
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2008

Online visualization of bibliography Using Visualization Online visualization of bibliography Using Visualization

Techniques Techniques

Bharath Kumar Manur Venkataramana
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Manur Venkataramana, Bharath Kumar, "Online visualization of bibliography Using Visualization
Techniques" (2008). Master's Projects. 146.
DOI: https://doi.org/10.31979/etd.pm52-8qxj
https://scholarworks.sjsu.edu/etd_projects/146

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/146?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F146&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

CS298 PROJECT REPORT

Online visualization of bibliography Using
Visualization Techniques

Subject CS298 Report CS 298 Project

Report

Project Advisor Dr. SoonTee Teoh Semester Spring 2008

First Name Bharath Kumar Last Name Manur

Venkataramana

 1

ACKNOWLEDGEMENTS

I am taking this opportunity to thank my Project Advisor Dr. Soon Tee Teoh for his wonderful

Idea and guiding me for developing this unique project. I would also like to thank my Committee

members – Dr. Mark Stamp and Dr. Robert Chun for their invaluable guidance on this project. I

would also like to thank Mark Sheppard from Adobe for his Spring Graph component which was

very useful in this project.

 2

ABSTRACT

Visualization is a concept where we can represent some raw data in the form of graphs,

images, charts, etc. which will be very helpful for the end-user to correlate and be able to

understand the relationships between the data elements in a single screen. Representing the

bibliographic information of the computer science journals and proceedings using Visualization

technique would help user choose a particular author and navigate through the hierarchy and find

out what papers the author has published, the keywords of the papers, what papers cite them, the

co-authors along with the main author, and how many papers are published by the author

selected by the user and so on in a single page. These information is right now present in a

scattered manner and the user has to search on websites like Google Scholar [1], Cite Seer [2] to

get these bibliographic records. By the use of visualization techniques, all the information can be

accessed on a single page by having a graph like points on the page, where the user can search

for a particular author and the author and its co-authors are represented in the form of points.

The goal of this project is to enhance current bibliography web services with an intuitive

interactive visualization interface and to improve user understanding and conceptualization. In

this project, we develop a simple web-interface which will take a search query from the user and

find the related information like author's name, the co-authors, number of papers published by

him, related keywords, citations referred etc. The project uses the bibliographic records which

are available as XML files from the Citeseer database[2], extracts the data into the database and

then queries the database for the results using a web service. The data which is extracted is then

presented visually to allow the user to conceptualize the results in a better way and help him/her

find the articles of interest with utmost ease. In addition the user can interactively navigate the

visual results to get more information about any of the article or the author displayed. So here we

present both paper centric view and author centric view to the user by representing data in terms

of graphs. The nodes in the graphs obtained for paper centric views and author centric views are

color coded based on the paper’s weight parameter (popularity of the paper). For the paper

centric view, the papers which are referring other papers are represented by providing a directed

arrow from referred paper to referenced paper. Overall the idea here was to represent this related

data in the form of a tree, so that the user can correlate all the data and get the relationships

between them.

 3

TABLE OF CONTENTS

1. INTRODUCTION …………………………………………………………………… 5-8

2. OBJECTIVE ………………………………………………………………………… 9

3. PROBLEM STATEMENT …………………………………………………………. 9

4. FLEX VISUALIZATION ………..……………………………………………… 10-13

5. ARCHITECTURE ……………………………………………………………… 14-15

6. SAMPLE XML STRUCTURES …………………………………………………..16-17

7. VISUALIZATION ALGORITHM ………………………………………………. 17-18

7.1 FORCE LAYOUT DIRECTED ALGORITHM …………………………….18-22

8. SPRINGGRAPH IMPLEMENTATION USING FLEX ………………………. 23-24

9. IMPLEMENTATION DETAILS ……………………………………………….. 25-28

10. SNAPSHOTS ………………………………………………………………………29-32

11. MAJOR GOALS AND DELIVERABLES ……………………………………….33

12. CHALLENGES FACED IN THE PROJECT…………………………………….34

13. FUTURE WORK ……………………………………………………………………35

14. CONCLUSION ……………………………………………………………………. 35-36

15. APENDIX ………………………………………………………………………….. 36-39

16. REFERENCES ……………………………………………………………………..40-41

 4

LIST OF FIGURES

1.1 Twitter Graph Visualization

 4.1 Flex Architecture

 4.2 Amazon Item Visualization

 5.1 High-Level Architecture

7.1 Force on Graph Nodes

7.2 Force Calculations

7.3 Force-Directed Algorithm applied on the Graph nodes after a series of Steps

7.4 Force Directed Algorithm applied on many nodes

 10.1 Paper Query Search Results Snapshot

 10.2 Paper Centric View Snapshot

 10.3 Author Query Search Results Snapshot

 10.4 Author Centric View Snapshot

 5

1. INTRODUCTION

Data Visualization involves data mining at the backend and Visualize the data which

we extract from the data mining approach onto the frontend. The Data mining part here involves

extracting the data using some clustering methods and find related data from the web and store

that in the database. This part is very important in order to visualize these related data in the

future. After extracting this data, we can represent this data in the form of graphs, charts, Images,

etc.. by applying some Visualization algorithm to place the nodes in the graph or points in the

charts on the screen, with the data loaded.

This method of representing data is now used in the field of business, representing

stocks related data in the form of charts, social networking websites and many more. Some of the

examples where this method is used are in Amazon[3], where the user can search for a particular

product and when he/she clicks on that product, it will redirect to another web page, where

he/she will be able to view a graph kind of structure (tree-like), which will have related

products that are associated with this product.

Another place where this methodology is used is in Twitter[4], which is a social

networking website which will allow the user to find his related friends and the next closest

friends, who may be in your other friend’s list. This type of data is represented in the form of a

graph, where the Photo of one user is connected to many other Photos of its friends and their

related friends and so on in the form of a tree. By having this whole information on one page, we

will be able to zoom in to which friend we are interested in knowing and get more information

on that. In both the examples, the respective web service is used to load the data onto the graph.

For placing these tree-like structures we need to use some Visualization techniques to

position the nodes of the graph in the layout. The way the graph looks is based on the technique

we use. In this project, Force-Based Directed Layout Algorithm [5] is used to position the nodes

and edges. But many other techniques also are very useful in representing the graphs. One of the

key points to look out while implementing these techniques are how flexible are those techniques

when we have to make it customizable for different requirements. For example, if we have to use

a visualization technique to implement a Visualization Graph for a big Family providing the

relationships between family members upto 6-7 levels. Then we have to make use of

 6

Hierarchical Visualization Algorithm [6], which will position the nodes in a proper ancestor-

descendent format. So it’s important to know which technique to use for the type of

implementation you are looking for.

 Figure 1.1 Twitter Graph Visualization [7]

In this project we use the idea of the Graph Visualization concept explained above to

represent the Bibliographic data such that we can establish relationship with authors, papers,

related keywords and so on. Here we use Citeseer[2] database from the web and get the

bibliographic records from that and store it in the database. By using some clustering algorithms,

we will get the related data using a web service, which is in the form of an XML file and then we

parse the XML file and apply a Visualization algorithm to represent the data on the web page.

Here we have a search result kind of format, where we search for papers and get related

papers based on the keyword provided in the search. We also provide a new search for authors

 7

and get related authors based on the search results. We will use this search results and click on

one of the paper and get a paper-centric view, which will give us a tree-like structure showing

the Paper as the main focus and the papers referenced by this paper, the authors of the papers and

some of the papers the authors have written. The user can navigate through the hierarchy by

navigating from first level to next and so on. The data here is loaded dynamically as and when

the user needs more data. The authors and their related paper data nodes in the graph is of less

significance, so we reduce the size of the nodes of this data. Also the papers here are color-coded

based on the weight associated with the paper, which is referring to the popularity the paper has

received.

For the author centric view, the main author and their related co-authors are represented

using the tree-like structure showing the main author as the focus and each author will be having

their papers and which is linked to the respective authors in the graphs. The author’s which have

written papers together are shown closer by providing the bonding between them. Here also the

user can navigate from level one to next and so on. Here the papers written by the authors are of

less significance, so we reduce the size of the nodes of this data. Also the authors are color-coded

based on the weight parameter, indicating the popularity of the author.

In this project, the main focus is on getting an online Visualization for the bibliographic

data. As seen right now in the internet world, there is so much irrelevant data and some very

much related data. To relate to those data which are related to each other, we need to get a

Visualization chart. Without that it’s very difficult to collect all the data and relate it separately.

In this project, we eliminate this concern by providing a Visualization Graph for the

bibliographic data and help the user to get all the related data of authors and papers on a single

screen. This would eliminate that concern of finding for information on different websites and

refer different papers and get the related information.

 8

2. OBJECTIVE

The objective in this project is to create Graph Visualizations for Bibliographic Records

from Cite seer [2] and represent these Graphs on a web browser. The main goal in this project is

to create a search engine for the bibliographic papers and authors, along with that create Paper-

Centric and Author-Centric Data Visualization Graphs which will provide all the details about

the authors, papers, related keywords, co-authors and many more.

3. PROBLEM STATEMENT

In this project, the main challenge is to find a suitable Visualization Algorithm for

drawing a Graph on the web page and load the data dynamically onto the graph nodes. So in this

project we need to use some Clustering techniques to get related data from the Cite seer[2]

database. After getting the related data we need to use that data in the form of web service and

we need to parse that data from the web service and feed the data to the Visualization Tool.

After parsing the data we need to convert that into some XML format in order for the

Visualization tool to recognize. The XML data should now be used by the Visualization Tool

which will create the data nodes on the web layout and also link the nodes according to the data

provided. The nodes in the web layout have to be positioned such that they will all be displayed

on the web layout in a proper manner. For doing this we need to use some Graph Visualization

Algorithm which will calculate the position of the nodes and many more parameters and position

the nodes along with the links on the web page.

By using these analogies we need to create 1) Author-Centric and 2) Paper-Centric Views

for the Bibliographic records. The Graph representation should highlight all the data that the user

will be looking for in a single screen and should be able to correlate the data and establish a

relationship between the authors and papers.

 9

4. FLEX VISUALIZATION TOOL

Flex [8] is a useful Visualization tool that is used to represent related data in a graphical

format in the form of charts, graphs, tables, etc.. Flex is like a presentation server which is used

to develop Enterprise Rich internet applications (RIA’s) [9]. This presentation server is installed

on a J2EE application server, along with several useful user interface components like

SpringGraph [9]. Along with this, Flex has a very useful object-oriented support which is very

useful in interacting with the database objects and also provides very good user interactions with

the real-world applications. It also supports XML-based data and is very useful in populating the

data from the XML onto the user interface components very easily. This is one of the important

features that were very useful in this project. [9]

Flex provides a very good development atmosphere for the developers with runtime

support and help them develop very good frontend applications that interact with the database

very effectively. It also takes advantage of using Macromedia Flash Player [10]. This Flash

Player is very useful when we run the Flex application; this Flash player will interact with the

databases, web service, objects created in the flex application and so on. This player is also

useful in debugging the Flex application in runtime.

Another important feature present in Flex is its ability to bind the data variables, so that

the data in one object can tie to the other object. For example, in Flex there is a component called

HSlider and another component called Text, so we can copy the value provided in HSlider

component onto Text component using the id variable in the component. This process is called

binding the data variable in HSlider to Text object. This feature is very useful as we can declare

 10

the data binding variable as public, so that it is very useful in binding the data value to that

variable throughout the application.

Figure 4.1 Flex Architecture [11]

The Flex application will use MXML applications for creating a controller and then use

ActionScripts for View and Model. These applications are built using a Flex SDK into a Flash

Application in .swf format. The Flash application will reference Flex Runtime Library which

will be having some standard libraries and customized libraries. The customized libraries are

usually built using the same MXML and ActionScripts. The Flash Runtime Plugin is used for

debugging purposes which will help us debug the program by setting some breakpoints in the

program using “trace” function which is similar to “printf” function in C.

 11

The web browser will also do a Remote Procedure Call using the Adobe Flex data service

inorder to get the data when a web service functionality is implemented in the Action Script.

Flex will also support other protocols like HTTP, SOAP and RTMP. [11]

How to create Graph Visualization using Flex?
By using SpringGraph [12] component in Flex we will be able to display the items in

such a way that we will able to see related items in the form of a tree. Each item will be having

its sub items or related information which can be viewed by navigating through the tree. Here the

items that are related are linked by having a line connecting them. The links and the nodes for

these items are drawn using a Visualization algorithm which will calculate the layout size and

will accordingly position the items on the screen. This component will also help us to scroll over

the graph, expand the items and also helps us in zooming in and out the graph by providing the

contracting and expanding effect. So this will help the user to talk to individual items and also

get more information about it.

The data that is provided for getting this graph is in the form of XML which is fed to the

Spring Graph component which will use this as a data provider for that particular node and load

the data to that node in the graph. One of the examples where this component is used are:-

1) Amazon items:- In this application, they call Amazon web service to get the dynamic

XML and then they parse the XML data and load the data onto the Spring Graph

component. As shown in the figure, there are many Apple Ipod products which have

related items linked with each other. The next level items have their related items and

so on. So the user can have a full set of items and look at the description of all the

items and their ranks or reviews on a single screen and choose what he/she wants to

buy.

 12

Figure 4.2 Amazon Item Visualization [13]

The key to get a very good graph structure to be displayed in the web browser in this

project is due to the use of Spring Graphs in flex. SpringGraph[12] is the main component - you

give it a graph of items and links, and specify the Flex UI for displaying each item. The graph

can be given as XML, or built from the Graph class. The component follows the data

Provider/item Renderer pattern seen in other Flex components such as DataGrid or List, with one

difference - the data Provider is a graph rather than an array.

Here the Spring Graph [12] component is used to display the author centric view and

paper centric view graphs on the web browser. User can click on the nodes in the browser and

can navigate through the similar items dynamically on the web page. For example, if we have a

list of authors linked together and if we click on one of the co-author in the graph, we should get

the tree structure for that particular co-author (meaning we should get the respective co-author

related data). So the graph tree should keep on getting updated dynamically.

 Overall Flex provides a very useful interaction with the web service and the flex objects

created, as this kind of feature is very useful in real-time applications where we can develop rich

front-end interfaces and as well have very good web service and database support for that

applications. [12] One of the main drawbacks while building Flex application is we need to read

the XML data we get from the web service as a string and then parse the data and then again

reformat it to the XML format and read again. This is an overhead and can slow down the

 13

application in some situations, where the user is making a lot of queries to the database, so each

time the user makes a query, a web service is created and the Flex application has to parse it and

reformat it, which will take some time.

5. ARCHITECTURE

USER INTERFACE

Figure 5.1 – High-Level Architecture

The user can enter the search query on the User Interface and will get the related

information by querying the SQL database and then running a clustering algorithm on the search

query and display that data on the web browser in the form of datagrids using flex. Also the user

can click on one of the papers or authors got from the search query and get author centric view or

paper centric view for that particular author or paper respectively. The author centric view will

display the author name and the related co-authors in the form of graphs, by linking the main

author with its co-authors and also displaying the papers published by the main author. In case of

paper centric view, the main paper is displayed along with the referenced papers by the main

paper along with the title and authors for each of the papers on the screen. All the display is done

 14

in graph format. So user can click on the authors/papers in the graph tree and can get similar

related information by expanding the graph for the related information on the screen.

The XML records for this Bibliographic data are parsed using XML parser and stored in

the SQL server database. A clustering algorithm is applied on the data based on the search query

provided by the user. After getting the results from the search query through the webservice in

the form of XML file, we read the XML file through Flex Visualization tool and extract the

related information from it and sketch a graph structure based on the contents. The graph

structure is built using Spring Graphs [12] in flex. The results we get from the search query we

also display them in the datagrid using flex on the web browser. So user can click on any paper

or author and get its corresponding centric/detail views in the form of graphs.

 15

6. SAMPLE XML STRUCTURES

PAPER-CENTRIC VIEW XML STRUCTURE

<root xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://biblio.cs.sjsu.edu/">

<paper>

 <id>978</id>

 <title>Software Transactional Memory</title>

 <description>DESCRIPTION...</description>

 <weight>0</weight>

<authors>

<author>

 <id>3022</id>

 <name>Nir Shavit</name>

 <weight>8</weight>

 </author>

<author>

 <id>3023</id>

 <name>Dan Touitou</name>

 <weight>2</weight>

 </author>

 </authors>

<references>

<paper>

 <id>14421</id>

 <title>The MIT Alewife Machine: A Large-Scale Distributed-Memory

Multiprocessor</title>

 <description> des...</description>

 <weight>32</weight>

<authors>

 16

 <id>3554</id>

 <id>40634</id>

 <id>41473</id>

 <id>25008</id>

 <id>5983</id>

 <id>41474</id>

 <id>3553</id>

 <id>41475</id>

 <id>38473</id>

 </authors>

 </paper>

 </references>

 <referredby />

 </paper>

 </root>

7. VISUALIZATION ALGORITHMS

Visualization algorithms play a very important role in placing the nodes in the graph

along the layout. This is very helpful as we have to represent the data on the User Interface in

the form of points/ nodes and spread those nodes along the layout in a certain manner.

Without doing this, the nodes will be placed one above the other and the user will not be able

to view the graph properly. The relationship between the data nodes will be clearer when we

use these algorithms. Some of the existing Visualization algorithms are:-

1) Force Based Layout:-[5] In these algorithms, electric and magnetic forces are applied on

the nodes and edges between nodes.

 17

2) Orthogonal Layout [14]:- Here the nodes and edges are drawn on the layout by placing

the edges horizontally and vertically. This will reduce edge crossovers and also will

increase the area covered.

3) Tree Layout [14]:- These algorithms help us to create a tree-like structure with a root

node and leaf nodes kind of structure. But these class of algorithms will not provide

graphs which have cycles.

4) Hierarchical Layout [14]:- These kind of algorithms provide a ancestor-descendent

relationship between the node objects and is very useful when we have to represent data

of a big family in the form of graphs.

FORCE DIRECTED LAYOUT ALGORITHM [15]

Force-based directed algorithms are useful for drawing graphs in a very nice manner. The main

purpose of this algorithm is to place the nodes of the graph in the layout such that all the edges

are of same size and the overall graph having less crossing edges.

 In this algorithm, the overall layout is considered as one physical system, with the graph

nodes acting as bodies of the whole system. [15] There will be some kind of forces between

these nodes like an electric force or magnetic force. So the nodes here are connected with each

other in the layout through some force parameter. The force parameter between two nodes is

always directly proportional to the distance between the two nodes. [15]

 18

 Hooke’s Law is used to calculate the forces surrounding each node and then establish a

state of equilibrium among the nodes. [15]

Figure 7.1 Force on Graph Nodes [15]

The basic logic behind this algorithm is if the two nodes are not linked with an edge, then

a repulsive force is applied to move the nodes away from each other. This is done because the

two data nodes are not related to each other. If there is an edge connecting two nodes, then an

electric attractive force is applied so that the two nodes are closer to each other. This means that

the two nodes are related to each other. This way the nodes in the graph will be positioned based

on whether there is relationship between the data contents of the nodes or not. [15]

The Force calculation for this algorithm is shown as below:-

 19

∑
∑

∑
∑

∑

∑

∑

⋅
=

⋅
=

=−⋅

=−⋅

⋅=

⋅=

j
ij

j
jij

New
i

j
ij

j
jij

New
i

j

New
i

New
jij

j

New
i

New
jij

j
ijiji

k

yk
y

k

xk
x

yyk

xxk

dkF
dkF

0)(

0)(

Figure 7.2 Force Calculations [15]

Basic Pseudo – Code for this algorithm:-

1) Compute the initial layout for positioning the nodes.

2) Repeat

3) Compute the forces between the edges.

4) Construct a geometrical cluster

5) For each node N in the graph

6) Compute the non-egde forces on nodes N.

7) End forloop

8) Move the nodes based on repulsion factor.

9) Update the boundary area.

10) Proced until stopping condition.

11) End. [15]

Advantages of Force-Directed Layout algorithms:-

 20

 Shows very good results for graphs with size 50-100 nodes.

 The graph layout is very much simplified, so that the graph is easy to follow.

 It helps in building a very good graph-based interactive system. [15]

 These graphs are highly flexible and we can add more additional properties to it as and

when needed.

 These graphs act like spring forces and can be stretched or converged like a rubber-band.

Disadvantages of Force-Directed Layout Algorithms:-

 It doesn’t support graphs of larger size (more than 100 nodes).

 The complexity of this algorithm is O(n2) , which increases the cost as it is used at each

step. [15]

Examples of Force Directed Layout Algorithms:-

Figure 7.3 Force-Directed Algorithm applied on the Graph nodes after a series of Steps[15]

 21

Figure 7.4 Force Directed Algorithm applied on many nodes [15]

The two figures above show how this algorithm is applied to the undirected graphs and

the result of this algorithm after running for a series of iterations. The algorithm is run for some

steps until the equilibrium state is found. This prevents the crossing over of edges in the graph to

some extent. As seen above the nodes which have some relation are positioned close to each

other and ones which have no relation are far apart. The clear distinction of the same is seen after

a series of steps. Overall these classes of algorithms are very useful for positioning the nodes

around the layout.

Clustering Algorithm

The clustering algorithm will cluster the data based on the search query provided by the

user. If the search query is the name of the author, for example the search query is John, then the

clustering algorithm will extract all the authors whose name has John as one of the string in their

names. Also it will extract the related papers published by that authors and the bonding

information of that author with its co-authors. In case of a paper search query, the clustering

 22

algorithm will extract all related papers which have any string which matches the search query

string and will also get the related papers referenced by that paper.

Author Centric approach provides details about the author like his name, papers

published by him and the related co-authors. Also a weight parameter is calculated for each

author based on how many papers the authors have written and so on.

Paper Centric approach provides details about the paper name, description, the citations

of other papers by this paper and so on. Also a weight parameter is calculated for each paper

based on how many papers refer this paper (popularity factor of this paper).

8. SPRING GRAPH USING FLEX

What is meant by a Spring Graph?

Spring Graph[12] is a component in Flex, which helps us to realize Graph visualizations. This

component helps us to create an interactive system by dynamically loading the data to the Graph

nodes, so that we are able to develop the Tree-Like structure. By this way, we can draw a link

between two nodes, if they are related to each other using this component. We can also define a

repulsion factor in this component, which will tell how much the nodes should be pushed away

from each other.

Why is this component useful?

This component plays a very important role when we have to show the relationship between

related data in the form of graph. For example, in case of Social networking websites like

Twitter[4], it is very easy provide a relationship between me and my first level friends and

second-level friends and so on, using the form of a Tree-Like structure. In this project, we use

this component to get related data like authors, co-authors relationship, papers and referenced

papers relationships and so on and helps us to create a graph structure and allows us to interact

between the second-level tree and so on.

 23

Uses of Spring Graphs in Real-World Applications:-

Example 1:- Amazon[3] uses Spring Graphs to update information about the related products and

create a graph visualization.

Example 2:- Twitter[4] uses Spring Graphs to update information about the related Users and

create a graph visualization.

How Spring Graph is useful in this Project?

Spring Graph[12] is used to create a Graph named Paper and Author and add nodes to these

graphs and link them based on the information provided in the xml. By using this component, we

are able to create this interactive system, which is so popular in the area of data visualization

now.

The Spring Graph is created using Graph: Paper = new Graph();

Adding a new node to this graph named “Paper” is – Paper.add();

Linking a node to this graph is done by getting the id of the node in the graph, the present node

has to be linked to. Paper.link(newNode, LinkTo); [12]

The link feature has properties like- setting the line style, thickness of the line, also for the paper

referencing another paper, an arrow is drawn indicating the reference. The arrow function is

implemented inside the Spring Graph component when the edges are drawn by the component.

We can also remove the links between items by using Paper.remove(newNode, LinkTo). We can

set the repulsion factor between the nodes by providing the repulsion factor. Also autofit feature

can be enabled by setting a Boolean value inside the program, specifying true or false. The data

is loaded to this component using the xml format with the node created first as the root of the

graph and the other nodes are linked accordingly based on whether they are related to each other

or not.

 24

9. IMPLEMENTATION DETAILS

MVC architecture:-

The Model View Controller concept is used in implementing this visualization. Here for

Paper-Centric approach, PaperDemo.mxml – file is the controller, which will pass the control to

the Model – Paper Item , which will do a call to the Paper webservice and gets the data loaded

and parse the data and convert it into a standard xml format. Then the controller makes a call to

the item renderer class, which is the PaperItemView – View class, where we use the Vertical and

Horizontal Boxes for the nodes and coloring the nodes and so on.

Input and Output to the Program:-
For the paper-centric view, the input to this algorithm is :-

1) Create a graph , for example named – Paper = new Graph();

2) Get the paper ID and get the data using the ID by using a webservice call to the

database and format the data to an xml List format, so it can be read properly.

3) After getting the data, create a new item node to the graph labeled, the paper id and

the paper’s title by – Paper.add(item).

4) Then after adding the new item to the graph, check whether the paper has any other

referenced papers which can be linked to it.

5) If there is any papers referencing this main paper, link those papers to the Main Paper

Item by – Paper.link(newitem, item). If there is no other papers referenced, then that’s

the end of the graph.

6) For each paper item in the graph, create new author items, like the authors who have

written that paper by using the Paper.add and Paper.link features.

7) Also get the weight factor from the XML data and color the Paper Items based on the

popularity of the paper. [12]

For the author-centric view, the input to this algorithm is :-

1) Create a graph , for example named – Author= new Graph();

 25

2) Get the author ID and get the data using the ID by using a webservice call to the

database and format the data to an xml List format, so it can be read properly.

3) After getting the data, create a new item node to the graph labeled, the author id and

the author’s name by – Author.add(item).

4) Then after adding the new item to the graph, check whether the author has any co-

authors which can be linked to it.

5) If there is any co-authors referring to this main author, link those co-authors to the

Main Author Item by – Author.link(newitem, item). If there is no other co-authors,

then that’s the end of the graph.

6) For each Author item in the graph, create new Paper items, like the Top 2-3 Papers

that have been written by the authors by using the Author.add and Author.link

features.

7) Also get the weight factor from the XML data and color the Author Items based on

the popularity of the Author. [12]

Parsing:- The data which we get through the webservice has to be parsed by using some regular

expressions and make the data formatted in a xml format, so that its easy to load the data to the

graph nodes.

How the Force Directed Layout Algorithm is used in the implementation?

This algorithm is useful in placing the spring graph component nodes in the layout by applying

electric and magnetic forces. This is done by applying a repulsive magnetic force between 2

nodes by varying the x and y axis distances. Then if the 2 nodes are not linked, the applied

magnetic repulsive force is little more, so that they are placed little away from each other.

Now if the 2 nodes are linked, then the edge between them is applied an attractive electric force

on the x and y axis, so that these 2 nodes attract towards each other. This analogy is based on the

fact that distance is directly proportional to Force applied, F = d * v [15]. By varying the

 26

distance, the force is varied. This makes the Graph edges look stretchy, like a rubber band, which

will help the user to drag the nodes on the layout and place them anywhere he wants to on the

screen.

Main Modules used in the Project:-

Paper Centric View Modules:-

1) PaperSearchQuery.mxml :- In this module, the papers are queried from the database

and this will display the search results in the Flex data grid. The user can click on any of

the search result, so that he/she will be able to navigate to the Paper centric view of the

selected Paper.

2) PaperDemo.mxml :- This application will take the selected paper id from the

PaperSearchQuery and will use that Paper Id to load the main paper that is selected to get

the Paper Centric View graph. This module also implements the Zoom in and Zoom out

feature. It also has recursive query calls to the web service in order to load the data in the

second-level and so on. This module acts like a controller n the MVC framework. This

creates a new Model called PaperItem, which will get the actual data from the web

service. This module also embeds the item renderer – PaperItemView, which is the View

in this MVC framework.

3) PaperItem.as :- This is an action script, which calls the Paper web service and gets the

xml file and parses it by using some regular expressions and convert that in to a proper

xml format. Then this will return the data to the controller.

4) PaperService.as :- This is an action script, which calls Paper web service by using loader

request and response methods and gets the xml formatted data from the web service.

 27

5) PaperItemView.mxml :- This is the module that will actually create the Node in the

front-end by using Vertical boxes and Horizontal Boxes and also implements the color

coding of the nodes based on weight parameter got from the PaperItem Model.

Author Centric View Modules:-
1) UserSearchQuery.mxml :- In this module, the authors are queried from the database and

this will display the search results in the Flex data grid. The user can click on any of the

search result, so that he/she will be able to navigate to the Author centric view of the

selected Author.

2) AuthorDemo.mxml :- This application will take the selected paper id from the

AuthorSearchQuery and will use that Author Id to load the main Author that is selected

to get the Author Centric View graph. This module also implements the Zoom in and

Zoom out feature. It also has recursive query calls to the web service in order to load the

data in the second-level and so on. This module acts like a controller n the MVC

framework. This creates a new Model called AuthorItem, which will get the actual data

from the web service. This module also embeds the item renderer – AuthorItemView,

which is the View in this MVC framework.

3) AuthorItem.as :- This is an action script, which calls the Author webservice and gets

the xml file and parses it by using some regular expressions and convert that in to a

proper xml format. Then this will return the data to the controller.

4) AuthorService.as :- This is an action script, which calls Author web service by using

loader request and response methods and gets the xml formatted data from the

webservice.

5) AuthorItemView.mxml :- This is the module that will actually create the Node in the

front-end by using Vertical boxes and Horizontal Boxes and also implements the color

coding of the nodes based on weight parameter got from the AuthorItem Model.

 28

10. SNAPSHOTS

PAPER SEARCH QUERY SNAPSHOT

Figure 10.1 Paper Query Search Results Snapshot

 29

Paper- Centric View Snapshot

Figure 10.2 Paper Centric View Snapshot – Main Focus – Paper ID -978

Paper Title - “Software Transactional Memory”

 30

Figure 10.3 Paper Centric View of user clicked paper with new focus – Paper ID – 98807

Paper Title – “Are Wait-Free Algorithms Fast?”

 31

User/Author Search Query Snapshot

Figure 10.4 Author Query Search Results Snapshot

 32

Author Centric View Snapshot

Figure 10.5 Author Centric View Snapshot with user clicked Author focus as

Author ID – 2576 Author Name – “Maurice Herlihy”

 33

11. MAJOR GOALS AND DELIVERABLES

 A search engine was setup for the user to query a keyword of a paper/author and the

result of the search is displayed on the webpage.

 Paper-Centric Visualization Graphs are provided for a particular paper with multi-level

hierarchy provided for the graphs to access its referenced papers by an arrow and authors

of the papers and also the other papers written by those authors.

 The nodes of the graph are color-coded based on the popularity of the paper.

 Author-Centric Visualization Graphs are provided for a particular author along with its

co-authors and also the papers written by these authors with multi-level hierarchy

provided for the graphs.

 The nodes of the graph are color-coded based on the popularity of the author.

 Was able to provide a very rich Visualization for the papers and authors, so that the end-

user can easily establish relationship between authors and papers.

 Also was able to apply the Visualization algorithm for placement of the graph nodes and

get a nice view of the tree-like hierarchy of the author and paper.

 Finally integrating all together, an online visualization of the bibliographic records was

created by the help of Flex as the Visualization Tool.

 34

12. CHALLENGES FACED DURING THIS PROJECT

 Integration of Spring Graph component into Flex.

 Parsing of XML data by using regular expressions in flex needed a lot of effort.

 Making the Graph interactive to get multi-level tree structure.

 Drawing arrows in the layout by using vector functions, which was little complicated.

 Varying the repulsion parameters such that the force applied on the nodes by using the

Force Directed Layout algorithm, should not make the nodes move far away from the

layout.

 Preventing overlapping of nodes on the screen.

 Drag and scroll features were little difficult to implement.

 Had to deal with lots of queries to the SQL database [16], which used to slow down my

system.

 Learning flex took a bit of time, as it’s a new language with lot of features in it.

 Overall working on a big data mining project like this is real challenge as we deal with

real-time data and we have to load them, extract sensible data and visualize them, which

in itself is a big task.

 35

13. FUTURE WORK / ENHANCEMENTS

 Improve the Force Directed Layout algorithm to completely prevent overlapping of nodes

on the screen.

 Reduce the number of queries to the database to improve efficiency.

 Use a separate database server, which reduces the overhead and efficiency.

 Improve the quality of the graph nodes in the application.

 Make efficient use of the layout and draw more nodes and edges in the layout.

 Provide support for more than 500 nodes in the layout at once.\

 Represent keywords in the paper-centric view.

 Improve the search engine interface by improving the keyword search criteria.

14. CONCLUSION

This project used the concepts of both data mining and data visualization and helped in

representing the related data got from data mining techniques to be represented in the form of

graph structure by using the data visualization tool like flex. The challenging part in this project

was to represent the related data in the graph structure on the web browser, which was a very

significant achievement.

The main key progress done in this project was representing data in the web browser in

the form of graph which would allow the user to look into lot of related/ linked data in a single

screen rather than having to look into different web pages for similar information. Also the color

encoding for the author nodes and paper nodes in the view was very useful for the user to know

the importance of that particular author/paper. So overall it was a significant project with lots of

emphasis on providing a very good prototype for use in the next phase of this project.

 36

Data Mining and Data visualization are two concepts that have been in use since a long

time and are still being used in various areas ranging from business to academics. A lot of

research and thus lot of development has been made in both the fields over the years. While both

the concepts can stand by themselves, they are more advantageous when used together and that is

the essence of this project.

15. APPENDIX

AddItem onto the Spring Graph function – Act like Controller:

public function addItem(id: String, title: String, weight: String, linkTo: PaperItem): PaperItem {

var authorNames: String = "";

var newItem: PaperItem = new PaperItem(id, title, weight, authorNames);

paper.add(newItem);

if(linkTo != null) {

var data: Object = {settings: {alpha: 1.0, color: 8, thickness: 2, width: 1.0, height: 1}};

paper.link(newItem, linkTo,data);

}

s.dataProvider = paper;

s.autoFitTick();

return newItem;

}

View Part of the Code where the Nodes are Drawn:
<mx:HBox id="vBox" dropShadowEnabled="true"

 borderStyle="solid"

 borderThickness="0"

 backgroundColor="{calcColor(data.weight)}"

 width="100%"

 height="100%">

 37

<mx:Label text="{data.id}" color = "red" fontSize="{calcFontSize(data.weight)}"

fontWeight="bold"/>

<mx:Label text="{data.name}" color = "black" fontSize="{calcFontSize(data.weight)}"

fontWeight="bold" />

<mx:Label text="{data.title}" toolTip="{data.id}" textAlign="center" styleName="text"

fontSize="{calcFontSize(data.weight)}"/>

</mx:HBox>

Color calculation based on weight parameter:
public function calcColor(weight: String): int {

if (parseInt(weight)==0)

 return 0xADFF2F;

 else if(parseInt(weight)<10)

 return 0xFFD700;

 else if (parseInt(weight)>10 && parseInt(weight)<15)

 return 0x008000;

 else if (parseInt(weight)>15 && parseInt(weight)<20)

 return 0xADBF2F;

 else if (parseInt(weight)>20 && parseInt(weight)<25)

 return 0xF08090;

 else if (parseInt(weight)>25 && parseInt(weight)<30)

 return 0x8B0000;

 else if (parseInt(weight)>30 && parseInt(weight)<33)

 return 0x2F4F4F;

 else if (parseInt(weight)>34 && parseInt(weight)<40)

 return 0x20B2AA;

 else

 return 0x20B2AA;

 }

 38

Web Service Call:

var xmlPaper:XML = new XML();

var loader:URLLoader = new URLLoader();

var urlString: String =

"http://localhost/bibliows/BiblioWS.asmx/PaperCentricView?paperId=" +id;

var request:URLRequest = new URLRequest(urlString);

loader.addEventListener(Event.COMPLETE, client.getPaperInfoResult);

loader.load(request);

Model class which parses the data and then stores the data onto binding

variables:
var app: PaperCentric = PaperCentric(Application.application);

var repString: String = event.target.data;

var newrepString: String = repString.replace('

xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\"

xmlns:xsd=\"http://www.w3.org/2001/XMLSchema\" xmlns=\"http://tempuri.org/\" ','');

var myPatternlt:RegExp = /</gi;

var strReplacelt: String = newrepString.replace(myPatternlt,"<");

var myPatterngt:RegExp = />/gi;

var strReplacegt: String = strReplacelt.replace(myPatterngt,">");

var xmlPaper:XML = new XML();

event.target.data = strReplacegt;

xmlPaper = new XML(event.target.data);

this.title = xmlPaper.paper.title;

this.weight = xmlPaper.paper.weight;

authors = xmlPaper.paper.authors.author;

var authorNames: String= new String;

for(var i: int = 0; i < authors.length(); i++) {

 var author: XML = authors[i];

 39

 var name: String = author.name;

 var addString: String = name + ",";

 authorNames+=addString;

 }

this.authorNames = "\n" + "Authors: " + authorNames;

linkpapers = xmlPaper.paper.references.paper;

 40

16. REFERENCES

[1] Google Scholar

http://scholar.google.com/

[2] Citeseer Link

http://citeseer.ist.psu.edu/

[3] Amazon

http://www.amazon.com/

[4] Twitter

http://twitter.com/

[5] Force Directed Layout

http://en.wikipedia.org/wiki/Force-based_algorithms

[6] Hierarchical Visualization Algorithm

http://www.graphviz.org/Documentation/NW01.pdf

[7] Twitter

http://blog.danmcweeney.com/29

[8] Flex

http://www.adobe.com/products/flex/

[9] Flex Intro

http://www.devarticles.com/c/a/Flash/Introduction-to-Flex/

[10] Macromedia Flash

http://www.adobe.com/products/flashplayer/

[11] Flex Architecture

http://ria.dzone.com/news/sketch-adobe-flex-architecture-capabilities

[12] Spring Graph

http://mark-shepherd.com/blog/springgraph-flex-component/

 41

http://scholar.google.com/
http://citeseer.ist.psu.edu/
http://www.amazon.com/
http://twitter.com/
http://en.wikipedia.org/wiki/Force-based_algorithms
http://www.graphviz.org/Documentation/NW01.pdf
http://blog.danmcweeney.com/29
http://www.adobe.com/products/flex/
http://www.devarticles.com/c/a/Flash/Introduction-to-Flex/
http://www.adobe.com/products/flashplayer/
http://ria.dzone.com/news/sketch-adobe-flex-architecture-capabilities
http://mark-shepherd.com/blog/springgraph-flex-component/

 42

[13] Amazon Demo

http://mark-

shepherd.com/SpringGraph/AmazonDemo/bin/AmazonDemo.html

[14] Graph drawing Algorithms

http://en.wikipedia.org/wiki/Graph_drawing

[15] Force directed layout

www.ecs.umass.edu/ece/labs/vlsicad/ece665/presentations/Force-Directed-

Adel.ppt

[16] SQL server 2008

http://www.microsoft.com/sqlserver/2008/en/us/default.aspx

http://mark-shepherd.com/SpringGraph/AmazonDemo/bin/AmazonDemo.html
http://mark-shepherd.com/SpringGraph/AmazonDemo/bin/AmazonDemo.html
http://en.wikipedia.org/wiki/Graph_drawing
http://www.ecs.umass.edu/ece/labs/vlsicad/ece665/presentations/Force-Directed-Adel.ppt
http://www.ecs.umass.edu/ece/labs/vlsicad/ece665/presentations/Force-Directed-Adel.ppt
http://www.microsoft.com/sqlserver/2008/en/us/default.aspx

	Online visualization of bibliography Using Visualization Techniques
	Recommended Citation

	tmp.1295901364.pdf.f8MqY

