
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

2009 

Client-Side Page Element Web-Caching Client-Side Page Element Web-Caching 

Ramya Karri 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Karri, Ramya, "Client-Side Page Element Web-Caching" (2009). Master's Projects. 137. 
DOI: https://doi.org/10.31979/etd.9ar8-nb6z 
https://scholarworks.sjsu.edu/etd_projects/137 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/137?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


i 
 

 

 

CLIENT-SIDE PAGE ELEMENT WEB-CACHING 

 

 

 

 

A Writing Project 

Presented to 

The Faculty of the Department of Computer Science 

San José State University 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

 

 

by 

Ramya Karri 

May 2009 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2009 

Ramya Karri 

ALL RIGHTS RESERVED 



iii 
 

 

 

SAN JOSÉ STATE UNIVERSITY 

The Undersigned Writing Project Committee Approves the Writing Project Titled 

CLIENT-SIDE PAGE ELEMENT WEB CACHING 

by 

Ramya Karri 

 

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE 

 

 

Dr. Chris Pollett, Department of Computer Science   05/01/2009 

 

Dr. Soon Tee Teoh, Department of Computer Science  05/01/2009 

 

Dr. Tsau Young Lin, Department of Computer Science   05/01/2009 

 

 

 

 

 

 



iv 
 

ABSTRACT 

CLIENT-SIDE PAGE ELEMENT WEB CACHING 

by Ramya Karri 

When a user explores different web pages in a given website, the website 

typically sends the entire requested page even if only a portion of the page was different 

to the current page. That is, two pages on a given website might share elements on the 

page like search bar, left bar, navigation controls, advertisements, etc., but this 

information is retransmitted. Most of the users spent their time on the front-end while 

downloading all the components in the page. Nowadays, server-side caching of page 

elements is often done using tools like memcached. The aim of my project is to explore 

element web page caching on the client-side. That is, our goal is to develop a system that 

caches the most common html parts of web pages in the website and reuses them in the 

further web pages reducing the transmission data. This effect probably is currently 

attainable using frames or object tags; however, the actual UI meaning of these tags is 

different than one integrated HTML file and so could cause usability issues, therefore, we 

want to explore solutions which are transparent to the end user -- the solution must 

behave just like a single fixed web page. In order to explore the advantage of having 

client-side caching and determine the effect on the response time, we made our server 

set-up as realistic as possible. So Squid, a front-end load balance, was used when we 

tested our client-side caching.         

 



v 
 

ACKNOWLEDGEMENTS 

I would like to thank my husband for his support in countless ways on countless 

occasions. I would also like to thank my advisor, Dr. Chris Pollett, for his suggestions 

and guidance, and my committee members, Dr. Soon Tee Teoh and Dr. Tsau Young Lin, 

for their time and effort. 

 



Table of Contents 

2T12T 2TIntroduction2T ................................................................................................................. 1 

2T22T 2TTools Used2T .................................................................................................................. 3 

2T2.12T 2TApache HTTP Server2.22T..................................................................................... 3 

2T2.22T 2TPHP 5.2.8.82T .......................................................................................................... 3 

2T2.32T 2TCakePHP2T .............................................................................................................. 4 

2T2.42T 2TYSlow2T................................................................................................................... 4 

2T2.52T 2TiMacros2T................................................................................................................ 5 

2T2.62T 2TSquid Web Proxy Server2T .................................................................................... 5 

2T32T 2TPreliminary Work2T ....................................................................................................... 6 

2T3.12T 2TDevelop course listing website2T ......................................................................... 6 

2T3.22T 2TBalance load between servers2T .......................................................................... 7 

2T3.32T 2TDetermine the advantage of caching text2T ........................................................ 8 

2T3.42T 2TAnalyze Firefox caching mechanism2T ................................................................ 9 

2T42T 2TDesign2T ....................................................................................................................... 10 

2T4.12T 2TServer2T ................................................................................................................ 12 

2T4.22T 2TClient2T ................................................................................................................. 13 

2T52T 2TImplementation and Results2T ...................................................................................... 14 

2T5.12T 2THow to install our project2T .................................................................................. 14 

2T5.22T 2TDeliverable 1: Creating the caching mechanism2T ........................................... 20 

2T5.2.12T 2TMotivation2T ................................................................................................. 20 

2T 2T5.2.2  2T 2TGoal  ............................................................................................................ 21 

vi 
 



vii 
 

2T5.2.32T 2TImplementation and Results2T .................................................................... 21 

2T5.2.42T 2TRemarks2T ..................................................................................................... 26 

2T5.32T 2TDeliverable 2: Testing the caching mechanism2T ............................................. 29 

2T5.3.12T 2TMotivation2T ................................................................................................. 29 

2T5.3.22T 2TGoal2T ............................................................................................................ 30 

2T5.3.32T 2TImplementation and Results2T .................................................................... 30 

2T5.3.42T 2TRemarks2T ..................................................................................................... 53 

2T62T 2TConclusion2T ................................................................................................................ 55 

2T72T 2TReferences2T ................................................................................................................. 56 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

List of Figures 

2TUFigure 1: Course listing websiteU2T ........................................................................................ 6 

2TUFigure 2: List of coursesU2T .................................................................................................... 7 

2TUFigure 3: Caching ExperimentU2T ........................................................................................... 8 

2TUFigure 4: Model View Controller PatternU2T ........................................................................ 11 

2TUFigure 5: Directory Structure of ApacheU2T ......................................................................... 16 

2TUFigure 6: Project folderU2 T .................................................................................................... 17 

2TUFigure 7: Directory Structure of SquidU2T ............................................................................ 18 

2TUFigure 8: Configure browser with SquidU2T ......................................................................... 19 

2TUFigure 9: Test web page with Javascript onU2T..................................................................... 32 

2TUFigure 10: Test web page when Javascript is offU2T ............................................................. 33 

2TUFigure 11: Results obtained using Firefox browserU2T ......................................................... 50 

2TUFigure 12: Results obtained using Internet ExplorerU2T ....................................................... 51 

2TUFigure 13: Results obtained using OperaU 2T ......................................................................... 52 

2TUFigure 14: Results obtained using Safari browserU2T ........................................................... 53 

 



1 
 

1 Introduction  

Due to the tremendous increase in the use of internet, there is a lot of ongoing 

research in the field of web page caching both at the server and client-side. Despite all 

this research, 80% of end-user response time is spent on the front-end while downloading 

all the components in the page such as images, style sheets, scripts, Flash, etc (“Best 

Practices for Speeding Up Your Web Site,” 2008).   

The time taken by the web page to load is defined as the response time of the web 

page. Currently, most websites share common elements in their web pages. However, 

when the user explores web pages of the same website, even when the pages have 

common portions, such as help boxes, navigational controls, extra menus, login forms, 

with the current page, the website retransmits the entire requested page to the user. Our 

goal was to reduce this response time of the web pages at least by 20% by caching these 

most common elements and reusing them in the further requests instead of retransmitting 

it from the server on every request.  

Therefore, we developed the methodology and the apparatus of a new form of 

web page caching at the client-side that caches the most common parts of the website at 

the client-side and reuses them in the further requests reducing the total download time of 

the web page. In order to find the advantage of having a client-side cache, we made the 

server as realistic as possible. Therefore, Squid, a front-end accelerator was used while 

testing our caching technique.  



2 
 

This project is mainly divided into two deliverables: first, developing the caching 

mechanism; second, testing the caching mechanism.  Deliverable 1 consisted of 

designing and developing a new caching technique which is transparent to the user. Our 

caching mechanism is designed such that it works in harmony with the web browsers 

caching mechanism to produce our desired output, i.e., to get a reduction in the response 

time of the web pages. Deliverable 2 involved testing the caching technique and is further 

divided into the following sub tasks: developing the website using our new caching 

technique and also using the conventional method, measuring their response times, and 

comparing their response times. 

The paper gives a clear idea as to how the experiment was conducted. It is 

structured as follows: Section 2 describes the various tools used to develop the caching 

mechanism. Section 3 gives the details of the preliminary work done. Section 4 describes 

the high level design, implementation of the project and results are discussed in Section 

5; Section 6 gives us the conclusion.  

 

 

 

 

 



3 
 

2 Tools Used 

The majority of the work done in this project is associated with the World Wide 

Web. It involves developing a new form of web page caching and performing tests to 

measure the performance of the new caching system, therefore following tools have been 

used. 

2.1 Apache HTTP Server2.2 

The main purpose of using Apache HTTP server in our project is to host our web 

application. The web pages requested from our website will be served by our Apache 

server. 

Apache is a freely available web server primarily used to serve both static content 

and dynamic Web pages on the World Wide Web. Web servers are computers on the 

internet that host websites and serve pages to users upon request. When user requests a 

web page on a web browser, this redirects the page to the respective web server. The web 

server fetches the requested web page and sends it to your browser.  

2.2 PHP 5.2.8.8 

PHP is a widely-used general-purpose scripting language that is especially suited 

for web development (“PHP,” 2008). It is mainly used for developing dynamic content 

from web servers to clients. PHP consists of native API’s to Apache HTTP Server and 

when Apache gets a request for a web page with PHP, it calls the PHP interpreter to 

generate HTML and then this HTML page is returned to the client. As we have used 



4 
 

Apache HTTP Server as the web server, we have used PHP to dynamically generate web 

content for our application. 

2.3 CakePHP 

We have developed our caching mechanism as an extension to the CakePHP 

caching mechanism. It provides a rapid development framework for developing PHP 

applications. It uses Model-View-Controller (MVC) design pattern, which reduces the 

development costs and helps developers write less code (“CakePHP,” 2008). Model 

represents the tables in the database used for the application. Controller deals with the 

logic of the application and View represents the html part needed to display the web 

pages.  It makes it easier to modify the user interface design without making changes to 

the business logic and vice versa. Along with MVC, CakePHP offers many features such 

as helpers for AJAX, Javascripts, HTML Forms, caching, which are very useful for 

developing web pages more efficiently with few lines of code.  

2.4 YSlow 

As our goal is to reduce the response time of the web pages, in order to measure 

the response time of the web pages created using our new caching mechanism, we used 

YSlow to record the response times of the web pages in our web application. 

Yahoo’s Exceptional Performance team has identified a number of best practices 

for making web pages fast and YSlow is a Firefox add-on that analyzes web pages and 

tells us why they are slow based on the rules for high performance web sites (“Speed up 

your web pages with YSlow,” 2009). 



5 
 

2.5 iMacros 

iMacros is a HTML based macro recorder used for web automation, web test, and 

data extraction. In order to observe how our caching system works in Internet Explorer, 

we needed a tool that measures the response time of the web pages when requested using 

Internet Explorer. As there is no YSlow extension for Internet Explorer, we have used 

iMacros in our project to record the response times of the web pages.  

2.6 Squid Web Proxy Server 

In order to make the server as realistic as possible we used Squid while testing our 

caching mechanism. Squid is a caching proxy for the web which reduces bandwidth and 

improves response times by caching and reusing frequently requested web pages.  

A caching proxy server sits between a web browser and a web server. It keeps 

local copies of frequently requested resources and intercepts the requests made to the 

original server to see if it can serve the requests itself, otherwise it forwards them to the 

original server.  

 

 

 

 



6 
 

3 Preliminary Work 

Most of the initial research about the project was done during my CS297, 

Preparation for writing project. During my research phase, I have learned about all the 

tools required for this project and have also done few experiments using them. I have 

categorized my work into four deliverables: first, develop course listing website; second, 

balance load between servers; third, determine the advantage of caching text; fourth, 

analyze Firefox caching mechanism. 

3.1 Develop course listing website 

PHP and CakePHP being the main tools used in creating our caching mechanism, 

this deliverable was mainly prepared to discover the main features in both of the tools so 

as to use them to build our new caching technique. To get hands-on experience with these 

technologies, I created a course listing website (Fig. 1) that displays the courses offered 

by the computer science department in a particular year and semester.  

 

Figure 1: Course listing website 



7 
 

In order to view the list of courses, we should select the year and semester in figure 1 and 

click on Show courses button. Once the button is clicked the following screen (Fig. 2) 

appears displaying the list of courses offered in the selected year and semester. 

 

Figure 2: List of courses 

 

We can also add new courses to the existing list and edit the details of the courses. 

The main idea was to explore all the CRUD operations for the database such as read from 

database, write into the database, offered in CakePHP. Doing this experiment helped in 

better understanding as to how to develop an application very efficiently using PHP and 

CakePHP. 

3.2 Balance load between servers 

Currently, proxy servers are being used by hundreds of internet providers world-

wide to provide their users with the best possible web access. Therefore, the main goal of 

this deliverable was to understand Squid proxy server and discover how to setup a LAN 

(Local Area Network) consisting of a web server, a proxy server, and a web client. This 

LAN setup will be used further in the experiment when we test our caching technique. 

Once the LAN was setup, we extended this deliverable to configure Squid to balance the 

load between two web servers, i.e., when requests are made to the Squid it checks if it has 



8 
 

a copy in its own cache, otherwise it balances the load between two web servers by 

forwarding the requests to the two web servers in a round robin fashion. This involves 

adding one more server to the existing LAN setup. We developed two identical servers, 

each having the same set of pages in them and we configured the setup files in Squid 

such that it can perform load balancing between the two servers. 

3.3 Determine the advantage of caching text 

This deliverable involves conducting experiments using web pages to understand 

the advantage of caching text and determine how much reduction in the response time 

can be obtained.  To accomplish this task, I created several web pages with images and 

only text; compared the total download times of pages having images with pages having 

only text. Below graph was obtained, which shows that there might be minor advantage 

i.e. reduction in response time can be achieved if the text is cached. 

 

Figure 3: Caching Experiment 



9 
 

3.4 Analyze Firefox caching mechanism 

The main purpose of this deliverable is to analyze the Firefox caching technique. 

This experiment mainly involved creating web pages having an image and script tag to 

understand how Firefox caches these objects in its cache. This experiment was conducted 

to give idea as to how we can use Firefox caching technique to cache the most common 

elements in our website.   

Since CakePHP is an open source tool, I got an opportunity to study its source 

code which helped to get a better understanding as how the new caching technique can be 

developed.  

 

 

 

 

 

 

 

 

 

 



10 
 

4 Design 

 In CakePHP, if there are small blocks of presentation code that needs to be repeated 

from page to page, sometimes in different places in the same layout, then these blocks are 

stored as Element objects. In order to display these elements in the view, CakePHP uses a 

powerful functionality called the element function which simply works by passing the 

element name as the parameter.  

However, these common portions need to be cached on the client-side. Therefore, 

we have researched about various other tools to find which can help us achieve this. The 

Firefox browser revealed that Firefox browser can cache external Javascripts. Therefore, 

we thought it would be a new direction to combine CakePHP element function and the 

Firefox caching technique to build our new caching technique. 

 The idea was to send these CakePHP elements as external Javascripts to the 

client’s browser so that they get cached in the browser, and in the further requests are 

served from browser by fetching them from the browsers cache without getting 

transmitted from the server thereby reducing the response time. 

The design pattern used to develop our project is Model View Controller. It can 

be shown as below. 



11 
 

 

Figure 4: Model View Controller Pattern 

 Retrieved April 02, 2009, from  

http://upload.wikimedia.org/wikipedia/commons/2/2e/ModelViewControllerDiagr

am.svg 

This pattern isolates the business logic with the presentation logic. Therefore, we can 

change the look of your web page without having to change the underlying business 

code. We followed this pattern while developing our web application; therefore we can 

modify the web page without having to change the code used to connect the databases or 

change the database at the back-end without having to change the presentation logic. 

As the project involves developing a new caching mechanism used to develop a 

website, two main components are required to achieve a working system, first, a web 

server, which hosts our website; second, a web browser that makes requests to the web 

server. But in order to make the server as realistic as possible we also used a proxy 

server. The high level architecture of the project is as shown below. 

 



12 
 

 

4.1 Server 

We used the Apache HTTP server to host our website. As our new caching 

mechanism would be combination of CakePHP’s element function and the Firefox 

browser caching function, we had to develop a procedure that helps us convert the 

CakePHP’s elements into external Javascripts so that they can be cached in the browsers 

cache and later is reused in the further requests.  

Squid is a proxy server used to serve web pages to the client on behalf of the web 

server. When Squid is requested for a web page, it first checks if it has a copy in its own 

cache that it can serve; otherwise, it forwards the request to the original web server. The 

web server serves the request and sends the appropriate web page to the Squid. Squid 

then stores a copy in its own cache and then serves it to the web browser. 



13 
 

4.2 Client 

The system used to request web pages is called a client and is typically a web 

browser, or may be a web crawler. Once the pages are requested, the browser checks to 

see if the page exists in its own cache, otherwise it redirects the request to Squid proxy 

server. Squid checks to see if it can serve the page from its own cache, if not it will 

redirect the request the page from the web server. 

 The main browsers used to test our caching mechanism are Firefox and Internet 

Explorer. As Firefox and Internet Explorer browsers cache external Javascripts, we 

wanted to take advantage of them to store the common elements on the client-side, the 

procedure that we developed sends the CakePHP elements as external Javascripts to the 

web browser so that these are cached at the client-side. In further requests these elements 

are served from the browsers cache instead of getting retransmitted from the server and 

hence reduction in response time can be obtained. 

 

 

 

 

 

 



14 
 

5 Implementation and Results 

 This section illustrates how the apparatus of the new caching technique was built. 

It clearly explains the procedure followed to test the caching mechanism and also 

demonstrates the results obtained. 

 As discussed in the design, since current web browsers cache external Javascripts, 

to reduce the response time of a web page we need to serve the most common elements 

as external Javascripts to the client’s browser so that they get cached in the browser and 

will be reused in the further requests rather than retransmitting them from the original 

server.  

 In order to serve the most common elements as external Javascripts to the client 

browser, we needed a procedure that identifies the most common elements in the website 

and converts them as external Javascripts. We also needed a test website to test the 

performance of our caching mechanism. Therefore, the project was mainly divided into 

two deliverables, first, creating the caching mechanism; second, testing the caching 

mechanism. Prior to discussing the details of these deliverables let us see how to install 

the project. 

5.1 How to install our project 

This section gives a very clear idea as to how to install our project. Our project is 

available for download in the internet from my advisor’s website under Master’s 

Research student’s link. You can also directly go to the project folder using the link, 



15 
 

     

  

 

 

 

 

 

 

System 2- 
Proxy 
Server 

System 2- 
Web 
Browser 

System 1- 
Web  
Server 

http://www.cs.sjsu.edu/faculty/pollett/masters/Semesters/Fall08/ramya/project.zip. The 

following are steps needed to install the project. 

Step 1: Download the zip file and save it on the desktop.  

Step 2: Create a LAN setup. Our LAN setup consists of a web server, a web client 

and a proxy server, i.e., we need three systems running Windows Operating systems.   

 

 

 Step 3: Once we have all the three systems, connect them in a LAN. Try to ping 

the systems from other two systems. If the systems cannot be pinged from one another, 

try switching off the firewalls and try again. 

 Step 4: Once the LAN system is established. Take the system 1 and make it as a 

web server by installing Apache HTTP server on it. Once Apache HTTP server is 

installed you can find the Apache folder in your C:\ drive. The directory structure of 

Apache is as shown below. 



16 
 

 

Figure 5: Directory Structure of Apache 

 

 Step 5: Now install the latest stable version of PHP from PHP official website, 

http://www.php.net/. After PHP is installed, configure PHP to work with Apache HTTP 

server.  

Step 6: Now unzip our project file, which was initially placed on the desktop and 

put in the htdocs folder of Apache, as shown below. 



17 
 

 

Figure 6: Project folder 

 

Step 6: After you place the project folder inside the Apache htdocs folder, restart 

the Apache HTTP server process.  

Step 7: Now we need to configure the Apache HTTP server to work with our 

project, i.e., open the httpd file of Apache which resides in /conf/ folder. Search for 

Document Root in that file and replace the path of the DocumentRoot with the path to our 

project, i.e., add /test/ to the existing path of the DocumentRoot.  

Step 8: Now setup the proxy server. I.e., install Squid proxy server in System 2. 

After installation you can find the Squid folder in C:\ drive as shown below. 



18 
 

 

Figure 7: Directory Structure of Squid 

  

Step 9: Configure the Squid proxy server to allow request to our web server, this 

can be done by modifying the squid.conf file. 

Step 10: Now check if the Client system consists of a Firefox web browser, 

otherwise please install Firefox web browser.  

Step 11: Now configure the Firefox web browser to use Squid as its proxy server. 

This can be done by opening Firefox browser > Go to Tools >  Options > Advanced> 

Click on Network tab > Click Settings button in the connection tab > Select the radio 

button use proxy server and Enter address of the proxy server for Address and 3128 for 

Port.  



19 
 

 

Figure 8: Configure browser with Squid 

 

Step 12: In order to test using Firefox, install YSlow, a Firefox add-on to view the 

response times of the web pages. If you want to use Internet Explorer, install iMacros 

recorder and record the response times of the web pages using it. 

Step 13: Now that all the required the tools are installed, proxy server is 

configured to allow requests for our main server, and browser is configured to send 

requests to Squid proxy server we are ready to request our web pages. This can be done 

by using the following URI. 

http://<ip.of.the server>//testscripts/homepage 

The URI for the remaining web pages are, 



20 
 

For page 2, http://<ip.of.the server>//testscripts/page2 

For page 3, http://<ip.of.the server>//testscripts/page3 

For page 4, http://<ip.of.the server>//testscripts/page4 

Using the above steps we can successfully install the project and run the four test pages in 

a LAN environment. We can also record the response times of the web pages using 

YSlow plug-in, we have installed in the Firefox web browser.   

5.2 Deliverable 1: Creating the caching mechanism 

5.2.1 Motivation 

To obtain a reduction in the response time, we need to use a caching mechanism. 

Currently, web browsers are equipped with a cache that helps us serve web pages faster. 

However, they are not equipped with a mechanism that identifies the repeated portions of 

the webpage. CakePHP also provides us with a platform where the web page can be 

created very efficiently with less code. When we have common portions in the web page 

that need to repeated on several web pages or need to appear at different positions on the 

same page, these common portions are saved as elements and are rendered as sub-views 

on the main view, i.e., main web page using element function. But CakePHP does not 

provide a method that converts these Element object into Javascript. Therefore, our new 

caching mechanism was developed as an adds-on to the CakePHP element function in 

combination with the Firefox caching mechanism to produce the desired result, i.e., 

reduction in response time for the web page. 



21 
 

5.2.2 Goal 

The goal of this deliverable is to create a new web caching technique that renders 

common portions of website as Javascripts to the web browsers so that they can be 

cached in the browsers cache and reused, thereby reducing the transmission time on 

further requests. This caching technique was developed to be compatible with both the 

Firefox caching and CakePHP caching and is transparent to the end user, i.e., the user 

will not notice the underlying caching technique when the webpage is displayed in the 

web browser. 

5.2.3 Implementation and Results 

The procedure needed to develop the new caching mechanism can be divided into 

sub tasks as follows: identify the most common portions of the web site, render these 

common portions as Javascripts to the web browser, and cache these common portions at 

the client. 

5.2.3.1  Cache common portions of the website at the client 

As the main aim of this project is to reduce the response time of the web page by 

caching the common parts of the website at the client-side, we have explored several 

caching features available in the web browsers. During our research we noticed that both 

Firefox and Internet Explorer browsers cache external Javascripts. Therefore, we decided 

to send these common portions of the web page as external Javascripts which will be 

cached in the web browser and are reused from the cache while serving the web page in 

the further requests. 



22 
 

5.2.3.2 Identify the most common portions of the web site 

Identification of the most common portions of the website should be done by the 

developer who is developing the website. As the developer of the website knows as to 

how and where the content should be placed in the web page, he will have complete 

knowledge as to which portions should appear commonly across the pages.  

By taking advantage of the CakePHP’s element feature, instead of having to write 

the HTML portions for common elements on every webpage, the developer stores the 

html code for that portion as an element and when required the element can be included 

in the webpage  using element function by passing the element name as the parameter. 

The prototypical use of CakePHP’s element method is as follows. 

0T<?php 0T3Techo 0T3T$this 0T3T->0T3Telement0T3T(3T4T'helpbox'3T 4T); 0T3T?> 

0TThe elements name is passed as the parameter, say for example helpbox is the element 

name, this element function renders the content of the helpbox and PHP’s echo function 

outputs the content of the helpbox. Using this approach will reduce the coding required to 

create the webpage.  

5.2.3.3  Render common portions as Javascripts to the web browser 

Even though using CakePHP’s element function helps us identify the most 

common potions of the website and store them as elements, in order to cache them in the 

web browser we need to render these elements as external Javascripts to the web browser. 



23 
 

0T In order to determine how to convert the common elements as external Javascripts 

we have researched how CakePHP’s view caching mechanism works. Using CakePHP 

caching technique we can cache the commonly requested views and elements. However, 

these views and elements are only stored as files. Since we have to render these elements 

as Javascripts in order to cache them at the client, we have created a procedure which is 

an extension to CakePHP’s element function. 

0T This prototypical use of the new element method is shown as follows, 

0Telement($name, $params = array(), $loadHelpers = false, $js) 

0TThe input parameters for the method are name of the element, represented with $name, 

$params takes the options for the element along with the data to the element, 

$loadHelpers are used to import the helpers, and $js is set to 0 if Javascript of the web 

browsers is off or is set to 1 if the web browsers Javascript is on. It is similar to regular 

CakePHP element function with an additional parameter $js which indicates the status of 

the Javascript. 

0T Having this variable is very important because our goal of reducing the response 

time of the web page by caching the most common elements of the website as external 

Javascripts in the web browser is attainable only when browsers Javascript is on, 

otherwise the elements are rendered using the conventional way , i.e., using regular 

element function as shown in 5.1.3.2. Therefore, it is important to check the status of the 

browsers Javascript. 



24 
 

0T If the Javascript is off, the request is forwarded to the CakePHP base element 

function; otherwise our new procedure will create an external Javascript of the element 

and inserts an empty div tag in the elements place. This external Javascript will replace 

the empty div tag with the actual content of the element. In this manner we rendered the 

element as a Javascript to the web browser. 

0TTo dynamically replace the contents of the div tag, JQuery was used. JQuery is0T a 

fast and concise Javascript library that simplifies HTML document traversing, event 

handling, animating, and Ajax interactions for rapid web development.0T JQuery’s html 

function is used to replace the content of the div tag dynamically, and the syntax is shown 

below. 

$("div").5Thtml5T("<span class='red'>Hello <b>Again</b></span>"); 

0TThe above statement replaces the contents of the div tag with 0T<span class='red'>Hello 

<b>Again</b></span>.  

0TWhen the browser displays the page to the user all the div tags representing the 

common portions, i.e., the elements will be replaced by their actual content using the 

external Javascripts. Since external Javascripts are cached at the browser, in the further 

requests the elements are served from the browsers cache instead of retransmitting them 

from the actual server, hence reducing the response time of the web page. 

0T Let us consider an example that illustrates how an element is rendered as 

Javascript using our new caching mechanism. Suppose we want to use a search bar in all 



25 
 

the pages in our website; first we have to create an element for the search bar. Elements 

live in CakePHP 0T1T/app/views/elements/1T folder, and have the .ctp filename extension. Once 

the element is created, include it in the required web pages using the new element 

function as follows. 

0T<?php echo AddonsView::element('searchBar', null, null, $status);   ?> 

0TAddonsView is the name of the view file which is an extension to the CakePHP 

view file. It consists of the new element function which is an add-on to CakePHP element 

function. The input parameters to the function are name of the elementsearch bar, second 

and third parameters represent additional options for the element and helpers required to 

be imported for the element; these are null because we are not sending any options for the 

element and we do not need to import any helpers. The $status variable represents the 

status of the browsers Javascript; if the Javascript is on the value is 1, otherwise the value 

is 0.  

0TWhen the web page is requested from the browser, CakePHP renders all the 

components of the page; if the Javascript is on, our element function includes an empty 

div tag, with element name as the id, in the web page, i.e., the following div tag appears 

in the web page 

0T<div id=”searchBar”></div> 



26 
 

0TAn external Javascript is created using JQuery html function to replace the contents of 

the div with actual element content at the browser. The contents of the Javascript are 

shown below. 

0T$("#searchBar").html("----html code of seachBar----”); 

0T In this manner, using our new caching mechanism, we have served the element 

as an external Javascript to the web browser so that it can be cached in the browsers 

cache and can be used directly from the cache instead of retransmitting it from the server. 

5.2.4 0TRemarks 

Working with this deliverable gave me a very clear understanding of the working 

of the Apache web server, the Firefox web browser, and CakePHP.  However, there were 

many challenges that we have overcome during the development of the caching technique 

and they are given as follows. 

5.2.4.1  Interpret the source code of CakePHP and Apache 

This was my first application wherein I had to interpret the source code of the 

tools I am using. Initially it consumed a lot of the time but soon with the help of my 

advisor and by using various internet resources I quickly learnt how to read the source 

code of the tools which helped me a lot in the later phase of my project. 



27 
 

5.2.4.2  Deprecated renderElement function 

Initially, when I was researching the features of CakePHP, I found this 

renderElement function which is used in CakePHP to render the common portions of the 

web page; I started my experiments using renderElement function. However, later I found 

that this renderElement got deprecated with element function and had to change my code. 

5.2.4.3  Test the client browser  

0TTesting the client browser mainly involved tests to see if the browsers Javascript 

is on or off. Though most of the browsers available today support Javascript, yet 

considering those old browsers in our mind, we wanted to make sure that our web page is 

displayed properly even when the web browsers Javascript is off. Therefore, in our web 

pages when client’s Javascript is off, we used a noscript tag to redirect the web page. 

However, having a noscript tag in head tag did not satisfy HTML 4.0.1 Strict standard, so 

we had to explore new ways to make this work. We were very pleased to see that 

HTML5 standard supports it therefore we used HTML5 as the document type of our 

website. 

5.2.4.4 0T Subclass of the view class 

The CakePHP mainly consists of two main folders; an app folder where we can 

create the web application and a cake folder in which all the main core files exist. If we 

need to upgrade to a different version of CakePHP, we just need to replace the cake 

folder with the new cake folder. As the new caching mechanism requires creating an 



28 
 

extension to the CakePHP element function, which resides in the view file under the cake 

folder; modifying the cake folder is not recommended as the code will be lost if the 

CakePHP version is updated, therefore I created a subclass of the view file which 

contained the new element function in the app folder. 

5.2.4.5  Placement of the Javascript file  

In CakePHP when we use Javascript helper to create Javascripts, CakePHP 

typically searches for the Javascripts in its /app/webroot/js/ folder. But in our technique 

when we dynamically create the external Javascript of the element, we store them in 

CakePHP cache folder, i.e., in /app/tmp/cache/js/ folder. It was very challenging to make 

CakePHP to search for Javascript files in cache folder instead of webroot folder.  

To achieve this, we changed the url such that if it is a Javascript created using our 

caching technique then the url for the Javascript will look like http://<ip of the 

server>/Jscached/<name of the Javascript>. We have modified the .htaccess file in the 

app folder so as to redirect the Apache to look for the Javascripts in the CakePHP cache 

folder. This helped us solve this problem and now we can successfully get access to these 

Javascripts from the cache folder. 

5.2.4.6 Multiple Lines in Javascript file 

Element consists of html code of the common portion that we wanted to display 

on all of our web pages. However, html code is written across multiple lines. But in our 

caching mechanism when we convert these elements into external Javascripts using 

JQuery html function, we encountered a Javascript error as the element consists of 



29 
 

multiple lines. However, using PHP’s  preg_replace function we have overcome this error 

by making the multiple lines appear as single statement to the Javascript. 

5.2.4.7 Handle Special characters in the Javascript 

In Javascript, in order to retain the actual meaning of special characters we needed 

to use an escape symbol before the special character, also called as escaping special 

characters. When we were manually creating the Javascript, the developer could handle 

the escaping but in our new caching mechanism; when the Javascripts are dynamically 

built this has to be taken care so that the Javascript does not break. Therefore, we used 

PHP’s addslashes function to escape all the special characters in the element before the 

external Javascript is built, in this manner we not only retained the actual meaning of the 

special characters but also made sure that Javascript does not break due to presence of 

special characters.  

 

5.3 Deliverable 2: Testing the caching mechanism 

5.3.1 Motivation 

We have successfully created the new caching technique but in order to test our 

caching mechanism, we need to develop a website that helps us determine the level of 

improvement in the response time of the web pages using our new technique.  



30 
 

5.3.2 Goal 

The main goal of this deliverable was to create a website that represents a typical 

website most commonly visited in the internet such as Google search engine, Techsmith, 

Yahoo, or Greatandhra. It also involves analyzing how many common portions are being 

shared in these websites. This will help us understand how much response time can be 

saved using our caching technique. This deliverable was extended to analyzing how our 

caching system works with various web browsers such as Firefox, Internet Explorer, 

Safari, and Opera. 

5.3.3 Implementation and Results 

In order to make the testing as realistic as possible, we created a LAN setup, 

consisting of a Apache web server in which our website resides, a Squid proxy server was 

used as a caching proxy server which serves the requests on behalf of the web server, and 

a Client which consists of a Firefox web browser used to request the web pages from the 

server. 

However, before creating a website we needed to make sure that our caching 

technique was actually working. Therefore, testing was also divided into subtasks, first, 

creating a web page with single element; second, developing the main website; third, 

recording the response times of the web pages; fourth, comparing the response times of 

the pages. 



31 
 

5.3.3.1 Creating a web page with single element 

The purpose of this test was to make sure that all the components in our caching 

technique were working properly, i.e., when an element is included in our web page using 

our new element function, on getting a request from the browser, the element must be 

rendered as an external Javascript to the browser so as to get cached in it for further 

reuse. We also need to make sure that our external Javascript, used to replace our element 

div tag with the actual content of the element at the browser, is safe. To ensure this we 

have tested our web page by passing different values in the element.  

We have used a single web page containing a single element to perform this task. 

The view of the webpage is as follows. 

<?php echo $page_heading; ?> 

 <?php 

 include('addons.php'); 

 echo AddonsView::element('divcontent1',array("cache"=>"5 min"), null, 

$status); 

?> 

This web page consists of a page heading whose value will be passed from the CakePHP 

controller, a single element, called divcontent1. As can be noticed we have included the 

element in our view using our new Element function. 

 The html code of divcontent1 is given below. 

 



32 
 

I am in element <a href=''> welcome to this page; I am a student of San Jose State 

University;  <br/></a> <p>hi</p> 

  

When testing this web page, we have ensured the web page is working both when the 

browsers Javascript is on and off. When the Javascript is on, an empty div tag having the 

id as divcontent1 will be added to the view page, and an external Javascript will be 

created that will replace the contents of the div tag with the actual element contents at the 

web browser. The following is the output of the web page when Javascript is on. 

 

Figure 9: Test web page with Javascript on 

 

When the Javascript of the browser is off, the element request will be forwarded 

to regular CakePHP element function and therefore the actual content of the element will 

be included in the web page. The following is the output of the web page when Javascript 

is off. 



33 
 

 

Figure 10: Test web page when Javascript is off 

 

Hence, the web page is displayed properly both when the browsers Javascript is 

on or off. Our new caching mechanism successfully rendered the element as an external 

Javascript to the web browser. However, there is a slight difference in the web pages 

shown above. In the web page having Javascript on (Fig. 5), the element is displayed on a 

new line; whereas in the web page having Javascript off (Fig. 6), the element is displayed 

in the first line immediately after the text.  

   In the cases where browsers Javascript are on, the element has been converted 

into an empty div tag and an external Javascript is created. This external Javascript will 

replace the contents of the div tag with the actual contents of the element. Therefore, 

when the div tag is replaced with the actual content in the view, the element is embedded 

within div tags. Hence, the element is displayed in the new line whereas when the 



34 
 

Javascript is off, only the actual content of the element is added to the view it does not 

have any div tags, so it gets displayed in the first line immediately after the text. 

Performing this task helped us confirm that our caching mechanism was working 

properly. We also made sure that this web page works properly even when the element 

contains multiple lines of code and when it has special characters. Now that our caching 

mechanism worked properly, our next task was to create a website that will be used to 

test our caching system and determine if any reduction in response time has been 

obtained. 

5.3.3.2 Developing the main website 

As our main aim was to reduce the response time of the website by caching the 

most common portions in it, we developed a website that shares a few common elements 

across all its web pages. Testing was done in several phases. 

Four web pages were used in each phase. Each of these phases is different from 

others only in the number of common elements shared in the website. 

In the Phase 1, the layout of the website is as follows. 



35 
 

 

Each web page is mainly divided into five components, top bar, left bar, right bar, bottom 

bar, and central content. In this phase all the web pages in our website shared the 

common left, top, right, and bottom bars; each page had a different content.  

 The top bar mainly consists of the logo of the website, search bar, and the 

member login. The left bar consist of navigational controls that will be used through out 

all the web pages for switching between pages. The right bar consists of advertisements 

that need to be displayed across all the web pages. The bottom bar consists of few 

advertisements and some other components that will be displayed across all the pages at 

the bottom of the page such as top headlines of the day, top picture of the month, etc. 

 The following is the snapshot of four pages created in the website, which will be 

used to test our caching mechanism. 

 

 
 
 
 
 
 
Left Bar Content           Right Bar 

Bottom Bar 

Top Bar 



36 
 

  

Page 1: Home Page Page 2 

 



37 
 

  

Page 3 Page 4 

 



38 
 

On close observation, it can be seen that only the central content changes in all the 

above web pages. The top bar, left bar, bottom bar, right bar are saved as elements as 

these are commonly displayed across all the web pages. Therefore, these common 

portions are stored as elements and are included in our web pages using our new element 

function. This reduced a lot of coding for the web page as we need not repeat the HTML 

code of these elements in every page does not need to be repeated. Instead, a single 

function call is done to include them.  

The total response times of the web pages has been recorded using YSlow by 

making the requests in a LAN setup and are given below. 

Page No Response time of the web 

pages, developed using our 

new caching mechanism  

Response time of the web 

pages, developed using the 

conventional approach  

 

Page 1 – Home Page 8.327 sec 8.88 sec 

Page 2 7.71 sec 9.93 sec 

Page 3 7.98 sec 8.64 sec 

Page 4 7.70 sec 8.73 sec 

 

Observing the values above, notice that in requesting the initial page the 

difference between the responses times using our caching mechanism and conventional 

approach is very small; however, in our approach since the elements get cached in the 

browser and are served from the client instead of getting it from the actual web server in 



39 
 

the further requests, therefore we notice that there is a significant amount of reduction in 

the response times of pages 2, 3, and 4 which means we have successfully achieved our 

goal as to produce a reduction in response time. The maximum reduction we have 

obtained using our new caching mechanism is 22 ± 0.676 %. 

Even though we have achieved a maximum reduction of 22% in response time of 

the web pages, we have also observed the behavior of our caching by changing the layout  

of the web pages and having more elements in the page. In Phase 2, we have used the 

following layout for the four web pages. 

 

The entire page is divided into eight sections. All the four web pages will have the 

same top bar, left bar, right bar, special content area, bottom bar, advertisement section 1 

Top Bar 

 

 

 

Left Bar 

 

 

 

 

Content1 

 

 

 

Right Bar 

Advertisement section 1 

Special Content Area 

  

Content 2 Advertisement section 2 

 

Bottom Bar 



40 
 

and 2. However, the web pages will have different content1 and content 2 sections. All 

the common sections will be saved as elements in CakePHP. Therefore, we will have 

seven elements in this phase.    

These web pages are carefully created both using our new technique and also 

using the conventional manner, according to the Phase 2 layout and their response times 

are recorded by requesting the web pages using the LAN setup and are given below. 

Page No Response time of the web 

pages, developed using our 

new caching mechanism 

Javascript on 

Response time of the web 

pages, developed using the 

conventional approach 

Javascript off 

Page 1 – Home Page 7.62 sec 8.13 sec 

Page 2 7.99 sec 8.11 sec 

Page 3 7.83 sec 7.92 sec 

Page 4 7.67 sec 8.03 sec 

 

From the results we can conclude that even with the increase in the number of 

elements being used in the web pages, there is definitely decrease in the response times 

when using our new caching mechanism.  

The very idea of changing the layout and number of elements of the web pages in 

each phase is to observe how our caching mechanism works under different scenarios. 

Therefore, in Phase 3, we further broke down the page into smaller sections and the 

layout used is as shown below. 



41 
 

Advertisement Section 

Logo Search Bar Member Login 

 

 

 

Navigation links 

 

 

 

 

Content1 

 

 

 

Advertisement Section 1 

 

Special Content Area 1 

Special offers Area 

Advertisement section 2 

 

Special Content Area 2 

  

 

 

 

Content 2 

 

 

 

Advertisement section 3 

 

 

 

Special Content Area 3 

 

 

Special Content Are 4 

Bottom Bar 



42 
 

Each of the web pages is divided into sixteen small sections, but they differ only 

in the content area, i.e., they have same content in fourteen other sections. These fourteen 

common portions are stored as elements. The web pages are carefully created using the 

layout as shown in Phase 3 using both our new technique and also in conventional 

manner and their response times were recorded using a LAN setup and are as shown 

below. 

 

Page No Response time of the web 

pages, developed using our 

new caching mechanism  

 

Response time of the web 

pages, developed using the 

conventional approach  

Page 1 – Home Page 7.91 sec 8.03 sec 

Page 2 7.74 sec 8.02 sec 

Page 3 7.31 sec 7.52 sec 

Page 4 7.43 sec 7.92 sec 

 

From the results, shown above, we can observe that even with increasing the 

number of elements in the page, there is still as minute reduction in the response times 

when using our new caching mechanism.  

In our final phase, we further divided the web page into thirty two smaller 

sections; however, they differ only in the central content area. That is the pages have 

thirty small portions in common. These common portions are stored as elements and the 



43 
 

web pages are created using our new element function. The web pages have been created 

using the layout in Phase 4 both using our new technique as well as using the 

conventional technique and their response times recorded by requesting the pages in a 

LAN setup and are shown below. 

Page No Response time of the web 

pages, developed using our 

new caching mechanism 

Javascript on 

Response time of the web 

pages, developed using the 

conventional approach 

Javascript off 

Page 1 – Home Page 14.22 sec 13.68 sec 

Page 2 7.82 sec 7.83 sec 

Page 3 8.07 sec 7.93 sec 

Page 4 8.32 sec 8.06 sec 

 

After recording the above results, we studied why our caching system did not 

produce a reduction in response times of the web pages. This revealed that even though 

all these common portions are stored in the client browser, the Firefox caching 

mechanism the web browser is taking a significant amount of time to get the content from 

its own cache, which seemed to be the main reason as to why there was no improvement 

in the response time of the web pages. 

 As the above experiments involved analyzing how our caching system 

works on a number of elements in a page. We conducted several tests to witness how our 

caching system works as the size of the elements increase. Therefore, we have designed 



44 
 

web pages that had five sections. Each page consisted of four elements which were 

shared among all the pages; however, they had different content.  

This experiment was done in several stages. In each stage, the four web pages had 

different content but shared common elements. The size of the elements started with 20k 

and was incremented to 200k with an increment of 20k at each stage.  The html files of 

the four pages in the stage one are shown below. 

Page Number HTML Code 

Page 1 <p>  <!—Content of the page 1 -- > </p> 

<!--element1--> 

<p>  <?php echo 

AddonsView::element('element1_20k',array("cache"=>"5 min"), null, 

$status)  ?>  </p> 

<!--/element1--> 

<!--element2--> 

<p> <?php echo 

AddonsView::element('element2_20k',array("cache"=>"5 min"), null, 

$status); ?> </p> 

<!--/element2--> 

<!--element3--> 

<p> <?php echo 

AddonsView::element('element3_20k',array("cache"=>"5 min"), null, 

$status);     ?> </p> 



45 
 

<!--/element3--> 

<!--element4--> 

<p> <?php echo 

AddonsView::element('element4_20k',array("cache"=>"5 min"), null, 

$status); ?> </p> 

<!--/element4--> 

Page 2 <p>  <!—Content of the page 2 -- > </p> 

<!--element1--> 

<p>  <?php echo 

AddonsView::element('element1_20k',array("cache"=>"5 min"), null, 

$status)  ?>  </p> 

<!--/element1--> 

<!--element2--> 

<p> <?php echo 

AddonsView::element('element2_20k',array("cache"=>"5 min"), null, 

$status); ?> </p> 

<!--/element2--> 

<!--element3--> 

<p> <?php echo 

AddonsView::element('element3_20k',array("cache"=>"5 min"), null, 

$status);     ?> </p> 

<!--/element3--> 



46 
 

<!--element4--> 

<p> <?php echo 

AddonsView::element('element4_20k',array("cache"=>"5 min"), null, 

$status); ?> </p> 

<!--/element4--> 

Page 3 <p>  <!—Content of the page 3 -- > </p> 

<!--element1--> 

<p>  <?php echo 

AddonsView::element('element1_20k',array("cache"=>"5 min"), null, 

$status)  ?>  </p> 

<!--/element1--> 

<!--element2--> 

<p> <?php echo 

AddonsView::element('element2_20k',array("cache"=>"5 min"), null, 

$status); ?> </p> 

<!--/element2--> 

<!--element3--> 

<p> <?php echo 

AddonsView::element('element3_20k',array("cache"=>"5 min"), null, 

$status);     ?> </p> 

<!--/element3--> 

<!--element4--> 



47 
 

<p> <?php echo 

AddonsView::element('element4_20k',array("cache"=>"5 min"), null, 

$status); ?> </p> 

<!--/element4--> 

Page 4 <p>  <!—Content of the page 4 -- > </p> 

<!--element1--> 

<p>  <?php echo 

AddonsView::element('element1_20k',array("cache"=>"5 min"), null, 

$status)  ?>  </p> 

<!--/element1--> 

<!--element2--> 

<p> <?php echo 

AddonsView::element('element2_20k',array("cache"=>"5 min"), null, 

$status); ?> </p> 

<!--/element2--> 

<!--element3--> 

<p> <?php echo 

AddonsView::element('element3_20k',array("cache"=>"5 min"), null, 

$status);     ?> </p> 

<!--/element3--> 

<!--element4--> 

<p> <?php echo 



48 
 

AddonsView::element('element4_20k',array("cache"=>"5 min"), null, 

$status); ?> </p> 

<!--/element4--> 

 

On closing observing the above four web pages you can find that the web pages only 

differ in the content. In this manner, as stages proceed we increase the size of the element 

by 20k; however, only the content will be different in the web pages at a particular stage.  

We conducted this experiment phase by phase by requesting the web pages from 

the client, both using our new caching mechanism as well as the conventional way.  

Following tables list the response times of the web pages recorded using YSlow, a 

Firefox add-on. Table 1 represent the response times of web pages developed using our 

new caching mechanism and Table 2 represents the response times of the web pages 

developed using the conventional method. 

Table 1: Response Times recorded using our caching mechanism 

Element Size Response Time 

of Page 1 (in 

sec) 

Response Time 

of Page 2 (in 

sec) 

Response Time 

of Page 3 (in 

sec) 

Response Time 

of Page 4 (in 

sec) 

20k 9.85 7.245 7.43 7.38 

40k 11.575 7.065 7.06 7.2465 

60k 11.445 7.175 7.285 7.235 

80k 11.75 7.85 8.01 7.67 

100k 11.01 7.62 7.53 7.49 



49 
 

120k 10.55 7.83 7.01 7.63 

140k 11.41 7.88 7.95 7.97 

160k 10.21 8.13 8.7 8.15 

180k 11.24 8.38 8.4 8.23 

200k 10.35 8.26 8.72 8.56 

 

Table 2: Response Time using conventional mechanism 

Element Size Response Time 

of Page 1 (in 

sec) 

Response Time 

of Page 2 (in 

sec) 

Response Time 

of Page 3 (in 

sec) 

Response Time 

of Page 4 (in 

sec) 

20k 11.77 9.953 8.57 8.5 

40k 8.98 9.13 8.85 8.652 

60k 8.64 8.004 8.43 7.92 

80k 8.63 8.47 8.87 8.41 

100k 7.99 8.35 8.23 7.89 

120k 8.75 7.92 7.96 8.12 

140k 8.5 8.34 8.23 9.03 

160k 8.83 8.54 9.01 8.67 

180k 8.1 9.07 8.96 9.06 

200k 9.13 9.01 9.32 9.2 

 



50 
 

The following graph is calculated to analyze how much percentage increase was made 

using our new caching mechanism. 

 

Figure 11: Results obtained using Firefox browser 
 

From the above graph we notice that, even though the response time of a web 

Page 1 is more when using our new caching mechanism versus using the conventional 

method, for Pages 2, 3, and 4, even with the increase in the size of the element, there is 

definitely an improvement in the response time using our caching technique. The 

maximum amount of reduction produced using our new caching mechanism is 

27±0.417%. 

We have also conducted the above experiment by requesting pages using Internet 

Explorer and the following graph represents the percentage difference in the web page 

response times of the web pages, recorded using iMacros. 



51 
 

 

Figure 12: Results obtained using Internet Explorer 
 

It can be observed from the above graph that, using our new caching mechanism 

the response times of the web pages was greater than the response times of the web pages 

recorded using the conventional mechanism. On closing observing the results, we have 

noticed that Internet Explorer takes more than 500 – 600 milliseconds to get the elements 

from its own cache which is more than what is needed to get the original text from the 

server, therefore there was no improvement found while using Internet Explorer.  

In order to observe the behaviour of our caching system using Opera browser, we 

do not have a YSlow plug-in or a iMacros plug-in, therefore, we have used CURL, a 

command line tool for transfering files, to record the total download times of the web 

pages. The following was the graph obatined.  



52 
 

 

Figure 13: Results obtained using Opera 
 

The above graph, displays the percentage difference between the response time of 

the web pages measured using our caching mechanism and using the conventional 

method. We can notice from the graph that our caching system has an advantage over the 

conventional approach when the pages are requested using Opera browser. The maximum 

improvement that has been recorded is 25 ± 0.589%. 

We have also tested our caching system in Safari browser. As Safari also did not 

have any YSlow or iMacros plug-in, we have used a similar approach used for testing our 

mechanism in Opera browser i.e., we have used CURL to record the response times of 

the web pages. The values shown in the below graph represent the precentage difference 

between the response times of the web pages recording using our new caching system 

and the conventional system. 



53 
 

 

Figure 14: Results obtained using Safari browser 
 

From the above graph, we can conclude that our caching mechanism definitely 

has an advantage over the conventional technique in displaying the web pages and the 

maximum percentage increase obtained while using Safari browser is 27± 0.871% 

5.3.4 Remarks 

Testing our caching mechanism showed that it was possible to produce a 

reduction in the response time by caching the common portions of the website and 

reusing them in the further requests. However, while we were recording our values using 

YSlow, we noticed that in order to get elements from its own cache, the Firefox web 

browser took few hundred milliseconds to get each element. All the above values in 

Table 1 include the time taken to get the entire page, therefore if this time to get the 



54 
 

cached elements gets reduced, we can get even more reduction in response times of the 

web pages.  

On delving into the cause for this issue, we noticed that Firefox used memory 

cache to store the images in its cache, whereas it used disk cache to store the Javascripts 

and CSS files. Therefore, to retrieve images from its cache, it needs only a few 

milliseconds, whereas in order to get the Javascripts to fetch the element from the disk it 

takes a few hundred milliseconds. If Firefox web browser can also store our external 

Javascripts which are our actual elements in its memory cache, we will be able to retrieve 

these elements much faster and a huge reduction in response times of the web pages can 

be obtained.  

On observing how our the caching mechanism works with Internet Explorer, we 

have observed that using this new mechanism for displaying the web pages does not 

provide any advantage as Internet Explorer requires at-least 500 to 600 ms to get the 

elements from its own cache. Whereas, from the experiments conducted using Safari and 

Opera, we can conclude that we have huge advantage using our new caching system over 

the conventional mechanism i.e., caching the most common portions of the websites at 

the client-side and reusing them in further requests has definitely increases the 

productivity of the user as the pages get displayed faster. The maximum percentage 

increase recorded was using Safari browser and the value is 27± 0.871% 

 

 



55 
 

6 Conclusion 

Identifying the most common portions of the website and caching them at the client 

so as to reuse them in the further requests is definitely a new direction as to how web 

caching is currently being done. From our experiments, we have observed that we can 

obtain at least 20% improvement in the response times of the web pages when requested 

using Firefox, Safari, and Opera browsers having less number of common elements 

shared on the web pages and the size of the elements should be less than 60KB. However, 

as number of the elements increase there is decrease in the improvement of response 

time. This was observed because our caching mechanism was developed in combination 

with web browsers caching technique and CakePHP element function. Web browsers 

require a significant amount of time to get the elements from their cache. This issue can 

definitely reduced by creating an efficient procedure that store and retrieve the external 

Javascripts on the client-side. If this time to get the elements from the browsers cache is 

improved, then developing the web pages using our caching technique will have a 

performance advantage. 

  

 

 

 

  

 



56 
 

7 References  

Best Practices for Speeding up Your Web Site. Retrieved September 27, 2008, from 

http://developer.yahoo.com/performance/rules.html  

CakePHP. Retrieved November 12, 2008, from http://cakephp.org/ 

Cevasco, F. (2006). The CakePHP Framework: Your First Bite. Retrieved July 12, 2006, 

from http://www.sitepoint.com/article/application-development-cakephp 

PHP. Retrieved November 12, 2008, from http://www.php.net/ 

Proxy Server, Retrieved December 8, 2008, from 

http://en.wikipedia.org/wiki/Proxy_server       

Speed up your web pages with YSlow. Retrieved April 11, 2009, from     

 http://developer.yahoo.com/yslow/                                                                                                                                                                                                       

Squid: Optimizing Web Delivery. Retrieved November 13, 2008, from                      

 http://www.Squid- cache.org/      


	Client-Side Page Element Web-Caching
	Recommended Citation

	Introduction
	Tools Used
	Apache HTTP Server2.2
	PHP 5.2.8.8
	CakePHP
	YSlow
	iMacros
	Squid Web Proxy Server

	Preliminary Work
	Develop course listing website
	Balance load between servers
	Determine the advantage of caching text
	Analyze Firefox caching mechanism

	Design
	Server
	Client

	Implementation and Results
	How to install our project
	Deliverable 1: Creating the caching mechanism
	Motivation
	Goal
	Implementation and Results
	Cache common portions of the website at the client
	Identify the most common portions of the web site
	Render common portions as Javascripts to the web browser

	0TRemarks
	Interpret the source code of CakePHP and Apache
	Deprecated renderElement function
	Test the client browser
	0T Subclass of the view class
	Placement of the Javascript file
	Multiple Lines in Javascript file
	Handle Special characters in the Javascript


	Deliverable 2: Testing the caching mechanism
	Motivation
	Goal
	Implementation and Results
	Creating a web page with single element
	Developing the main website

	Remarks


	Conclusion
	References

