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Three-dimensional Hubbard model in the thermodynamic limit

Ehsan Khatami
Department of Physics and Astronomy, San José State University, San José, California 95192, USA
(Received 8 March 2016; revised manuscript received 23 August 2016; published 9 September 2016)

We employ the numerical linked-cluster expansion to study finite-temperature properties of the uniform cubic
lattice Hubbardmodel in the thermodynamic limit for a wide range of interaction strengths and densities.We carry
out the expansion to the 9th order and find that the convergence of the series extends to lower temperatures as the
strength of the interaction increases, giving us access to regions of the parameter space that are difficult to reach
by most other numerical methods. We study the precise trends in the specific heat, the double occupancy, and
magnetic correlations at temperatures as low as 0.2 of the hopping amplitude in the strong-coupling regime. We
show that in this regime, accurate estimates for transition temperatures to the Néel ordered phase, in agreement
with the predicted asymptotic behavior, can be deduced from the low-temperature magnetic structure factor. We
also find evidence for possible instability to the magnetically ordered phase away from, but close to, half filling.
Our results have important implications for parametrizing fermionic systems in optical lattice experiments and
for benchmarking other numerical methods.

DOI: 10.1103/PhysRevB.94.125114

I. INTRODUCTION

The Hubbard model [1,2] is the archetypal model for study-
ing strongly correlated systems and their phase transitions
in condensed matter physics. Its Hamiltonian is expressed
as

H = −t
∑

〈ij〉σ
c
†
iσ cjσ + U

∑

i

ni↑ni↓ − μ
∑

iσ

niσ , (1)

where ciσ (c†iσ ) annihilates (creates) a fermion with spin σ on
site i, niσ = c

†
iσ ciσ is the number operator, U is the on-site

Coulomb interaction, 〈. . . 〉 denotes nearest neighbors, and t

is the corresponding hopping integral. The two-dimensional
(2D) versions have become de facto models to describe Mott
transition [3], potentially high-temperature superconductivity
[4], and a wealth of other low-temperature phases in materials
such as cuprates [5], pnictides [6], iron selenides [7], and heavy
fermions [8], to name a few [9].

Other than a variety of numerical techniques that have been
developed over the past three decades to solve this often
unforgivingly difficult model [10–16], in recent years, the
community has witnessed remarkable efforts in simulating,
among other correlated theoretical models, the Hubbard
model, using ultracold atoms in optical lattices [17,18]. The
observation of the Mott transition with fermions as well as
bosons in different dimensions [19–23] provided the added
impetus for attempts to bring down the temperature to a
range relevant to superconductivity. Even though the latter has
proven extremely difficult, there has been significant progress
along the way.

Some experimental groups have focused on the three-
dimensional (3D) system [24,25], where the Néel transition
to the long-range antiferromagnetic (AF) phase is expected
to occur at temperatures about an order of magnitude larger
than that predicted for superconductivity to develop in the
two-dimensional system [26,27]. In a groundbreaking study
[25], long-range AF correlations near the critical temperature
of the 3D model were observed for the first time. This
milestone was reached through characterization of the experi-

mental system via comparisons of observed thermodynamic
properties to results from two state-of-the-art numerical
techniques, the determinant quantum Monte Carlo (DQMC)
[11] and the numerical linked-cluster expansion (NLCE)
[28–31]. The latter can provide exact results in the thermo-
dynamic limit, for a wide range of temperatures and average
densities.

The 3D Hubbard model has long been a playground for nu-
merical methods to study finite-temperature critical behavior
in a system where the electronic correlations can be tuned.
Its finite-temperature phase transition to the Néel ordered
phase has been studied carefully by a variety of numerical
techniques [11,13,16,26,32,33]. However, as these methods
are often not well equipped to handle the strong-coupling
regime of the model (U � 12t), the complete mapping of
the ground state phase diagram in the temperature-interaction
plane has been assisted by an asymptotic behavior based on
the critical temperature of the low-energy theory in the limit
of large interaction strengths [26,33].

Here, we use the NLCE to explore the thermodynamic
properties, such as the heat capacity, double occupancy,
and spin correlations, of the 3D Hubbard model in the
thermodynamic limit. An outstanding advantage of the NLCE
for the Hubbard models over more typical methods is that
one will have access to lower temperatures at larger values
of the Coulomb repulsion [34]. This, in turn, allows us to
explore the divergent behavior of the spin structure factor
by using different extrapolation techniques to obtain reliable
estimates for the Néel temperature (TN ) in the strong-coupling
regime. We find that our estimates match the TN calculated
using methods based on quantum Monte Carlo (QMC) within
the error bars in the intermediate-coupling regime (8t � U �
12t), and are in very good agreement with the asymptotic
form for U � 12t . We further confirm our extrapolation
schemes in obtaining the Néel transition temperature for the
3D antiferromagnetic Heisenberg model, for which the NLCE
can be carried out to significantly higher orders. The critical
temperature is well known for this model from a large-scale
QMC study [35].
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II. THE NUMERICAL METHOD

To study Hamiltonian (1), we have implemented the NLCE
for the 3D cubic lattice. In the NLCE, an extensive property
of the lattice model in the thermodynamic limit, normalized to
the number of sites, is expressed in terms of contributions from
all finite clusters, up to a certain size, that can be embedded in
the lattice. These contributions are calculated according to the
inclusion-exclusion principle. The method can be summarized
in the following series:

P = 1

L
∑

c

WP (c), (2)

where P represents the extensive property per site in the
thermodynamic limit, L is the symbolic lattice size (→ ∞),
and the contribution of cluster c to the property, also known
as the weight, is shown by WP (c). If the model does not
break translational symmetry of the underlying lattice, the
right-hand side of Eq. (2) can be simplified to a sum, without
the 1/L factor, over only those clusters that are not related
by translational symmetry. Further, if the model does not
break point group symmetries of the underlying lattice, the
contribution of all clusters that are related by point group
symmetry can be expressed as one term—that is, the weight of
one of the clusters, times amultiplicity factor, which represents
the number of ways one can obtain a distinct cluster by
applying point group symmetry operations to that cluster.

Equation (2) is a cluster expansion [36] that can be written
not only for the infinite lattice, but also for a finite cluster [31].
We use this fact to find the weights. Consider, for example, the
equation for p(c), the property calculated for a finite cluster c:

p(c) = WP (c) +
∑

s⊂c

WP (s), (3)

where we have intentionally separated the weight of c itself,
with s running over all subclusters of c (clusters obtained by
removing different number of sites from c). Note that p(c) is
not normalized by the number of sites. By reordering the terms
in this equation, we can write the weight of each cluster as its
property less the contributions of its subclusters:

WP (c) = p(c) −
∑

s⊂c

WP (s). (4)

The above equation provides a recursive method for calcu-
lating all the weights up to a certain size. We start with
the smallest cluster, a single site, which does not have any
subclusters, i.e., Wp(1) = p(1), and generate larger clusters
by adding sites to it one by one in the so-called site expansion
NLCE. We carry out this expansion to the 9th order, which
means we will work with clusters as large as 9 sites.

NLCEs use the same basis as the high-temperature series
expansions (HTSEs) [37]. However, the calculation of the
extensive quantities at the level of individual clusters [p(c)]
is left to an exact numerical method, such as the exact
diagonalization, as opposed to a perturbative expansion in
terms of inverse temperature, as done in the HTSEs. Despite
the lack of an explicit small parameter, having a finite series
inevitably leads to the loss of convergence below a certain
temperature, where the correlations in the system extend
beyond a length of the order of the largest sizes considered.
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FIG. 1. (a) Specific heat of the 3D Hubbard model at half filling
vs temperature for several values of the interaction strength. Thick
solid lines represent the average between the last two orders after
Euler resummation of the last 6 terms of the series, and Wynn
resummations with 3 and 4 cycles of improvement. The error bars
mark the confidence region where all the values used in the average
fall. Thin dotted lines are the last two orders of the bare NLCE sums,
and thin solid lines are the 9th and 10th orders of the HTSE [41–43].
(b) Double occupancy at half filling vs temperature.U increases from
top to bottom with the same values as in (a). (c) Double occupancy
at U = 12 away from half filling vs temperature.

However, the exact treatment of clusters leads to minimum
convergence temperatures that are lower than those of HTSE
with a comparable order (see Fig. 1).

We study the specific heat, Cv , which can be obtained
within NLCE from the knowledge of the energy, density,
and their correlation, without any numerical derivatives or
numerical integration [38], double occupancy, D = 〈n↑n↓〉
(site averaged), the nearest-neighbor spin correlations,

Szz = 1

L
∑

〈ij〉

〈
Sz

i S
z
j

〉
, (5)

where Sz
i is the z component of the spin operator at site i, and

the spin structure factor,

S(q) = 1

L
∑

jk

eiq·(rj −rk )
〈
Sz

jS
z
k

〉
, (6)
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at q = (π,π,π ), where rj is the displacement vector for
site j on the lattice. We denote the latter by SAF . In the
disordered phase at high temperatures, it remains finite in the
thermodynamic limit, while its divergence at low temperatures
is the indication for AF ordering in the system.

Similar to the analytic Padé approximations used exten-
sively in HTSEs, here we take advantage of two numerical
resummation techniques to improve the convergence of our
series at low temperatures. We use the Euler algorithm [39] to
resum the last 6 terms of the series or the Wynn algorithm [40]
with 3 and 4 cycles of improvement (details about these tech-
niques and their use for NLCEs can be found in Refs. [29,31]).
Except for the staggered structure factor, for which we know
the Euler algorithm does not perform as well as the Wynn
(see the discussion surrounding Fig. 3), we take the average of
properties from the last two orders after the Euler, and the last
orders of each of theWynn resummations as our best estimate.
To quantify our confidence in the accuracy of the resummed
results, we define a “confidence region” around this average
where all four values that contribute to the average fall. Thus,
the error bars in our figures simply mark the boundaries of this
region and should not be mistaken as statistical error bars.

III. RESULTS

The NLCE makes the study of thermodynamic quantities
in the thermodynamic limit efficient and easy. In Fig. 1, we
show the specific heat of the half-filled system as a function of
temperature for an interaction strength that ranges fromU = 4
in the weak-coupling regime toU = 20 in the strong-coupling
regime. We have set kB = 1, and t = 1 as the unit of energy
throughout the paper. Since the properties of the clusters in the
series are calculated using exact diagonalization, we obtain
information at all temperatures and chemical potential values
for a given U in a single run, as opposed to QMC-based
methods in which each temperature and chemical potential
has to be treated separately. For this reason, one can choose a
fine temperature and chemical potential grid to better capture
the details and trends in quantities of interest in different
regions of the parameter space (see Fig. 1). This is also of
great importance for modeling of systems in optical lattice
experiments. For instance, because of the existence of a
trapping potential, theoretical modeling of the inhomogeneous
system is often done through proper averaging of properties
over a set of homogeneous systems whose chemical potentials
vary only slightly from one to the next. This is known as the
local density approximation. The other advantage of exact
diagonalization is that one has full access to the partition
function of the clusters, and so, there is no need to employ
numerical integration or derivations, which can introduce
systematic errors, for the calculation of Cv , or the entropy.

As can be seen in Fig. 1, we capture the exact location
of the high-temperature peak in Cv for all values of U

shown, and reach temperatures as low as 0.2 for the largest
U of 20. The high-temperature peak marks the temperature
region where local moments form as the system is cooled.
Like for the 2D counterpart [38], and as expected from the
increasingly dominant Mott physics, this region moves to
higher temperatures as the interaction is increased. On the
other hand, the minimum convergence temperature of the

series decreases asU increases. In the strong-coupling regime,
this temperature is proportional to the exchange interaction of
the effective Heisenberg model, which scales as 1/U . One
can see that the lowest convergence temperatures achieved
with the NLCE before resummations (thin dotted lines in
Fig. 1) are generally lower than those achieved using the
HTSE up to the 10th order (red thin solid lines), especially
in the intermediate-coupling regime, U = 8–12.

A feature ofCv that can be resolved here with high accuracy
is the unique crossing point of curves for different U around
T = 2, which persists for U � 12. The physical implications
of this phenomenon, which is ubiquitous in strongly correlated
systems and has also been observed to persist for U up to
the bandwidth in the two-dimensional version of the Hubbard
model [38,44], are discussed in Ref. [45].

In Figs. 1(b) and 1(c), we show the double occupancy at,
and away from, half filling as a function of temperature. At
half filling, the uncorrelated limit of D at high temperatures
is 〈ni↑〉〈ni↓〉 = 1

4 regardless of U . However, the larger the U ,
the faster D drops upon decreasing the temperature. Quantum
fluctuations leave the system with a nonzero and U -dependent
double occupancy even at T = 0. Away from half filling, the
uncorrelated values of D vary as n2

4 with the electron density,
n, and the ground state values are expected to remain nonzero.
A clear upturn in D upon decreasing the temperature is found
after the initial drop at all fillings, at least with U � 10 at the
accessible temperatures. Close to half filling, this phenomenon
can be attributed to the tendency of the system to order
antiferromagnetically, thus, giving way to a larger number
of allowed virtual hoppings to neighboring sites that were
otherwise forbidden by the Pauli’s exclusion principle in the
uncorrelated system [35,46]. Sufficiently far from half filling,
or in the weak-coupling regime [32], it is believed that the
upturn is associated with Fermi liquid physics [34,47,48]. Our
results match those obtained using DQMC with clusters as
large as 83 [32]; however, in the weak-coupling regime, we are
limited to T � 1.

The change in the double occupancy as we vary U can
be better seen in Fig. 2(a), where we show D at half filling
as a function of U in a low-temperature window. The large
fluctuations of data at U < 8 point to the lack of convergence
in the series at the lowest temperatures. Regardless, the double
occupancy clearly decreases rapidly by increasing U with
no sharp features or outstanding variation in its behavior as
the temperature is decreased from T = 0.84 to T = 0.44.
In the same time, short-range AF correlations display a
nonmonotonic behavior. The absolute value of Szz, shown
in Fig. 2(b), initially increases with increasing U , and then
slowly decreases as U further increases in the strong-coupling
regime. This behavior can be understood by considering the
interplay between moment formation, which takes place at
higher temperatures for larger values of U , and the strength of
the exchange interaction between moments, which decreases
with increasing U . The overall behavior is reminiscent of that
for the 2D system [34]. We find that the peak at U = 10
becomes sharper as the temperature is decreased, hinting
that short-range correlations may eventually be strongest at a
slightly larger interaction strength than the one corresponding
to the largest Néel transition temperature to the long-range
order (U = 9) [13,16,26,32,33,49].
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FIG. 2. (a) Double occupancy at half filling as a function of the
interaction strength at different temperatures. D rapidly decreases by
increasing the interaction strength as one approaches the Mott phase.
(b) Nearest-neighbor spin correlations at half filling vs U . Similarly
to the 2D model [34], they initially rise in the weak-coupling regime
by increasing the interaction strength and eventually decrease as 1/U

in the strong-coupling regime. Its peak aroundU = 10 becomesmore
pronounced as the temperature is lowered.

In Figs. 3 and 4 we explore the AF structure factor, SAF ,
which contains information about correlations at all length
scales. In Fig. 3, we show the temperature dependence of
SAF for various interaction strengths. The Euler resummation
technique behaves poorly for fast growing properties such as
SAF whose terms in the series at a given T do not necessarily
alternate in sign. For this reason, we perform only Wynn
resummations with 3 and 4 cycles of improvement for the
structure factor and show the latter at temperatures where the
two are within roughly 10% of each other. The reliability
of the Wynn resummations for SAF have been confirmed
also through previous comparisons to DQMC results [25].
It is worth noting that the lowest convergence temperature
decreases by increasing U , something we already saw for Cv

in Fig. 1. Of course, this does not coincide with a larger SAF at
low temperatures for a larger U in the strong-coupling regime.
In fact, the extent of the correlations in the system, which
essentially controls the convergence of the NLCE, is becoming
smaller as the interaction is getting stronger.

The model has a finite-temperature phase transition to the
long-range Néel ordered state. Therefore, the structure factor
for anyU 	= 0 is expected to diverge at a nonzero temperature.
The transition temperature, TN , is expected to be largest
around U = 9. So, it is not surprising to find that SAF is also
largest for U = 9 at the lowest accessible temperatures. In the

0 1 2 3
T

1

10

S A
F

U=16
U=12
U=9
U=8
U=6
U=4

0 1 2 3
T

0

1

1/
S A

F

n=1.0

U=4

U=16

U=9

FIG. 3. Antiferromagnetic structure factor at half filling as a
function of temperature for several values of the interaction strength.
Wynn resummation with 3 and 4 cycles of improvement have been
used. The results are shown for temperatures above where the two
estimates match within a few percent. The low-temperature structure
factor increases as U increases to 9, then reduces upon further
increasing of the strength of the interaction. The dashed vertical
line indicates the location of the transition temperature for U = 9.
Inset shows the inverse of SAF for select values of U . A simple fit
to A/(T − TN )B for T < 0.6 suggests TN = 0.35 for U = 9, which
is consistent with current best estimates. Thin dotted lines show bare
NLCE results for the last two orders.

strong-coupling regime, TN is expected to be around J (∼
4t2/U ) [35], the strength of the exchange interaction in the
effective low-energy Heisenberg model. The inset of Fig. 3
shows the inverse of SAF for U = 4, 9, and 16. A simple fit to
A/(T − TN )B (constant A and B) for T < 0.6 suggests that

4 8 12 16 20
U

1

2

3

4

5

6

S A
F

T=0.44
T=0.50
T=0.60
T=0.70
T=0.80
∝ 1/U

n=1.00

FIG. 4. Antiferromagnetic structure factor at half filling as a
function of the interaction strength at different temperatures. The
results are shown after Wynn resummations with 4 cycles of
improvement (they also match results from Wynn with 3 cycles of
improvement roughly within the size of symbols). The dashed line is
a fit to A/T (constant A) using values of SAF for the three largest
U ’s at T = 0.44, representing the theoretical asymptotic trend in the
strong-coupling regime.
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FIG. 5. Antiferromagnetic structure factor with U = 9 as a
function of density at several temperatures. As the temperature is
lowered, the structure factor develops a sharp peak around half filling.
Inset: Inverse of the structure factor vs temperature at three different
densities.

TN ∼ 0.35 for U = 9, which is consistent with current best
estimates [16,32,33,49]. It is also evident that TN will be
smaller for the other two values of U in the inset. The critical
temperature as a function of U and its different estimates
within the NLCE will be discussed below.

Similarly to the nearest-neighbor correlations, the structure
factor as a function of U , plotted in Fig. 4, exhibits a peak
at U = 9, which develops faster than that for the former
as the temperature is lowered. This is an indication of the
fast growing long-range correlations in the system as one
approaches the critical temperature. The dashed line in Fig. 4
is a fit proportional to J (∝ 1/U ) using the structure factor
for the largest three U values at T = 0.44. It makes clear
the asymptotic behavior of the magnetic correlations in the
strong-coupling regime.

So far, we showed results for the structure factor only at half
filling. But, what happens to the divergent AF correlations in
a system with a n 	= 1? To answer this question, we plot in
Fig. 5 SAF as a function of density for U = 9 at different
temperatures. A very sharp peak develops at n = 1.00 as the
temperature is lowered, indicating that the correlations in the
system remain large only in the close proximity of half filling.
These results are of special importance for the simulation of
the model using ultracold fermionic atoms in optical lattices
as a range of densities are present simultaneously at different
radii from the center of the trap [25].

The system can in principle make a transition to the long-
range Néel phase even away from half filling. To explore this
possibility, we plot 1/SAF as a function of temperature for
different n in the inset of Fig. 5. The structure factor at n =
0.95 shows strong indication of a nonzero critical temperature
that is nonetheless smaller than that for the half-filled system.
At a smaller density of n = 0.90, we do not have enough
low-temperature data from the NLCE to draw any conclusion
about the critical temperature. We point out that despite the
divergent behavior of SAF close to half filing, an instability to
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T
N
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U=12

FIG. 6. (a) Estimated Néel transition temperature vs the inter-
action strength. Filled squares are obtained from extrapolations of
the NLCE SAF to low temperatures, and empty circles are obtained
from fits to SAF as a function of the NLCE order (see text). Filled
triangles and diamonds are data from the DCA [13] and DQMC
[26], respectively. The dotted line is a guide to the eye. The dashed
line is the theoretical asymptotic function. (b) The bare AF structure
factor for U = 12 vs the NLCE order at different temperatures (with
a uniform grid) above and below the expected transition temperature
(TN ∼ 0.30). Dashed lines represent fits of results in the even orders
to a 2nd-degree polynomial. (c) Inverse of SAF as a function of
temperature for the 3D Heisenberg model with J = 1 [which sets the
unit of energy in (c) and (d)]. The last two orders of the bare sums
and results after Wynn resummations with 6 cycles of improvement
are shown. The latter points to a divergence at TN ∼ 0.96. (d) The
staggered structure factor for the Heisenberg model as a function of
the NLCE order at different temperatures (in a uniform grid) around
TN . Here, dashed lines are 2nd-degree polynomial fits of data in all
orders.

a different type of order may be dominant in this region. We
have not studied such a scenario here.

As we saw in Fig. 3, the critical temperatures can be
estimated from the extrapolations of the structure factor in
the intermediate- to strong-coupling regime, where enough
information at low temperatures are available. In Fig. 6(a),
we plot the Néel temperatures deduced in this way as a
function of U as filled circles. We also plot TN for U � 12
from the dynamical cluster approximation (DCA) [13,50] and
DQMC, which match our results within the error bars. The
NLCE results are in very good agreement with the theoretical
prediction for the large-U Heisenberg limit forU > 12 as well
[35,51].

In the ordered phase, we expect the maximum SAF to
scale linearly with the cluster size, N , for finite clusters since
the correlations extend to all sites. On the other hand, in the
disordered phase above TN,SAF increases with N linearly so
long as the linear size of the cluster is smaller in order than
the correlation length. For larger systems, SAF as a function
of N saturates to a temperature-dependent value. Within our
NLCE, the order refers to the size of the largest clusters in
the expansion. Thus, the order of the expansion does not
exactly represent N as in a finite-size calculation due to the
existence of a large number of smaller clusters in the series.
However, the role of the latter is to eliminate boundary effects
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[52], and so, one could expect that the expansion order would
approximately play the role of N . In fact, the NLCE order has
been successfully used as a length scale to study the scaling of
Réyni entropies at quantum critical points [52–56].

With this assumption, we plot in Fig. 6(b) the bare sums
(partial sums without resummations) of SAF for U = 12 vs
the NLCE order at five different temperatures, ranging from
T = 0.26 to T = 0.34. The fluctuations from one order to
the other are smaller at higher T , where the convergence is
achieved faster. For T > TN , we expect the function to be
weaker than linear, and eventually saturate to a finite value in
the thermodynamic limit. On the other hand, for T < TN , it is
expected to show at least a linear overall increase by increasing
the order and to diverge in the thermodynamic limit. In other
words, the critical temperature can be located by monitoring
the overall curvature of SAF as a function of NLCE order as
it changes sign from negative above TN to positive below TN .
Hence,wefit the data to a second-degree polynomial and locate
TN as the temperature where the quadratic coefficient of the
polynomial vanishes. For U � 10, the partial sums fluctuate
wildly between even and odd orders at temperatures near the
expectedTN , and the fits largely underestimateTN as compared
to available estimates. AtU = 10, we obtain a TN that is about
10% less than the average of DCA and DQMC estimates. We
find that if instead we perform the fits to data only using even
orders [shown in Fig. 6(b) as dashed lines], the agreement
between the resulting TN and those from the extrapolations
of the structure factor to low temperatures, and the DCA
and DQMC estimates, improves in the intermediate-coupling
region. The former are plotted in Fig. 6(a) as open circles.
Our results are within the error bars of the results of the
DQMC and the DCA, as shown in that figure as triangles
and diamonds. The difference between TN ’s obtained from fits
to all orders and fits to only even orders of the NLCE decreases
as the interaction increases in the strong-coupling region. For
U = 16, this difference is only about 3%.

Neglecting odd orders in the fits is an arbitrary choice,
which is likely due to the fact that we have a small number
of terms in the series. Obviously, we cannot obtain results at
higher orders for the Hubbard model. However, we are mostly
focused on the strong-coupling regime of this model whose
approximate low-energy theory is the Heisenberg model [51].
The Heisenberg model has the advantage of having a much
smaller Hilbert space, which makes it possible for us to go to
significantly higher orders in the NLCE. We have carried out
the NLCE for the 3D Heisenberg model up to the 14th order.

The resulting inverse SAF is plotted in Fig. 6(c), where both
the last two orders of the bare sums and theWynn resummation
after 6 cycles of improvement can be seen. The latter matches
with the resummation after 5 cycles all the way to the transition
temperature for this model, which is found to be 0.96J . This
value is close to that obtained by finite-size scalings in a QMC
study (TN = 0.95J ) [35]. Now, the question is, can we arrive
at a similar TN with fits to the SAF vs the NLCE order? We
find that here, with more terms in the expansion, regardless of
whether we fit the polynomial using even or all orders of the
NLCE, we find TN = 1.01. This value is about 6% more than
that obtained from QMC. However, this is also roughly the
error between the different fitting schemes and between the
NLCE and DCA/DQMC estimates for TN in the Hubbard
model when U ∼ 12.

In summary, we have implemented a NLCE in three
dimensions, up to the 9th order in the site expansion, to study
the exact thermodynamic and critical behavior of the Hubbard
model in the thermodynamic limit. We study trends in the
specific heat, double occupancy, and magnetic correlations
in the model as we tune the strength of the interaction. We
find that both short-range and long-range AF correlations are
largest around U = 9–10 at the lowest temperatures available.
We further extract the Néel temperature by extrapolating the
AF structure factor to lower temperatures and find strong
evidence that the instability to theAFphase persists at densities
close to half filling. We also explore a different scheme in
which polynomial fits to bare partial sums of the series for the
structure factor can provide accurate estimates of the transition
temperature in the strong-coupling region of the model. We
confirm this method by extracting TN for the 3D Heisenberg
model, where we can obtain a larger number of terms. This
scheme can be exploited in future to study critical phenomena
in other models.
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