
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2009

Total Recall for AJAX applications – Firefox extension Total Recall for AJAX applications – Firefox extension

Smita Periyapatna
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Periyapatna, Smita, "Total Recall for AJAX applications – Firefox extension" (2009). Master's Projects.
139.
DOI: https://doi.org/10.31979/etd.9x4j-ztzd
https://scholarworks.sjsu.edu/etd_projects/139

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/139?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Total recall for Ajax applications CS298 Report

Total Recall for AJAX applications – Firefox extension

A Writing Project

Presented to

The Faculty of Computer Science

San Jose State University

In Partial Fulfillment of the Requirement for the

Degree

Master of Science

By

Smita Periyapatna

May 2009

Smita Periyapatna 1 05/15/2009

Total recall for Ajax applications CS298 Report

© 2009

Smita Periyapatna

Smita Periyapatna 2 05/15/2009

Total recall for Ajax applications CS298 Report

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Chris Pollett

Dr. Mark Stamp

Dr. Araya Agustin

Smita Periyapatna 3 05/15/2009

Total recall for Ajax applications CS298 Report

ABSTRACT

Ajax, or AJAX (Asynchronous JavaScript and XML), is a group of interrelated

web development techniques used to create interactive web applications or rich

Internet applications[9]. Web applications can retrieve data from the server

asynchronously in the background without interfering with the display and

behavior of an existing web page. [9]

One of the biggest problems with Ajax applications is saving state and

accommodating the succession of the history controls, (Back/forward buttons).

Ajax allows documents to become stateful, but when the user intuitively goes for

the history controls in the browser window, things go wrong. The user expects to

see the previous state of the document and is surprised to see a webpage they

were on 20 minutes ago, before they arrived at the Ajax application. Our project

aims to solve this problem. We have implemented an extension to the Firefox

Mozilla browser that caches different states of web pages at regular intervals and

displays all the different states of the page as the user navigates through the

history.

Smita Periyapatna 4 05/15/2009

http://en.wikipedia.org/wiki/JavaScript
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Web_development
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/Web_server
http://en.wikipedia.org/wiki/Asynchronous_I/O

Total recall for Ajax applications CS298 Report

TABLE OF CONTENTS

ABSTRACT 4

INTRODUCTION 8

OVERVIEW 8
THE PROJECT 8
REPORT OVERVIEW 9

TECHNOLOGY USED 10

XUL 10
JAVASCRIPT 10
XPCOM 11
CSS 11
FLEX AND ACTIONSCRIPT 12

IMPLEMENTATION DETAILS 13

SETTING UP THE DIRECTORY STRUCTURE 13
CREATING USER INTERFACE 16

Implementation 16
PREFERENCES 18

Implementation 18
CACHING 20

Implementation 23
MULTIPLE TABBED BROWSER 28

Implementation 29
FLEX APPLICATION CACHING 30

Implementation 31

EXTENSION PACKAGING 34

MAKING AN EXTENSION XPI 34

SUBMISSION OF EXTENSION TO AMO 35

TESTING ON AJAX BASED WEBSITES 36

USABILITY TESTING 45

CONCLUSION 47

BIBLIOGRAPHY 49

Smita Periyapatna 5 05/15/2009

Total recall for Ajax applications CS298 Report

INDEX OF FIGURES

FIGURE 1: DIRECTORY STRUCTURE 13
FIGURE 2: USER INTERFACE 16
FIGURE 3: PREFERENCE DIALOG BOX 19
FIGURE 4: MICROBACK POPUP MENU 21
FIGURE 5: CACHED PAGE 1 22
FIGURE 6: CACHED PAGE 2 23
FIGURE 7: CACHING STARTED ON TAB 1 28
FIGURE 8: NO CACHING STARTED ON TAB 2 28
FIGURE 9: SAVING STATES OF FLEX APPLICATION 30
FIGURE 10: NAVIGATION TO THE PREVIOUS STATE OF FLEX APPLICATION 31
FIGURE 11: MOZILLA ADDONS PAGE 35
FIGURE 12: NETFLIX 1 37
FIGURE 13: NETFLIX 2 38
FIGURE 14: A9 -1 39
FIGURE 15: A9-2 40
FIGURE 16: A9-3 41
FIGURE 17: NETVIBES -1 42
FIGURE 18: NETVIBES -2 43
FIGURE 19: STATISTICS DASHBOARD FOR MY EXTENSION ON ADDONS WEBSITE 46

Smita Periyapatna 6 05/15/2009

Total recall for Ajax applications CS298 Report

INDEX OF LISTINGS

LISTING 1: INSTALL.RDF 14
LISTING 2: CHROME.MANIFEST 15
LISTING 3: CSS FILE 16
LISTING 4: CODE FOR MICROBACK BUTTON 17
LISTING 5: PREFERENCE XUL FILE 18
LISTING 6: PREFERENCE SERVICE 20
LISTING 7: NSICACHE INTERFACE 24
LISTING 8: RDF SNIPPET 25
LISTING 9: CREATE POPUP MENU ITEM 26
LISTING 10: CLICKING MICROBACK 27
LISTING 11: EVENTS FOR CREATING SLIDESHOW 28
LISTING 14: TABS 29
LISTING 15: CACHING FLEX PARAMETERS 32
LISTING 16: SETTING FLEX PARAMETERS THROUGH API 32
LISTING 17: JSCHROMEBRIDGE.JS 33

INDEX OF TABLES

TABLE 1: SUMMARY OF WEBSITES TESTED 44

Smita Periyapatna 7 05/15/2009

Total recall for Ajax applications CS298 Report

INTRODUCTION

Overview

In AJAX, most of the action takes place inside a single page. When an AJAX

page is loaded, new instances of Javascript objects are created. When you leave

that page and go to some other page like say Yahoo, the Javascript objects are

completely wiped out. When you hit the back button, the page actually reloads

completely. All the objects are lost and this can be pain.

First, it is something that not all end users are aware of, which can lead to errors.

Second, users see their state completely wiped out; when they go back to their

AJAX application with the back button, they see the original state of their

program, not the last place they left it. Third, this can affect performance, since

the AJAX application has to re-retrieve everything from the server rather than use

its local state.

The Project

Our project aims to solve the above-mentioned problems. Our project involves

extending the functionality of the browser to save the states of an Ajax page in

something similar to storing normal history items. This will allow users to go back

to the last place they left it, instead of going to the original state of their AJAX

application. It also checks if some states were already saved in the history item, if

they were, then those states would not be saved. Our extension will allow users

to set a time interval at which they want to save the states of a page. It will also

Smita Periyapatna 8 05/15/2009

Total recall for Ajax applications CS298 Report

allow users to save states of a Flex application when developed using our

jsChromeBridge API.

Report Overview

This report starts with describing various technologies used to develop the

product. The next section gives details about design and implementation of every

component of the extension. The design and implementation involves creating

the right directory structure, creating the user interface, the preference system

and finally implementation of the caching mechanism. It also includes the

implementation details of caching on Flex application. The next section gives

details about usability testing and testing of the extension on various websites.

The report ends with a conclusion.

Smita Periyapatna 9 05/15/2009

Total recall for Ajax applications CS298 Report

Technology Used

Our project aims to build an extension to Mozilla Firefox browser.

For our extension, we have used eXtensible User Interface Language (XUL) for

creating widgets and written Javascript functions to bind user actions. XUL is a

XML grammar to add/modify user interface widgets of the browser. We have also

used Mozilla’s XPCOM interfaces.

XUL

XUL is an XML based user interface markup language developed by Mozilla.

XUL provides a rich set of UI components. XUL can be used to build feature rich

cross platform applications. XUL also allows the use of existing web standards

and technologies like CSS, JavaScript and DOM.

For my extension, XUL is used to create the user interface (buttons on the tool

bar) and the preference system.

Javascript

Javascript is a scripting language used mostly for client side web development. It

is also the core scripting language in Mozilla browser. Javascript is used in

various levels in Mozilla. A user interface level, which manipulates content

through the DOM. A client layer, which calls on the services provided by

XPCOM. An application layer is available, in which Javascript is used to create

an XPCOM component.

Smita Periyapatna 10 05/15/2009

Total recall for Ajax applications CS298 Report

Javascript is used to handle all the user generated events and to communicate

with the XPCOM interfaces used in our extension.

XPCOM

XPCOM is a standard cross-platform object model provided by Mozilla that

exposes a core set of components and interfaces for component management,

file abstraction, object message passing and, memory management. [6]

For our extension XPCOM interfaces were used for the preference system,

storing and retrieving of pages from the cache and for resource description

framework.

CSS

Cascading Style Sheets (CSS) are used to describe the look and formatting of a

document written in a markup language. Its most common application is to style

web pages written in HTML and XHTML, but the language can be applied to any

kind of XML document, including SVG and XUL.

For our extension CSS was used to style the icons on the toolbar. The icons

were taken from “http://www.icons-gallery.com/”

Smita Periyapatna 11 05/15/2009

http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/Web_page
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/XHTML
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/XUL

Total recall for Ajax applications CS298 Report

Flex and ActionScript

Our extension supports saving states of a page in a Flex application, written by

using our jsChromeBridge API. A test application is developed using Flex and

show the saving of states.

Flex is used for development and deployment of cross-platform rich Internet

applications. [8] ActionScript is used primarily for the development of websites

and software using the Adobe Flash Player platform. [11]

Smita Periyapatna 12 05/15/2009

http://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/Rich_Internet_application
http://en.wikipedia.org/wiki/Adobe_Flash_Player

Total recall for Ajax applications CS298 Report

Implementation Details

To save the states of an AJAX page in our extension, we wanted to use a

mechanism similar to how normal history items are stored.

Following section gives detailed description of the steps followed to create an

extension.

Setting up the directory structure

It is required to setup a proper directory structure before creating an extension.

The figure below shows the directory structure

Figure 1: Directory Structure

The install.rdf file is used to determine information about an extension as it is

being installed. It includes the metadata identifying the extension, providing

information about the author, version, etc. The following is the sample install.rdf

file:

Smita Periyapatna 13 05/15/2009

Total recall for Ajax applications CS298 Report

<?xml version="1.0"?>
<RDF xmlns=”http://www.w3.org/1999/02/22-rdf-syntax-ns#”
xmlns:em="http://www.mozilla.org/2004/em-rdf#">
<Description about="urn:mozilla:install-manifest">
 <em:id>test@mail.com</em:id>
 <em:version>1.0</em:version>

<em:type>2</em:type>
<em:targetApplication>

 <Description>
 <em:id>{ec8030f7-c20a-464f-9b0e-13a3a9e97384}</em:id>
 <em:minVersion>1.5</em:minVersion>
 <em:maxVersion>3.0.*</em:maxVersion>

 </Description>
</em:targetApplication>

 <! -- Front End MetaData -->
 <em:name>Sample</em:name>

 <em:description>A test extension</em:description>
 <em:creator>Smita</em:creator>
 <em:homepageURL>http://www.mozilla.org</em:homepageURL>
 <em:iconURL>chrome://sample/skin/images/pic.jpg</em:iconURL>

 <em:optionsURL>chrome://sample/content/prefSample.xul</em:optionsURL>
 </Description>
</RDF>

Listing 1: Install.rdf

The install.rdf file begins with description of the extension the first one being a

string formatted id for the extension. The next one is the version, which identifies

the version of the extension being supplied. The type, an integer value,

represents the type of add-on. For example (2 for extension, 4 for themes, 8 for

locales etc). Next is the target application, an object specifying an application

targeted by this add-on. This means that the add-on will work with the application

identified by the id property (<em: id>) specified from the minimum version (<em:

minVersion>) up to and including the maximum version (<em:maxVersion>). The

Smita Periyapatna 14 05/15/2009

http://www.w3.org/1999/02/22-rdf-syntax-ns

Total recall for Ajax applications CS298 Report

above-mentioned properties were not optional. However, there are few

properties, which are optional. Such as the name of the addon, description,

creator, etc. The <optionsURL> specifies the path to extension's options dialog

box. This is only useful to extensions. If this property is specified, when the

extension is selected in the extensions list, the Options button is enabled and will

show this.

The chrome.manifest tells Firefox the location of the chrome packages files and

overlays. Overlays attach other UI widgets to XUL documents at run time. The

chrome.manifest files also contains the location of the content directory which

has the XUL and JavaScript files, Skin which has the images and CSS files and

Locale which has the DTD and .properties files. The following is the sample

chrome.manifest file:

<!--maps chrome://sample/content/ to the content folder, registering
the content provider-->
content sample chrome/content/

<! -- allows modifying Firefox’s mail window UI xul file from sample.
xul file -->
overlay chrome://browser/content/browser.xul
chrome://sample/content/sample.xul

<! -- applies test.css file to the customizeToolbar.xul-->
<! -- This is required to create new toolbar buttons -->
style chrome://global/content/customizeToolbar.xul
chrome://sample/skin/test.css

<! -- This is the default skin provider -->
skin sample classic/1.0 chrome/skin/

Listing 2: Chrome.manifest

Smita Periyapatna 15 05/15/2009

Total recall for Ajax applications CS298 Report

The next step was to create the XUL file. The XUL creates the micro-back/micro-

forward, play and stop buttons. All events were handled in Javascript files.

Creating User Interface

The user interface consists of four buttons: Start, Stop, microForward, and

microBack.

Figure 2: User Interface

Implementation

The following Listing shows the snippet of code used to style the microBack

button.

#myextension-backbutton {
 list-style-image: url("chrome://sample/skin/back.png");
}
#myextension-backbutton[disabled = true]{
 list-style-image: url("chrome://sample/skin/backbw.png");
}
toolbar[iconsize="small"] #myextension-backbutton {
 list-style-image: url("chrome://sample/skin/back_small.png");
}
toolbar[iconsize="small"] #myextension-backbutton[disabled = true] {
 list-style-image: url("chrome://sample/skin/backbw_small.png");
}

Listing 3: CSS file

In the above Listing, myextension-backbutton is the id of the microBack button.

The url("chrome://sample/skin/back.png") gives the path of the image file used

Smita Periyapatna 16 05/15/2009

Total recall for Ajax applications CS298 Report

for microBack button. When the microBack button is disabled the disable

attribute is set to true and a new image file is used for microBack button. The

toolbar[iconsize="small"] specifies that the icon size is set to “small” and uses

respective image file for microBack button.

In the similar manner, all other buttons are stylized.

The microBack button and the microForward button have popup menus similar to

the history Back/Forward controls. The Listing 4 shows attributes set for the

microBack button and for the popup menu.

//setting attributes of the microBack Button
back.setAttribute('id',"myextension-backbutton");

 back.setAttribute('label',"myBackButton");
 back.setAttribute('class',"toolbarbutton-1 chromeclass-toolbar-
additional");
 back.setAttribute('tooltiptext',"cacheBackButton");
 back.setAttribute('type',"menu-button");
 back.setAttribute('disabled',"true");

 //Popup menu attributes
 backpopup.setAttribute('id',"backpopup");
 backpopup.setAttribute('context',"");
 back.appendChild(this.backpopup);

 //inserting the microBack button in the toolbar
 var node1 = document.getElementById("myextension-playbutton");
 navbar.insertBefore(back,node1);

Listing 4: Code for microBack Button

The menu items in the popup menu are created at runtime when the caching

starts.

Smita Periyapatna 17 05/15/2009

Total recall for Ajax applications CS298 Report

Preferences

A preference is any value or defined behavior that can be set by the user.

Preferences set via user interface, usually a preference dialog, takes effect

immediately.

Implementation

The listing below shows the preference file used to create the preference dialog

box. The path to the preference XUL file should be given in the install.manifest

file.

 The figure below shows the preference dialog box. This interface allows the

users to set time interval to cache pages. As soon as the option is selected the

caching starts immediately according to the selected time interval.

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>
<prefwindow id="myExtensionOptions" type="prefwindow"
xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
buttons="accept, cancel" title="My Options">
 <prefpane id="myPane" flex = "1" >
 <preferences id="tabsPreferences">
 <preference id="extensions.my_extension.myOptions"
name="extensions.my_extension.myOptions" type="int"/>
 </preferences>
 <script type="application/x-javascript"
src="chrome://sample/content/js/pref.js"/>
 <radiogroup id="myOpt"
preference="extensions.my_extension.myOptions">
 <radio label="Three sec" value="2" />
 <radio label="Five sec" value="3"/>
 <radio label="Ten sec" value ="4"/>
 </radiogroup>
 </prefpane>
</prefwindow>

Listing 5: Preference XUL file

Smita Periyapatna 18 05/15/2009

Total recall for Ajax applications CS298 Report

Figure 3: Preference Dialog Box

To implement the above feature, our extension uses Mozilla’s nsIPrefService and

nsIPrefBranch2 XPCOM interface. The nsIPrefService interface is the main entry

point into the back end preferences management library. The preference service

is directly responsible for the management of the preferences files and facilitates

access to the preference branch object, nsIPrefBranch2. The nsIPrefBranch2

interface is used to manipulate the preferences data. It is used to get and set

default and/or user preferences across the application. nsIPrefBranch2 allows

clients to observe changes to preference values. An observer is added to receive

notification of the changes made through the Preference dialog box. As soon as

the notification is received the observer calls the caching function, which is

explained in the next section, with the new time interval.

Smita Periyapatna 19 05/15/2009

Total recall for Ajax applications CS298 Report

//extension registers to the Preference service
this.prefs = Components.classes["@mozilla.org/preferences-service;1"]
 .getService(Components.interfaces.nsIPrefService)
 .getBranch("extensions.my_extension.");
 this.prefs.QueryInterface(Components.interfaces.nsIPrefBranch2);
 this.prefs.addObserver("",this, false);

//gets called when notifications are received.
observe: function(subject, topic, data)
{
 this.myOpt = this.getOpt();
 this.setOpt(this.myOpt); //calls caching function
 if (topic != "nsPref:changed")
 {
 return;
 }
 }

Listing 6: Preference Service

Caching

Caching starts when a user clicks the play button on the toolbar. Clicking on the

stop button will stop the caching. Users can use the microBack and

microForward button to browse the cached pages.

The figures below show different cached states of a page. As seen in the

 Figure 4, the Back button is disabled; whereas, the microBack button’s popup

menu has three menu items. These menu items correspond to the different

states of the same page.

Smita Periyapatna 20 05/15/2009

Total recall for Ajax applications CS298 Report

Figure 4: microBack popup menu

The Figures 4, 5 and Figure 6 are completely different from each other even

though it is the same web page. Our extension is caching all the different states

of the web page and putting it in micro history. Google sky uses AJAX to get

different information on to the web page; hence the History controls are not able

to save those states as history items.

Smita Periyapatna 21 05/15/2009

Total recall for Ajax applications CS298 Report

Figure 5: Cached page 1

The Figure 6 shows, the microForward button having three popup menu items,

while the microBack button is disabled. Whenever microBack button is clicked a

new menu item is added to the microForward button’s popup menu, while

deleting that menu item from microBack button’s popup menu. Similar action

takes place when microForward button is clicked.

Smita Periyapatna 22 05/15/2009

Total recall for Ajax applications CS298 Report

Figure 6: Cached page 2

Implementation

Our extension captures the page’s DOM tree’s body.innerHTML property. The

captured body.innerHTML is then written to the disk using Mozilla’s

nsICacheService and nsICacheSession XPCOM interfaces. In order to write/read

data from cache, we have to create a session. The nsICaceService interface

provides functions to create a session that represent a client's access into the

cache.

The nsICacheSession interface handles open synchronous and asynchronous

cache entry operations, like openCacheEntry. Te openCacheEntry method gives

Smita Periyapatna 23 05/15/2009

Total recall for Ajax applications CS298 Report

a synchronous cache access. It returns a unique nsICacheEntryDescriptor

descriptor each time it is called, even if the same key is specified. A cache

session can only give out one descriptor with WRITE access to a given cache

entry at a time. This method opens blocking input stream to cache data. This

method opens blocking output stream to cache data.

The listing below shows the way nsICache service is called and how pages are

written and read from the cache.

var nsCacheService = Components.classes["@mozilla.org/network/cache-
service;1"];
var service =
nsCacheService.getService(Components.interfaces.nsICacheService);

var outputEntry =
buttonsObj[countT].myHist.openCacheEntry(this.nsICache.ACCESS_WRITE);
var output = outputEntry.openOutputStream(0, -1, 0);
if (output.write(stg, stg.length) != stg.length)
 alert("disk cache write broken!");

var inputEntry =
buttonsObj[countT].myHist.openCacheEntry(this.nsICache.ACCESS_READ);
var input =
buttonsObj[countT].myHist.wrapInputStream(inputEntry.openInputStream(0, -1, 0));
var d = input.read(input.available());

Listing 7: nsICache Interface

Resource Description Framework

The Resource Description Framework (RDF) is a simple, cross-platform

database for small data stores. Bookmarks, global history in Mozilla use RDF.

Smita Periyapatna 24 05/15/2009

Total recall for Ajax applications CS298 Report

Before writing to cache, the content, the URL and the title are stored as RDF

resources. Before writing any new content to the cache the content is compared

with all the previously written content to check if it is equal. This is done with the

help of RDF. The RDF service is used only to check if the data already exists in

the cache.

var resource = buttonsObj[countT].myHist.rdf.appendResource(rdfKey,
this.root);
buttonsObj[countT].myHist.rdf.setLiteralProperty(resource,
buttonsObj[countT].myHist.rdf.NS_CACHEVIEWER+"key",
buttonsObj[countT].myHist.key);
buttonsObj[countT].myHist.rdf.setLiteralProperty(resource,
buttonsObj[countT].myHist.rdf.NS_CACHEVIEWER+"data",
buttonsObj[countT].myHist.data);
buttonsObj[countT].myHist.rdf.setLiteralProperty(resource,
buttonsObj[countT].myHist.rdf.NS_CACHEVIEWER+"title",
buttonsObj[countT].myHist.title+ ":" +
buttonsObj[countT].myHist.getTimeStamp());

var res = buttonsObj[countT].myHist.ds.GetAllResources();
while(res.hasMoreElements())
{
 var n = res.getNext().QueryInterface(Ci.nsIRDFResource);

var k = buttonsObj[countT].myHist.rdf.getLiteralProperty(n,
buttonsObj[countT].myHist.rdf.NS_CACHEVIEWER + "data");
 if(buttonsObj[countT].myHist.data == k)
 {
 flag = 1;
 break;
 }
}

Listing 8: RDF snippet

When the content is cached a new menu item is added to the microBack button’s

popup menu, with the title of the page as its label. The following listing shows the

code snippet to create the popup menu item.

Smita Periyapatna 25 05/15/2009

Total recall for Ajax applications CS298 Report

function createBackChild(n,tit,flashArr)
{

var bb = buttonsObj[countT].back;
buttonsObj[countT].back.setAttribute("disabled","false");

buttonsObj[countT].back.addEventListener('mousedown',buttonsObj[co
untT].myHist.eventBack,false);

 buttonsObj[countT].back.addEventListener('mouseup',buttonsObj[count
T].myHist.stopTimer,false);
 buttonsObj[countT].back.addEventListener('click',buttonsObj[countT].m
yHist.goBack,false);

 var bChild = buttonsObj[countT].backpopup;
 var idTag = "menuitem" + n;
 buttonsObj[countT].menuitem[n]=document.createElement("menuitem")
;
 buttonsObj[countT].menuitem[n].setAttribute("id",idTag);
 buttonsObj[countT].menuitem[n].setAttribute("label", tit);
 buttonsObj[countT].menuitem[n].setAttribute("index",n);
 for(key in flashArr)
 {
 buttonsObj[countT].menuitem[n].setAttribute(key,flashArr[key]);
 }
 if(buttonsObj[countT].backpopup.hasChildNodes())
 {
 var node = buttonsObj[countT].backpopup.firstChild;

buttonsObj[countT].backpopup.insertBefore(buttonsObj[countT].
menuitem[n],node);

 }else
 {

buttonsObj[countT].backpopup.appendChild(buttonsObj[countT].
menuitem[n]);

 }
}

Listing 9: Create popup menu item

When the microBack button is clicked the most recent menu item gets appended

to the microForward button’s popup menu while it gets deleted from the

microBack button’s popup menu. A similar function as shown in Listing 9 is

written to create popup menu items for microForward button.

Smita Periyapatna 26 05/15/2009

Total recall for Ajax applications CS298 Report

function goBack()
{
 var bChild = buttonsObj[countT].backpopup;
 var node = buttonsObj[countT].backpopup.firstChild;
 buttonsObj[countT].index = node.getAttribute("index");
 tit = node.getAttribute("label");
 flashVar = new Array();
 for(var i = 0;i < buttonsObj[countT].myHist.flashArray.length;i++)
 {
 var fid = buttonsObj[countT].myHist.flashArray[i];
 flashVar[fid] = node.getAttribute(fid);
 }
 var i = parseInt(buttonsObj[countT].index);
 buttonsObj[countT].backpopup.removeChild(node);

 if(!bChild.hasChildNodes())
 {
 var bb = buttonsObj[countT].back;
 buttonsObj[countT].back.setAttribute("disabled","true");

}
 buttonsObj[countT].myHist.createForwardTree(i,tit,flashVar);
 buttonsObj[countT].myHist.loadUrl(buttonsObj[countT].index,flashV
ar);
}

Listing 10: Clicking microBack

Similar function, as shown in the Listing 10, is written when microForward button

is clicked.

Keeping the microBack/microForward button pressed will display the cached

pages as a slide show. Following Listing shows the vents captured for doing the

same.

Smita Periyapatna 27 05/15/2009

//mousedown will start displaying the pages as slide show
buttonsObj[countT].back.addEventListener('mousedown',buttonsObj[countT].myHist.
eventBack,false);

//mouseup will stop the slideshow
buttonsObj[countT].back.addEventListener('mouseup',buttonsObj[countT].myHist.sto
pTimer,false);

Total recall for Ajax applications CS298 Report

Listing 11: Events for creating slideshow

Multiple tabbed browsing

The functionalities provided by our extension, which is mentioned in the above

sections, have been implemented in case of multiple tabs also. The tab count is

used as one of the combinations to create the key, which is used as an index to

retrieve data from cache.

Figure 7: Caching started on Tab 1

Figure 8: No caching started on Tab 2

Smita Periyapatna 28 05/15/2009

Total recall for Ajax applications CS298 Report

Implementation

The “TabOpen” event is captured when a new tab is opened, while “TabSelect”

event is captured when we move from one tab to another tab. Following Listing

shows how these events are captured. Whenever a new tab is opened, a new

object is created. This object has its own set of buttons and micro history.

Whenever a tab is focused, that particular tab’s object’s button and micro history

gets focused.Window mediator is a Mozilla component that keeps track of open

windows. It is accessed through the nsIWindowMediator interface. The two most

common uses of nsIWindowMediator are:

1. Getting the most recent / any window of a given type.

2. Enumerating all windows of a given type.

For our extension we have used getEnumerator() function to get the count of all

open tabs.

var wm = Components.classes["@mozilla.org/appshell/window-
mediator;1"].getService(Components.interfaces.nsIWindowMediator);

var browserEnumerator = wm.getEnumerator("navigator:browser");

var tabbrowser = browserEnumerator.getNext().getBrowser();

//Events to captured TabOpen,TabClose and TabMove

window.getBrowser().addEventListener("TabOpen", function
e(){callbackLoad();}, false);

window.getBrowser().addEventListener("TabClose",callTabClose,false);

window.getBrowser().addEventListener("TabSelect",callTabMove,false);

Listing 12: Tabs

Smita Periyapatna 29 05/15/2009

Total recall for Ajax applications CS298 Report

Flex application caching

Flex application do not allow users to navigate through the various states of the

application by using the web browser's back and forward navigation commands.

In our project we have implemented an API, jsChromeBridge, which will allow

users to navigate through the applications previous states. For example, a user

can set the horizontal slider position at different values, and then click the

browser's microBack button to return to its previous states i.e. to the previous

position of the horizontal slider.

In the figure below the initial position of the slider is shown and the caching has

also begun.

Figure 9: Saving states of Flex application

The microBack button is activated as it has already captured different positions of

the slider.

Smita Periyapatna 30 05/15/2009

Total recall for Ajax applications CS298 Report

The Figure below shows that when microBack button is clicked, the browser

displays the initial state of the slider.

The two figures below show the different positions of the horizontal slider when

the microBack and microForward buttons are clicked respectively.

Figure 10: Navigation to the previous state of Flex application

Implementation

Whenever any Flex application, written using our API, is loaded in the browser

our extension parses the HTML DOM tree to get the object tags. These object

tags are used to embed Flex application in the HTML files. Once the object tags

are found, new event is created and dispatched to our API, which in turn

communicates with the Flex application to get all the Flex variables and their

values. Once the Flex application returns, the API creates a new event and

dispatches the event to our extension with all the Flex variables and their values.

Smita Periyapatna 31 05/15/2009

Total recall for Ajax applications CS298 Report

Listing 13: Caching Flex parameters

These values are then cached and retrieved from cache when the user clicks

micro-back or micro-forward button.

When the microBack or microForward button is clicked our extension again

creates and dispatches an event to the API with the values of the Flex variables.

The API in turn sets the values of the variables in the Flex application. This

allows the users to navigate to different states of the Flex application using

microBack and microForward button.

// event created and dispacted to the API to get the Flex variables
var elm = htmlDoc.getElementById(flashID);
if (elm && "createEvent" in htmlDoc)
{
 elm.setAttribute('flashvar', " ");
 elm.setAttribute('flashid',countFlash);
 var evt = htmlDoc.createEvent("Events");
 evt.initEvent("myEvent", true, false);
 elm.dispatchEvent(evt);
}

//event created and dispatched to the API with flex variables
var elm = htmlDoc.getElementById(flashId);
if (elm && "createEvent" in htmlDoc)
{
 elm.setAttribute('flashvar',flashvar[flashId]);
 var evt = htmlDoc.createEvent("Events");
 evt.initEvent("myEvent1", true, false);
 elm.dispatchEvent(evt);
}

Listing 14: Setting Flex parameters through API

Smita Periyapatna 32 05/15/2009

Total recall for Ajax applications CS298 Report

The Listing below shows the code snippet of our API, jsChromeBridge.js.

var arr = new Array();
var count = 0;
function setFlashParams(val,id)
{
 arr[id] = val;
}
function myeventListener(event)
{
 ele = event.target;
 var id = ele.getAttribute('id');
 document.getElementById(id).getFlashParams(id);
 if ("createEvent" in document)
 {
 ele.setAttribute("flashvar", arr[id]);
 var evt = document.createEvent("Events");
 evt.initEvent("MyExtensionEvent", true, false);
 ele.dispatchEvent(evt);
 }
}
function myeventListener1(event)
{
 ele = event.target;
 var id = ele.getAttribute('id');
 var flashvar = new Array();
 flashvar[id] = ele.getAttribute('flashvar');
 document.getElementById(id).setFlashParams1(flashvar[id]);
}
window.addEventListener("myEvent",myeventListener,false);
window.addEventListener("myEvent1", myeventListener1,false);

Listing 15: jsChromeBridge.js

Writing the jsChromeBridge API was challenging, as there were not many

documents available explaining the interaction between Javascript and chrome.

The Mozilla documentation had details about interaction between chrome and

Javascript,but not from Javascript to chrome. We spent time implementing it in

different ways before we got it right.

Smita Periyapatna 33 05/15/2009

Total recall for Ajax applications CS298 Report

Extension Packaging

Extensions are a form of Installable Bundle, which can be downloaded and

installed by a user. Extensions use a directory structure, which can provide

chrome, components, and other files to extend the functionality of a XUL

program. [7]

Every extension must provide an install.rdf file, which contains metadata about

the extension, such as its unique ID, version, author, and compatibility

information.

Making an Extension XPI

An XPI (XPInstall) file is a ZIP file containing the extension files, with the

install.rdf file at the root of the ZIP. Rename the ZIP to .XPI before uploading in to

the add-ons website. Users can download and install XPI files from the Mozilla’s

add-ons website or can install the XPI file locally.

Smita Periyapatna 34 05/15/2009

https://developer.mozilla.org/en/Bundles
https://developer.mozilla.org/en/Bundles
https://developer.mozilla.org/en/Install.rdf
https://developer.mozilla.org/en/XPI
https://developer.mozilla.org/en/Install.rdf

Total recall for Ajax applications CS298 Report

Submission of extension to AMO

The extension, the .xpi file, is submitted to Mozilla’s add-ons website as an

experimental add-on. The add-on works for all platforms and it works for Mozilla

Firefox 3.0.* as well.

Figure 11: Mozilla Addons Page

Smita Periyapatna 35 05/15/2009

Total recall for Ajax applications CS298 Report

Testing on AJAX based websites

Testing was done on various AJAX based websites like Google Maps, Google

Sky, Netflix, A9.com and Netvibes.

Results of testing on Google Sky are shown in the previous section.

The following paragraph shows the results of testing done on Netflix and A9

website.

Netflix’s website uses AJAX to display the movies details on mouse-over.

Achieving this without AJAX would be very impractical, because the graphics text

adds takes long to download. AJAX makes this page interesting by requesting

the data for each movie from the server and putting it onto the page without re-

loading. These graphics text addups are not saved in the normal history items.

Our extension caches these graphics text add ups. As shown in the following

figures, navigating through the micro-back and micro-forward buttons shows the

cached graphics text add ups.

Smita Periyapatna 36 05/15/2009

Total recall for Ajax applications CS298 Report

Figure 12: Netflix 1

Smita Periyapatna 37 05/15/2009

Total recall for Ajax applications CS298 Report

Figure 13: NetFlix 2

A9 is Amazon.com's search engine. A9 uses AJAX to display the result of the

search by dynamically adding column according to the selected resources. One

can easily toggle these search areas on or off without researching or reloading

the page. The following figures show how the tabs are added/removed

dynamically without reloading the page.

These dynamically added columns are not cached by the History. Our extension

caches these dynamically added columns. The following figures show that

navigating through the micro-back and micro-forward buttons allows the users to

view those dynamically added/removed columns.

Smita Periyapatna 38 05/15/2009

Total recall for Ajax applications CS298 Report

Figure 14: A9 -1

Smita Periyapatna 39 05/15/2009

Total recall for Ajax applications CS298 Report

Figure 15: A9-2

Smita Periyapatna 40 05/15/2009

Total recall for Ajax applications CS298 Report

Figure 16: A9-3

Netvibes is an AJAX based website, where in users can add new widgets or

delete widgets. The page’s layout is in form of tabs, each tab containing some

user defined modules. Navigating between tabs, adding and deleting of widgets

is done using AJAX.

Smita Periyapatna 41 05/15/2009

http://www.netvibes.com/

Total recall for Ajax applications CS298 Report

Figure 17: Netvibes -1

Adding/Removing of widgets from the website is not cached in the normal

history. The above figure shows a weather widget in the website. The following

figure shows the widget delete from the website.

Using the back button, does not allow the user to see the widget. But using the

micro-back button, one can see the weather widget being present.

Smita Periyapatna 42 05/15/2009

Total recall for Ajax applications CS298 Report

Figure 18: Netvibes -2

Following table gives the summary of the websites our extension was tested with

the results.

Smita Periyapatna 43 05/15/2009

Total recall for Ajax applications CS298 Report

 Website Results

Netflix’s website uses AJAX to display the movies details on

mouse-over. Achieving this without AJAX would be very

impractical, because the graphics text adds takes long to

download. AJAX makes this page interesting by requesting

the data for each movie from the server and putting it onto

the page without re-loading.

 Passed

A9 is Amazon.com's search engine. A9 uses AJAX to

display the result of the search by dynamically adding

column according to the selected resources. One can easily

toggle these search areas on or off without researching or

reloading the page.

 Passed

Netvibes is an AJAX based website, where in users can add

new widgets or delete widgets. The page’s layout is in form

of tabs, each tab containing some user defined modules.

Navigating between tabs, adding and deleting of widgets is

done using AJAX.

 Passed

Table 1: Summary of websites tested

Smita Periyapatna 44 05/15/2009

Total recall for Ajax applications CS298 Report

Usability Testing

The users were not aware of the fact that Ajax clicks are not saved as the normal

history items. Initially they were not comfortable using the extension, as they

were getting confused about the actual history items and the history stored by

our extension. After giving them a demo, they visited few websites like Google

Maps and Google Sky. They thought the extension was useful.

Cyrus Poja, Joseph Tusoy and Abdurrahman Nurhasan, third year students from

Ateneo de Davao University, Philippines have downloaded my extension from

the Mozilla addons website. They are working on project, which is similar to my

project. They tried my application with Yahoo mail and Google map. Here is what

they have to say, “I already tried the extension. I tried it with yahoo mail and

google map. I see no problem with the back button, but when I hit the forward

button, it causes the URL to change all into numeric. As I observed, there are

alerts that popped up. May be those were testers alerts. It is working.”

Response to their feedback:

The alerts that popped out were debug statements. I have removed all the debug

statements. The numeric number that comes on the address bar while navigating

through the microBack and microForward buttons will be changed to the actual

URL of the page.

The following figure shows the dashboard, which shows that users are installing

the addon from the Mozilla’s addons website.

Smita Periyapatna 45 05/15/2009

Total recall for Ajax applications CS298 Report

Figure 19: Statistics Dashboard for my extension on addons website

The dashboard also shows how many users have downloaded the extension. It

gives the count of the average daily downloads and the active daily users.

Smita Periyapatna 46 05/15/2009

Total recall for Ajax applications CS298 Report

Conclusion

The goal of the project was to develop an extension which would allow the users

to capture the states of an AJAX page. This goal was accomplished by

developing user interface something similar to the normal Back/Forward buttons.

Users can start and stop caching pages with the start and stop buttons or browse

the saved items with the back and forward buttons. Keeping the back/forward

button pressed will display the cached pages as a slide show.

The initial plan of the project was to save all the AJAX clicks of a web page.

When we tried doing that, it was getting difficult to figure out if the clicks were

AJAX calls or would it redirect to a different page. Hence we decided to take

snapshots of the page at regular intervals and save it in the cache. Thus, users

were given an option to set the time interval they want caching to occur.

Our extension extended this functionality to multiple tabbed browsers. Another

goal established was to capture the states of a Flex application. This goal was

accomplished by implementing an API which acts a bridge between the chrome

and Javascript, which in turn communicates with Flex. The caching of states of a

Flex is limited to the applications which are developed using our jsChromeBridge

API.

We faced several challenges because of poor Mozilla documentation on XPCOM

interfaces. We faced difficulties for extending our functionality to multiple tabbed

Smita Periyapatna 47 05/15/2009

Total recall for Ajax applications CS298 Report

browser. We also faced challenges when extending the functionality to Flex

application again because of lack of documentation on interaction between

Chrome and JavaScript. We had to go through the Firefox code to figure out

stuff.

Smita Periyapatna 48 05/15/2009

Total recall for Ajax applications CS298 Report

Smita Periyapatna 49 05/15/2009

Bibliography

1. Creating Applications with Mozilla. David Boswell. O'Reilly. 2002.

2. Official page of Mozilla.
 http://developer.mozilla.org/en/docs/Building_an_Extension

3. XUL Tutorial and XPCOM Reference.

http://www.xulplanet.com/

4. JavaScript Reference.
 http://www.w3schools.com/jsref/default.asp

5. RDF reference

http://developer.mozilla.org/en/docs/RDF_in_Fifty_Words_or_Less

6. Mozilla Developer Center XPCOM Retrieved May 01, 2008
http://developer.mozilla.org/en/docs/XPCOM

7. Extension Packaging

https://developer.mozilla.org/en/extension_packaging

8. Flex Developer’s Guide
http://livedocs.adobe.com/

9. Icons gallery

http://www.icons-gallery.com/

10. AJAX
 http://en.wikipedia.org/wiki/Ajax_(programming)

11. ActionScript
http://en.wikipedia.org/wiki/ActionScript

http://developer.mozilla.org/en/docs/Building_an_Extension
http://www.xulplanet.com/
http://www.w3schools.com/jsref/default.asp
http://developer.mozilla.org/en/docs/RDF_in_Fifty_Words_or_Less
http://developer.mozilla.org/en/docs/XPCOM
https://developer.mozilla.org/en/extension_packaging
http://livedocs.adobe.com/
http://www.icons-gallery.com/
http://en.wikipedia.org/wiki/Ajax_(programming)

	Total Recall for AJAX applications – Firefox extension
	Recommended Citation

	ABSTRACT
	INTRODUCTION
	Overview
	The Project
	Report Overview

	Technology Used
	XUL
	Javascript
	XPCOM
	CSS
	Flex and ActionScript

	Implementation Details
	Setting up the directory structure
	Creating User Interface
	Implementation

	Preferences
	Implementation

	Caching
	Implementation

	Multiple tabbed browsing
	Implementation

	Flex application caching
	Implementation

	Extension Packaging
	Making an Extension XPI

	Submission of extension to AMO
	Testing on AJAX based websites
	 Passed
	Usability Testing
	Conclusion
	Bibliography

