rely on the hypothesis of mild anisotropy. First, observations
of nearby elliptical galaxies (Gerhard et al. 2001; Cappellari et al.
2006) show little or no departure from isotropy inside Re. Secondly,
just amild degree of anisotropy is generally allowed in these systems
by reasons of physical consistency (Ciotti, Morganti & de Zeeuw
2009). This means that (see Appendix A for details)


(R)σ 2
p (R)

1−β(R)
= 4πGρ0r

γ
0

3−γ

∫ ∞

R

s1−γ 
(s)gp

(
R

s
, γ

)
ds , (21)

where

gp(x, γ ) = 1

π

∫ 1

x2

t−γ /2−1
[
(1 − γ )t + γ x2

]
√

t − x2
√
1 − t

dt . (22)

The kernel gp can be expressed as a combination of hypergeometric
functions and can be easily expanded in powers of x. An excellent
approximation1 for x � 1 is

gp(x, γ ) ∼ 1 + γ

2
(x − 1) + γ

8

(
1 − γ

2

)
(x − 1)2

+ γ 2(γ 2 − 4)

96
(x − 1)3 . (23)

The result gp = x for γ = 2 (flat rotation curve) is exact.
At large radii, we cannot necessarily assume |β| � 1. However,

we can approximate the kernel in the integrals for y ≥ R as done

1 This holds with ≤0.3 per cent relative accuracy near the effective radius
and ≈1 per cent at very small radii.
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above in equation (20). Higher orders only become important for
high values of y, where the integrand is suppressed by the declin-
ing 
(y). Also, we can use the asymptotic limit β → β∞ for the
anisotropy profile. For r � R, the kernel kβ grows at most linearly
with r (which happens when β∞ = 1). For β ∼ β∞ and r ≥ R, we
have

kβ (R, r)

β∞R
∼ −

[
1 −

(
1 − 2

3
β∞

)
δ2 + 3

5

(
1 − 2

3
β∞

)2

δ4

]
δ + · · ·,

(24)

where δ =
√

r2/R2 − 1. This allows us to write σ 2
p at large radii as

a single quadrature involving the tracer density ν, the mass profile
M and a sum of elementary functions (cf Mamon & Łokas 2005b).
Alternatively, the result can be stated in terms of the surface bright-
ness, exploiting equation (9) in the same manner as done to derive
equation (10).

In particular, for scale-free total densities, the velocity dispersion
profile at large radii is asymptotically


(R)σ 2
p (R) ∼ 4πGρ0r

γ
0

3−γ

∫ ∞

R

s1−γ 
(s)

[
(1−β∞)gp

(
R

s
, γ

)

+ β∞
(
1− 2

3β∞
)
hp

(
R

s
, γ

)]
dy , (25)

with

hp(x, γ ) = x−2

π

∫ 1

x2

t−γ /2−1
√

t − x2[γ x2 + (3 − γ )t]√
1 − t

dt , (26)

having retained just the two terms in equation (24). The kernel hp
can be expanded as

hp ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�((3 − γ )/2)√
π�(2 − γ /2)

((3 − γ )x−2 − 3(1 − γ /2))

+O(x3−γ ), x � 1

3(1−x)− 3
4 (−6+γ )(1 − x)2

−96 − γ (14 + γ )
16 (1 − x)3, x ≤ 1.

In the important flat rotation curve case (γ = 2), the result

hp(x, 2) = x−2(1 − x3) (27)

holds at all orders.

3.2 Aperture-averaged velocity dispersions

For small anisotropy or large aperture radii, equation (17) admits a
simple approximation – namely, we may again suppress the third
addendum and multiply the second one by 1 − β(R). As a check on
our working, we note that for large values of aperture radius R, we
must recover the virial limit exploited elsewhere (Agnello & Evans
2012a,b).

We again derive the results for mildly anisotropic systems in
scale-free total densities. Starting with equation (15), using the
approximation for small β and exchanging orders of integration as
before, we obtain:

σ 2
ap(R) = 16πGρ0r

γ
0

3(3 − γ )L(R)
×

(
kap(0, γ )

∫ ∞

0

(S)S3−γ dS

− (1 − β(R))
∫ ∞

R


(S)S3−γ kap(R/S, γ )dS

)
(28)

(cf. Agnello et al. 2013). Again, the kernel

kap(x, γ ) = (4 − γ )
∫ 1

x

√
u2 − x2

1 − u2
u3−γ du

+ (γ − 1)x2
∫ 1

x

√
u2 − x2

1 − u2
u1−γ du (29)

can be easily expanded in powers of x:

kap(x, γ ) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
π�((5 − γ )/2)
�(2 − γ /2) ×

[
1 − (1 − γ /2)x2

1 − γ /3

−γ (1 − γ /2)x4

4(1 − γ /3)

]
x � 1,

3π
2 (1 − x) − 3π

8 (2 + γ )(1 − x)2

+πγ (10 − γ )
32 (1 − x)3 x ≤ 1.

(30)

The result

kap(x, 2) = π

2
(1 − x3) (31)

is exact. As a specific example, when we use the anisotropy law
(11), we find that our simple asymptotic approximation is excellent
for ra ≥ 3Re. In fact, provided the models are reasonably close to
the flat rotation curve case (1.5 ≤ γ ≤ 2.5), it performs remarkably
well even when ra = Re.

The trick for reducing the equations (10) and (17) for the line of
sight and aperture-averaged velocity dispersions is of wider appli-
cability. In each case, the integrals over stellar surface density and
total mass are greatly simplified with little loss of accuracy when
the anisotropy-dependent term is discarded and the previous term
multiplied by 1 − β(R). The same trick can also be applied to equa-
tions (7) and (15) for which the integrals are written in terms of the
stellar density and total mass, if so desired. This then gives single
integrals to express both line of sight and aperture-averaged velocity
dispersions for arbitrary velocity anisotropy profiles, generalizing
results obtained by Mamon & Łokas (2005a,b) in special cases.

Finally, we give in Appendix B formulae for the line of sight and
aperture-averaged velocity dispersion valid for small anisotropy
and/or large radii without the assumption of power-law densities.
The formulae are simpler than equations (10) and (17), as they
involve just the total density ρ tot and integrals over the surface
brightness 
.

4 MASS ESTIMATORS

In the previous sections, we have seen how the line of sight kine-
matics can be computed, starting from the mass profile M(r) and a
choice of anisotropy profile β. Now we ask a complementary ques-
tion: given the measured kinematics, what is the best inference that
we can make on the mass profile?

The dimensional scaling σ 2
p ∝ GM/R between the second mo-

ment of line-of-sight velocities, enclosed mass and size is evident
in the Jeans formalism (e.g. equations 10 and 17). The inverse pas-
sage from σ 2

p (R) to M(r) is possible when β(r) is given and the
kinematic profile is measured with sufficient accuracy (Mamon &
Boué 2010). However, these conditions are hardly satisfied in prac-
tice. Also, observational data are often not sufficient to constrain
all the parameters in the mass profile. So, the problem of relating
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the measured kinematics to mass estimates is often simplified to
finding relations of the kind

GM(RM)

RM
≡ v2

c (RM) = Kσ 2(Rσ ), (32)

such that any model-dependence is minimal at the locations Rσ , RM,
while the parameter K is to be determined. Here, σ 2(R) could be
either the line of sight velocity second moment (equation 10) or the
one averaged inside an aperture of radius R (equation 15), whilst
vc(R) denotes the circular velocity at radius R.
This issue has been already tackled in a piecemeal manner in the

literature. Illingworth (1976) derived a formula for constant mass-
to-light ratio models with a de Vaucouleurs profile. The total mass
M is

M(∞) ≈ 8.5Re

G
σ 2
ap , (33)

where σ 2
ap is the average value of the squared line of sight velocity

dispersion.
Cappellari et al. (2006) studied 25 galaxies in the SAURON

survey (Bacon et al. 2001), by means of Jeans equations and orbit-
based models. Their analyses suggest a general trend

M(∞) ≈ 5Re

G
σ 2
ap(Re) , (34)

where againM(∞) is the total mass and 〈σ 2
p 〉(Re) is the luminosity-

weighted average over one effective radius. The formula holds if
there is a negligible DM fraction within the effective radius or,
alternatively, if the light traces mass. Cappellari et al. (2006) argued
that accounting for an extended DM halo would change the propor-
tionality coefficient in equation (34) by ≈12 per cent. This result is
calibrated against diverse, high spatial-resolution kinematic profiles
(out toRe), but its simplicitymakes it useful for application to galax-
ies for which any kinematic information is not as rich. However,
the main drawback of equations (33) and (34) is the assumption
of a mass-follows-light hypothesis is not generally satisfied (Treu
& Koopmans 2004; Humphrey & Buote 2010). Cappellari et al.
(2013) revisited the previous analysis on a new set of galaxies with
an expanded data set of spatially resolved kinematics, introducing
different models with luminous and dark components. They claim:

M(Re) ≈ 2.5Re

G
σ 2
ap(Re) , (35)

which would be essentially the same result as before if light traced
mass.

Analogous formulae have been derived for DM-dominated sys-
tems – though the focus has been on dwarf spheroidal galaxies
(dSphs), rather than ellipticals. For a dSph with a Plummer lumi-
nosity profile and a flat line-of-sight velocity dispersion σ p, Walker
et al. (2009) showed that the mass within the effective radius is

M(Re) ≈ 2.5Re

G
σ 2
p . (36)

In particular, Walker et al. (2009) argued from Jeans solutions that
the mass within the half-light radius is robust against changes in the
velocity anisotropy and halo profiles.Wolf et al. (2010) discovered a
different, but related, formula in whichRM is the radius of the sphere
enclosing half of the total light r1/2, whilst the velocity dispersion
is averaged over large radii

M(r1/2) ≈ 3r1/2σ 2
ap,∞

G
. (37)

They provided a theoretical justification, based on the Jeans equa-
tions under the hypothesis that the velocity dispersion profile is

approximately flat. Amorisco & Evans (2011) extended this idea by
looking for masses robust against variation in the concentration and
form of the DM halo profile, using a particular class of distribution
functions. They advocated the formula

M(1.7Re) ≈ 5.8Re

G
σ 2
p (Re), (38)

and so found that the mass enclosed within r = 1.7Re was best
constrained. A similar approach was pursued by Churazov et al.
(2010); there, the σ p profiles of Sérsic tracers with a flat rotation
curve (γ = 2) were studied, with particular emphasis on isotropic,
completely radial or completely tangential stellar orbits, to identify
the location where any dependence on anisotropy is minimized.
Using the assumption that the total density profile is ρ ∼ r−2 enabled
them to find fully analytical results.

All these formulae share a common ancestry, though they apply to
different luminosity profiles and dark halo laws. They all relate the
mass enclosed at a specific radius RM with the velocity dispersion
either at, or averagedwithin, a particular radiusRσ based on different
choices for the distribution function of the stellar populations. Here,
wewill show how the results of Section 2 can be used systematically
to construct mass estimators tailored for elliptical galaxies with
Sérsic profiles.

4.1 Masses from the Kinematic profiles

Without much loss of generality, we can operate within the frame-
work of scale-free total densities. In fact, the results of Treu &
Koopmans (2004), Mamon & Łokas (2005b) and Humphrey &
Buote (2010), which stem from analyses of different tracers in dif-
ferent samples of early-type galaxies, suggest that a realistic total
density profile is scale-free to a first approximation. Then, each
panel of Fig. 1 shows a noteworthy property of the profiles σ p(R),
namely the existence of a particular location Rσ , where the de-
pendence on the exponent γ is minimal. Its value depends on the
anisotropy profile β and on the circular velocity vc at Re. Also, the
proportionality coefficient between vc(R) and σ p(R) varies between
two extremes in the range 1 < γ < 3. We can synthesize this as:

v2
c (Re) = Kσ 2

p (Rσ (β)) , (39)

where K is a dimensionless constant, which may itself depend on
the anisotropy, as well as other dimensionless parameters.

If a different radius RM is chosen as the one where vc is measured,
the dependence Rσ on β changes. Then, we can seek the radius RM

such that the variation of Rσ with β is as small as possible. In this
case, we obtain a relation of the kind (32), where the radii Rσ and
RM are the ones where the measurements of velocity dispersion
and enclosed mass give the tightest excursion in the proportionality
coefficient. In other words, we are interested in finding a triplet
(Rσ , RM, K) such that the relation

v2
c (RM) = GM(RM)

RM
= Kσ 2

p (Rσ ) (40)

holds with the smallest possible scatter over β and γ .
Fig. 3 shows the result of this strategy when 
(R) is a de Vau-

couleurs profile with Osipkov–Merritt anisotropy laws. The hatched
zones intersect, and dependence on anisotropyminimized, provided
Rσ ≈ 1.2Re and K ≈ 2.8, which happens when RM ≈ 3Re. All these
values are subject to mild systematic uncertainty, estimated to be
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Figure 3. The coefficient K = v2c (RM)/σ 2
p (R) versus projected radius R

for a de Vaucouleurs luminous profile in scale-free total densities, with
Osipkov–Merritt anisotropy and radii ra/Re = 1, 3, 10 (from the most to
the least steep sequences). At each value of R/Re, a range is allowed for
K corresponding to the freedom 1 < γ < 3. Rσ is the radius where the
hatched zones intersect and so the dependence on anisotropy is minimized.
The curves are computed using equation (10).

typically ≈10 per cent from Fig. 3. Taking just the most probable
values, we obtain

M(3.4Re) ≈ 9.4Re

G
σ 2
p (1.2Re) . (41)

In other words, if the velocity dispersion of a de Vaucouleurs tracer
is measured at ∼1.2Re, then the mass just beyond 3Re is well-
constrained against variations in power-law index γ and anisotropy
β. Note that if we further require that light traces mass, then
M(3.4Re) is practically the total mass and our result is equivalent
to equation (33) derived by Illingworth (1976). The roughly 10 per
cent difference in the coefficients can be ascribed to the choice of
one particular mass model and variation of σ p with radius.

Our result can also be usefully compared with the work of
Courteau et al. (2013, section 5.2), who used the aperture-averaged
velocity dispersion within 3Re and concluded that this was not suf-
ficient to constrain the enclosed mass at large radii. Here, we have
shown that a localized measurement of the line-of-sight velocity
dispersion is surprisingly discriminating and provides a powerful
way to study the mass budget at large radii.

The same procedure can be repeated for other Sérsic-like profiles
of the surface brightness 
(R), as summarized in Table 1. For ex-

Table 1. The radii Rσ and RM in units of the effective
radius and coefficient K in equation (40) for different
Sérsic indices n. The uncertainties are estimated by the
excursion around the mid-value in plots analogous to
Fig. 3.

n Rσ /Re RM/Re K
≡ v2c (RM)/σ 2

p (Rσ )

1 0.81 ± 0.07 1.78 ± 0.05 3.03 ± 0.37
2 0.97 ± 0.10 2.2 ± 0.4 2.95 ± 0.35
3 1.12 ± 0.12 3.1 ± 0.7 2.86 ± 0.25
4 1.15 ± 0.15 3.4 ± 0.9 2.78 ± 0.15
5 1.20 ± 0.18 3.9 ± 1.1 2.70 ± 0.07
6 1.23 ± 0.21 4.33 ± 1.33 2.70 ± 0.07

ample, in the case of an exponential law
(R)∝ exp (− 1.67R/Re),
it yields

M(1.78Re) ≈ 4.8Re

G
σ 2
p (0.81Re), (42)

(cf. Amorisco & Evans 2011). Though the coefficient K and radius
Rσ vary weakly with the Sérsic index, the greatest variation is found
in the radius RM, where the enclosed mass is estimated.

If we restrict to profiles with a nearly flat rotation curve, as sug-
gested from the weak homology arguments, the velocity dispersion
changes slowly with radius (cf. Fig. 1). Then, all the radial depen-
dence of enclosedmass is inM(RM)∝RM, as the velocity dispersion
σ p is constant to good accuracy and provides an overall mass nor-
malization. This is consistent with the linear scaling M ∝ R from
the density ρ ∝ r−2, whilst the radius RM is simply a special point at
which uncertainties from anisotropy are minimized. However, the
hypothesis of weak homology comes with a significant caveat that
forbids the restriction to γ = 2 when examining single galaxies,
especially when RM is appreciably larger than the effective radius.

4.2 Aperture masses and the virial limit

Measuring the velocity dispersion at the exact location Rσ is not
possible in practice: the observed velocity dispersion is always an
average over some aperture, even when long-slit or integral-field
spectroscopy is performed. On the other hand, it often happens
that the radial average σ 2

ap(RM) is available. For example, fibre-
averaged kinematics are usually measured over typical lengths that
are comparable to the effective radius, as for example in the SLACS
sample (Auger et al. 2010).

This suggests another class of estimators, in which σ 2
ap(RM) is

used to measure the mass. As the dashed lines in Fig. 4 show,
the sequences for σ 2(R)/v2

c (RM) still have an appreciable ‘pinch’
at a special location (Rσ ≈ 0.5Re) for a given anisotropy radius.
However, there is no analogue of the intersecting regions in Fig. 3
as the anisotropy varies. The only exception is in the virial limit,
which is obtained by considering the average value σ 2

ap(∞) over the
whole system. It is well known that the virial theorem for spherical
systems is independent of anisotropy. However, the aperture average
over large radii is not always available with acceptable accuracy,
even for nearby galaxies. A remarkable exception is given by the
kinematics of resolved, extended tracers like globular clusters and
planetary nebulae orbiting around the outer parts of nearby early-
type galaxies (as discussed in Paper II of this series).

The dot–dashed lines in Fig. 4 show the ratio GM(R)/[Rσ 2
ap]

in the virial limit, which of course remains unchanged for dif-
ferent anisotropy profiles. Again, the luminous profile has a de
Vaucouleurs form and resides in a power-law total density. For such
systems, Agnello et al. (2013) have already shown for γ within the
physical interval 1 < γ < 3

μ(R) = GM(R)

Rσ 2
ap(∞)

= 3
√

π�(2 − γ /2)

2� ((5 − γ )/2)
× R2−γ

〈R2−γ 〉 , (43)

where angled brackets represent luminosity averages. By studying
the dependence of μ(R) on γ , we find that

μ(RM)(γ=1) = μ(RM)(γ→3) . (44)

This location RM can also be found analytically. In particular, if the
surface brightness is of the Sérsic form given in equation (18), then

RM = Reb
−n
n

√
2�(3n)/�(n) . (45)
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Figure 4. Aperture mass estimators where σ 2 = σ 2
ap(R) (dashed lines) or

σ 2
ap(∞) (dot–dashed curves). Again, the tracer has a de Vaucouleurs lumi-

nous profile with Osipkov–Merritt anisotropy profile β(r) = r2/(r2 + r2a )
and power-law total density ρtot ∝ r−γ . Top panel: ra =Re; bottom: ra �Re.
The curves are computed via equation (17). The case γ = 2 is marked with
solid lines. The dot–dashed curves corresponding to infinite aperture sizes
are the same in both panels, but are plotted twice in order to facilitate the
comparison with the cases with finite aperture.

This implies that

RM/Re ≈ 1.05 dex[−0.019(n − 4)] (46)

to 0.4 per cent relative accuracy when 1 < n < 10, whence RM ≈
Re, as already suggested by Fig. 4.

Having determined the radius that minimizes model dependence,
we must now assess the problem of systematics. The coefficient for
the virial or large aperture limit takes the value K = 3 in the flat
rotation curve case, as shown in Fig. 5. It is somewhat smaller for a
finite radius aperture. If we have no prior knowledge on the density
exponent, the coefficient K will be typically distributed uniformly
in 1 ≤ K ≤ 2.5 and as (3 − K)−1/2 when 2.5 ≤ K < 3. This follows
from approximating the dashed curve in Fig. 5 by a parabola for
K≥ 2 and straight line otherwise. The valueK= 3 is the most likely,
because μ(RM) is approximately quadratic in γ and always peaks
near γ = 2 (see Fig. 5 and equation 43). However, the mean value
of K for a uniform prior on γ is systematically lower than 3. Its
precise value depends on the photometric profile through equation
(43). For a de Vaucouleurs profile, it is straightforward to establish
from Monte Carlo simulations that K ≈ 2.3.

Figure 5. The aperture mass estimator at the radius Rσ (cf. Fig 4) for a de
Vaucouleurs surface brightness with anisotropy profile from equation (11),
embedded in power-law total densities ρtot ∝ r−γ . Solid curve: β∞ = 1
and ra = Re; dotted line: β = 0; dashed line: large-aperture estimator
(equation 43). The curves are computed using the formulae in Section 2.3
and Appendix B.

By solving the Jeans equations and fitting kinematic profiles,
Wolf et al. (2010) argued that K ≈ 3 and RM = r1/2 ≈ 1.3Re

for a diverse set of systems. However, explicit counter-examples
are known for which the value K = 3 is never even reached (for
instance, the models of Wilkinson et al. 2002). If the results of
Gavazzi et al. (2007) and Humphrey & Buote (2010) are valid in
general for elliptical galaxies, then the finding thatK≈ 3means that
the total density profile has γ ≈ 2 in those systems near the effective
radius. The same remark holds here as in the case of Cappellari et al.
(2006): even if the mean behaviour is well fitted by γ ≈ 2 near Re,
individual variations from this simple case are substantial.

If we are interested in learning about the density profile and
mass content in a particular galaxy, we cannot simply rely upon
K ≈ 3, as this would automatically bias our estimates towards a
perfectly flat rotation curve. As a general rule, we advocate taking
K ≈ 2.3, which follows from a uniform prior on γ , and thus using
the approximation

M(RM) ≈ 2.3RM

G
σ 2
ap(∞) (47)

as a first estimate of the mass enclosed at the pinch radius in a
model-independent manner. The radius RM for Sérsic profiles does
not vary substantially from Re. This formula (47) is valid provided
σ 2
ap(∞) is known, as this case for early-type galaxies with extended

populations of globular clusters and planetary nebulae.

4.3 Finite apertures

A first general feature, already noticeable from Figs 4 and 5, is
that the model dependence is slightly smaller for the finite radius
estimator (σ 2 = σ 2

ap(R)) than for the one with infinite radius. This
is because in the virial limit the global average σ 2

ap(∞) must be the
same for all possible anisotropies that correspond to acceptable so-
lutions, whence the larger variability. Secondly, the mass estimator
at fixed R and γ generally has a lower value for the finite radius
choice.2 This means that, if we assumed that the velocity dispersion

2 The only exception is γ < 1.5 and R > 1.5Re (bottom panel of Fig. 4), i.e.
shallow total density profiles and large apertures.
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profile is flat, we would slightly over-estimate the enclosed mass
with respect to another equally plausible choice, namely isotropy
(β = 0) at all radii (Agnello et al. 2013).

Obtaining pinch radii and masses from finite apertures is harder,
as it is not possible to give general results unless additional con-
ditions are imposed. A simple mass estimator can be obtained by
invoking theweak homology hypothesis. For example, if we assume
that γ = 2 and β = 0, we readily obtain from equations (28) and
(31)

σ 2
ap(Ra) = GM(Re)

3Re
×

(
1 + R3

a

∫ ∞
Ra


(S)S−2dS∫ Ra

0 
(S)SdS

)
, (48)

within the aperture radius Ra. This formula is given by Churazov
et al. (2010), who also found complementary results for completely
radial (β → 1) or tangential (β → −∞) orbits, still adopting γ = 2.

When γ ≈ 2 and β is small, a de Vaucouleurs surface bright-
ness leads to σ 2

ap(Re) ≈ 1.2σ 2
ap(∞). In this case, the enclosed mass

at radii RM ≈ Re can be estimated by replacing σ 2
ap(∞) with

σ 2
ap(≈ Re) and RM with Re in equation (47), provided the propor-

tionality coefficient is adjusted to ≈3/1.2 = 5/2. The mass from
the finite-aperture sweetspot (Fig. 4), linearly extrapolated to the
effective radius, would have a coefficient K≈ 2.4, which is halfway
between the large-aperture blind average and the weak homology
case. The ratio vc(Ra)/σ ap(Ra) between circular velocity and aver-
age second moment within an aperture-radius Ra depends weakly
on Ra/Re, as long as this is around unity.
Then, a formula with RM ≈ Ra ≈ Re and K ≈ 2.4 is the simplest

to use for early-type galaxies with stellar velocity dispersion data
largely confined to within one or two effective radii, when the Sérsic
index is close to n = 4.

4.4 Insights into weak homology

Weak homology arguments are probably appropriate for nearby
early-type galaxies. Fig. 6 shows the ratioGM(Re)/[Reσ

2
ap(Re)] for

Sérsic luminous components, as a function of the Sérsic index n
using equation (48) and Ra = Re. The dynamical analysis of early-
type galaxies by Cappellari et al. (2013) is summarized here by the
open symbols. Regardless of the adequacy of the single Sérsic fit
to the photometric profile, which is indicated by different symbols,
a trend of vc(Re)/σ ap(Re) with the best-fitting Sérsic index n is
apparent. If the mass inference is robust around Re, we can interpret
this behaviour via models with different anisotropy or power-law
index. In particular, galaxies with lower (higher) n have stars on
slightly tangential (radial) orbits on average. As shown in Krajnović
et al. (2013), nearby early-type galaxies typically consist of bulge
and disc components with variable size and luminosity-ratios. If
the bulge (or the disc) dominates the photometric profile, that will
drive the best-fitting Sérsic index towards higher (or lower) values.
Then, at least part of the trend illustrated in Fig. 6 can be simply
understood as a variation of bulge-to-disc ratio, with discs (bulges)
having more stars on circular (radial) orbits.

Recently, Peralta de Arriba et al. (2014) have cautioned against
the approximation of weak homologywhen compact massive galax-
ies, especially at higher redshift, are examined. In their analysis,
they find that dynamical masses estimated as in Cappellari et al.
(2006, 2013) imply negative DM fractions. Equivalently, their in-
ferred stellar masses can exceed the dynamical estimates by almost
an order of magnitude.

Figure 6. Ratio of squared circular velocity at the effective radius, v2c (Re),
to the aperture-averaged velocity dispersion σ 2

ap(Re) as a function of the
Sérsic index of tracer. The solid curve corresponds to isotropy and γ = 2,
the dashed line to γ = 2.1, β(Re) = 1/2 and the dotted line to γ = 2.05,
β(Re) = 1/4; the dot–dashed line shows the case γ = 2, β = −1/2. For
an isotropic de Vaucouleurs tracer (n = 4) and flat rotation curve, the
ratio is approximately 5/2. Values from Peralta de Arriba et al. (2014)
are shown as triangles, including (green, pointing downwards) or neglecting
(red, upwards) aperture corrections. Open symbols are values from Cappel-
lari et al. (2013), for galaxies where a Sérsic profile gives a good (circles),
medium-quality (diamonds) or bad (small squares) photometric fit.

Since the mass within Re is given by at least the luminous com-
ponent, we can consider GM�/[2Reσ

2
ap(Re)] as a lower bound on

v2
c (Re)/σ 2

ap(Re) and check how that compares with the behaviour
of nearby ellipticals. The analysis in Peralta de Arriba et al. (2014)
relies on stacked spectra to obtain velocity dispersions and stellar
masses, assuming a Salpeter IMF, in different redshift bins. At first
sight, their results seem hard to reconcile with diverse homology ar-
guments (Bertin, Ciotti & Del Principe 2002; Cappellari et al. 2006,
2013; Taylor et al. 2010), or lensing results (Nipoti, Treu & Bolton
2008). However, the velocity dispersion should be averaged within
the effective radius, in order to make a fair comparison. When the
simple correction σ ap(R) ∝ R−0.066 is made (cf. Section 2.3), most
of the objects fall back into the range spanned by weak homology.
This is merely a consistency check, since applying the same kind
of aperture correction to each galaxy tacitly assumes some kind
of homology across the sample. The discrepancy is still present
for the most compact ones, which may then be interpreted as a
set of fast rotators. Spatially resolved kinematic information will
tell if this is the case. Also, the choice of IMF may play a role.
When dynamical masses are inferred via gravitational lensing, then
a (universal) Salpeter IMF implies negative DM fractions for some
of the SLACS galaxies (Auger et al. 2010). Interestingly, there is
evidence to suggest a dichotomy in early-type galaxies. Slow ro-
tators show a tendency towards a Salpeter IMF, and fast rotators
towards a Chabrier IMF (Grillo et al. 2009; Auger et al. 2010; Em-
sellem et al. 2011; Suyu et al. 2012). Moreover, the IMF is known
to vary with velocity dispersion (Cappellari et al. 2012; Spiniello
et al. 2014). The resolution of the problem indicated by Peralta de
Arriba et al. (2014) may be that both a non-universal IMF and more
detailed kinematic information are requiredwhen dealingwith com-
pact massive galaxies at higher redshift, although part of the tension
is already alleviated when aperture corrections are included.
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5 DISCUSSION AND CONCLUSIONS

We have shown how, under the approximation of spherical symme-
try, the line-of-sight velocity dispersion can be computed by means
of quadratures involving the surface brightness profile 
(R) and a
kernel that depends on the mass model and on the anisotropy. This
avoids the need for explicit de-projection of the surface brightness to
give the luminosity density, subsequent solution of the Jeans equa-
tions and final re-projection to give the line-of-sight dispersion. We
have provided simple approximations for the kinematics at large
distances or mild anisotropy.

The results on kinematic profiles can be adapted to include the
process of averaging through circular apertures of varying size.
Results for other cases (long-slit measurements, averages through
an annulus, point-spread-function blurring) can be obtained by sim-
ple combinations of the ones for a circular aperture. The aperture-
averaged velocity dispersion can be computed by means of single
integral over the stellar density profile modulated by a kernel encod-
ing the dependence onmass and anisotropy. If the surface brightness

(R) is used, the quadratures are (at worst) double integrals and the
kernels can be re-written as combinations of special functions. For
some special cases (including constant anisotropy with β∞ = 1, 1/2
and scale-free total densities), the kernel can be written explicitly
in terms of elementary functions.

The aperture-averaged kinematic profiles for a de Vaucouleurs
luminous component in scale-free total densities (ρ tot ∝ r−γ ) re-
produce the empirical behaviour observed in over 25 early-types
in the SAURON survey (Cappellari et al. 2006), provided the den-
sity exponent is γ = 2.05 ± 0.05 and anisotropy at the effective
radius is mild (0 ≤ β(Re) ≤ 0.5). This result agrees with the find-
ings of Koopmans et al. (2009), which are based on the analysis
of 58 lensing galaxies in the SLACS sample (Bolton et al. 2006).
At least as regards bulk properties, elliptical galaxies are seemingly
well-represented by the simple isotropic models with a flat rotation
curve.

Mass estimators can be derived by examining the kinematic pro-
files or aperture-averaged velocity dispersions. When the surface
brightness 
(R) is measured with sufficient accuracy, one strategy
is to determine the location RM within which the enclosed mass is
best constrained and the radius Rσ at which kinematics should be
measured in order to produce the tightest mass estimate. In the more
common case of aperture-averaged kinematics, we have not found
simple estimators for a de Vaucouleurs profile in scale-free total
density that are truly robust against changes in anisotropy, except
in the large aperture or virial limit.

For extended tracers in the outer parts of elliptical galaxies, such
as globular clusters or planetary nebulae, the velocity dispersion av-
eraged over a large aperture is in principle measurable. So, equation
(47) provides a simple estimate of the mass enclosed at a radius
RM that, for a de Vaucouleurs profile, is near to the effective radius.
More commonly, the kinematical information is available only for
populations within an effective radius or so. Then we advocate
using

M(Re) ≈ 2.4Re

G
σ 2
ap (49)

as the simplest mass-estimator in the absence ofmore detailed infor-
mation, provided the photometric profile is bulge-dominated (that
is, has a Sérsic index n � 3.5). This is broadly consistent with the
estimator of Cappellari et al. (2006, 2013), namely that the mass en-
closed near the half-light radius is M1/2 ≈ 2.5Reσ

2
ap(Re)/G, even if

we have derived the result under completely different andmore gen-

eral hypotheses. The total mass enclosed within the effective radius
appears to be a robust quantity for Sérsic-like luminous profiles,
independently of the underlying mass model.

Our conclusions here are primarily theoretical. In a companion
paper, we put the machinery to work in an analysis of the globular
clusters of M87, and its implications for the mass distribution and
orbits.
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MNRAS, 436, 2639
Gavazzi R., Treu T., Rhodes J. D., Koopmans L. V. E., Bolton A. S., Burles

S., Massey R. J., Moustakas L. A., 2007, ApJ, 667, 176
Gerhard O., Jeske G., Saglia R. P., Bender R., 1998, MNRAS, 295, 197
Gerhard O., Kronawitter A., Saglia R. P., Bender R., 2001, AJ, 121, 1936
Grillo C., Gobat R., Lombardi M., Rosati P., 2009, A&A, 501, 461
Hilz M., Naab T., Ostriker J. P., 2013, MNRAS, 429, 2924
Humphrey P. J., Buote D. A., 2010, MNRAS, 403, 2143
Illingworth G., 1976, ApJ, 204, 73
Johansson P. H., Naab T., Ostriker J. P., 2012, ApJ, 754, 115
Koopmans L. V. E. et al., 2009, ApJ, 703, L51

MNRAS 442, 3284–3298 (2014)



Elliptical galaxies: simple dynamical models 3295
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APPENDIX A: MATHEMATICAL DETAILS

Here, we give some of the technical details of the proofs required to derive the formula in the main body of the paper.

A1 Proof of equations (9) and (10)

For any function f(x, R), integration by parts gives∫ y

R

xf (x,R)√
y2 − x2

dx = f (R, R) +
∫ y

R

∂x (f (x))
√

y2 − x2dx . (A1)

Assuming that f(R, R) vanishes and the integrals are uniformly convergent, then we can differentiate the above with respect to y to obtain
equation (9). For equation (10), we note that:∫ ∞

R

ν(r)u(r, R)dr = − 1

π

∫ ∞

R

u(r, R)
∫ ∞

r


′(y)√
y2 − r2

dydr = − 1

π

∫ ∞

R


′(y)
∫ y

R

u(r, R)√
y2 − r2

drdy , (A2)

where primes denote differentiation. Here, we again assume that u(r, R) vanishes at r = R and all the integrals are well defined, Integrating

by parts in y and using equation (9) with f(r) = u(r, R)/r, then equation (10) follows if we set u(r, R) = M(r)
[√

r2 − R2 + kβ (R, r)
]
/r2.

A2 Proof of equations (15) and (17)

Let us define F(r) = GM(r)/r2 for conciseness. We start directly from equation (4), multiply by 2πR, integrate in 0 < R < Ra and reverse
orders of integration between R and r:

L(Ra)σ
2
ap(Ra) = 4π

∫ Ra

0
R

∫ ∞

R

(
1 − β(r)

R2

r2

)
r√

r2 − R2

∫ ∞

r
F (s)Jβ (r, s)dsdrdR

= 4π
∫ Ra

0

[∫ r

0
R

(
1 − β(r)

R2

r2

)
r√

r2 − R2
dR

] ∫ ∞

r
F (s)Jβ (r, s)dsdr

+ 4π
∫ ∞

Ra

[∫ Ra

0
R

(
1 − β(r)

R2

r2

)
r√

r2 − R2
dR

] ∫ ∞

r
F (s)Jβ (r, s)dsdr . (A3)

The integrals in R are easily performed and lead to

L(Ra)σ
2
ap(Ra) = 4π

∫ ∞

0
r2

(
1 − 2

3
β(r)

) ∫ ∞

r
F (s)Jβ (r, s)dsdr

− 4π
∫ ∞

Ra

(
r

√
r2 − R2

a − 2

3
β(r)

(
r2 − R2

a

)3/2
r

) ∫ ∞

r
F (s)Jβ (r, s)dsdr

+ 4πR2
a

∫ ∞

Ra

β(r)

r

√
r2 − R2

a

∫ ∞

r
F (s)Jβ (r, s)dsdr . (A4)
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The last line gives the third term in equation (15), provided we exchange orders of integration between r and s. For the other two terms, we
also observe that ∂rJβ (r, s) = −2β(r)Jβ (r, s)/r and J(s, s) = J(r, r) = 1, so that∫ s

0
r2Jβ (r, s)dr = 1

3
s3 + 2

3

∫ s

0
β(r)r2Jβ (r, s)dr , (A5)

∫ s

Ra

r

√
r2 − R2

aJβ (r, s)dr = 1

3

(
s2 − R2

a

)3/2 + 2

3

∫ s

Ra

β(r)Jβ (r, s)

(
r2 − R2

a

)3/2
r

dr , (A6)

whence equation (15), whose first line is obtained via ∂rM(r) = 4πρtot(r)r2. Equation (17) follows by Abel deprojection of ν and the same
line of reasoning that led to equation (10).

A3 Proof of equations (20) and (24)

When β or (s − r)/r are small, we may Taylor expand equation (3) to obtain

Jβ (r, s) ∼ 1 + 2
∫ s

r
β(u)du/u. (A7)

Then, we can approximate Jβ ∼ 1 in the integrals kβ (R, x) and Zβ (R, x), to obtain first order approximations in |β| and x − R. For higher
order terms, the whole behaviour of β is necessary. Equation (20) is valid in general, whereas equation (24) is obtained in the limit R � ra,
i.e. β ∼ β∞. An expansion accounting for other terms in ra/R is

kβ (R, x) ∼ −β(R)(x2 − R2)1/2 + β∞

(
1 − 2

3

(
β∞ − r2a /R

2
))

(
1 + r2a /R

2
)2 (x2/R2 − 1)3/2R + O(β∞(x2/R2 − 1)5/2)R . (A8)

When 
 decays sufficiently fast, higher-order terms are suppressed and we obtain the asymptotic expressions

kβ (R, x) ∼ −β(R)(x2 − R2)1/2 , (A9)

Zβ (R, y) ∼ 1

3R2
(y2 − R2)3/2. (A10)

These are usually sufficient to approximate σ p and σ ap. The main exception is the case β → 1, when the first non-trivial term in
√

x2 − R2 +
kβ (R, x) is proportional to (x2 − R2)3/2.

A4 Proof of equations (21), (25) and (28)

We start by noting that

∂r

(
r−γ (r2 − R2)j/2

) = r−γ−1(r2 − R2)j/2−1
[
(j − γ )r2 + γR2

]
. (A11)

If ρ tot = ρ0(r/r0)−γ , then from equation (10):


σ 2
p (R) = 8Gρ0r

γ
0

3 − γ

∫ ∞

R

Y
(Y )
∫ Y

R

∂r

(
r−γ (

√
r2 − R2 + kβ (R, r)

)
√

Y 2 − r2
drdY . (A12)

Now, equation (21) (respectively 25) follows by exploiting equation (A11) and equation (20) (respectively 24), via the replacements R = xY
and r = √

tY .

An analogous argument can be followed to obtain the average velocity dispersion within a circular aperture. However, an alternative
procedure leads to more convenient formulae such as equations (28) and (29). We start by recasting equation (17) as

σ 2
ap(R) = 4G

3L(R)
[I (0) − I (R)] , (A13)

where

I (R) ≡
∫ ∞

R


(S)S
∫ S

R

∂r

(
M(r)(r2 − R2)3/2/r3

)
√

S2 − r2
drdS =

∫ ∞

R


(S)
d

dS

∫ S

R

M(r)(r2 − R2)3/2/r2√
S2 − r2

drdS .

For a power-law total density ρ tot(r) = ρ0(r/r0)−γ , we have

I (R) = 4πρ0r
γ
0

3 − γ

∫ ∞

R


(R)
d

dS

∫ S

R

r1−γ (r2 − R2)3/2√
S2 − r2

drdS . (A14)
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The derivative with respect to S is:

d

dS

∫ S

R

r1−γ (r2 − R2)3/2√
S2 − r2

dr = d

dS

(
s4−γ

∫ 1

R/S

u1−γ (u2 − (R/S)2)3/2√
1 − u2

du

)

= (4 − γ )S3−γ

∫ 1

R/S

u1−γ (u2 − (R/S)2)3/2√
1 − u2

du + 3S3−γ

(
R

S

)2 ∫ 1

R/S

u1−γ
√

u2 − (R/S)2√
1 − u2

du . (A15)

Equation (28) then follows by using (u2 − (R/S)2)3/2 = (u2 − (R/S)2)
√

u2 − (R/S)2, splitting the first integral in equation (A15) and
summing the two terms proportional to (R/S)2.

APPENDIX B: SPECIAL CASES

B1 Anisotropy profiles with analytic kernels

Here, we list some special cases of the kernels kβ (R, x) defined in equation (8) and Zβ (R, y) defined in equation (15). We recollect that these
kernels are needed in the quadratures for the line of sight and aperture-averaged velocity dispersions, respectively.

For the anisotropy profile (11), the kernel kβ can be expressed in terms of hypergeometric functions, as indicated in equation (19). The
corresponding result for Zβ was not given in the main text, and so we report it here

Zβ (R, y) = β∞(
4β2∞ − 1

) √
y2 − R2

[(
r2a + R2

)
2
F1

(
1, −β∞− 1

2
,
1

2
, z

)
−(

y2+r2a
)− 2β∞(y2−R2)

]
, (B1)

where we have put z = (R2 − y2)/
(
r2a + R2

)
. The kernel is regular at β∞ = 1

2 and y = R, as may be confirmed by careful Taylor expansion.
Some special cases reduce to elementary functions, and we briefly note these results here. In the Osipkov–Merritt case β∞ = 1, we have

kβ (R, x) = 1

2
(
r2a + R2

)3/2
[(

2r2a + R2
) (

r2a + x2
)
arctan

√
x2 − R2

r2a + R2
− (

2r2a + 3R2
) √

(x2 − R2)(r2a + R2)

]
, (B2)

Zβ (R, y) = 1

2
√

r2a + R2

[(
r2a + y2

)
arcsin

√
y2 − R2

y2 + r2a
−

√
(y2 − R2)

(
R2 + r2a

)]
. (B3)

When β∞ = 1
2 , we have

kβ (R, x) =
√

r2a + x2

2(r2a + R2)

[
2(r2a + R2)arcsinh

√
x2 − R2

R2 + r2a
− (2r2a + 3R2)

√
x2 − R2

r2a + x2

]
, (B4)

Zβ (R, y) =
√

r2a + y2

2

(
arcsinh

√
y2 − R2

r2a + R2
−

√
y2 − R2

r2a + y2

)
. (B5)

When ra = 0, the models have constant anisotropy β∞ and we obtain

kβ (R, x) = β∞R(x/R)2β∞
[
B

(
β∞ − 1

2
,
1

2

)
− B

(
R2

x2
, β∞ − 1

2
,
1

2

)
+ 3

2
B

(
R2

x2
, β∞ + 1

2
,
1

2

)
− 3

2
B

(
β∞ + 1

2
,
1

2

)]
, (B6)

Zβ (R, y) = β∞
2

R(y/R)2β∞
[
B

(
3

2
, β∞ − 1

2

)
− B

(
R2

y2
, β∞ − 1

2
,
3

2

)]
, (B7)

where B(z, a, b) is the incomplete Beta function and B(a, b) = B(0, a, b). We note that equivalent formulae for the kernel kβ in the
Osipkov–Merrit and constant anisotropy cases have previously been given by Mamon & Łokas (2005b).

B2 Large radii and small anisotropies

At large radii and/or small anisotropies, the line-of-sight velocity dispersion can be written more conveniently:


(R)σ 2
p (R)

1 − β(R)
∼ 8G

∫ ∞

R


(Y )Y
∫ Y

R

ρtot(x)

√
x2 − R2

x3
√

Y 2 − x2
dxdY + 8GR−3

(∫ R

0
ρtot(x)x

2dx

) ∫ ∞

R


(Y )yA(1, Y /R)dY

+ 8GR−3
∫ ∞

R


(Y )Y
∫ Y

R

ρtot(x)x
2A(x/R, Y/R)dxdY , (B8)
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where the integral

A(χ, ξ ) =
∫ ξ

χ

3 − 2r2√
(ξ 2 − r2)(r2 − χ2)

dr

r4
(B9)

does not depend on any mass model and can be tabulated separately.
Similarly, for aperture-averaged dispersions, when anisotropy is sufficiently small, we have

3L(R)σ 2
ap(R)

16πG
∼

∫ ∞

0

(Y )Y

∫ Y

0

ρtot(x)x2dx√
Y 2 − x2

− 3(1 − β(R))R−1

(∫ R

0
ρtot(x)x

2dx

) ∫ ∞

R


(Y )YB(1, Y /R)dY

−3(1 − β(R))R−1
∫ ∞

R


(Y )Y
∫ Y

R

ρtot(x)x
2B(x/R, Y/R)dxdY , (B10)

where again

B(χ, ξ ) =
∫ ξ

χ

√
r2 − χ2

ξ 2 − r2
dr

r4
(B11)

is independent of any model adopted and can be tabulated separately.
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