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Abstract 
Validation and Verification are important processes used to ensure software safety and 
reliability. The Cooper-Harper Aircraft Handling Qualities Rating is one of the 
techniques developed and used by NASA researchers to verify and validate control 
systems for aircrafts. Using the Validation and Verification result of controller software 
to improve controller's performance will be one of the main objectives of this process. 
Real user feedback will be used to tune PI controller in order for it to perform better. The 
Cooper-Harper Aircraft Handling Qualities Rating can be used to justify the performance 
of the improved system. 
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1. Introduction 
 

Ever since the beginning of our existence on Earth, humans have always dreamed to 
fly like a bird. This dream came true in Dec 18, 1903 when the first airplane test 
flight was successful. Flight control system at that time was very primitive, but it has 
evolved a lot over time with new technology. I will explain more about flight control 
system technologies in this section.   
 
Most hi-tech flight control systems are controlled by software nowadays. It is 
important to have processes to ensure software safety and reliability. Validation and 
Verification are the two processes to do this work. They become even more important 
for safety-critical software such as aircraft control software. The Cooper-Harper 
Aircraft Handling Qualities Rating is one of the techniques developed and used by 
NASA researchers to verify and validate control systems for aircrafts. Section two 
will explain about Validation and Verification processes for adaptive control 
software. Section three will explain how the Cooper Harper Aircraft Handling 
Qualities Rating is used to verify and validate control software.  
 
The main objective of this research is to use the real Validation and Verification 
result of controller software to improve its performance. I  use standard adaptive 
methodologies from the literature to design and implement an adaptive tuning 
software to improve the performance of the PI controller in F-14 aircrafts. This 
software is able to use the Cooper-Harper Air Aircraft Handling Qualities Rating 
value from the fixed controller in F-14 system to dynamically adjust the proportional 
gain value adaptively.  
 
The innovation and challenge in this project is to use the Validation and Verification 
results as feedbacks to fine tune the controller software. The Cooper-Harper Aircraft 
Handling Qualities Rating results will be captured, and then passed to the adaptive 
tuning software to compute the correct amount of control value needed for the 
controller. With the new control value, the controller software will adapt more 
quickly and accurately to changes in the operating environment. In other words, the 
adaptive tuning control software uses the user feedback, to adjust its control value 
adaptively, whereas the fixed controller software uses system sensors. Section four 
will further explain how this method is implemented on the PI controller in F-14 
aircrafts.  
 

 

1.1. Flight Control System 
In the early 20s, designer replaced the mechanical linkage with electrical wire to 
reduce system weight and increase reliability. Nowadays, the aircraft control system 
is a collection of thousands of integrated circuit which help aircraft perform at a much 
better rate than it did in the early days.  



 
Any flight control system is required to have cockpit controls, flight control surfaces, 
linkage between cockpit control and flight control surfaces, and the actual 
mechanisms to control the aircraft. We will explain about the underlying mechanisms 
of flight control system in this section because it is the interest of this paper. 
 
 A basic cockpit control contains three components described below.    

• “Control yoke for roll which moves the ailerons 
• Control column for pitch which moves the elevators 
• Rudder pedals for yaw which moves the rudder” [31] 

 
Figure 1.1: Aircraft axes of rotation [21] 
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Figure 1.2: ARC implementation [8] 
 

An example of a modern flight control system is the Adaptive Robust Control (ARC) 
shown in Figure 1.2. Pilot inputs will be converted to pcom, qcom, and rcom by the F(s).  
The output of F(s) together with aircraft current situation (p, q, r) will be passed to 

ARC to compute new values of control (
.
p

com, 
.
q

com, 
.
r comp). These new values 

.
p

com, 
.
q

com, 
.
r comp will enter the DI (dynamic inversion) component. The DI inner loop will 

process these new values and compute an output vectorδ (rudder, elevator, aileron). 
This vector will be passed to the plant. This plan will fly the aircraft and output new 
sensor values p, q, and r. These values will be passed back to the ARC as input for 
the next iteration.  
 

1.2. Flight Controllers 

1.2.1. Classical Controller 
There are many classical controllers, but the Proportional-Integral-Derivative 
Controller (PID Controller) is the most widely used. Over 85% of all dynamic 
controllers are of the PID variety. [27] 
 
A PID controller has 3 components: the Proportional component, Integral 
component, and Derivative component. Each component has its own purpose 
because each one contains a different algorithm. Sometimes one or two 
algorithms are left out because they are not needed in the control design. It is 
possible to have a PI, PD or just a P controller, but it is rare to have an ID 
controller 
 

 
 

Figure 1.3: PID Controlled System [27] 
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a derivative control. Each component works independently of others to produce 
some values. The sum of these values will be the control for the plant. This plan 
will perform its task, and then yield new sensor values (output) for the next 
iteration.  
 
A specific application is the ARC implementation explained in figure 1.2 
  

1.2.2. Adaptive Flight Controller 
Adaptive systems are systems “whose function evolves over time, as they 
improve their performance through learning.” And, “If learning and adaptation 
are allowed to occur after the control system is deployed, the system is called 
online adaptive system.”  [28]. An Adaptive Flight Controller is a flight controller 
that can learn about changes in aircraft control, and adapt to those changes in 
order to keep the aircraft stable.  
 
Figure 1.4 shows an adaptive controlled system with a PI controller. Kp and Ki/s 
are replaced by a Fuzzy Tuner for Kp and a Fuzzy Estimator for Ki, respectively. 
The two new components, using fuzzy logic tuning, are responsible for 
computing a new proportional control value up and integral control value up. The 
sum u of up and ui will be passed to plant, and this plant will yield new sensor 
output. The difference of this output and the reference is the tracking error. This 
tracking error will be passed back to both Fuzzy Tuner for Kp and Fuzzy 
Estimator for Ki to continue with the next iteration.  
 

 
 
Figure 1.4: PI Controller with fuzzy tuning [15] 

 
 

Another Flight Adaptive system is the Flight Control System with Neural-
Network Controller. This system is also known as the Intelligent Flight Control 
System (IFCS) developed by the National Aeronautics and Space Administration 
(NASA).  
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Figure 1.5: Flight Control System with Neural-Network Controller [26] 
 
Figure 1.5 shows that sensor data from the aircraft such as altitude and airspeed 
are passed to three components: the Pre-Trained Neural Network (PTNN), 
Parameter Identification (PID) and Online Learning Neural Network (OLNN). 
The PTTN contains baseline derivative data is just a lookup table with data which 
is collected from the lab. Result output of the PTNN flows to the SOFFT 
(Stochastic Optimal Feed-Forward & Feedback Technology) controller. The 
SOFFT controller takes pilot inputs and computes a new command to feed back to 
the aircraft. It uses the stability and control derivatives data (PTNN output) to 
calculate a plant model that controls the aircraft so it can perform as desired.  
 
For an online adaptive configuration, both switches on Figure 1.5 are closed. Data 
from sensor flows through both PID and OLNN components. Output from the 
PID and OLNN will be compared to output from the PTNN before passing to the 
SOFFT controller. The derivative estimate from the PID are used to train the 
OLNN, and OLNN is used to correct data produced by the PTNN.  
 

1.2.3. Neural Network Adaptive Controller 
Online Learning Neural Network is also referred to as Dynamic Cell Structure 
(DCS) neural network. “As an online storage function approximator, the DCS 
network is expected to approximate the differences between the parameter 
estimation of the stability and control derivatives by a PID and the baseline 
derivatives generated by the PTNN” [26]. The OLNN will update the aircraft 
when there are changes in control or when there are model inaccuracies. These 
model updates will happen in real-time during flights. According to Liu, “this 
system must be capable of providing aerodynamic derivatives to the aircraft 
controller at least 10 times per second”.  
 
OLNN has two modes of operation: Learning and Non-Learning. During the 
Learning state, the difference between the derivative estimation PID and the 
baseline derivative from PTNN is used to train the network. During the Non-
Learning state, only the baseline derivative value from PTNN is used. The Non-



Learning state is activated when the derivative estimation from the PID becomes 
unusable or inaccurate.  
 
According to Liu, there are two conditions of the system.  
 

• “We are confident in PID estimates –  
There is no need to activate DCS.  
Controller uses the derivatives generated by baseline network. 

• We are not confident in PID estimates – 
DCS must be activated for adaptation.  
Controller uses the derivatives generated by PTNN plus the 
correction generated by DCS.” [26] 

 

“We can be confident about the performance of Neural Network Controller in the 
first condition because system is running within the safe region. If abnormal 
events happened (when the PID output can not be trusted) then appropriate action 
will be taken. However under critical condition, we still can not guarantee safe 
behavior with an OLNN. Therefore verification and validation techniques are 
needed to ensure the system safety and reliability.” [26] 

 

1.3. Handling Quality  
 
In most flight control systems, performance assessment is carried out in terms of 
handling qualities. Handling qualities may be defined as those dynamic and static 
properties of a vehicle that permit the pilot to fully exploit its performance in a 
variety of missions and roles. Traditionally, handling quality is measured using the 
Cooper-Harper rating and done subjectively by the human pilot. In this work, we 
formulated the rules of the Cooper-Harper rating scheme as fuzzy rules with 
performance, control, and compensation as the antecedents, and pilot rating as the 
consequent. Appropriate direct measurements on the controller are related to the 
fuzzy Cooper-Harper rating system. A stability measurement like the rate of change 
of the cost function can be used as an indicator if the aircraft is under control. The 
tracking error is a good measurement for performance needed in the rating scheme. 
Finally, the change of the control amount or the output of a confidence tool can be 
used as an indication of pilot compensation.  We use a number of known aircraft 
flight scenarios with known pilot ratings to calibrate our fuzzy membership functions. 
These include normal flight conditions and situations in which partial or complete 
failure of tail, aileron, engine, or throttle occurs. 
 

1.3.1. Cooper-Harper Aircraft Handling Qualities Rating 
 

The Cooper-Harper Aircraft Handling Qualities Rating is widely used since its 
introduction. Figure 1.6 depicts the various conditions used for the pilot to rate the 



aircraft handling qualities. The rating system takes on a couple of factors and 
deduces the aircraft handling qualities in aircraft characteristics and pilot rating 
columns in Figure 1.6.  The ten levels from “Excellent, Good, Fair,… Major 
Deficiencies”, as observed by the pilot, for various cases are summarized in the 
column of demand on the pilot in selected task or required operation in Figure 1.6. 
There three input factors that lead to this output column in the rating system. Pilot 
compensation, performance, and aircraft control status are the inputs that lead to 
Cooper-Harper rating scheme.  

 

 
 

Figure 1.6 Cooper-Harper Aircraft handling Qualities Rating [36] 
 

 

2. Validation & Verification (V&V) of Adaptive Control 
Software 

 

2.1. Overview  
Software Validation and Verification is a process to ensure software safety and 
reliability. Sommerville simply explains about the terms “validation” and 
“verification” in his book: 
 

• “Validation: Are we building the right product? 



• Verification: Are we building the product right?” [29] 
 
In other words, validation is a process to make sure the software was built based on 
the needs of users. In this process, users should have frequent updates after each 
phase of the project. Meeting with users frequently is a good way to ensure that the 
software product is consistent with users’ requirements. Another validation activity 
would be checking the specification with the design. Both users and developers 
should review the specification to make sure there is no misunderstanding between 
the developers’ interpretation and users’ interpretation.  
 
Verification is a process to make sure the software product meets its specifications. 
Activities in the verification process include but is not limited to mathematical 
analysis, functional testing, module testing, integration testing, etc. Verification 
should be performed at each phase of the project to ensure the quality of the product. 
For example, each module should be tested individually, and when they are integrated 
together, the complete system should be tested as well.  

 
“The goal of the V&V process is to establish confidence that the software system is 
‘fit for purpose’. This does not mean that the program must be completely free of 
defects. Rather, it means that the system must be good enough for its intended use. 
The level of required confidence depends on the system’s purpose, the expectations 
of the system users and the current marketing environment of the system.” [29] 
 

2.2. V&V of safety-critical Software 
 
Traditional methods for software V&V are classified into three families: 
 

• Fault Avoidance methods: These are the methods “which are based on the 
premise that we can derive systems that are fault-free by design” 
• Fault Removal methods: These are the methods “which concede that fault 
avoidance is unrealistic in practice, and are based on the premise that we can 
remove faults from systems after their design and implementation are complete” 
• Fault Tolerance methods: These are the methods “which concede that neither 
fault avoidance nor fault removal are feasible in practice, and are based on the 
premise that we can take measures to ensure that residual faults do not cause 
failure”[2] 

 
These methods works well with traditional controllers. However, they are not 
applicable for modern adaptive system due to the following reasons: 
 

• “Fault Avoidance methods: In traditional systems, we can determine their 
functional properties by analyzing the design and implementation. This does not 
work for adaptive systems because we can not predict the data which adaptive 
system will learn. Functions, which are computed by adaptive system, are based 
on both the system design and data it has learned.  



• Fault Removal methods: Testing is used to determine system faults after 
implementations are complete. These methods work well with traditional systems 
but not with adaptive systems because adaptive systems’ behaviors change over 
time. We can not predict what those behaviors are to test in order to find out 
system faults 
• Fault Tolerance methods: These methods will make one or more duplicates of a 
system’s functions to use as backups in case this system experience failure of 
functions. Therefore, fault tolerance methods required functions to be 
predetermined. In adaptive system, functions are not determined until new data is 
learned.” [2] 

 
Many modern missions require modern control systems which can handle critical 
changes in a system’s behavior. Intelligent adaptive controllers are the right choice 
for those missions. However these adaptive controllers need to be verified and 
validated before being used to ensure the safety of missions.  
 
“Space missions are good examples when adaptive controllers are used. Most space 
missions are long and autonomous. It is important that the control system can 
recognize and correct problems dynamically. These abilities can not be addressed 
with traditional controllers. Spacecraft mission such as CEV or JIMO requires 
controllers to perform in different environments than Earth environments. These 
controllers must control the individual systems reliably and safely in the situations 
which would be impossible to analyze ahead of time on Earth. Manual repair in space 
sometimes is not possible in case of components failures. The entire system must 
cope with these changes as fast as possible to maintain stability. Traditional fixed-
gain controllers do not have the required capabilities. Hence the need for Intelligent 
Flight Controller System, but this system must be certified to use on these missions. 
NASA has several V&V standards for  Intelligent Flight Controller System:  
 

• NASA Guidebook for Safety Critical Software, NASAGB- 1740.13-96  
• Trial-Use Standard for Information Technology Software Life Cycle Processes - 
Software Development, JSTD-016-1995 
• IEEE Standard for Software Test Documentation, IEEE Std 829-1998 (Revision 
of IEEE Std 829-1983) 
• NASA Procedures and Guidelines (NPG) 2820.DRAFT and NASA Software 
Guidelines and Requirements. 
This document references IEEE/EIA Standards 12207.0, 12207.1, and 12207.2 
which in turn reference standards published in 1995 as ISO/IEC 12207. 
• NASA Procedures and Guidelines (NPG) 8730.DRAFT 2, Software 
Independent Verification and Validation 
• (IV&V) Management. This standard discusses the requirements for independent 
verification and validation. In a nutshell, a manned mission and any mission or 
program costing more than $100M will require IV&V1” [31] 

 
There is also a guidance which has V&V process integrate to Software Life Cycle. At 
every phrase of the Software Life Cycle, V&V are performed to ensure the 



correctness of product. These V&V phrases are used to enhance but not to replace 
traditional testing. Figure 2.1 shows the Software Life Cycle with integrated V&V 
process 
 

 
 

Figure 2.1: Software Life Cycle with integrated V&V process [31] 
 

 

2.3. Issues and Methods in V&V of adaptive systems 

2.3.1. Issues 
It is clear that we can not use traditional V&V methods on adaptive systems. New 
V&V methods must be developed to ensure safety and reliability of adaptive 
systems. According to Mili, V&V of on-line learning systems can be summarized 
in the following premises: 

 
• “We establish the correctness of the system, not by analyzing the process by 
which the system has been designed, but rather by analyzing the functional 
properties of the final product, and how these functional properties evolve 
through learning. 
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• Qualifying the first premise, we capture the functional properties of the system 
not by the exact function that the system defines at any stage in its learning 
process, but rather by a functional envelope, which captures the range of possible 
functions of the system for a given learning history. 
• In order to make testing meaningful, we need to ensure that the system evolves 
in a way that preserves or enhances its behavior under test. Of course, on-line 
learning systems are supposed to get better as they acquire more learning data, 
but our definition of better is very specific: it means that the functional envelope 
of the system grows increasingly more refined with learning data  
• In order to support some form of correctness verification, we must recognize 
that the variability of learning data and the focus on functional envelope (rather 
than precise function) weaken considerably the kinds of functional properties that 
can be established by correctness verification. Typically, all we can prove are 
minimal safety conditions;” [2] 
 

2.3.2. Design and analysis 
Lyapunov’s functions are well-known in the control studies and implementations 
to prove systems’ stability or instability of fixed points in dynamical systems and 
autonomous differential equations [37]. I will briefly explain the idea of 
Lyapunov’s functions in this section.  

 
“Often the designer is first concerned about investigating the stability properties 
of a system, since it is often the case that if the system is unstable there is no 
chance that any other performance specifications will hold.” [21] 

 
An undisturbed motion is consider being stable if there is a small disturbance to it, 
and this motion remains close to the unperturbed one for all time [31]. More 
specifically, Lyapunov’s ideas about stability are as below:  
 
• “If for small disturbances, the effect on the motion is small, then the undisturbed 
motion is ‘stable’ 
• If for small disturbances, the effect is considerable, then the undisturbed motion 
is ‘unstable’ 
• If for small disturbances, the effect tends to disappear, then the undisturbed 
motion is ‘asymptotically stable’ 
• If regardless of the magnitude of the disturbances, the effect tends to disappear, 
then the undisturbed motion is ‘asymptotically stable in the large’”[31] 
 
Definition 

“Let 

 nn RRDf →⊂:  (2.1) 

be a vector field in Rn which is two times continuously differentiable with 



 f(p) = 0  (2.2) 

for some p in D. Given an open neighbourhood U of p contained in D a scalar 
function 

 RUV →:  (2.3) 

is called Lyapunov function for f and p if 

• V is continuous on U and continuously differentiable on U \ {p}  
• V(p) = 0 and V(x) > 0 for all x in U \ {p}, that is V is a positive-definite 
function  
• gradV(x) o f(x) ≤ 0 for all x in U \ {p}, in other words the derivative of V in 
direction f(x) is decreasing.  

If additionally the stronger condition gradV(x) o f(x) < 0 is satisfied, we call V a 
strict Lyapunov function.”[37] 

3. Validation with Fuzzy Cooper-Harper Rules 

3.1. Cooper-Harper Rating Rules 
 
We will use the magnitude of control as an indication of pilot compensation effort. 
When high/low compensation is needed to maintain the aircraft desired performance, 
corresponding extent of high/low control effort is applied accordingly. The status of 
the aircraft being under control or not can be observed by examining the stability of 
the flight system.  The rate of change of an appropriate Lypunov function will be a 
good indication of how the flight system in under control. In accordance with the 
Lyapunov function theory, a negative rate of change of Lypunov function is an 
indication of the given system being stable whereas a positive rate change would 
indicate instability. [35] 
 
Lypunov function  

 )(
2
1 22 eeJ &+=  (3.1) 

Negative rate of change of Lypunov  
 1,));1()(()( ≥Ν∈−−−=∆− kkkJkJkJ  (3.2) 

 
In the case of aircraft performance, we shall use the magnitude of tracking error as an 
indicator. Obviously, when the tracking error is small the flight system exhibits a 
good performance and vice versa. 
 
With these indicators, typical rating rules can be like the following: 
 



Group 1: Rating 1, 2 and 3. According to the flowchart on Figure 1.6, the aircraft is 
controllable, adequate performance is attainable with a tolerant pilot workload, and it 
is satisfactory without improvement. This means aircraft control in this group is 
stable. Pilot needs only a little effort to control the aircraft.  
 
Pilot Rating is 1 
Cooper-Harper Statement: “Aircraft characteristics are excellent (highly desirable). 
Pilot compensation is not a factor for desired performance.”  
 
Interpretation: Rating 1 indicates that aircraft performance is at its excellent 
condition. The control is stable.  None or a small amount of the control-effort is 
needed to have the desired performance.  
 
Rule 1: If Control-Effort is small and Control is stable and Performance is 
excellent, then Rating is 1 
 
Pilot Rating is 2 
Cooper-Harper Statement: “Aircraft characteristics are good (negligible deficiencies). 
Pilot compensation is not a factor for desired performance.” 
 
Interpretation: Rating 2 indicates that aircraft performance is in good condition. The 
control is stable. It has some deficiencies, but they are negligible. None or a small 
pilot control-effort is needed to have the desired performance. 
 
Rule 2: If Control-Effort is small and Control is stable and Performance is good, 
then Rating is 2 
 
Pilot Rating is 3 
Cooper-Harper Statement: “Aircraft characteristics are fair (some mildly unpleasant 
deficiencies). Minimal pilot compensation required for desired performance.” 
 
Interpretation: Rating 3 indicates that aircraft performance is in good condition. There 
are some mildly unpleasant deficiencies, but desired performance is still attainable 
with minimal pilot control-effort. “Desired performance” is the key phrase to decide 
that the performance is good in this rating. Control is stable 
 
Rule 3: If Control-Effort is minimal and Control is stable and Performance is 
good, then Rating is 3 
 
 
Group 2: Rating 4, 5 and 6. According to the flowchart on Figure 1.6, the aircraft is 
controllable, adequate performance is attainable with a tolerant pilot workload, but it 
is not satisfactory without improvement. This means control of aircraft in this group 
is stable. Pilot has to put in some trivial efforts to control the aircraft.  
 
Pilot Rating is 4 



Cooper-Harper Statement: “Aircraft characteristics have minor (but annoying) 
deficiencies. Desired performance requires moderate pilot compensation.” 
 
Interpretation: Rating 4 indicates that aircraft performance is in good condition. There 
are some minor deficiencies, but desired performance is still attainable with moderate 
pilot control-effort. “Desired performance” is the key phrase to decide that the 
performance is good in this rating. Control is stable 
 
Rule 4: If Control-Effort is moderate and Control is stable and Performance is 
good, then Rating is 4 
 
Pilot Rating is 5 
Cooper-Harper Statement: “Aircraft characteristics have moderately objectionable 
deficiencies. Adequate performance requires considerable pilot compensation.” 
 
Interpretation: Aircraft performance in this rating is adequate. Control is stable, but it 
has some moderately objectionable deficiencies. Pilot has to put in considerable 
control-effort to maintain the aircraft in good condition. 
 
Rule 5: If Control-Effort is considerable and Control is stable and Performance is 
adequate, then Rating is 5 
 
Pilot Rating is 6 
Cooper-Harper Statement: “Aircraft characteristics are very objectionable (but 
tolerant deficiencies). Adequate performance requires extensive pilot compensation.” 
 
Interpretation: Rating 6 indicates that the aircraft performance is adequate. Control is 
stable, but it is very objectionable. Extensive pilot compensation is needed to 
maintain the aircraft.  
 
Rule 6: If Control-Effort is extensive and Control is stable and Performance is 
adequate, then Rating is 6 
 
Group 3: Rating 7, 8 and 9. In this group, the aircraft is controllable, but adequate 
performance is not attainable with a tolerant pilot workload. Pilot has to put in a lot of 
efforts to control the aircraft.  
 
Pilot Rating is 7 
Cooper-Harper Statement: “Aircraft characteristics have major deficiencies. Adequate 
performance is not attainable with maximum tolerable pilot compensation, but 
controllability is not in question.” 
 
Interpretation: Rating 7 indicates aircraft performance is not adequate. Control is 
stable, but it has major deficiencies. Pilot has to put in maximum effort to control the 
aircraft. “Controllability not in question” is the key phrase to decide the stability of 
the aircraft.  



 
Rule 7: If Control-Effort is maximum and Control is stable and Performance is not 
adequate, then Rating is 7 
 
Pilot Rating is 8 
Cooper-Harper Statement: “Aircraft characteristics have major deficiencies. 
Considerable pilot compensation is required for control.” 
 
Interpretation: Aircraft performance is not adequate because aircraft characteristics 
have major deficiencies in this rating.  
“Considerable pilot compensation is required for control” means when pilot 
compensation is lower than “considerable”, the aircraft will be unstable. Therefore 
control in this rating is unstable.  
Due to the poor stabilities of the aircraft control in this rating, pilot will have to apply 
different levels of effort to control the aircraft. Pilot control-effort can range from 
small, minimal, to moderate effort. This will give three more rules for rating 8 
 
Rule 8: If Control-Effort is small and Control is unstable and Performance is not 
adequate, then Rating is 8 
 
Rule 9: If Control-Effort is minimal and Control is unstable and Performance is 
not adequate, then Rating is 8 
 
Rule 10: If Control-Effort is moderate and Control is unstable and Performance is 
not adequate, then Rating is 8 
 
Pilot Rating is 9 
Cooper-Harper Statement: “Aircraft characteristics have major deficiencies. Intense 
pilot compensation is required to retain control.” 
 
Interpretation: Aircraft performance is not adequate because aircraft characteristics 
have major deficiencies in this rating. ”Intense pilot compensation is required to 
retain control” means when pilot compensation is lower than “intense”, the aircraft 
will be unstable. This means control is unstable in this rating 
 
 Aircraft requires higher level of pilot effort to keep control it. Pilot effort can range 
from small to extensive, but we already cover the case of pilot compensation from 
small to moderate in rating 8. Therefore we will have just two more rules for rating 9 
to cover the case when control-effort is considerable and extensive.  
 
Rule 11: If Control-Effort is considerable and Control is unstable and 
Performance is not adequate, then Rating is 9 
 
Rule 12: If Control-Effort is extensive and Control is unstable and Performance is 
not adequate, then Rating is 9 
 



Group 4: Rating 10. In this group, the aircraft is not controllable. Highest level of 
pilot’s effort is needed to control the aircraft.  
 
Pilot Rating is 10 
Cooper-Harper Statement: “Aircraft characteristics have major deficiencies - 
improvement is mandatory, Control will be lost during some portion of required 
operation.” 
 
Interpretation: This rating is the highest rating in Cooper-Harper rating. Aircraft 
performance is not adequate due to the Cooper-Harper statement “aircraft 
characteristics have major deficiencies. Control is highly unstable because ‘control 
will be lost during some portion of required operation’. 
 
It needs all of control-effort levels from the pilot. Pilot compensation can range from 
small to maximum, but we already cover the cases of pilot compensation from small 
to extensive in rating 8 and 9. Therefore we will have just two more rules for rating 
10 to cover the case when control-effort is intense and maximum.  
 
Rule 13: If Control-Effort is intense and Control is unstable and Performance is 
not adequate, then Rating is 10 
 
Rule 14: If Control-Effort is maximum and Control is unstable and Performance is 
not adequate, then Rating is 10 
 
Based on these rules, we summarize the Cooper-Harper aircraft handling qualities 
rating system as shown in Table 3.1 below. 
 

 
Rule Compensation 

(|Control|) Control (Stability) Performance 
(Tracking) Rating 

1 Small Stable Excellent 1 
2 Small Stable Good 2 
3 Minimal Stable Good 3 
4 Moderate Stable Good 4 
5 Considerable Stable Adequate 5 
6 Extensive Stable Adequate 6 
7 Maximum Stable Not Adequate 7 
8 Small Unstable Not Adequate 8 
9 Minimal Unstable Not Adequate 8 
10 Moderate Unstable Not Adequate 8 
11 Considerable Unstable Not Adequate 9 
12 Extensive Unstable Not Adequate 9 



13 Intense Unstable Not Adequate 10 
14 Maximum Unstable Not Adequate 10 

Table 3.1 Cooper-Harper Rating Rules 
 
 

3.2. Fuzzy rule-based system 
 

Fuzzy system has four major components as shown in Figure 3.1 
 

 
Figure 3.1 - Fuzzy Inference System Component . 
 
 
Fuzzification: 
“Each linguistic variable, e.g., performance, is associated with membership functions 
that are defined for the affiliated Fuzzy sets e.g., excellent, good, etc. This component 
receives a crisp input value for each linguistic variable and evaluates the degree of 
membership of this variable with respect to each affiliated Fuzzy set. 
 

• Fuzzy Rule Base  
Fuzzy systems use Fuzzy IF-THEN rules. A Fuzzy IF-THEN rule is of the form: 
IF X1 = A1 and X2 = A2 ... and Xn = An THEN Y = B 
 
Where Xi and Y are linguistic variables and Ai and B are linguistic values. The 
collection of Fuzzy IF-THEN rules is stored in the Fuzzy Rule Base, which is 
accessed by the Fuzzy Inference Engine when inputs are being processed. In our 
case, we have 14 rules based on Cooper-Harper aircraft handling qualities rating. 

 
• Fuzzy Inference Engine 
This component receives all the crisp input values that have been fuzzified with 
respect to their respective linguistic membership functions and process them 
based on the Fuzzy Rule Base to deduce the conclusive output. The two main 
steps in the inference process are aggregation and composition. Aggregation is 
the process of computing for the membership values of the IF part of the rules 
while composition is the process of computing for the membership values of the 
THEN part of the rules.  

Input 
Fuzzification 

Inference 
Engine 

Rule Base 

Defuzzification 
Output 



During aggregation, each condition in the IF part of a rule is assigned a degree of 
truth based on the degree of membership of the corresponding linguistic 
membership functions. Typically, the minimum or the product of the degrees of 
truth of all the conditions is computed as the overall degree of truth of the IF part. 
For the case of crisp output design, this aggregated truth value is also the truth 
value of the associated rule subject to the inputs.  

 
• Defuzzification 
The process of generalizing the fuzzified values with respect to the fuzzy rule 
base back to crisp output values is called defuzzification. There are different ways 
to defuzzify. Some common defuzzification methods include centroid and 
maximum height ”[35] 
 

 

3.3. Fuzzy Cooper-Harper rating system 
 

“Cooper-Harper rating system takes on three indexes from the system under control 
and deduces a rating based on the fuzzy engine as shown in Figure 3.2. The three 
indexes, i.e., performance, control, and compensation, are in accordance with the 
original Cooper-Harper aircraft handling system. A real-time rating between 
numerical values of 1 to 10 will be produced based on the actual inputs at application 
stage. In view of the fact that measurement data will never be precise, due to sensor 
or other possible design errors, fuzzy logic proves to be an effective scheme to 
counteract these issues that are also present in our problem. Furthermore, fuzzy logic 
has the well-known generalization capability that will enable us to deal with various 
cases that may or may not match our 10 rules exactly in the application stage. 
 
 

 



 
Figure 3.2 Fuzzy Cooper-Harper rating system 

 

 
Figure 3.3 Membership function for linguistic variable compensation 
 
Compensation:  
 1);1()()( ≥−−=∆ kkukuku  (3.3) 
 
In application stage, associated membership function values for each linguistic value 
can be computed based on the given input as illustrated in Figure 3.3. 

 

 
Figure 3.4 Computing membership values 
 
For the case illustrated in Figure 3.4, we have the computed membership values as 
µModerate(Compensation) = 0.5 and 
µConsiderable(Compensation) = 0.2 
Similarly, Figures 3.5 and 3.6 show the membership functions for the control and the 
performance linguistic variables, respectively. 
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Figure 3.5 Membership function for linguistic variable control 
 
J is the square of tracking error in the given problem. 

 

 
Figure 3.6 Membership function for linguistic variable performance 
 
Note other membership function types, e.g., Gaussian type, can be used as well” [35]. 

 
 

3.4. Validation of an F-14 Longitudinal Control System  
 

We apply our proposed fuzzy Cooper Harper rating system to a simplified F-14 
Longitudinal control system. This system is modified from a Matlab demo example 
as shown in Figure 3.7 [13]. The generalized control objective is to ensure the alpha 
angle track the pilot input. 
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Figure 3.7 F-14 longitudinal control system 

 
 

 
Figure 3.8: F-14 PI Controller 
 
A fuzzy Harper-Cooper rating system is augmented to the given F-14 control to 
validate aircraft handling qualities.  Matlab F-14 control model use PI controller with 
Kf is the Proportional Controller Gain and Ki is the Integral Proportional Controller 
Gain as shown in Figure 3.8.  
 



The fuzzy Cooper-Harper rating system is firstly calibrated against several standard 
cases and its fuzzy membership functions tuned  
 
The values we used for all fuzzy membership functions in our simulations are shown 
in table 3.2, 3.3, 3.4.  

 
Small Minimal Moderate Considerable Extensive Intense Maximum 
0.015 
(Trapezoidal) 

0.0925 
(Triangular) 

0.2 
(Triangular)

0.2475 
(Triangular) 

0.325 
(Triangular)

0.4025 
(Triangular) 

0.48 
(Trapezoidal)

Table 3.2: Numerical values for various means Compensation linguistic variables 
 
Unstable Stable 
-0.2 
(Trapezoidal) 

0 
(Trapezoidal) 

Table 3.3: Numerical values for various means Control linguistic variables 
 
Excellent Good Adequate Not Adequate 
0.0001 
(Trapezoidal) 

0.08 
(Triangular) 

0.17 
(Triangular) 

0.35 
(Trapezoidal) 

Table 3.4: Numerical values for various means Performance linguistic variables 
 

In the application stage, we use a square wave with alternating magnitude of +/- 0.5 
as pilot input. The resultant tracking profile of alpha is as shown in Figure 3.9 
 



 
Figure 3.9 input and output profiles  
 
After simulation is complete, we will have the profiles of three indicators which will 
help to determine Cooper-Harper rating.  

 



 
Figure 3.10: Indicator profiles for aircraft when Kf = -1.7.  J, J∆− , and u∆  are 
defined in (3.1), (3.2), (3.3). 
 
Our fuzzy Cooper-Harper rating system yields the rating profile as shown in Figure 
3.11.  The y-axis represents the Cooper-Harper rating generated from our fuzzy 
Cooper-Harper rating system during the 10-second simulation interval. 

 
 



 
Figure 3.11 aircraft handling qualities rating profile with Kf= -1.7 
 
At the beginning of the simulation t=0, we can see the three numerical values for 
compensation, control and performance variables are 0.08, 0, and 0.15 accordingly. 
This means compensation is minimal, control is stable and performance is good. 
According to Table 3.1, Cooper-Harper rating system will generate a rating 3. Figure 
3.11 showed that at the beginning of the simulation, Cooper-Harper rating is 3.3, 
which is very close to 3.  

 
In another simulation, we change the value Kf of the control to be 0.1. This will make 
the control unstable. We can see this in the tracking profile of alpha in the figure 
below 

 



 
Figure 3.12 input and output profiles with Kf = 0.1 
 

 
 



 
Figure 3.13: Indicator profiles for aircraft when Kf = 0.1.  J, J∆− , and u∆  are 
defined in (3.1), (3.2), (3.3). 
 
The Cooper-Harper rating in figure 3.14 is different from figure 3.11 because the 
aircraft control is now unstable 

 
Figure 3.14 aircraft handling qualities rating profile with Kf= 0.1 



 
At the end of the simulation t=10, we can see the three numerical values for 
compensation, control and performance variables are 0.24, 0, and .095 accordingly. 
This means compensation is considerable, control is stable and performance is 
adequate. According to Table 3.1, Cooper-Harper rating system will generate a rating 
5. Figure 3.14 showed that Cooper-Harper rating is also 5 at the end of the simulation. 

 
This shows that our proposed fuzzy Cooper-Harper rating system can be used to 
effectively validate the aircraft handling qualities. 
 

4. Adaptive PI controller with Cooper-Harper Feedback 

4.1. Fixed value F14 PI controller 
 

A fixed value controller is a controller which use a fixed gain value Kf in its control. 
Figure 3.8 shows the fixed value F-14 PI Controller. It uses a fixed value Kf = 1.746 
to adjust its controller. Tracking error will always multiply with a fixed value of 
1.746 to compute a new control value. In order for this controller to perform better, 
the fixed gain value Kf should be adjustable based on some sensors values. This is the 
main drive the work in the next sections. 
 
To distinguish the two gain values in this paper, we will use the notation Kf for fixed 
gain value and Kp for adjustable gain value.  
 

4.2. Adaptive PI controller with Cooper-Harper Feedback VS. 
Adaptive PI Controller 

 
Adaptive feedback loop controller is well-known and widely implemented. Tracking 
error, which is the difference between reference and plant sensors’ output data, is 
passed to an adaptive controller to generate new controlled data values to control the 
plant. Figure 4.1 illustrates this idea.  
 

 
 
Figure 4.1: Adaptive control system without human feedback 
 
The adaptive control system in Figure 4.1 uses plant sensors’ data to adjust its 
controller. However, these data are very difficult to understand by human user. In this 
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section, we propose a system which uses the same idea, but with another additional 
input to the adaptive controller. This additional input is a human readable rating 
value. This human readable rating value is important because user can understand the 
value which will adjust the controller directly.  
 
 

 
 
Figure 4.2: Adaptive control system with human feedback 
 
Figure 4.2 illustrates the proposed system we mentioned above. Sensors’ output data 
values, together with control data are passed to a human user component. This 
component will generate the human readable rating value. The adaptive controller 
will acquire both the tracking error and the human readable rating value to compute 
and generate new control for the next iteration.  
 

 
Figure 4.3: F-14 control system with human feedback 
 
Fuzzy Cooper-Harper Rating can be used to implement the idea we propose above. 
The Fuzzy Cooper-Harper Rating will take both sensors’ output data from the plant 
and controlled data to generate a human reading rating value. 
 
Figure 4.3 shows how we implement this system using Matlab Linearized F14 Model. 
Matlab Fuzzy tool box is used to implement the Fuzzy Cooper-Harper Simulator. 
This simulator will generate a rating from 1 to 10 and pass it to the PI controller. The 
PI controller takes this rating, and adjusts the proportional gain value adaptively. 
When this gain value is adjusted adaptively, new control data are generated to control 
the F-14 model.  
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At every simulation step, the Cooper-Harper Aircraft Handling Qualities Rating and 
the Kp value are passed to the adaptive controller. This controller will adjust the gain 
value Kp based on the following:  
 
Change in Cooper-Harper Aircraft Handling Qualities Rating: 
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Then we will use the decision tree in Figure 4.4 below to determine the value of Kp∆  

 
Figure 4.4: Decision Tree for Kp∆ ; PM: Positive Medium; NM: Negative Medium; 
PS: Positive Small; NS: Negative Small; PL: Positive Large; NL: Negative Large 
 
Where the value of PM, NM, PS, NS, PL, NL are shown in the table 2.1 below 
 
NL NM NS PS PM PL 
-0.15 -0.08 -0.018 0.018 0.02 0.025 
Table 2.1:  PM, NM, PS, NS, PL, NL values 
 
When Kp∆ is determined, it will be used to calculate the value of Kp for next 
iteration:  
 

 1,k Kp(k); )(  1)Kp(k ≥Ν∈+∆=+ kkKp  (4.4) 

 
We also have a control sampling rate. This sampling rate will control the controller 
when to update the Kp value based on Matlab simulation steps.  



 
Time Performance Index  
Time Performance Index (TPI) from both the fixed value PI controller and the 
adaptive PI controller is used to evaluate the improvement of the adaptive system.  

 

 venderTheCurTotalAreaUTPI =  (4.5) 

 
In order to determine which system performs better, we introduce an improvement 
value. An improvement value is the difference between the TPI of both fixed value PI 
controller and adaptive PI controller. It will be use to determine how well the 
adaptive PI controller perform.  
 

 Improvement value = TPI Fixed Value PI Controller – TPI Adaptive PI Controller (4.6) 

 
A large positive improvement value means the adaptive controller performs better. A 
large negative improvement value means the fixed value PI controller performs 
better.  
 
For viewing purpose, we also define a formula to calculate the improvement 
percentage of the adaptive control system over the fixed control system.  

 %100*
 TPI

t valueImprovemen percentaget Improvemen
Controller PI Value Fixed  

=   (4.7) 

 

4.3. Results 
 
We simulate the F14 Adaptive Controller with many different pilot input frequencies, 
pilot input signals (Sine, Sawtooth, Square) and sampling rates.  Sampling rate is the 
number of Matlab simulation steps this adaptive controller takes to update gain value 
Kp 
 

Sampling Rate Sine Sawtooth Square 
2 2.6398 0.2964 0.5276 
5 2.3576 0.1569 0.8596 
10 1.4199 0.0163 0.1790 

Table 4.1: Improvement value results with different control variables. Frequency = 1 
Hz 
 

Sampling Rate Sine Sawtooth Square 
2 2.2205 0.5586 -0.4993 
5 1.6545 0.8241 -0.4032 
10 1.2274 0.6416 -0.7103 



Table 4.2: Improvement value results with different control variables. Frequency = 2 
Hz 
 
Observation from the result on tables 4.1 and 4.2 shows: 
• Improvement value will drop when sampling rate is high. When this system takes 

too long to update the Kp value, it will not perform as well. We also experience 
with a sampling rate =1, which means updating Kp value every simulation step, 
but Matlab became unstable and crashed. This is a known problem with adaptive 
system. When it updates too quickly, it will become unstable. 

• Sine input signal has the highest improvement overall, follow by Sawtooth, then 
Square. Sine input signal means input value keep changing, and the adaptive 
controller shows its power when input value change more frequently 

 

Based on the values on table 4.1, 4.2, and (4.7), we generate the improvement 
percentage tables 4.3 and 4.4 below.  

 
Sampling Rate Sine Sawtooth Square 

2 34.02% 6.19% 6.16% 
5 30.38% 3.27% 16.19% 
10 18.30% 3.40% 2.09% 

Table 4.3: Improvement percentage results with different control variables. 
Frequency = 1 Hz 
 

Sampling Rate Sine Sawtooth Square 
2 19.82% 7.72% -5.17% 
5 14.77% 11.39% -4.17% 
10 10.96% 8.87% -7.35% 

Table 4.4: Improvement percentage results with different control variables. 
Frequency = 2 Hz 
 



 
Figure 4.4: Cooper-Harper Rating values plot of Fixed value PI controller VS. 
Improved PI controllers; Pilot input frequency = 1Hz, Sine curve, Sampling Rate = 2 
 
Figure 4.4 is a graph of the Cooper-Harper Rating values between the fixed value PI 
controller and the adaptive PI controller. At t = 1.6 second, the adaptive controller 
yields a Cooper-Harper Rating of 1 while the fixed value PI controller yields a rating 
of 2.25.  

 
This graph shows that the adaptive controller performs much better than the fixed 
value controller. The goal of this research is to design an adaptive controller which 
will help the controller perform better by bringing the Cooper-Harper rating closer to 
1. Figure 4.4 is one of many good examples to show that our goal is reached.  

 

5. Conclusion 
Validation and Verification are important processes used to ensure software safety and 
reliability. There are many Validation and Verification techniques, but The Cooper-
Harper Aircraft Handling Qualities Rating is shown to be affective in this research.  
 
This rating can also be used as feed back to improve PI adaptive control system. The 
Cooper-Harper Aircraft Handling Qualities Rating is the real feedback from the control 



system which human can understand. The idea of this research is to use real human 
feedback to control system adaptively, and we showed that it’s possible.  
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