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PHYSICAL REVIEW A 84, 053611 (2011) 

Thermodynamics of strongly interacting fermions in two-dimensional optical lattices 

Ehsan Khatami* and Marcos Rigol 
Department of Physics, Georgetown University, Washington DC, 20057 USA, and 

Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA 
(Received 28 April 2011; revised manuscript received 25 June 2011; published 14 November 2011) 

We study finite-temperature properties of strongly correlated fermions in two-dimensional optical lattices by 
means of numerical linked cluster expansions, a computational technique that allows one to obtain exact results 
in the thermodynamic limit. We focus our analysis on the strongly interacting regime, where the on-site repulsion 
is of the order of or greater than the band width. We compute the equation of state, double occupancy, entropy, 
uniform susceptibility, and spin correlations for temperatures that are similar to or below the ones achieved in 
current optical lattice experiments. We provide a quantitative analysis of adiabatic cooling of trapped fermions 
in two dimensions, by means of both flattening the trapping potential and increasing the interaction strength. 

DOI: 10.1103/PhysRevA.84.053611 

I. INTRODUCTION 

Recent optical lattice experiments have opened a new venue 
for exploring the effects of strong correlations in quantum 
lattice models. For example, the superfluid to Mott-insulator 
transition for bosons has been observed in geometries of 
three [1], two, [2], and one [3] dimension. Currently, there is a 
race to access temperatures low enough for the transition to the 
antiferromagnetically ordered Ne ́el state in three dimensions, 
or possibly more exotic states in two dimensions, to be 
observed for fermions [4,5]. So far, the interaction strength 
and the temperature in lattice fermion experiments remain 
relatively high in comparison to the hopping amplitude t . This  
is in part because t , which is set by optical lattice parameters, 
is in general small in the regimes where one-band models are 
applicable. 

On the theoretical side, there is an ever-increasing demand 
for precise numerical results for the relevant parameters of 
the Hubbard model and for large enough system sizes, which 
could be used to interpret current experiments and also provide 
suggestions for future experiments [6–11]. For this model, 
especially for strong interactions, the present computations 
become particularly challenging as the temperature is lowered 
below the hopping amplitude. 

Here, we study various thermodynamic quantities such as 
the equation of state, entropy, double occupancy, and spin 
correlations in the thermodynamic limit for interactions up 
to three times the band width, utilizing numerical linked 
cluster expansions (NLCEs) [13,14]. We obtain a detailed 
understanding of the evolution of various quantities with 
adiabatically increasing interaction strength, of great interest 
to current optical lattice experiments. Using the local density 
approximation (LDA), we analyze the thermodynamics of 
fermions in a harmonic trap and calculate their temperature 
as a function of the interaction strength and total entropy. We 
also present a quantitative analysis of various cooling schemes 
for the experiments [15–17]. 

*ehsan@physics.georgetown.edu 

PACS number(s): 67.85.−d, 05.30.Fk, 71.10.Fd 

II. MODEL 

We consider the two-dimensional (2D) Hubbard Hamilto-
nian, 

†
Ĥ = −t  ( ̂c  ĉjσ + H.c.) + U  n̂i↑n̂i↓ + Vin̂iσ ,iσ 

〈i,j〉σ  i  iσ 
(1) 

†where ĉiσ  ( ̂ciσ ) creates (annihilates) a fermion with spin 
†

σ  on site i, and n̂iσ  = ĉ ĉiσ  is the number operator. 〈..〉iσ 

denotes nearest neighbors (NNs), U  is the strength of the 
on-site repulsive interaction, and Vi is a space-dependent local 
chemical potential. t = 1 (h̄ = 1 and kB  = 1) sets the energy 
scale throughout this paper. 

III. COMPUTATIONAL APPROACH 

In linked-cluster expansions [12], we express an extensive 
property of the model per lattice site in the thermodynamic 
limit (P ) in terms of contributions from all the clusters, up to 
a certain size, that can be embedded in the infinite lattice: 

P = L(c)wp(c),  (2) 
c 

where c represents the clusters. This contribution is propor-
tional to the weight of each cluster for that property [wp(c)] 
and to its multiplicity [L(c)]. The latter is defined as the number 
of ways in which that particular cluster can be embedded in 
the infinite lattice, per site. The weight, on the other hand, is 
calculated recursively as the property for each cluster [P(c)] 
minus the weights of all its subclusters: 

wp(c) = P(c) − wp(s).  (3) 
s⊂c 

Here, we use the NLCE, where P(c) is computed by means of 
full exact diagonalization [13]. Because of the exact treatment 
of individual clusters in the NLCE, the series converges 
at significantly lower temperatures in comparison to high-
temperature expansions in which perturbation theory is used. 

NLCEs are complementary to quantum Monte Carlo 
(QMC) approaches, such as the determinantal QMC (DQMC) 
[18], or dynamical mean-field theory [19] and its cluster 
extensions, such as the dynamical cluster approximation 
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(DCA) [20,21]. They can also help to benchmark future 1.2 
experiments as well as new computational techniques. This 
is because NLCEs do not suffer from statistical or systematic 
errors, such as finite-size effects, and, as opposed to the DQMC n 1 
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and DCA, they are not restricted to small or intermediate 
interaction strengths. In Ref. [22], we make our raw NLCE 
data for a wide range of interactions available for comparison. 0.8 

The validity of NLCEs, however, is limited to a region in 
temperature in which the series converge (the convergence 
region). We have found that, for the Hubbard model, NLCEs 
converge down to lower temperatures as the strength of the 
interaction is increased. At half-filling, and for interactions 
larger than the band width, NLCEs can access the region 
with strong antiferromagnetic (AF) correlations, identified by 
the suppression of the uniform susceptibility. Although, the 
method does not have any systematic restriction away from 
half-filling, in the latter region, the series fail to converge at 
temperatures as low as those accessible to the half-filled case. 
This prevents us from accessing low-temperature phases, such 
as d-wave superconductivity, that arguably exist in this model 
at finite doping. 

We begin our analysis with the homogeneous system (Vi = 
0) in the grand canonical ensemble. For each U , we compute all 
properties for a very dense grid of chemical potential (µ) and 
temperature, so that we can also follow properties at constant 
density (n) [14]. The NLCE calculations are carried out on the 
square lattice up to the ninth order in the site expansion (nine 
sites). We use Wynn and Euler algorithms for summing the 
terms in the series to extend the region of convergence [13]. 
Since only NN hopping is considered, all properties of the 
particle-doped system can be expressed in terms of those from 
the hole-doped system. Hence, away from half-filling, we only 
show results for the hole-doped system. 

IV. RESULTS 

A. Equation of state 

The equation of state for the Hubbard model provides 
important information about correlation effects as the strength 
of the on-site interaction is increased, and can be studied in 
optical lattice experiments. In Figs. 1(a)–1(c), we depict the 
equation of state at three different temperatures, T = 0.82, 
0.55, and 0.25, for the weak-, intermediate-, and strong-
coupling regimes (U = 4, 8, and 12, respectively). For the 
last two values of U  [Figs. 1(b) and 1(c)], one can see the 
emergence of an incompressible region around µ = U/2, a 
clear signature of the Mott gap opening in the density of states 
at low temperatures. 

B. Double occupancy 

In Figs. 1(d) and 1(e), we show the double occupancy, D = 
〈n̂↑n̂↓〉, normalized by its uncorrelated high-temperature value 
(n 2/4) for U = 8 and 16, respectively. The double occupancy 
exhibits a clear low-T  rise with decreasing temperature. This 
feature has attracted a lot of attention recently, especially 
after the real-space DMFT study of the three-dimensional 
(3D) version of the model in a harmonic trap [9]. Gorelik 
et al. argued that the onset of the AF ordering in the strong-
coupling regime is signaled by an enhanced double occupancy, 
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FIG. 1. (Color online) Top: Equation of state for (a) U = 4, (b) 
U = 8, and (c) U = 12 and at three different temperatures. Except 
for U = 4 at  T = 0.25, NLCE results converge for all the values of 
chemical potential presented here. Only the last order of the series 
is shown after using Wynn sums with three cycles of improvement. 
Bottom: Normalized double occupancy vs T at four hole dopings for 
(d) U = 8 and  (e)  U = 16. We use Euler sums for the last six terms 
at half-filling and Wynn sums for n �= 1. Thin (black) lines in (d) 
and (e) are the results for the one to last order of NLCEs after the 
above sums. The inset in (e) magnifies the low-temperature region 
for U = 16. The unit of energy is set to the hopping amplitude t . 

which can be directly measured in optical lattice experiments. 
However, according to Figs. 1(d) and 1(e), the low-temperature 
rise occurs not only at half-filling, but also away from it. 
Moreover, the rise starts at even higher temperatures for 
higher dopings. This implies that the enhancement of D  in 
the trap upon lowering the temperature is significant in the 
Mott-insulating core as well as in other areas of the trap where 
the density is <1. Therefore, in real experiments, such an 
enhancement can be observed in systems that have a very 
small or even no Mott insulating region at the center of the 
trap. Hence, the observation of an increase in D alone may 
not signal the onset of AF order. To ensure that AF order is 
emerging, one must also make sure that the density is 1 in most 
of the trap. 

For large values of U  [see, e.g., U = 16 in Fig. 1(e)], 
the normalized D  is almost independent of doping below 
T ∼ 1 and down to the lowest accessible temperatures for 
n 2 0.85 (see inset), implying that D ∝ n 2 in this region. One 
can understand the latter from the fact that local moments 
are likely ordered, and the double occupancy arises from 
virtual hoppings to NN sites, so a relatively small number 
of extra holes only modifies the probability of those hoppings 
(accounted for by n 2), not the actual process. 

C. Entropy 

Generally, when using QMC-based methods, entropy cal-
culations involve numerical derivatives and/or integration by 
parts [23,24], which can introduce systematic errors. Within 
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FIG. 4. (Color online) (a) Uniform spin susceptibility and (b) 
NN spin correlations at half-filling vs temperature for different 
interactions. χ  peaks at T ∗ , below which AF correlations grow 
exponentially with decreasing temperature. Szz  also shows a sharp 
increase around T ∗ . 

D. Nearest-neighbor spin correlations 

What is perhaps more important from the experimental 
point of view is how AF correlations change during the 
process of adiabatically increasing U . As mentioned in Sec. I, 
one of the current main goals in cold fermion experiments 
is to achieve AF in the Mott-insulating state. However, the 
challenge in this case lies not only in realizing such a state but 
also in detecting it. Very recently, experimental breakthroughs 
have been reported which allow the detection of NN spin 
correlations [27,28]. 

NN spin correlations, Szz, can also be computed exactly 
using NLCEs. As expected, we find that Szz is largest at half-
filling for all interactions. Therefore, we focus on the half-
filled system and plot this quantity per site vs U at constant 
temperatures in Fig. 3(c) and at constant entropies in Fig. 3(d). 
The dependence of Szz on U at constant T is nontrivial. As the 
temperature is lowered to T ∼ 0.3, a peak develops in the spin 
correlations around U = 8, which is indicative of the largest 
effective exchange interaction between NN spins. The peak is 
a result of the interplay between weak moment formation in 
the weak-coupling regime (U <  8) and the 1/U decrease in 
the effective J  in the strong-coupling regime. We find that at 
lower temperatures (T = 0.21), the maximum of Szz  occurs 
at U ∼ 9, which is not expected to change significantly with 
further decreasing temperature. 

At constant entropy, on the other hand, this picture is 
strongly modified. Figure 3(d) shows that Szz  saturates to a 
finite entropy-dependent value with increasing U  along the 
isentropic paths in Fig. 3(b), provided that S <  ln(2). Note that, 
even though adiabatic cooling may not be efficient for arriving 
at regions with large AF correlations in 2D [23], the value of 
the NN spin correlations will be maximal in the large-U (� 12) 
region if S <  0.6. This is convenient for experiments in optical 
lattices for which U  is typically large compared to the band 
width. 

E. Trapped systems 

To make direct contact with experiments in optical lattices, 
we study the manifestation of our previous results in systems 
confined by a spatially varying harmonic potential, Vi = V ri 

2 . 
Here, ri  denotes the radial distance of each site to the center 
of the trap, and for any given value of U , all properties 
of the system are determined by the characteristic density 

FIG. 5. (Color online) (a) Density, (b) entropy, (c) NN spin 
correlations, and (d) double-occupancy profiles of fermions in a 
harmonic trap with ρ̃ = 22.9, governed by the Hubbard model with 
U = 16 at T = 0.76. The average entropy per particle is s = 0.56. 
ζ = (2dt/V )1/2 is the characteristic length. 

ρ̃ = N (V/2dt)d/2 [29], where d  is the dimensionality and 
N  is the number of particles. The resulting inhomogeneous 
Hubbard model is then studied using the LDA along with 
our results for the infinite system. A recent QMC study of 
the inhomogeneous Hubbard model [11] has shown that the 
LDA is a good approximation for local observables at the 
temperatures accessible here. We should stress that NLCEs 
are ideal for this kind of study because, for each value 
of U , one can compute all properties for a very dense 
grid of temperatures and chemical potentials at almost no 
additional computational cost. The same is, of course, not 
true for QMC-based calculations, where each temperature and 
chemical potential requires a separate computation. 

In Fig. 5(a), we plot the resulting density profile for U = 16 
at T = 0.76. We have chosen ρ̃ = 22.9 such that there are 
band-insulating (n = 2) and Mott-insulating (n = 1) domains 
in the trap. Very useful information for the experiments is 
provided by the spacial distribution of the density, entropy, NN 
spin correlations, and double occupancy, as shown in Fig. 5. 
The entropy is minimal (0) in the band insulator, peaks at 
n ∼ 1.18 and 0.82, consistent with Fig. 2(b), and has a local 
minimum in the Mott ring. In the latter region, spin correlations 
are maximal, and as expected for this large value of U , the  
double occupancy is large only in the region where n >  1. 

In Fig. 6, we show the same quantities as in Fig. 5, for  
the reduced ρ̃ of 10.8 at the same temperature and interaction 
strength. As a result of this isothermic change, the entropy per 
particle increases from 0.56 to 0.85. Nevertheless, the Mott-
insulating region with a relatively uniform entropy profile is 
clearly seen over most of the trap. 

It has become apparent in experiments with fermions in 
optical lattices that cooling approaches beyond the standard 
evaporative cooling techniques are required if one is to 
reach temperatures low enough that exotic physics emerges. 
Three recent proposals have shown how to generate low-
entropy states where a large fraction of the system is in a 
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FIG. 6. (Color online) Same as Fig. 5, but  for  ρ̃ = 10.8. The 
average entropy per particle is s = 0.85 in this case. 

band-insulating domain (i.e., with large values of ρ̃) [16,17, 
30]. The idea is then that one can adiabatically reduce the 
trap strength (the characteristic density ρ̃) so that the effective 
temperature of the fermions decreases. In this way, antifer-
romagnetism and other low-temperature phenomena can be 
explored. 

In Fig. 7, we show quantitatively how this idea works for 
trapped 2D systems. We plot the temperature as a function 
of ρ̃ for various values of the total entropy per particle. 
Recent studies have shown that the entropy per particle (s) 
for a particular U  can be estimated by fitting the double-
occupancy measurements at different ρ̃ to data from numerical 
simulations [8]. In Figs. 7(a) and 7(b) one can see that, for the 
two values of U  shown, the temperature decreases rapidly 
with decreasing ρ̃, demonstrating that this approach works 
very efficiently for 2D trapped systems. The inflection point, 
shown, e.g., for s = 0.9 in Fig.  7(b), is the signature of a 
large Mott region forming in the trap (as seen in Fig. 6). This 
occurs provided the entropy is low enough and for a range 
of characteristic densities that depends on U . AF ordering in 
the Mott core emerges at T ∗, which, for low entropies, can 
be reached before the Mott insulator is destroyed by further 
flattening of the trap. 

It is also interesting to study what happens to the tem-
perature of a trapped system as one increases the interaction 

0
0  4  8  12  16 20 24 4  8  12  16 20 24 

U U 

FIG. 8. (Color online) Temperature vs U at constant entropies per 
particle for (a) ρ̃ = 10.8 and  (b)  ρ̃ = 22.9. The shaded area, the same 
as in Fig. 3(b), is the region of exponentially large AF correlations 
below T ∗ in the Mott insulating core of the trap. 

strength at constant entropy. [Results for homogeneous sys-
tems at half-filling are presented in Fig. 3(b).] In Fig. 8, we  
show isentropic curves in the T -U plane for trapped systems 
at various entropies and for the two characteristic densities, 
ρ̃ = 10.8 and 22.9, used in Figs. 5 and 6. As expected from 
the results in Fig. 7, the shape and location of the isentropic 
curves depend strongly on the value of ρ̃. In Fig.  8, we also  
show the same shaded area as in Fig. 3(b) below T ∗, which, 
here, represents the region where the Mott-insulating core 
of the trap develops large AF correlations. Our calculations 
show that cooling can take place in trapped systems as 
the interaction increases. The entropies at which cooling is 
observed, and the values of U  at which cooling occurs, 
depends on the characteristic density in the trap. Hence, as 
reported in Ref. [31] for 3D systems, adiabatically increasing 
the interaction strength can allow experimentalists to reach the 
temperatures needed to observe the onset of (quasi-)long-range 
AF correlations in a trapped system. Unfortunately, unlike for 
the homogeneous system at half-filling, our NLCEs do not 
provide access to the temperatures relevant to that region for 
the 2D trapped system. 

V. SUMMARY 

In summary, utilizing NLCEs, which, within the con-
vergence temperature region, are free of statistical and/or 
systematic errors and provide exact results in the thermody-
namic limit, we have calculated thermodynamic properties, 
such as the equation of state, double occupancy, entropy, 
uniform susceptibility, and NN spin correlations, of the 2D 
Hubbard model for a wide range of interaction strengths 
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spin correlations, relevant to optical lattice experiments, as 
a function of the entropy. We find that for any S < ln(2), by 

3 
temperature grid allowed us to study temperature and NN 

T
 

adiabatically increasing U to very large values, the temperature 
decreases as 1/U  and the spin correlations saturate to an 
entropy-dependent value beyond U ∼ 12. Using the LDA, 
we have discussed the implications of our results for lattice 
fermions in the presence of a confining harmonic potential. 
In particular, we have shown how cooling can be achieved by 
reducing the confinement strength in a system that starts with 
a wide band-insulating domain in the center of the trap, or by FIG. 7. (Color online) Temperature vs characteristic density at  
adiabatically increasing the interaction strength.  constant entropies per particle for (a) U = 8 and  (b)  U = 16. 

053611-5 

0 

1 

2 

4 



84

ACKNOWLEDGMENTS

415

98

92

455

322

100

104

et al.
104

105
 

106

106
 Series Expansion

Methods for Strongly Interacting Lattice Models

97
75

75

101

106

80

24

68

58

64

76

80
 67

95

105

106

91 243

79

107

http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1103/PhysRevLett.98.080404
http://dx.doi.org/10.1103/PhysRevLett.98.080404
http://dx.doi.org/10.1103/PhysRevLett.92.130403
http://dx.doi.org/10.1038/nature07244
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1126/science.1165449
http://dx.doi.org/10.1103/PhysRevLett.100.056403
http://dx.doi.org/10.1103/PhysRevLett.100.056403
http://dx.doi.org/10.1103/PhysRevLett.104.066406
http://dx.doi.org/10.1103/PhysRevLett.104.066406
http://dx.doi.org/10.1103/PhysRevLett.104.180401
http://dx.doi.org/10.1103/PhysRevLett.105.065301
http://dx.doi.org/10.1103/PhysRevLett.106.030401
http://dx.doi.org/10.1103/PhysRevLett.106.030401
http://dx.doi.org/10.1103/PhysRevLett.106.035301
http://dx.doi.org/10.1103/PhysRevLett.106.035301
http://dx.doi.org/10.1103/PhysRevLett.97.187202
http://dx.doi.org/10.1103/PhysRevLett.97.187202
http://dx.doi.org/10.1103/PhysRevE.75.061118
http://dx.doi.org/10.1103/PhysRevE.75.061119
http://dx.doi.org/10.1103/PhysRevE.75.061119
http://dx.doi.org/10.1103/PhysRevLett.101.210403
http://dx.doi.org/10.1073/pnas.0809862105
http://dx.doi.org/10.1073/pnas.0809862105
http://dx.doi.org/10.1103/PhysRevA.80.041603
http://dx.doi.org/10.1103/PhysRevA.80.041603
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/PhysRevD.24.2278
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/PhysRevB.58.R7475
http://dx.doi.org/10.1103/PhysRevB.64.195130
http://dx.doi.org/10.1103/PhysRevB.64.195130
http://link.aps.org/supplemental/10.1103/PhysRevA.84.053611
http://link.aps.org/supplemental/10.1103/PhysRevA.84.053611
http://dx.doi.org/10.1103/PhysRevB.76.064402
http://dx.doi.org/10.1103/PhysRevB.80.140505
http://dx.doi.org/10.1103/PhysRevB.67.085103
http://dx.doi.org/10.1103/PhysRevB.67.085103
http://dx.doi.org/10.1103/PhysRevLett.95.056401
http://dx.doi.org/10.1103/PhysRevLett.95.056401
http://dx.doi.org/10.1103/PhysRevLett.105.265303
http://dx.doi.org/10.1103/PhysRevLett.106.145302
http://dx.doi.org/10.1103/PhysRevLett.91.130403
http://dx.doi.org/10.1016/j.optcom.2004.10.040
http://dx.doi.org/10.1016/j.optcom.2004.10.040
http://dx.doi.org/10.1103/PhysRevA.79.061601
http://dx.doi.org/10.1103/PhysRevLett.107.086401

	Thermodynamics of strongly interacting fermions in two-dimensional optical lattices
	Recommended Citation

	tmpBHr9Vk.pdf

