San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2006

Authoring XML Documents with XHTML and MATHML Support

Xiaoheng Wu
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

6‘ Part of the Computer Sciences Commons

Recommended Citation

Wu, Xiaoheng, "Authoring XML Documents with XHTML and MATHML Support" (2006). Master's Projects.
134.

DOI: https://doi.org/10.31979/etd.syyh-d95k

https://scholarworks.sjsu.edu/etd_projects/134

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/134?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F134&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

AUTHORING XML DOCUMENTS
WITH
XHTML AND MATHML SUPPORT

A Project Report
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by Xiaoheng Wu
December 2006

© 2006
Xiaoheng Wu
ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Cay Horstmann

Dr. Jon Pearce

Dr. Michael Beeson

APPROVED FOR THE UNIVERSITY

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Cay Horstmann

Dr. Jon Pearce

Dr. Michael Beeson

APPROVED FOR THE UNIVERSITY

Dr. Cay Horstmann

Dr. Jon Pearce

Dr. Michael Beeson

ABSTRACT

AUTHORING XML DOCUMENTS WITH
XHTML AND MATHML SUPPORT
by Xiaoheng Wu
Since the late 1970s, a large number of scientific documents have been authored in TeX
or its derivations such as LaTeX. These typesetting systems allow anybody to write high-
quality books and articles. But the TeX syntax is not compatible with HTML or XML. So
the WWW consortium's answer is MathML. The primary goal of MathML is to enable
mathematical documents to be communicated, exchanged, and processed on the Web.
Therefore, MathML documents are usually embedded with XHTML documents.
Currently, there are several XHTML+MathML editors. The most popular editors use two
common approaches. The first approach offers a What-Y ou-See-Is-What-Y ou-Get
(WYSIWYQG) interface. But experts often find it is difficult to have precise control. For
example, font attribute is determined by the direction of the mouse movement during the
event of insertion. The second approach uses a text-based form. The entire document is
presented as a tree-like structure. The tree-like structure is unintuitive and extremely
inefficient to comprehend, particularly for two-dimensional structures such as tables or
equations. Here, I present a What-You-See-Is-What-You-Need (WYSIWYN) editing
interface that satisfies the needs of experts who have knowledge of XHML+MathML.
The WYSIWYN interface is presented in a form that simultaneously makes editing
operations unambiguous and that looks recognizable. It avoids unexpected errors by
showing enough structure, but still maintain enough visual presentation to avoid
confusion.
This report presents a test bench, an XHTML+MathML editor with a new navigation
model that demonstrates the WYSIWYN user interface. Similar to a WYSIWYG editor,
XHTML+MathML documents can be visualized during editing, and users can check the
current XPath position by viewing the status bar. In contrast to the WYSIWYG editor,
the new approach offers users the ability to view local structure of the current element
with a selected style. In this way, users can magnify any ambiguous positions and still be
able to visualize mathematical documents. In addition, the test bench offers multiple

WYSIWYN modes with different levels of magnification.

ACKNOWLEDGMENTS

I would like to express my appreciation to Dr. Cay Horstmann who provided the
motivation, resources, and invaluable insights without which this project could never

have been accomplished.
I would also like to express my gratitude to my committee members Dr. Beeson and Dr.
Pearce for their useful comments on my work. I am also grateful for my friends and the

students who assisted me for usability study.

Finally, my thanks to my parents for their encouragement and financial support.

Table of Contents

1. INTRODUCTION.......ceiitiiiiteiteiete sttt ettt st sttt sae et et be et e s entenaesaeas 1
2. XHTML AND MATHML......coiiiieieeeeeee ettt sttt sre e nne s 6
3. LISP-LIKE SYSTEMS, TEX, AND MATHML.........ccceeiiiiiiiiieieeeeeee e 10
4. EVALUATION OF EXISTING TOOLS FOR XHTML AND MATHML.................... 10
5. IMPLEMENTATION OF XML VERSION OF XMLEd EDITOR..........c.ccccecvevrnene.. 15
S L. DEMONSIIALION.eieiiieeieeiieeeteesiie et et e e e e te et e et eeseaeenteesaseessaeeseesnseesaseensseensaeenneas 15
5.2.Functionality of the XMLEd Editor..........c.cccouiiiiieeiieiieieeeee e 16
5.3.Implementation of the Document Model.............ccccoevieniiiiiiiiieniiciieieee e 17
5.4.1IMplementation Of VIBWS......cccvuieiieeiiieciiecie ettt saeete s saaeeaaessseens 19
5.4.1.Caret Implementation............cccueeierierienieiieeeie ettt 19
SA.2.VIBW TTCC....ueeeiieeiie et eee ettt ettt e et e tee st e e eaaeeaaeessbeeebeeensaeensaesnneenseean 20
543 CSS StYLES...icuieietieiieieeteste ettt sttt ettt et b e seeaeeneenaeeneenean 21
6. PROJECT WORKcotiiiiiiieiecteet ettt sttt 23
6.1. ACCOMPIISHIMENLS.ccuiiiiiieeiie ettt eeree e saeeeereeeaeeesnseeenns 24
6.2. Visualization of XHTML.........ccccooiiiiiiiiiiiieiieiiece et 24
6.3. Visualization of MathML............cccooiiiiiiiiiiiceeecee e 25
6.4, CSS EXLENSIONS. ¢...iuieiieiieiieeiiesiieteeie et stteiteste e e eete st e ss e ste e seenseenseesaesseanseesseenseenns 36
0.5, XPAtN....cetiiiee e ettt b ettt 37
6.6. What You See Is What You Need (WYSIWYN) Editing Interface......................... 39
7. USABILITY STUDY ..ottt sttt sttt st b 49
8. CONCLUSION......cutttteteieste ettt et e st ettt et et e e sbesaeeseenaesseeneenseseeneeneensennes 53
REFERENCES ...ttt ettt st ettt et st 55
Index of Tables
Table 2.1.: Token EISMENtS.c.ccouiiiiiiiiiieieee et st 6
Table 2.2.: General Layout SChemata.............cocieriiiiieriiiiiiee e 7
Table 2.3.: Script and Limit Schemata...........c.cocveviiieeiiiiiniieeiieeee e 7
Table 2.4.: Tables and MAatTICES.........cccuieiiieiiiecieeeee ettt e aae e e beesaaeesaeeenes 8
Table 2.5.: Enlivening EXPreSSIONS.ccuerieriieriieriieniieniiesieeseesieeseesseessessseeseesseeseessesnseens 8
Table 2.6.: Argument Count and ROIES...........cccvieiiiiiieiiieciecie e e 9
Table 6.1.: Current MathML Elements and VIEWS............ccccueeviieriieniieiieeiienie e 26
Table 6.2.: Mode SWILCRING.......c.eeeiiieiiieciiecee e eee e seaee e 46
Table 6.3.: Zoom Mode COmMmAndS.............cecueeiieerieeienienie sttt ee e 47
Table 6.4.: Function Keys For Frequently Used MathML Elements.............ccccccveevrennnnne. 48

Illustration Index

[lustration 1.1.: WYSIWYG Interface for Amaya..........cccoeeveerieiiiieniiieniieieeeeeeeeeeeeee 2
THUuStration 1.2.: WY SIWY G ISSUE....oveeeiiiieieeeeeeeeeeeeee et eeeee e e e seeeeens 2
Tustration 1.3.: Tree-11KE SHUCTULE.cocouviiiiiieeeiie ettt ettt ettt e e s ee s e eaaas 3
[lustration 4.1.: MathML With XIMLSPY......cccoiiiiiiieiiieiie ettt 12

[lustration 4.2.: MathML Error with XMLmMind.........ccccoooeeiiiniiniiiiiiiieeeceeeeeecee 13
Mlustration 4.3.: MathType Translator............coocverieiieiieiienieie e 14
[ustration 4.4.: Amaya StruCture VIEW........c.ccvveiieerieeiiieiieeieesreesieeeieeseeeeeesveesseesaneens 15
[lustration 5.1. XMLEd Evaluation Demo...........ccccceeeieririiininieniiieienieieeeesieseesie s 16
Mlustration 5.2.: Swing Text COMPONENLS.covierrierieeieriieieeieerteseesresreessseseesseesseesseens 17
[lustration 5.3.: Swing Document Model Coordinate Systemccccceeeeveeeieeeieeeieneenne 18
Mlustration 5.4.: XMLEd Document Model Coordinate Systemcccceevvereierienieennnnne. 18
[lustration 5.5.: XMLEd Rendering Technique..........c.ccoveeviieiiieiiiecieneece e 21
[ustration 5.6.: CSS FOIML.....ccoiiiiiiiiiirireet ettt sttt 21
[lustration 5.7.: CSS Integration With Customized VIEWS........cccceeeviieriieeniienieenieesieeneen 23
[Mustration 6.1.: Styled IMAE.......c.cocueviiriiiiiiriiee e 25
Mlustration 6.2.: Base LaYOUL.........ccceiiiriiiiiieiieieeie ettt ene e 28
[lustration 6.3.: None Stretchable Operator.............c.eevvvieeiieriierieeie e 29
[lustration 6.4.: Grouping EICMENLS...........c.ccciiriiiiiinieiieeiieieereete e ens 29
[ustration 6.5.: SQUATE ROOL.........ccouiiiiiiiieeieecie et e eae e s 31
[lustration 6.6.: Quadratic EQUAtiON..........c.coiuiiiiiiiiiiieieeeree e 32
TTTUSLration 6.7.: A MAIX.....couietiriieiieieiest ettt sttt ettt st bt et e e e b e seesaeenneaens 34
[ustration 6.8.: SubSCript and SUPETSCIIPL......eccuviiriiereieeiieeteecee et eeteesree e ereeereesaeesaaeens 35
[lustration 6.9.: SUDSCIIPESUPETSCIIPL......eeevrieerieiieiierieieeieeieesrteeaeeaeereesaeessaesseeeseeenseenns 35
[ustration 6.10.: OVEr UNAET..........ooouiiiiiiiiiiiiieieee e 35
[lustration 6.11.: MUIIPSCIIPL......eeviiieiieiieiieie ettt ettt et et sseesaeenseens 36
[lustration 6.12.: XPath EXample..........ccoooveiiiiiiiiiiiieciie e 39
lustration 6.13.: Trigonometry With Full Tags..........coceeveriiiiniiiiniiiiniecneees 40
Mlustration 6.14.: Quadratic Equation In Dot Mode...........ccccceviiiiiniiiiiieieeieeieee e 40
[ustration 6.15.: Zoom MoOde STaIt..........cccvierieeriieeiieeiee ettt reesre e raeesaeeeeaee s 42
Mlustration 6.16.: Zoom Mode Tag Level 0..........cccooeieiiieiiinieiieieceeeeee e 43
[lustration 6.17.: Zoom Mode Tag Maximum Level..........ccccccveviieiiiiiieniieceeeeeeeen 44
[lustration 6.18.: Zoom Mode Dot Maximum Level..........ccccoooieiiiiiiiinniiiiieieeiceeee, 45
[Tustration 6.19.: VIEW TTEE......cccueiuiriiiiriieiesie ettt sttt st 49
[ustration 7.1.: Task 1 BEIOT€.......cccuviiiiiiiieie et 50
Mlustration 7.2.: Task 1 AT ...c..oouiiiiiiiiee e 50
[ustration 7.3.: Task 1 XMLEA GrOUP.......cccccieriieeiieeiieecee et esie e eaee e eeae e ens 51
[lustration 7.4.: Task 1 Amaya GIOUP........c.cccuervierierienieniieiieie ettt eee e ereereeeeenne 51
[Mustration 7.5.: Task 2 XMLEA GIOUP........ccovteiieerieeniieeieeeiee ettt eve e seveesaee s ens 52
[Mustration 7.6.: Task 2 Amaya GIOUD.......ccccevererieieriininieese ettt 52

1

1. INTRODUCTION

As XML has become more popular, XML document writers demand an authoring tool
with efficiency and precise control that would alleviate the problems that they face. Like
other Word documents, XML documents can be stored as regular word processor files,
such as Word or OpenOffice documents. But these documents often have their own
document structures. Thus they always carry portability issues and have no validation
mechanisms (DTD or Schema) for desired XML structure. Obviously, it is important to
develop a tool that can ease the conversion between the Word document structure and the
desired XML document structure and enforce DTD or Schema constraints. In this way,
we can guarantee each building block of the XML document is legal. This is a
requirement when independent groups of people want to interchange document data. An
editor without DTD validation can be error-prone for XML specific languages. In
addition, as a What-You-See-Is-What-You-Get (WYSIWYG) editor, a word processor
often has some side effects. For example, the font attribute is determined by the direction
of the cursor movement during the event of insertion. Because of this uncertainty, users

are often surprised that the character is bold when they are expecting italic.

To ease the conversion between the Word document structure and the desired XML
document structure, developers created XML specific editors. Targeted at users
unfamiliar with structured contents [3], the most popular XML editors use two common
approaches. The first approach tries to separate the presentation view from its logic or the
structured view. This approach offers an easy editing environment for beginners. But
experts often find it is difficult to have precise control. For example, Amaya uses the
What-You-See-Is-What-You-Get (WYSIWYG) interface (Illustration 1.1).

in Amaya - Amaya 8.8.5 =]/

File Edit ®HTML XML Links Views Style Aftributes Annotations Cooperation Help
me _ G| HE QSO @l iEEEDES SN
% Open |thmemufdocsfMalhExampleshtml j
Amaya

|a]
MathML in Amaya

Sorme screen shots

Fly) seehfathML source
C(t) see MarhbL source|
Giz) seebathhl source
Integral seeMathbAL source

Maxwell's equations

Mawell' s equaton
How to do this? Fust download Amaya snd experiment its math feature. You con also read the online mannal page about math editdng.
Here is how it looks in your browser:
TE=£ vxE-9B ov«B-2E.J .vB-0
&, dr dar g

Here is the sonrce code representing the hegmring of the ahove expression, but yon don't need to learn that 1 : & few simple ds in Armaya allow you to build complex expressions i ||
a few seconds.

Cmrow:
<{IMCow:
¢mi fontstyle="normal® »∇ (/mix
<mos&benterDot; < /mo>
<mi fontstyle="normal">E</mi>
</mrows
<MO>=</mo >
<nfrac>
<md »ρ < /mi
msub >
<mirε < miz
<mn>0</mns
</msub>
</mfracy
</mrowy
<mtextynbap; ; {/mbexts hd|
homesmuuidocsMath2 mml

Hlustration 1.1.: WYSIWYG Interface for Amaya

It is difficult to control the next insertion point when users try to make space adjustment
between paragraph elements. Let's demonstrate this problem that every computer scientist
can relate to. Consider a variable x, it is difficult to tell where the cursor position is, just

from the WYSIWYG interface (Illustration 1.2).

Consider the variable x, 1z the cursor In < strong> element or out?
X|

Tllustration 1.2.: WYSIWYG Issue

The second approach uses the text-based form. The entire document is treated like a free-

flowing string with a tree-like structure. (Illustration 1.3)

<pr<math xmlns="http://www.w3. org/19%8,/ Math/MathML" >
IO =
TIToW
<mi fontstyvle="normal"=>∇ </mix
“mor- <fmor
“mi fontstyle="normal">E</mi>
</mrows
“mor=</mo>
<mfrac>
“mlir&Rx3cl; < /mix
<msnle >
<mirx&Rx3b5; </ /mix
<mn>0</mn>
</m=uk>
</mfrac>
<imrows

“mbexts~;~</mtext>
Ilustration 1.3.: Tree-like structure

While the tree-like structure improves the readability of the document, the free-flowing
string 1s not constructive. Users can only achieve editing tasks at text level instead of
element level. For example, to insert an element of six characters, users will need to type
six characters plus starting symbol < and ending symbol >, and not even mention the end
tag (assuming the end tag is auto-completed). Furthermore, the cursor navigation is not
efficient without a mouse because it has to cross all letters between the starting point and

the ending point.

In order to stay away from all the drawbacks of existing XML editors, this project will
eradicate unexpected errors by showing enough structure, but still maintain enough
WYSIWYG to avoid confusion. In addition, this project supports navigation by XML
element structures, and it makes a mouse optional. The ultimate goal is to create a
“partial WYSIWYG” editor or a hybrid-structured editor. A hybrid-structured editor was
an idea pioneered during the 1980s to early 1990s [1,2,4,5,7], and it is now being

revitalized [6].

Within the scope of the hybrid-structured editor, two XML specific languages, namely,
MathML+XHTML, will be supported. XHTML uses XML markup and syntax to
represent HTML in XML terms. MathML aims to represent mathematical symbols and

formulae.

Mathematicians who are aware of TgX book should recognize 'x' is a text in TgX

which is a typesetting system for creating high quality scientific documents. In contrast

to this simple text, a TgX text can become very complicated and unrecognizable for a
large formula such as '$$a_0+{ 1\over\displaystyle a_1+{\strut 1\over\displaystyle
a_2+{\strut 1\over\displaystyle a_3+{\struct a\over a_4}}}}$$". Just from the semantics

of the string, it is difficult to understand its meaning.

MathML documents can offer a better readability and support the hybrid-structure editor.
To motivate XHTML+MathML, this project will wire up both XHTML and MathML
support with an XML text editing framework developed by several graduate students who

were under the direction of Dr. Cay Horstmann.

The XMLEd project was first established by two CS298 students, Nupura Pradhan and
Swati Pathak , and then improved by another CS298 student, Tong Ho. The concept of
editing XML documents in a hybrid-structure was demonstrated in previous CS298
projects: [8], [9], and [3]. The first two have identified and implemented the essential
XML structural operations [3], and the most recent project modified the document model
to support the hybrid-structure, and two new features were added: the configurable CSS
views and the script driven editing system. Here, I present a What-Y ou-See-Is-What-
You-Need (WYSIWYN) editing interface that satisfies the needs of experts who have
knowledge of XHML+MathML. The WYSIWYN interface is presented in a form that
simultaneously makes editing operations unambiguous and that looks recognizable. It
avoids unexpected errors by showing enough structure, but still maintain enough visual
presentation to avoid confusion. The new approach offers users the ability to view local
structure of the current element with a selected style. In this way, users can magnify any

ambiguous position and still be able to visualize mathematical documents. In addition,

the project work offers multiple WYSIWYN modes with different level of magnification.
All of the projects have proved that the Swing text editing framework can provide useful
building blocks for the creation of the hybrid-structured editor and its additional supports.
While the previous works elaborately fabricated the foundation of the hybrid-structured
editor, the developed framework still has some deficiencies and pitfalls which are

discussed in section 8.

This report is organized as follows. Section 2 gives some basic knowledge of XML
languages: XHTML+MathML. It is important to understand the fundamental elements of
these languages and their associated attributes. Commonly known elements for XHTML
will be ignored here. This section will focus on mostly MathML elements because these
elements are math-specific and the interpretation is not quite easy. Section 3 contracts
Lisp-like system, TgX, and MathML. Section 4 evaluates popular tools that currently
exist for editing XHTML and MathML. This section will explain the drawbacks of
current authoring tools and clarify the need of XMLEd. Section 5 assesses the existing
frameworks developed by previous students. The evaluation will be divided into
document model and views. For views, the view tree hierarchy, caret implementation,
and CSS specific styles will be discussed here. Section 6 describes the accomplishments
that were achieved in this project.

e A list of deliverables for MathML.

e The accomplishment of XHTML views.

e The accomplishment of MathML views.

e (CSS extensions. Because the CSS specification defined by World Wide Web
Consortium (W3C) does not support MathML and other XHTML tags like
, a CSS extension is added as a supplement of this project.

e A new feature for XPath.

e The WYSIWYN interface.

Section 7 explains usability study and the usability evaluation for the current
implementation of WYSIWYN user interface. The last section covers the conclusion and

ends up with feature improvements.

2. XHTML AND MATHML

Before the introduction of project work for this semester, it is important to study some
fundamental concepts and the basic structure of XHTML+MathML. XHTML is an
extended version of HTML reformulated in XML. In other words, it is the successor of
HTML. In XHTML, there are three variants: Strict, Traditional, and Frameset. Each
variant has its own Document Type Definition (DTD). XMLEd will only care about the

first variant — Strict.

MathML is another public XML language that enables mathematical documents to be
processed by software such as Web browsers, so mathematicians can share their

mathematical notations on-line.

All MathML elements fall into one of three categories: presentation elements, content
elements and interface elements. This project will focus on presentation elements.
Presentation elements describe mathematical notation's visually oriented two-dimensional
structure [13]. Here is a summary of presentation elements from w3.org (Table
2.1,2.2,2.3,2.4,2.5) and all delivered elements are in bold:

Token Elements

Element Description

mi identifier

mn number

mo operator, fence, or separator

mtext text

mspace space

ms string literal

mglyph accessing glyphs for characters from MathML

(Source [13])
Table 2.1.: Token Elements

General Layout Schemata

Element Description

mrow group any number of sub-expressions
horizontally

mfrac form a fraction from two sub-expression

msqrt form a square root sign (radical without an
index)

mroot form a radical with specified index

mstyle style change

merror enclose a syntax error message from a
preprocessor

mpadded adjust space around content

mphantom make content invisible but preserve its size

mfenced surround content with a pair of fences

menclose enclose content with a stretching symbol

such as a long division sign.

Script and Limit Schemata

(Source [13])

Table 2.2.: General Layout Schemata

Element Description

msub attach a subscript to a base

msup attach a superscript to a base

msubsup attach a subscript-superscript pair to a base

munder attach an underscript to a base

mover attach an overscript to a base

munderover attach an underscript-overscript pair to a
base

mmultiscripts attach prescripts and tensor indices to a base

(Source [13])

Table 2.3.: Script and Limit Schemata

Tables and Matrices

Element Description
mtable table or matrix
mtr row in a table or matrix
mtd one entry in a table or matrix
maligngroup and malignmark alignment markers
(Source [13])
Table 2.4.: Tables and Matrices
Enlivening Expressions
Element Description
maction bind actions to a sub-expression
(Source [13])

Table 2.5.: Enlivening Expressions
MathML inherits all syntax and grammar rules from XML. Also, there are two additional
MathML specific grammar and syntax rules. First, it has criteria on attribute values. For
example, it is not possible for pure XML documents to require that an attribute value be a
positive integer [13]. Second, some child elements require more restrictions. For
example, the mfrac Element requires the first child to be its numerator and the second
child to be its denominator. The order matters! Because of this reason, in MathML, in
order to distinguish the differences, the children like these in the mfrac element are

referred as arguments instead of just children.

Here is a table (Table 2.6) of the argument requirements. 1* indicates an inferred mrow
element. For example, the MathML for the expression \/5 is
<msgrt><mrow><mn>2</mn></mrow></msqrt>, and this MathML equivalent

can also be rewritten as <msqgrt><mn>2</mn></msqrt>.

Element Required argument Argument roles(when differ by position)
count

mrow 0 or more

mfrac 2 numerator denominator

msqrt 1*

mroot 2 base index

mstyle 1*

merror 1*

mpadded 1*

mphantom 1*

mfenced 0 or more

msub 2 base subscript

msup 2 base superscript

msubsup 3 base subscript superscript

munder 2 base underscript

mover 2 base overscript

munderover |3 base underscript overscript

mmultiscripts |1 or more base (subscript superscript)® [<mprescripts/>

(presubscript presuperscript)*]

mtable 0 or more rows 0 or more mtr elements

mtr 0 or more table elements |0 or more mtd elements

mtd 1*

maction 1 or more depend on actiontype attribute

(Source 13)

Table 2.6.: Argument Count and Roles

Possible units in MathML are em, ex, pX, in , cm, pt, pc, and %. The first two are

commonly used for horizontal and vertical units because they are font-relative units.

The whitespace characters in the input stream must be ignored. Here, whitespace

characters includes: blanks, tabs, newlines, or carriage returns. A simple example, <mo>

(</mo> is equivalent to <mo> (</mo>.

3. LISP-LIKE SYSTEMS, TeX, AND MATHML

The earliest approaches to mathematical formula entry involved the use of specialized
equation description languages [11]. Using a LISP-like syntax, an entire parse tree for a
formula can be expressed in a linear, text-based form [10]. For example, Skribe, a
functional programming language for authoring technical documents, can parse the text
[text goodies: , (bold “bold”) and , (it “italic”) .] as (list “text goodies:” (bold “bold”)
“and” (it “italic”) “.””) [18]. The entire text between the brackets is parsed into a list of
character strings. The advantage of these linearized system is that users can master the
syntax and keywords and produce most quality equations in their pretty formats. But such
a system has some the drawbacks: 1) The learning curve is quite steep. 2) Instead of the
inherent two dimensional structure of a mathematic formula, now users have to mentally
translate the formula to the linear, text-based form. 3) It is difficult, if possible at all, to
visualize the semantics of the LISP-like language when a formula becomes large and

complex. Because of these drawbacks, users often switched to a better tool.

During the 1980s, Donald Knuth created the first version of TgX. TgX was intended to
typeset mathematic formulas for the creation of beautiful books. Many experienced TgX
users were satisfied with its powerful capability. But some newcomers found it is a non-
trivial task to master these useful tricks in TgX, and other users found it is not compatible
with XML syntax which can be processed on the Web. In both cases, they often turned to
use other modern authoring tools with the WYSIWYG interface and MathML support.

4. EVALUATION OF EXISTING TOOLS FOR XHTML AND MATHML

Recently, there is only a few XTHML+MathML editing tools available for downloading.
Most of them support only a WYSIWYG editing interface. None of them provides the
advantages of the WYSIWYN interface. XMLSpy is a generic XML document editor that
can be used for authoring XTHML+MathML, but it is only a XML editor with no
particular supports for visualizing MathML documents. Amaya is a similar product for
the open source community. Experts often find themselves suffering from the precise
control in its WYSIWYG interface. While Amaya is designed for the combination of
XHTML+MathML, XMLmind XML Editor (XXE for short) is a structured editor that is

10

particularly designed for XHTML documents, not MathML documents. MathType, a
product from Design Science, is platform dependent. SciWriter is a similar commercial
product for writing scientific documents quickly and efficiently. Both of them create
different document structures and require a converter to transform its own document
structure to the desired XHTML+MathML document structure. Most importantly, it is

not open source.

More recent systems allow visual feedback and other structured editing features. Even
though the modern systems have eased the authoring task, they have also introduced

some new drawbacks.

XMLSpy can aid and expedite the development of XML projects, but it is a commercial
product that does not support the visualization of MathML documents (Illustration 4.1). It
is not adequate to use this generic XML editor for XML specific languages, such as
XHTML+MathML. Mathematicians may not want to know the structure of MathML
because they are only interested in mathematical expressions. For example, they are more
interested in the visualization of a matrix instead of mtable itself. XHTML users may

want to visualize the document in the WYSIWYG view and still maintain precise control.

11

| Attova XMLSpy - [MathExamples. htmi] E]

E File Edit XML DTDfSchema Schemadesign XSLfxQuery Authentic Wiew Browser Tools ADYAMCED ‘Window Help - 8x
iDIEeR| BT &S] | | 48 | | & |50 w || im0 %lm.
Info - Rx o | Element X

Here is how it looks in your browser:

V "E=p &eps;, 0 ; ¥V xE=- &PartialD, &ApplyFunction, B &Partially,
&applyFunction; t ; ¢ 2 ⁢, V % B = ∂ ⁡, E
&FPartialD; &ApplyFunction, t+ &epsi 0 ; ¥V "B=0

Here iz the source code representing the begitming of the above expression, but you don't
need to learn that language: a few simple commands in Amaya allow you te buld complex
expressions in a few seconds

<MEows-
<mrows-
<wi fontscyle="normwal">enabla;</mi>
<mo>· </mo>
<mi fontstyle="normal">E</mix
</ rows
<ror=</ o>
<mfracs
<wixρ</mix Attribute - ax
<mwsub>
<mixgepsi;</miz
<mn>0</mn>
</msub>
<fufracs>
</ 1r o
<mwbext>E ! ; : </ mbexts>
<O
<mrows-
<mi fontscyle="normal™>enabla:</mi> Entity - AX
<mo>Etimes; </ mo>
<mi fontstyle="normwal">E</mi>

</mrows-
<mn-=< o>
<mrows-
w0 -/ o> v
Text Browser
MathEHampIes.htmI ab
SMLSpy w2005 spl U Registered ko Xiacheng W {San Jose State University) ©1995-2005 Altova GmbH & Altowva, Inc, Lni, Col i UM

Hlustration 4.1.: MathML with XMLSpy

XMLmind is a capable structured editor. It provides a configurable Word processor-like
view using cascading style sheets (CSS2). However, it is difficult to track the element
position without the status bar of XPath. Because of this limitation, users often have to
check XPath on the status bar for the editing position. For example, to insert a sibling
element of its parent element, users need to press CTRL + 1 to move the position to the
parent, then insert the new element. To complete this task, users need to verify the current
position from the status bar. The frequent verifications of the element position hinders
editing speed. Moreover, it only supports XHTML, not MathML. The Illustration 4.2

shows the error message when a user tries to load a MathML document.

12

%

Fie Select Edit Search Wiew Tools Window Options Help
EaB00 288 X866 0 o
B+ +0 Y
KEEIEY:
X v
Error)

Cannok open file "Ccygwinihome\hangxwulMathExamples, html”
parse error in "file: !/ eyawirghome fhangewo (MathExarples. himl", line 43, column 12

reference ko undefined entity "epsi Attribute walue

Hlustration 4.2.: MathML Error with XMLmind

SciWriter is an equation editor that completely integrates mathematical expressions and
text in the same environment. It uses the common visual feedback (WYSIWYG)
technique and creates its own document structure. Users can create pretty mathematic
documents quickly and efficiently by using SciWriter. However, in order to create a
MathML document, it requires a converter to translate its own document structure into
the desired MathML document structure. Also, this tool is not platform-independent. It is
only for Windows. Most importantly, the tool is licensed as shareware, not free. Other
commercial products similar to SciWriter, such as MathType from Design Science
carries the same types of problem. Illustration 4.3 is the translator for MathType and

SciWriter has the similar feature.

13

f = =1

Translators

Fleaze choose the type of data that will be placed E.
ah the Clipbaard by the Cut and Capy commands:
Cancel

" Equation object [Windows OLE graphic] Hel
elp

f*" Tranzlation to other language [bext] :

J [rlilg

Tranzlator:; |Te>< --LaTex 2.09 and later

. kathidL 1.0

Descrphion: | b othpdl 2.0 [m namespace)
kathkdL 2.0 [namespace ath]
kathtdL 2.0 [no namespace]
Tex - AMS-LaTex

Tex - AMS-Tex

[Include bl g | aTex 2,09 and later
¥ Include e Flan Texs

T e e

File:

Hlustration 4.3.: MathType Translator

Amaya is intended to be a comprehensive Web editor with XHTML+MathML support.
The current version has three major views: structured view, source view, and WYSIWYG
view. In the pure WYSIWYG view, it is difficult, if possible at all, to avoid errors
introduced by ambiguity nature of the WYSIWYG interface. In the source view, Amaya
offers no special supports. It is just like a normal text editor, such as Notepad. In the
structured view, users can view the exact position of the cursor and do efficient
navigation, but are unable to visualize the current mathematical expression (see

Illustration 4.4).

14

in Amaya - Amaya 8.8.5 =]/
File Edit XHTML ®ML Links Views Style Aftibutes Annotaions Cooperation Help

p_‘ Here is how it looks in your browser:

B math xmins="http :/iwvaw.w3.orgf1988/MathiMathML"
mrow

mrow

mi fontstyle=normal Znabla

mo -
mi fontstyle=normal E
mo =

mfrac

mi p

msub
mi £
mn 0

mtext
mrow
mrow

mi fontstyle=normal ∇
mo x
mi fontstyle=normal £

mrow

mi &Partiall;

mo & ApplyFunction;

mi fontstyle=normal B
mrow

mi &Partiall;
mo ⁡
mi t

mtext
mrow

1 mr0\|v L1

Hlustration 4.4.: Amaya Structure View

5. IMPLEMENTATION OF XML VERSION OF XMLEd EDITOR

The XMLEd editor is a XML editor based on the Java Swing text editing framework and
developed by several graduate students who were under the direction of Dr. Cay

Horstmann.

5.1.Demonstration

[lustration 5.1 shows a screen shot of XMLEd with a CSS style sheet in action. The view
on the right panel is called a GUI view which can be configured by a CSS style sheet. As
the picture shows, it supports coloring, underline, bold, italic, and more. The next section

describes the functionality of the XMLEd editor in more detail.

15

XMLEd T (lElx]

File Edit EditxXML Yiew Scripts Debug

[»

<IDOCTYPE Book|SYSTEM "book. dtd"=

[»

Book SYSTEM "book. et

<:;--T:li;i5 Erl]EUmEﬂen;-Hﬁ* c ! I-=5This is a commemk --
<Book Author="Cay = Horstmann' Category="Java'> i <]
<Title: :
Core Jawva 2 i ﬂ
</Titlex : Core Java 2
-Title
< Preface page="{"= :
To the Reader, ~ This iiii Book is the second : ﬂ
volume af fourth edition of Core Java..... = Tothe Reader This iiii Book is the second
</Preface: wolume of fourth edition of Core |ava.....
<mat> _
< Mrow:s : i
<mcol > <mcol:> : <|
(0,0 L : (0,000, 131,001, 1
= /mcol= < mcol = i
< { MPOW =< MIowW > :
<mcol = <mcol= <|
(1,0) (1,1} |8 Flain Start bold jrzlic B-Start Beld and Jalic B-End
<,/ mcol> =/ mcol= 3 Plain End
< mrow:s i
B Chapter
<jmat> 5;
< Chapter id="0" name="Inline iews"> ﬂ
Flain start Covers Thread Groups, Thread Priorities and
<b= : Synchranization —
ol zé
 :
:hi z italics fi= <|
B-Stan <isBeld and ltalic< /is B-End Cowers Linked Lists, Array Lists, Hash Sets, Tree Sets
<fb= _lE and Maps |
Plain End hd Chapter) b
Cursor: 55
Source [3]

Mllustration 5.1. XMLEd Evaluation Demo

5.2.Functionality of the XMLEd Editor

The XMLEA editor supports following features:

e Common editor requirements. For example, open, save, undo, and redo.

e Debug feature. Users or developers can use the debug menu to view different
hierarchical structures, such as view element and model element (see section 4
and 5 in [3] for view element and model element).

e Efficient Caret Navigation. For example, the cursor can skip a start tag name and
directly jump to attribute position when a user presses the right arrow key.

e Structural Editing. It supports copy, paste, merge, and split editing operations

e CSS configurable views. The view on the right panel can be configured by CSS

rules.

16

e Scripting. It has a script editing feature.

The previous reports [3,8,9] have more detailed explanations and examples.

5.3.Implementation of the Document Model

The XMLEd editor maintained the Model-View-Controller (MVC) design pattern of
Swing text-editing framework. All the Swing text components are derived from
JTextComponent (see Illustration 5.2). A text component contain the following major
pieces: Document, Highlighter, Caret, Editor Kit, and Views. Furthermore, Swing has a
built-in CSS support for stylization of views. However, this support is very restrictive
and limited to only HTML semantics. For an XML editor that demands multiple
customizable views, a former student, To Hong, improved the XMLEd framework to

overcome the limitations of the Swing framework. For more detail, see section 5.4.2 in

[3].

JComponent

v

JTextComponent

v v

JTextFied JTextArea| | JEditorPane

v v

JPasswordField JTextPane

Hllustration 5.2.: Swing Text Components

Conceptually speaking, both frameworks follow the same design pattern. Therefore, both
frameworks have the similar features and architecture. For example, both frameworks
support undo/redo utilities. While both frameworks support the basic editing features,
they have some significant technical differences. As I stated in previous paragraph, using
the Swing text-editing framework for editing XML document creates complexities that

need to be resolved [3]. The XMLEd framework successfully resolved these complexities

17

and formulated a brand new model with an elegant coordinate system and the Element
views associated with it. However, the biggest drawback of the current framework is the
duplication introduced by tackling the restriction of package visibility from Swing text-

editing framework.

Position or Offset

N\

[TI(h]l Ilallu][T el L o]l J[o](win JL_][f][o][x]

0 3

(Source: 12)

Hllustration 5.3.: Swing Document Model Coordinate System

f=dT] fufaj-J-fvjzj-] Jujzj-]J"jviz]-j-Jrjej=jTi<J/]7]"-]
F — ™ - 7 n
(Source. 3)

Hllustration 5.4.: XMLEd Document Model Coordinate System

Both frameworks implement the AbstractDocument class as their basic models.
However, there are two aspects that fundamentally distinguish the common Swing text-
editing model and the current XML editing model. The first model (Illustration 5.3) holds
a linear sequence of characters and manipulates the sequence through an integer
coordinate system. Also, this model structure uses a hierarchical Element tree that is
only suitable for linear text editing. In contrast, the second model (Illustration 5.4) uses a
location based caret coordinate system that avoids the insertion-ambiguity pitfalls [8].
Most importantly, this new model maintains XML document-specific Elements that
are used by View objects as a good conduit for retrieving the required text and
converting the view coordinate and model coordinate. The document-specific Elements
contain no style information, only pure contents. The design of document Element tree
provides a convenient way to visualize the document model through multiple Cascaded

Style Sheet (CSS) controlled views.

18

5.4.Implementation of Views

The visualization of XML document model supports multiple views by using the
Cascaded Style Sheet (CSS) technology. The style sheets perform like drivers that control
View objects rendering the XML document model. For the rendering components,
luckily, Swing editing framework provides some vital functionalities that can be inherited
by the current View frameworks, such as paragraph breaking and text highlighter. While
the current View implementation takes advantages of the Swing editing framework, it
does not address XML specific languages, such as MathML and XHTML. The rendering
for these specific documents requires special handling. For example, img is an element
of an XHTML document. Its pure responsibility is to display an image with an alternative
text for the missing image. In order to make this happen, two Views must be created, one
for the image and another for the alternative text. The current framework does not
provide a shortcut for the text retrieving and image rendering. In other words, the current
framework is a generic XML editing framework. For document-specific languages, a set
of views must be obtained either through modification of existing views or by

reconstruction.

5.4.1.Caret Implementation

The current caret implementation is based on the model's coordinate system. Unlike caret
navigation in a text-based XML editor, where the caret traverses every character in the
XML document, caret navigation in XMLEd is efficient. For example, users can move
the cursor from beginning of an element name to its attribute value without going through
each character in the name of the element. In other words, the caret can skip tags and
attribute names. This structural navigation increases the editing speed and avoids
ambiguity reported in [8]. However, caret implementation can be improved by providing
the element structure information on the status bar. Like other editor implementations,
showing the XPath on the status bar can dramatically increase the readability and
productivity, and they provide additional knowledge about the accurate location of the

current cursor for WYSIWYN presentation.

19

5.4.2.View Tree

The current View tree hierarchy is controlled by an additional layer, namely, style-
specific Element structure which is determined by CSS style sheets. Unlike the
traditional Swing editing Document element tree, the style-specific Element tree is
mutable. That means the tree can reshape itself according to CSS style sheets. Because of
the ability of the tree mutation, the support for multiple views by installing different CSS
style sheets becomes realistic. For example, for plain text and style text, a bold
element should be rendered either bold or bold. Without the modification based

on the Swing Document/View architecture, this cannot be done.

Whenever the requests for modifications in the actual document content occur, they are
passed to the immutable Document element tree through an internal reference in the
style-specific Element tree. This clever design decoupled the style attributes from
Document elements, so each element can be rendered in multiple Views. If its content
is changed in one of these Views, this change will be updated for all Views. In addition,
the current View supports pseudo CSS-tags, such as :commenttag and :attrname. This
feature allows users to change the styles for these abstract terms that are not directly
represented by the semantics of the document contents. The following diagram
(I1ustration 5.5) shows how a CSS style sheet shapes the view E1lement Tree, hence,

the View tree it maps to.

20

DOM Element Tree

Tholds a DOM reference

View Element Tree View Tree
maps

shapes

Hlustration 5.5.: XMLEd Rendering Technique

5.4.3.CSS Styles

In order to visualize XML documents in a “partial WYSIWYG” view explained in [3],
XMLEd implements the standard CSS technology. XMLEd supports a subset of CSS 2.1

and provides a modern feature for authoring XML documents. The W3C specification for

CSS style rules has the following form (Illustration 5.6) commented in CSS parser code:

(statement)*

statement (@rule | ruleset | block)*

@ryle (block | identifier)*;

block matching [J()11 }

identifier "*" | "' anvthing buta[] () { }

ruleset selector declarationP lock

selector (identifier | (block, exceptblock '{ }'))*
declarationB lock declaration® block*

declaration (identifier* stopping when identifier ends with : or ;)
Ilustration 5.6.: CSS Form

21

For example, the CSS rule for rendering a tag may be "img { display
:img; }". This simple statement specifies that the tag will be displayed as an

image.

In order to process CSS rules and generate the CSS customized Views, the
implementation needs to go through three phases. The first phase is the parsing phase. All
CSS style rules must obey the above form. This challenging task is done by the
implementation of the standard StyleSheet without changes [3]. The significant
advantage of the standard implementation is the way it handles non-standard values such
as image or sqrt. This provides a convenient way to implement CSS extensions which |
will discuss in section 5. The second phase is the middle tier for the cached values in a
class called CSSViewStyles. This class serves as the broker between a client View
and the RootStyleSheet [3]. After the parsing phase, a Sty le object is created by
RootStyleSheet. The major task for this middle tier class is to translate the queries
from the customized Views. These Views are typically named as StyledXXXView and
contain a reference to a sub-class of CSSViewStyles. The third phase is the rendering
phase that is determined by the customized Views. According to the result returned by
the queries, DomElementView which is a sub-class of StyledBoxView will then
determine whether or not it should shape or reshape the View tree. If it determines to
reshape the View tree, it will first allocate a new area for the new view Element by
using the functionalities provided by ViewElementTree class that can wrap an
existing document tree and group a given sub-tree to a single node. Here is a class

diagram (Illustration 5.7) that shows how CSS integrated with customized Views.

22

CSS5ParserCallback ft---------1 CssParser f>—— C55Parser XXX View

|

StyleSheet [— C55 StyledXXXView
Root5tyleSheet ——x C55ViewStyles f— XXXViewStyle

Hllustration 5.7.: CSS Integration With Customized Views

As the above example mentioned in previous paragraph, XMLEd supports a subset of
CSS specification. However, in order to use the CSS configurable features for MathML
and XHTML in XMLEd, a CSS extension must be supported. For example, in the CSS
specification, there are seventeen values for property “display”. None of them can be
used to display the msgrt element. In MathML, the msgrt element should be displayed
as a mathematical expression of a square root. The corresponding CSS rule should be
“msgrt {display: sqgrt;}”. However, the value of that display property is not in
the CSS specification. Fortunately, the standard implementation of StyleSheet can
support CSS extensions. The example demonstrates the flexibility and the extensibility of

the current framework. I will discuss the CSS extension mechanism in section 6.4.

6. PROJECT WORK

The main focus of this project is to create a test bench that can present a WYSIWYN
interface base on the visualization of XHTML+MathML. This project is inherited from
the existing framework that was developed by several previous students who contributed
enormous effort. At this time, a subset of XHTML+MathML elements has been rendered.
The approach demonstrates the current Java Swing editing framework is capable of

accomplishing the further implementation.

23

6.1. Accomplishments

The primary accomplishment is the design and implementation of the editing modes, see
section 6.6. All MathML elements implemented here are explained in the following sub-
sections in detail. For this test bench, I implemented the most commonly used MathML

elements, see table 6.1.

6.2. Visualization of XHTML

The default XMLEd implementation does not support the basic XHTML elements, such
as the img element. My first attempt was to implement a StyledImageView that will
display the image specified in tag's attribute and the alternative text attribute if
there is no image. The StyledImageView can handle any image format and refresh
itself when the author changes the value of the src attribute. The default Swing editing
framework is capable of rendering the tag. However, the default implementation
is too HTML specific. It is not possible to use the default implementation because of the
type casting for HTMLDocument in the View implementation. In order to resolve the
conflict, the StyledImageView extends the basic View class and inherits the robust
image loading mechanism of ImageView. In addition, the new View supports
XMLTextDocument model and the rendering architecture of XMLEd discussed in

section 5.4.2. Here is an example of image view (Illustration 6.1)

24

alt This is an image space {]

SIC java_core_test jpog

el = S o - ﬁ
Volume Hrundamentals
IO
@ Sun

SUM MICRDSYSETEMS PRESS

CAT 5. HORSTMANM - GARY COENELL

Hllustration 6.1.: Styled Image

6.3. Visualization of MathML

The rendering of the MathML elements for this project strictly follows the specification
defined on the Website of W3C. Many XML and MathML documents are parsed
according to their defined DTD and then constructed into an Element tree. In [3], the
detailed tree construction is well explained. This paper will focus on View

interpretations for MathML.

Here is the mapping between the implemented MathML elements and their Views (Table
6.1):

25

Elements Views
mi StyledMIdentifierView
mn StyledNumberView
mo StyledOperatorView
none StyledNoneView
mprescripts StyledMPrescriptsView
mspace StyledMSpaceView
mtext StyledMTextView
msqrt StyledSqrtView
math StyledMathView
mrow StyledMROW View
mfenced StyledMFencedView
mfrac StyledMFractionView
mmultiscripts StyledMMultiScriptsView
mover StyledMOverView
munder StyledMUnderView
munderover StyledMUnderOverView
msub StyledMSubView
msup StyledMSupView
msubsup StyledMSubSupView
mtable StyledMTableView
mtr StyledMTRView
mtd StyledMTDView

Table 6.1.: Current MathML Elements and Views

The top level of MathML document is the math element and its corresponding view is
StyledMathView. This view is responsible for laying out all its children views both
horizontally and vertically and for maintaining a style reference of CSSViewStyles to

insure the inheritance property of CSS specification. The StyledMathView is

26

constructed with the x axis as its major axis to reduce the implementation complexity. In
general, most MathML elements are rendered horizontally in the order in which these
elements occur. The Java Swing Framework provides two methods that control the major
axis and minor axis layouts. The major axis refers to the axis in which the children are
titled and its layout can be modified in layoutMajorAxis method. The minor axis
refers to the orthogonal axis of the major axis and its layout can be modified in
layoutMinorAxis method. All layout strategies for MathML elements are performed
in these two methods with some extra helper methods. Helper methods are generally used
to determine the horizontal base for a mathematical expression. For example, for the
following MathML document, the equal operator needs to find its horizontal base and it

has to be aligned with the base.
<math>
<Mrow>
<mi>C</mi>

<mo>=</mo>

<mrow>
<mfrac>
<mn>1</mn>
<mrow>
<mi>x</mi>
<mo>+</mo>
<mfrac>
<mn>1</mn>
<mi>y</mi>
</mfrac>
</mrow>
</mfrac>
</mrow>
</mrow>
</math>

Here is the visual representation of MathML document above, Illustration 6.2

27

Hllustration 6.2.: Base Layout
Views for token elements are inherited from DomTextView and implements
MathBasicView interface. The primary purpose of the token Views is to display the

contents in the Elements.

The StyledMIdentifierView and StyledNumberView are two views for
mathematical identifiers and numbers, respectively. They are simply inherited from
DomTextView to take advantage of StyledGlyghView which extends Java Swing

Framework's G1yghView and has the responsibility to draw the contents.

The StyledOperatorView is responsible to render the mo element according to the
MathML specification of W3C. A simple example is the StyledOperatorView
which can decide whether or not to grow according to its default value or dictionary. If
the operator is a plus sign (+), by default, it will not grow. In contrast, if the operator is a
bracket, set by dictionary, it grows. Here is a simple example that will not stretch. A
stretchable illustration is in the description of matrix table (mtable).
<mrow>
<mo> (</mo>
<Mrow>
<mn>0</mn>
<mo>,</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>

The above MathML is rendered as the following (Illustration 6.3):

28

[2, 1l

Lllustration 6.3.: None Stretchable Operator

The StyledMTextView and StyledMSpaceView are the views representing
arbitrary text itself and a blank space of any size, respectively. They offer users a way to
mix text and mathematics with space oriented display. In general, both views are used for

commentary text.

The StyledMRowView is used to group any number of children into one single element
mrow. This is particularly useful when multiple operators with their operands have to be
treated as a single horizontal row. For example, suppose we have a MathML document
with a fraction that contains multiple mathematical operators, identifiers, and numbers for

its numerator.

<mfrac>
<mrow>
<mn>1</mn>
<mo>+</mo>
<msqgrt>
<mn>2</mn>
</msgrt>
</mrow>
<mn>2</mn>
</mfrac>

The above example is rendered as Illustration 6.4:

Hlustration 6.4.: Grouping Elements

29

In this case, since mfrac only takes two arguments, namely, numerator and
denominator, mrow must be used to group the sub-elements as its numerator. By the
specification, mrow should layout the sub-elements horizontally in the order in which
they appear. The class Sty1edMROWView directly inherits from Java Swing
Framework's BoxView class instead of StyledParagraphView class to avoid
unnecessary modification that is only suitable for plain paragraphs. The default
construction for StyledParagraphView uses the y axis as its major axis. It is
inadequate for StyledMROWView which lays out its arguments horizontally in general.
The rendering of the mfenced element is handled by the StyledMFencedView class
which allows arbitrary number of sub-elements. It is similar with the
StyledOperatorView class that is responsible for mathematical operators, such as
square brackets. In contrast to the StyledOperatorView class, the
StyledMFencedView class is a container instead of a basic element and only
responsible for braces, brackets, and parentheses, and possibly commas between
arguments. Here is a MathML document using mf enced for the similar mathematical

expression demonstrated as Illustration 6.3.
<mrow>

<mfenced>

<mn>0</mn>

<mn>1</mn>

</mfenced>
</mrow>
The StyledSqgrtView class is for the msgrt element. This view will draw the lines
that form a square root and grows when its children are inserted. It is a container view
inherited from StyledParagraphView which is implemented for a generic XML
document. Consider the following part of a MathML document.
<msgrt>

<mn>1</mn>

<mo>+</mo>

<msgrt>

<mn>1</mn>

<mo>+</mo>

30

<mi>x</mi>
</msqgrt>
</msqgrt>
The above MathML is rendered as the follow (Illustration 6.5):

1+ 1+x

Hllustration 6.5.: Square Root

The StyledMFractionView is used to form a fraction from its numerator and
denominator. This view takes advantage of the BoxView class that has the y axis as its
major axis and tiles its children along with the major axis. However, for a correct display,
two modifications are required. First, the horizontal layout for two subexpressions are not
appropriate. The two subexpressions must be horizontally centered. Second, the paint
method must draw a horizontal line in the middle of the tiled children. The first task is
solved by calculating the horizontal start offset. The code below is for this calculation. By
default, the alignment value is 0.5 which means to center it. Here is the code that centers

the numerator and denominator.

int pre = (int)v.getPreferredSpan(axis);
float align = v.getAlignment(axis);

offsets[i] = (int) ((targetSpan - pre) * align);

To draw a line between its numerator and denominator is a simple task which can be
done by adding the preferred height span for its numerator from y position that is
allocated by its parent view. The result is a correct y position for the starting point. The x
position can be determined by the x value of the Rectangle object allocated for this
view. The width of the line is the addition of the width of the Rectangle object and

both left inset and right inset of the view.

31

Here is a classic example that demonstrates the use of StyledMFractionView. The
following MathML document is for quadratic equation and illustration 6.6 shows the

rendering result.

<math>
<mfrac>
<mrow>
<mrow>
<mo>-</mo>
<mi>b</mi>
<mo>&PlusMinus ; </mo>
</mrow>
<msgrt>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
<mo>-</mo>
<mrow>
<mn>4</mn>
<mi>a</mi>
<mi>c</mi>
</mrow>
</msqgrt>
</mrow>
<mrow>
<mn>2</mn>
<mi>a</mi>
</mrow>
</mfrac>
</math>

-t Mp-4ar

a

Hlustration 6.6.: Quadratic Equation

The StyledMTableView is inherited from StyledTableView. Therefore, it has

the basic rendering features, such as the layout of the columns (mtd) elements and the

32

improved row (mtr) alignment. However, the StyledMTableView implements a
fixed matrix view that will not grow when the window is resized. In contrast to
StyledTableView, each row view StyledMTRView, is created from the
ViewFactory instead of directly created by its parent view StyledMTableView. In
this way, StyledMTRView can be fully controlled by CSS style sheet. If the row views
are directly created by its parent view, then CSS style rules can not be applied due to the
missing style reference. In addition, the StyledMTableView turns the grid lines off,
which is not necessary for a mathematical matrix. Here is a sample of MathML document
for a matrix and the illustration 6.7 shows the visual representation. Notice that, the
surrounding parentheses are also stretched to the height of the matrix.
<math>
<mrow>
<mi>A</mi>
<mo>=</mo>
<mo> (</mo>
<mtable>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
<mtd>
<mn>1</mn>
<mo></mo>
<mi>λ </mi>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>0</mn>

</mtd>

33

</mtr>
<mtr>
<mtd>
<mn>1</mn>
</mtd>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
</mtable>
<mo>)</mo>
</mrow>
<mspace> </mspace>
<mi>λ</mi>
<mo>≠</mo>
<mn>0</mn>

</math>

The above MathML document is rendered as:

-
A= RS

Illustration 6.7.: A Matrix

MathML provides seven specialized scripting elements:
e msup for superscript (Illustration 6.8)
e msub for subscript (Illustration 6.8)
e msubsup for sub and sup script (Illustration 6.9)
e mover for over script (Illustration 6.10)
e munder for under script (Illustration 6.10)
e munderover for under and over script (Illustration 6.10)
e multiscripts for multi-scripts (Illustration 6.11)

Some examples for the scripting elements above are presented here.

34

(<]

If ris the growth rate, then 2=1+r, and

<)
(3]

P=ppa'=py(l+n’

P

Hllustration 6.8.: Subscript and Superscript

A=+

Hlustration 6.9.: SubscriptSuperscript

¥= E M,
=

[llustration 6.10.: Over Under

The semantic meaning for first three scripts are well known in a common editor such as
Word. The next three scripts are used to place embellishments above or below the base.
The last one allows pairs of subscript or superscript vertically aligned around one base
expression. By convention, postscripts are placed to the right of the base in visual
representation and prescripts are placed to the left of the base in visual representation.
Because prescripts are rarely used, they are always placed after postscripts whenever
necessary. The empty element for pairs of scripts are represented by none element. Here
is a sample document with multiscripts and illustration 6.11 shows the visual

representation.

<math>
<mrow>
<mi>H</mi>
<mo>=</mo>

<mrow>

35

<mmultiscripts>
<mi>F</mi>
<mi>i</mi>
<mi>j</mi>
<mprescripts/>
<mi>k</mi>
<none/>

</mmultiscripts>

</mrow>
</mrow>

</math>

Ko

Hlustration 6.11.: Multipscript

The layout algorithms for these scripts are done in the layoutMinorAxis and
layoutMajorAxis methods. Because mmultiscripts accepts any number of pairs
of sub/superscripts with optional mprescripts element, it requires additional
computations to handle the layout position according to the existence of mprescripts
element. If mprescripts is absent, then the indexes with odd number must be
subscripts and the indexes with even number must be superscripts. Otherwise, the same
rule only applies these pairs of sub/superscripts before mprescripts. For these pairs
of sub/superscripts after mprescripts, the indexes with even number must be

subscripts and the indexes with odd number must be superscripts.

6.4. CSS Extensions

The CSS specification from W3C does not support the rendering of MathML values of
the display property. Therefore, it is necessary to create a CSS extension to handle the

XHTML+MathML elements if the default specification does not support the language

36

specific elements. For example, in section 3.2.3, we see the CSS style rule: msgrt
{display: sqgrt;}.Because the rule of “display:sqrt” is not supported by the
CSS specification, it is implemented in this project to map the StyledSqgrtView for
the msgrt element. The new implementation cannot be achieved without the concrete
classes of CSSViewStyles, which acts as a broker between the client views and the
style sheet. The default CSS parser forwards the values not defined by the specification to
a generic CSS value. Therefore, CSSViewStyles wires up the new style rule with its
associated client view. First, the DomElementView class asks a CSSViewStyles
object for its cached value by calling a boolean function, for example, asking for
cachedline by calling isInline () method. According to the returned value, the
DomElementView class decides whether or not to reshape the view Element tree. In
the CSSViewStyles class, it connects to the CSS style rules by refreshing the cached
values. For example, here is the code to refresh the cachedSqgrt in

refreshCachedProperties method:

if(booleanValue(CSS.Attribute.DISPLAY,"inline-sqrt"))
{

cachedInlined = true;
cachedSgrt = true;

}

else

{
cachedInlined = booleanValue(CSS.Attribute.DISPLAY,"inline");

cachedSqgrt = booleanValue(CSS.Attribute.DISPLAY,"sqrt");
}

The code above will refresh the values of cachedInlined and cachedSqgrt and
return the result to the client views that request the values. This similar technique applies

to all customized property values to map their corresponding View objects.

6.5. XPath

A common feature for an XML editor is to show the current XPath on a small panel to
help users keep track of their current editing location. XPath is a way to describe the
XML document's logic structure by addressing a path that contains the current node and
all its parents. The XMLEd implementation only displays the current cursor position in

Document model. While the cursor position may be helpful during a debugging phase,

37

it provides no meaningful information to a user. For a user friendly interface, it is useful

to view the current XPath during editing. The challenge of implementing XPath status is

to locate the current element where the cursor is in. Once the current element is found, it

is simply passed to getXPath helper method to find all its parent. By using a recursive

call, it is not hard to locate the current element. Here is the 1locateCurrentElement

method that does this recursion and illustration gives an example.

if

(!inFocus)

return;

int n = elem.length;

for(int 1 = 0; 1 < n; 1++)

{

int start = elem[i].getStartOffset();
int end = elem[i].getEndOffset();
if(dot >»>= start && dot <= end)
{
if(elem[i].isLeaf())
{
current = (XMLTextElement)elem[i];
return;
}
else
locateCurrentElement (((XMLTextElement)elem[i]) .get
Children());

38

 XMLEd T[]

File Edit EditxML View Scripts Debug

(@] =

Pwthagorean Theorerm:

=4+]
htmlbody '\ pimath\msqrtmo'#text Cursor: 170
Mlustration 6.12.: XPath Example

[m [»

6.6. What You See Is What You Need (WYSIWYN) Editing Interface

XMLEGd has two main views: a simple source view and a GUI view. The simple source
view supports basic editing operations. In addition, it provides structural editing and
navigation features with CSS control discussed in [3,8,9]. Similar to the plain text view,
the styled view supports all basic editing operations, such as copy, paste, and cut. In
contrast, the style view is a view that has hidden in-line tags which can maintain enough
visual representation during editing. In this view, there are three modes to provide variant
degrees of precise control with different levels of visual representation: Full Tag Mode,
Dot Mode, and Zoom Mode. In the full tag mode, all hidden tags are shown, optionally
all attribute marks (the small triangles next to tag names) can be hided to provide a better
representation. The full tag mode might not be useful if there is a large number of tags.

[lustration 6.13 shows the mathematical expression sin© =y / x in full tag mode.

39

“ XMLEd
File Edit EditxML Yiew Scripts Debug
= |(IDOCTYPE; |htrnl| SYSTEM “shtrl-rnath11-. chra(]
< hody > §§ <|
<p= m:
Trigonametry <]
e ®
“p= Trigonametry
<malh =
<mi- SifMefmiz<mi Befmiz<me =<fmes
=mlrac <mi %efmiz<mi Fefmiz<fmlracs
<fmaLhz= ®<|
<ip> (miz sin<miini B<mines =<8 e %
</body > BE 0
| ‘| ntmlibody {p'#ext I Cursor: 74

Hllustration 6.13.: Trigonometry With Full Tags

In the Dot Mode, all the hidden tags are displayed as tiny dots. By having these dots,

experts can avoid surprises by precisely navigating cross each element and view the

current position at the status bar and still maintain visual representation. [llustration 6.14

gives an example of mathematical expression in Dot Mode.

“ XMLEd — =] [E[x]
File Edit EditxML View Scripts Debug
ndtrnl-math 117 > “| | (IDOCTYPE; math SYSTEM “xhtml-math11-f dtcr =

< html =

<mlrac: <mren - <mren - <mes —of

| o]

< hody =

<p (body (]
Quadratic Equation (p>¢]

<fp= Qiuadratic Equation

<p> {p)
<math Xmlng= i
"hitp: f feneess w2 org/ 199 = (px<] I
BiMathfMathm "

<f malh>
<fp= @
</body >
< fhtml =]

| htmlbody \ pi#text |

Cursor: 78

Hllustration 6.14.: Quadratic Equation In Dot Mode

40

It is very important to know where you are during editing. For example, suppose you
want to change b’ to into b'*, you want to make sure to add 1 to the exponent, not b. In

this case, the dot notation can be very helpful.

For a large mathematical document, if all mathematical expressions used the full tag or
the dot notion, the document itself would be difficult to navigate. In this case, Zoom
Mode can provide a more user friendly interface that combines precise control and the
benefits of a WYSIWYG editing interface. In this mode, all mathematical expressions are
rendered in WYSIWYG fashion, with the exception of the structure that is currently
being edited. When the cursor position is moved into a MathML element, the surrounding
hidden tags for the current position expand to expose its detailed structure. If the current
cursor position is moved out, the tags will collapse together to its previous visual
representation. Users can control the level of expansion and the tag style (dot/full tag/full
tag with a mark). Optionally, users can also deactivate/activate this “zoom mode”.

Ilustration 6.15 shows the start of Zoom Mode.

41

 XMLEd — O
File Edit EditxML View Scripts Debug
Fmalh=, (T <malh e -
o [« mos — IDOCTYPE} html SYSTEM "xhtrml-mathl1-7.dta" —
<mrew - <msub-<mi-Befmiz<mi-i<fmiz<fms @ﬂ
T]{Fmo:—{mo =& me<mn < fmn-
<imath: AN <maih ﬂ
<me [<fmes —
<mren <msub <mio B<fmiz<mio l<fmiz<ims @ﬂ
::: %:::Z:{m simer e melmer =|: e shall now determine all the Lie algebras € such
“mrewn s <msubs <mic Befmi=omi j{{mi:—{{m: that dim €= =, If (E‘ JE .lEﬂ) is a basis for a Lie i
<me | i mes algebra & then [E',:E‘J:]= and [E‘,:E'J:]='[E‘J:E‘,:]- Hencein |
<fmath-. HENCE iN giving the i qiving the multiplication table for the basis, it suffices
multiplication takle for the basis, it to giwe the products [E,:E'J:] for i<j We shall use these
suffices to give the products <maim : abbreviated multiplication tables in our discussion.
T [{Fmo:— @
“mren <msub <mio Befmis<mio l<fmiz-</ms
<me]<."mo?- : ®ﬂ .
<fmath> TOF <math |. dim €=1. Then E‘:IDEJ [ee]=0
Bed T TR T i{.fmi;-{.fmron:- @ —
<mren <me Ll mes < mren s @q
cmron Smio e mis£f m o I, dim 2=
<fmath=. We shall use these @
abbreviated multiplication tahbles @(]
in our discussion.
</p> (a) € =0, €is abelian.
<P @
|. dim {malf_l . . @q
<mi Mathvarant="frakiur’ Lemi- th) €120 Since f=De+nf, € =D[ef] is
me = slmer<mn L<imnx ane-dimensional. We may choose e so that 2'=0e
<imath-. THEN <malh :
<mi Mathvardant="frakiur’ Lesmix §§ Then [ef]=wue=+0 and replacement of £ by o §
<me = <fme<mi Defmiz<mi B<fmix §§ permits us to take [ef]=e Then #is the algebra of
<mo < mee the example of £ <. This can now be characterized as
cmo [efmos<mi- Befmiz<mi Befmis - the nonakelian twa-dimensional Lie algebra. - |
5@ htmlbody ' p'math’, Cursor: 1339

Illustration 6.15.: Zoom Mode Start

Users can zoom in any mathematical expression by moving the cursor position to a

MathML element. Illustration 6.16 is an example with the display of the local structure.

42

* XMLEd “— ke
File Edit EditxML View Scripts Debug
Fmalh=, (T <malh e -
<me-[<fmex ~| |['DOCTYPE; html SYSTEM "xhtmi-math11-f.dtc’ =
<mrew - <msub-<mi-Befmiz<mi-i<fmiz<fms @ﬂ
“mo]{Fmo:—{mo =<=fme><mn lfmus-
<imath: AN <maih ﬂ
<me [<fmes =
“mron <mssb <mio BLfmiz<mioleimi=<ms @ﬂ
T]{Fmo:—{mo = mer<me =< Mo 3 . .
o [eimos = e shall now determine all the Lie algebras £ such
“mrewn s <msubs <mic Befmi=omi j{{mi:—{{m: that dim €= =, If (E‘ JE .lEﬂ) is a basis for a Lie i
<me | i mes algebra & then [E',:E‘J:]= and [E‘,:E'J:]='[E‘J:E‘,:]- Hencein |
=fmath=. HENCe in giving the 1 §§ giwing the multiplication table for the basis, it suffices
multiplication takle for the basis, it §§ to giwe the products [E,:E'J:] for i<j We shall use these
suffices to give the products <mai i abbreviated multiplication tables in our discussion.
T [{Fmo:— @
“mren - <msub- <mi- Befmiz-<mi i{."mi;—{.fms
<me]<."mo?- 5 ®ﬂ| dim £= Th 2o _
<fmath> TOF <math - Hirm =L en £=g, [ee]=0.
cmron <mio < mis< mrews @ |
<mren <me Ll mes < mren s @q
LG - Smi j{f’mi:—{{mron:— II. dim ®€@= .
<fmath=. We shall use these B @
abbreviated multiplication tahbles @(]
in our discussion.) .
</p> (a) € =0, €is abelian.
- %fﬂ
|. dim =math .
<mi n_lath\tarlant= frakiur' Lermis th) €120 Since f=De+nf, € =D[ef] is
me = slmer<mn L<imnx : ane-dimensional. We may choose e so that 2'=0e
<imath-. THEN <malh
=mi mathvariant="frakiur" Lefmi> ;@ Then [ef]=we+0 and replacement of £ by f
<me = <fme<mi Defmiz<mi B<fmix §§ permits us to take [ef]=e Then #is the algebra of
<mo < mee N gﬁ the example of £ ©. This can now be characterized as | |
wme [meromi Bfmizomio Bafmir - §§ the nanabelian two-dimensional Lie algebra. -
5@ htmlbody ' p'math'mi'#text Cursor: 1629

Hllustration 6.16.: Zoom Mode Tag Level 0

A MathML structure level describes how deep a element node spans. For example, the
following MathML document has a level of two. And all token elements, such as mi, mo,

and mn, has a level of zero.
<math>
<msqgrt>
<mi>x</mi>
</msqgrt>
</math>
Since the math element has a child msgrt and the msgrt element has a child mi, the

math element has a level of two and the msqrt element has a level of one. The mi

element is a token element, so the level for the mi element is zero.

43

In XMLEGJ, users can set the magnification level for (“zoom mode”). If the selected level

is greater than the maximum level of the current math element, then the selected level is

set to its maximum level. Illustration 6.17 shows the expanded tags with its maximum

level.

“ XMLEd

M

CIEIX]

File Edit EditxML Yiew Scripts Debug
Fmaths, TIEN <malhk N B N
cmo [<f mos —: IDOCTYPE} html SYSTEM "xhtrml-mathl1-7.dta" —
<mren - <msub-<mi-B<fmi=<mi i<.fmi?-<.fms @ﬂ
T]{Fmo:—{mo =& me<mn < fmn-
<fmath: ANd =math <:|
T [{Fmo:— =
wmrewns <msubs <mic- Befmisemi-l<fmis<fms @Q
::: E:::Z:mo = simersne m<lmer L e shall now determine all the Lie algebras & such
“mrewn s <msubs <mic Befmi=omi j{{mi:—{{m: that dim €= =, If (E‘ JE JEﬂ) is a basis for a Lie i
<me | el mes algebra € then [E',:E'J:]= and [E',:E'J:]=‘[E'J:E',:]- Hencein |
<fmath=. Hence in giving the] giving the multiplication table for the basis, it suffices
multiplication takle for the basis, it to give the products [Ef-ef-] far i< We shall use these
suffices 1o give the products <mak abbrewiated multiplication tables in our discussion.
=M [{Fmo?- @
“mren <msub <mio Befmis<mio l<fmiz-</ms
<me]<Fmo?- ®ﬂ .
rmats TOF <t I dim =1, Then ¥=mg, [ee]=0.
<mren - <mi i<.fmi?-<.fn1mn?- @ —
SMrEN SME < < MG < M @ﬂ
<mren <mi Jef miz<imrons 1. dim @a@:@ <mn)<math),
<fmath>. We shall use these @
abbreviated multiplication tahbles @(]
in our discussion.
2fp> {a) #'=0, #is ahelian.
<p=> @
| dim <math
<mi Mathvariant="fraktur’ Lermi- ®<](b) @20 Since S=Me+0f, & =m[ef] is
me =simercnn <im one-dimensional. We may chaose e so that € '=0g.
<fmath=. T NEA =math
<mi mathvariant="frakiur' Lefmi> Then [ef]=oe=0 and replacement of £ by o f
<me = afmer<mi Defmizami Bafmix permits us 1o take [ef]=e. Then £is the algebra of
Mo, 2 mes the example of £ <. This can now be characterized as
<me [efmes<mi B<fmiz<mi B<fmis - : the nonabelian two-dimensional Lie algebra. -]
A htmlybody 4 p'math {mi'#text Cursor: 1630

Hllustration 6.17.: Zoom Mode Tag Maximum Level

Here is a same document with its local structure displayed in dot style (Illustration 6.18).

44

 XMLEd “—

File Edit EditxML View Scripts Debug

=13

dmalhz, LITETT <mali

<me [<Fmo?- —
<mrew - <msub-<mi-Befmiz<mi-i<fmiz<fms
T]{Fmo:—{mo =& me<mn

<imath: AN <maih

< fmn-

<M [<|fmo?-
<mrew - <msub-<mi-Befmiz<mi-i<fmiz<fms

T]{Fmo:—{mo = mer<me =< Mo

T [{Fmo:—
“mren - <msub- <mi- Befmiz-<mi j{{mi:—{{m:
<me]<."mo?-
<fmath>. HENCE N Qiving the
multiplication takle for the basis, it
suUffices to give the products «maih
T [{Fmo:—
“mren - <msub- <mi- Befmiz-<mi i{."mi;—{.fms
<me]<."mo?-
<fmath> TOF <math
Bed T TR T i{.fmi;-{.fmron:-
<mren <me Ll mes < mren s
Bed T TR T j{f’mi:—{{mron:—
<fmath-. We shall use these
abbreviated multiplication tahbles
in our discussion.

<fp=

=p=

I dim <math

<mi Mathvariant="frakiur" L«rmis
“me =& mer<mn
<imath-. THEN <malh
<mi Mathvariant="frakiur" Lermis
<me = <fme<mi Defmiz<mi B<fmix

< mnx

“me, <fmee

cme [<fmes<mio Baimizomio Bafmis - |

IDOCTYPE

|]
| EEEwq

htril SYSTEM “xhtml-math11-f. did

DA

e shall now determine all the Lie algebras £ such
that dim £ = = If (g, e, .En) i5 @ basis for alie
algebra & then [E'.‘E'j]= and [E‘EE;']='[E‘jE‘f]- Hence in
qiving the multiplication table for the basis, it suffices
to giwe the products [E,:E'J:] for i<j We shall use these
abbreviated multiplication tables in our discussion.

2]

| dim €=1. Then $=0e [ee]=0.

=0, €is abelian.

() €7+ 0. Since £=0e+0f ' =0[ef]is
one-dimensional. We may choose e so that €/'=0g.
Then [ef]=caes=0 and replacement of £ by o
permits us to take [ef]=e Then #is the algebra of
the example of £ <. This can now be characterized as
the nonabelian two-dimensional Lie algebra.

htmlbody ' p'math'mi'#text Cursor: 1630

Ilustration 6.18.: Zoom Mode Dot Maximum Level

Here, by showing enough structure, now experts can view any ambiguous position and
move the cursor into an exact position they need. In other words, experts can avoid
unexpected errors and still be able to visualize the mathematical expressions to avoid

confusion. WYSIWYN Interface Mode Structure is summarized as below:

e Full Tag
e Dot Mode
e Math
O Show Local (On/Off)
m On

e Local Full Tag Style
O Show Start Tag Mark

45

e Local Icon Style (dot)
e Set Expansion Level (default is 0)
m Off
To insert a MathML tag, select one of the MathML elements listed on the menu EditXML
or select “Insert Markup Tag” from EditXML menu and use one of the MathML elements

from the combo box.

Some useful commands are listed here. Users can also use View menu for the commands
below, but a highly skilled expert always performs better with a keyboard-oriented
interface:

1. Switching Modes:

Commands Description
CTRL +M Zoom Mode
CTRL +D Dot Mode
CTRL+T Full Tag Mode

Table 6.2.: Mode Switching

2. Commands for Zoom Mode.

46

Commands Description

CTRL+G Change local tag style to full tag

CTRL+I Change local tag style to dot

CTRL+L Freeze the current view or
Deactivate/Activate expansion feature

CTRL+K To show start tag mark (showed with local
full tag, otherwise ignored)

ALT+Minus One more expansion level down

ALT+SHIFT+EQUAL One more expansion level up

ALT+0 Set expansion level to 0

ALT+1 Set expansion level to 1

ALT+2 Set expansion level to 2

ALT+3 Set expansion level to 3

ALT+4 Set expansion level to 4

ALT+5 Set expansion level to 5

ALT+6 Set expansion level to 6

ALT+7 Set expansion level to 7

ALT+8 Set expansion level to 8

ALT+9 Set expansion level to 9

Table 6.3.: Zoom Mode Commands

3. You can also quickly insert one MathML element by pressing these function keys,
for example, press F1 to insert a math element, F2 to insert mi element. These

commands are also available from EditXML menu.

47

Function Keys Description
F1 math
F2 mi
F3 mn
F4 mo
F5 msub
F6 msup
F7 mfrac
F8 msqrt
F9 mtable
F10 mtr
F11 mtd
F12 mrow

Table 6.4.: Function Keys For Frequently Used MathML Elements

The implementation of the new approach was achieved by carefully analyzing the
previous design and code walk through for hundreds of methods. Here is the logic steps |
used to approach the solution. The algorithm contains the following phases:

Phase 1: Find the current view which the cursor is positioned. It requires a recursive call
to traverse the View hierarchy by comparing the start offset and the end offset.

Phase 2: Locate the start offset of STagName view and the end offset of ETag for the
current view. Each MathML element is mapped to its corresponding View object which
is always constructed with a STagName view for a part of the start tag name (≤math),
a STagMark view for the (>); character in its start tag name, and a ETag view for the
entire end tag (&lef;/math>). Optionally, it has a view between STagName and
STagMark for an attribute table. Since the fat attribute table looks ugly in mathematical
expressions, it is suppressed from visual representation. Illustration 6.19 gives an

example of these views in its view hierarchy.

48

XMLEd - View Object Tree W =[S
¢ L [59,242] ViewkDomElementyiew: [59,242] WiewElem$ dom-node-element: a
o=] [59,62] ViewtsTagBoxForinlinedattr [59,62] YiewElem$ dom-node-element-start:
¢ Cd1%2,.338] viewhFlowContainer: [59,342] ViewElem$ dom-node-element;
¢ [CJ[62,2328] ViewbPlainRow, [59,342] viewElem$ dom-node-element;
D [62,64] ViewdDomTextyiew: [62,64] YiewElerm$dom-node-text: "\ "
D [&4,69] ViewdsTagMame: [&4,639] ViewElem$dorm-node-element-tag_<: "<math"
D [69,110] Wiewd Tabular [69, 110] ViewElem$wiew-attrlist-table:
D [110,111] Wiew§STagMark: [110,111] WiewElem$daom-node-element-mark_=: "=" | =
o= ﬁ|[111,329] Wiew$StdedMathyiew: [111,229] ¥iewElem$view-math: |
D [229,236] ViewsETag: [229,2326] ViewElem$ dorm-node-element-endtag: "< /math="
D [226,238] WiewtDomTextYiew: [236,328] ViewElem$ dom-node-text: “\nin"
o= [[238,342] viewbFlowContainer: [59,242] ViewElem$dom-node-element:
o= 7 [242,344] ViewFlowContainer: [51,251] ViewElem$dom-node-element: -
1 Il »

Ilustration 6.19.: View Tree

Phase 3: For each type of view, sets its visibility which depends on whether or not the
cursor is between the start offset of STagName and the end offset of ETag or other
criteria and revalidates the current view.

Phase 4: Clean up. If the cursor moves horizontally, P1ainRow view can correctly
handle its visibility changes. But if the cursor moves vertically, the tags displayed in the

former P1ainRow need to be explicitly removed.

7. USABILITY STUDY

Technically speaking, usability is not just about the visual part of the user interface
components. It is about the interaction part of the system that helps the user to achieve
specified goals with efficiency and accuracy. Usually, usability relates how the system
interacts with the user and it includes five basic attributes: learnability, efficiency, user
retention over time, error rate, and satisfaction [14]. The main reason for studying
usability is to increase user productivity and still maintain accuracy. Here, this report
presents a usability evaluation performed during the test of one approach to the
WYSIWYN editing interface. The goal of this study is to test whether the WYSIWYN
interface increases accuracy and speed. The new interface was tested by nine students
from Dr. Horstmann's classes. The spirit of this usability test was focused on the
modification aspect of a conventional WYSIWYG editing interface. A comparison
between the WYSIWYN interface used by XMLEd and the WYSIWYG interface used

by Amaya, for instance, is quite sufficient to perform. First, the students can install both

49

XMLEd and Amaya for free. Second, Amaya has a refined WYSIWYG editing interface
that was designed to alleviate the problem of creating and editing complex mathematical
documents. However, experts often find it is difficult to have precise control. Last but not
least, both interfaces are easy to learn. Therefore, these students can accomplish the

considered tasks during a limited time constraint.

The factor of these participants' experience with XML technology and the Amaya editing
tool can dramatically change the outcome of the evaluation. For example, a highly skilled
typist might perform better with a keyboard-oriented interface, while a low-skilled typist
might do better with a GUI [17]. To make a fair comparison, participants were required
to study some background materials for some basic concepts and terminologies, such as,
MathML and different views (or modes) for both editing interfaces. Also, I designed a
questionnaire sheet to collect the participants' profiles for further task analysis.
Sometimes, it is called user analysis. Task analysis describes a set of techniques people
use to get things done [16]. For example, the participants record their keystrokes. The
user analysis is taken as an input for task analysis [17], and both the task analysis and the
user analysis are jointly performed. This combined strategy or methodology for user

analysis and task analysis is often called contextual inquiry [15].

Here, I designed two tasks to prove or disprove my approach to the WYSIWYN editing
interface. The first task focused on modification aspect of both editing interface. The
participants need to locate a specific position in a mathematical document and insert a mi
element between another mi element and a mo element. This is a common editing
operation for any MathML editors. For example, illustration shows the visual

representations of the document before and after the changes.

BEFORE:
| difn #=1. Then #=dg, [g]=
Hllustration 7.1.: Task 1 Before
AFTER:
I. dim #=1. Then =g, [ee]=
Hllustration 7.2.: Task 1 After

50

The second task focused on the insertion to demonstrate the basic ability for editing
operations. This analysis is only interested in the evaluation of the first task because it
demonstrates the spirit of the innovative interface which makes editing operations
unambiguous and recognizable.

Here is the summary of the testing results for both tasks:

Task 1: XMLEd Group

MNarme D XMLEd Time XML Expernence XMLEd Experence Comectness
HT 1 4 Low Mo Corect
BT 2 5 Lo Mo Corect
™ i 20 Lowes Mo Corect
SL 4 5 Lo Mo Cormect

Hlustration 7.3.: Task 1 XMLEd Group

Task 1: Amaya Group

Mame D Amaya Time XML Expernence Amaya Bxpenence Comectness
sP 5 L0 Loy Mo Mot Correct
M b 11 Me dium Mo Mot Correct
TC 7 Incomplete Lo Yes Mot Correct
DE 8 2.5 Lo Yes Mot Correct
G G 2.5 Medium Yes Mot Correct

Hllustration 7.4.: Task 1 Amaya Group

For the first task, four of them used XMLEd and five of them used Amaya. For the
XMLEd group, three students who used XMLEd completed the task in just 4 to 5 minutes
with the correct answer and only one took 20 minutes. In another hand, for the Amaya
group, two of them claimed they completed in 10 to 11 minutes, but the answer was
incorrect. And two of them who had Amaya experience claimed they spent only 2.5
minutes, but the answer was incorrect. One student with Amaya experience produced that
was incomplete. The result suggests that the WYSIWYN editing interface can provide
efficiency and accuracy over the conventional WYSIWYG editing interface for
modification aspect. In another hand, it demonstrated that the conventional WYSIWYG

editing interface may give users the illusion that they completed the task which is

51

incorrect. This situation may be even worse than incompleteness. The errors concealed by

this mistake may be a potential defect tomorrow.

Task 2: XMLEd Group

Name 1 D XMLEd Time XML Expenence XMLEd Expenence Comectness

HT 1 15 Low Mo Cormect
BT Z 30 Low Mo Cormect
T™ 3 20 Lo Mo Correct
sSL 4 12 Low Mo Correct

Hlustration 7.5.: Task 2 XMLEd Group

Task 2: Amaya Group

MName I Amaya Time XML Expenence Amaya Expenence Comectness
SP 5 a0 Lo Mo Cormect
M [11 Medium Mo Correct
TC 7 3 Lowes Yes Corect
DE 8 10 Lo Yes Cormect
Glenn Jahnke 0 7 Medium Yes Cormect

Hllustration 7.6.: Task 2 Amaya Group

For the second task, the same four students used XMLEd and the same five students used
Amaya. This task is just to create a quadratic equation. It aims to test the basic editing
operations and to show that XMLEd is capable of creating common mathematical
expressions with a reasonable amount of effort. For the XMLEd group, two students
completed the task in 20 to 30 minuts and another two students completed the task in 12
to 15 minutes. In another hand, the result from Amaya group is quite interesting. The first
student who did not have Amaya experience and had a low XML experience finished the
task in 30 minutes. But the second student with the similar condition, but with a medium
XML experience, was able to finish the task in just 11 minutes. And the three students
who had Amaya experience were all able to complete the task faster. Comparing to the
first student, the WYSIWYG editing interface can dramatically reduce the task
completion time after users became adapted to it. But for the XMLEd group, there are no

experienced users. Therefore, there are no large variations for the task completion time.

52

8. CONCLUSION

During implementation, I encountered two issues. First, for a generic XML editor, there
is always an attribute table next to its corresponding element tag. For MathML, this is not
the case because users do not want to see a fat attribute table in mathematical expression.
Therefore, I had to do some reverse engineering to hide existing attribute tables and take
care of cursor navigation. Second, this project implemented a number of hot keys to
facilitate the usage for experts. I successfully mapped each key combination to the
corresponding actions, except one, the “+” key. [used VK_MINUS to map “-” key and |
easily succeeded. So logically, I thought that I should use VK_PLUS to map SHIFT and
“+” combination. Unfortunately, it never worked. Instead, I had to use VK_EQUALS and
SHIFT _DOWN_MASK combination to make it work. The API document does not
adequately explain this.

At the end, the implementation shows that the current Java Swing editing framework is
capable of accomplishing the task of the visualization of XHTML+MathML. Instead of
simply implementing the rendering for XHTML+MathML, I have accomplished the
following interesting, challenging, and intriguing works for this project.

e [have invented a new approach to the WYSIWYN interface which combines
precise control and the benefits of the WYSIWYG interface. Users will be able to
avoid unexpected errors by switching to different editing modes and still maintain
visual representation. This new navigation model is not available in existing
XHTML+MathML authoring tools.

e [have designed and carried out a usability study. This usability study suggests
that the WYSIWYN interface can increase accuracy and speed for modification
aspect.

e [have rendered the most commonly used MathML elements (see table 6.1).

e [have implemented a number of hot keys for a keyboard-oriented interface (see
table 6.2, 6.3, 6.4).

e [have extended the CSS package of XMLEd framework. As a result,
XHTML+MathML views are controlled by CSS technology. Without this

53

enhancement to XMLEd framework, XHTML+MathML support would not be
possible.
e [have added a new feature that allows users to view XPath for XML documents.

This feature improves readability and helps experts to track cursor position.
The implementation of this project is built on the top of a combination of Java Swing’s
Model-View-Controller editing framework and Tong Ho's generic XML editor. There are
275 classes to analyze, over 20000 lines of code to understand. Also, the Swing text
editing framework lacks documentation because it has found little usage beyond the
implementation of the Swing HTML and plain text controls. In summary, the work of
this project has demonstrated a non-trivial approach to the ambiguity nature of the
conventional WYSIWYG interface.

54

REFERENCES

[1] Coombs, J. H., Renear, A. H., and DeRose, S.J. Markup systems and the future of
scholarly text processing. Communications of the ACM, v.30, n.11, p.933-947,
November 1987.

[2] D. D. Cowan, E. W. Mackie, G. M. Pianosi, and G. de V. Smit. Rita — an editor and
user interface for manipulating structured documents. Electronic Publishing, v.4, n.3,
p.125-150, September 1991.

[3] Ho, Tong. A Scriptable XML Editor With Multiple CSS Configurable Views. CS298
Final Report, May 2005

[4] Furuta, R., Vincent Quint, V., and André, J. Interactively Editing Structured
Documents. Electronic Publishing, v.1, n.1, p19-44, 1988.

[5] Hammer, M., Ilson, R., Anderson, T., Gilbert, E., Good, M., Niamir, B., Rosentein, L,
and Schoichet, S. The implementation of Etude, an integrated and interactive
document production system. In proceedings of the ACM SIGPLAN SIGOA
symposium on Text manipulation, Portland, June 1981.

[6] Quint, V. and Vatton, I. Techniques for authoring complex XML documents. In
Proceedings of the 2004 ACM symposium on Document engineering, Milwaukee,
October 2004.

[7] Stromfors, O. and Jonesjo, L. The implementation and experiences of a structure-
oriented text editor. In Proceedings of the ACM SIGPLAN SIGOA symposium on Text
manipulation, Portland, June 1981.

[8] Pradhan, Nupura. Inline XML authoring and validation. CS298 Final Report, May
2004.

[9] Pathak, Swati. XML editor commands with multiple undo/redo. CS298 Final Report,
May 2004.

[10] William A. Martin. Syntax and display of mathematical expressions. Technical
Report AI Memo 85, MIT, July 1965.

[11] Steve Smithies, Kevin Novins, and James Arvo. A handwriting-based equation
editor, April 2006. http://www.cs.queensu.ca/drl/ffes/papers/smithies GI99.pdf

[12] Prinzing, T. Using the Swing text package. The Swing Connection, October 2004.
http://java.sun.com/products/jfc/tsc/articles/text/overview/index.html

[13] http://www.w3.org/TR/MathML2/, April 27, 2006

55

http://www.cs.queensu.ca/drl/ffes/papers/smithies_GI99.pdf
http://www.w3.org/TR/MathML2/

[14] Xavier Ferre, Natalia Juristo, Helmut Windl, and Larry Constantine. Usability basics
for software developers. Sofiware IEEE, v18, issue 1, p22-29, Jan.-Feb. 2001.

[15] H. Beyer and K. Holtzblatt, Contextual Design: A Customer-Centered Approach to
Systems Design, Morgan Kaufmann, San Francisco, 1997.

[16] J. Preece et al., Human-Computer Interaction, Addison-Wesley Longman, Reading,
Mass., 1994.

[17] Deborah J. Mayhew. The usability engineering lifecycle: a practitioner's handbook for
user interface design. Morgan Kaufmann Publishers, Inc. 1999.
[18] http://www-sop.inria.fr/mimosa/Manuel.Serrano/publi/jfp05, January 16, 2007

56

http://www-sop.inria.fr/mimosa/Manuel.Serrano/publi/jfp05/article.html#Skribe-a-
http://www-sop.inria.fr/mimosa/Manuel.Serrano/publi/jfp05

	Authoring XML Documents with XHTML and MATHML Support
	Recommended Citation

	1. INTRODUCTION
	2. XHTML AND MATHML
	3. LISP-LIKE SYSTEMS, TEX, AND MATHML
	4. EVALUATION OF EXISTING TOOLS FOR XHTML AND MATHML
	5. IMPLEMENTATION OF XML VERSION OF XMLEd EDITOR
	5.1.Demonstration
	5.2.Functionality of the XMLEd Editor
	5.3.Implementation of the Document Model
	5.4.Implementation of Views
	5.4.1.Caret Implementation
	5.4.2.View Tree
	5.4.3.CSS Styles

	6. PROJECT WORK
	6.1. Accomplishments
	6.2. Visualization of XHTML
	6.3. Visualization of MathML
	6.4. CSS Extensions
	6.5. XPath
	6.6. What You See Is What You Need (WYSIWYN) Editing Interface

	7. USABILITY STUDY
	8. CONCLUSION
	REFERENCES

