
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2007

Case Studies in Proof Checking Case Studies in Proof Checking

Robert Kam
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kam, Robert, "Case Studies in Proof Checking" (2007). Master's Projects. 150.
DOI: https://doi.org/10.31979/etd.scu4-q8t7
https://scholarworks.sjsu.edu/etd_projects/150

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/150?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Proof Checking

1

Running Head: PROOF CHECKING

Case Studies in Proof Checking

Robert C. Kam

San José State University

Proof Checking

2

Introduction

The aim of computer proof checking is not to find proofs, but to verify them. This is different
from automated deduction, which is the use of computers to find proofs that humans have not
devised first. Currently, checking a proof by computer is done by taking a known mathematical
proof and entering it into the special language recognized by a proof verifier program, and then
running the verifier to hopefully obtain no errors. Of course, if the proof checker approves the
proof, there are considerations of whether or not the proof checker is correct, and this has been
complicated by the fact that so many systems have sprung into being.

Dr. Freek Wiedijk made a list in 2006 of all systems that had been “seriously used for this
purpose” of proof checking and that had at least one attribute that distinguished them from the
rest. It contains seventeen proof systems: HOL, Mizar, PVS, Coq, Otter/Ivy, Isabelle/Isar,
Alfa/Agda, ACL2, PhoX, IMPS, Metamath, Theorema, Lego, Nuprl, Ωmega, B method, and
Minlog (Wenzel & Wiedijk, 2002, p. 8).

The Flyspeck Project by Dr. Thomas Hales was one of the first required applications of the proof
checker idea. Hales’ proof of Kepler's conjecture in 1998, the statement that the “grocery store”
stacking of spheres is the optimal way to conserve volume, required computer verification in
parts of the proof. The referee committee checked much of it by hand, but due to the nature of
the proof, it was time-consuming. After five years (not of actual checking, but overall time), the
leader, G. Fejes Tóth, would only say that he was “99% certain” that the proof was correct
(Hales, 2005, p. 1). In this instance, having a computer verify the entire proof instead would
have produced quicker, more satisfactory results.

The two main challenges in using a proof checker today are the time needed to learn the syntax
and general usage of the system and the time needed to formalize a proof in the system even
when the user is already proficient with it. As mathematicians are not yet using proof checkers
regularly, we wanted to evaluate the validity of this reluctance by analyzing these main
obstacles. Judging by Dr. Wiedijk’s Formalizing 100 Theorems list, which gives an overview of
the headway various proof systems have made in mathematics, Coq and Mizar are two of the
most successful systems in use today (Wiedijk, 2007).

Mizar has been around longer than Coq, having had its first version appear in 1975, but Coq
currently has a larger active user base (Wiedijk, 1999, p. 14). We used Mizar version 7.6.02,
with version 4.60 of the Mizar Mathematical Library (MML), and Coq version 8.1.

I simultaneously formalized two fairly involved theorems in these two systems while I was at
approximately the same level of familiarity with each. I kept track of my experiences with
learning the systems and analyzed their comparative strengths and weaknesses. The analysis and
summary of experiences should also give a general idea of the current state of computer-aided
proof checking.

Proof Checking

3

1. The orbit-stabilizer theorem in Coq

When I embarked upon this first formalization, I would have described my skill level with Coq
as “novice.” I had proved a few simple things in Coq previously, so I had some experience with
basic syntax. I knew the basic tactics, the interactive commands that one types into Coq to
gradually reduce the goal (in Coq, a synonym for the current statement one is trying to prove) to
completion: elim , inversion , auto , simpl , red , split , intro , induction . But there were
many deeper facets of Coq which this formalization would be the introduction to: the various
forms of the axiom of choice in the Coq standard library, the difference between sigT and
exists , and the importance of Opaque and separating out sublemmas to deal with huge
expressions in a goal, to name a few.

I took careful notes to chart my progress at learning this proof system. Afterwards, to analyze in
some way the time and effort spent learning, I tried to classify the time spent into categories. I
tried to separate out the basic tasks one engages in during a moderately complex formalization.
Being a computer science major with a moderate mathematical background, I had experience
with programming and university level mathematics, which helped, but I lacked knowledge in
the theory and background of proof checker systems.

One aim of the analysis was to look at the system from the perspective of an ideal user. That is,
if this particular proof checker became the standard for mathematicians, well known and
regularly used, about how much time and effort would mathematicians expect to spend to
formalize a theorem? We want to distinguish the time the system requires for the actual
formalization from the time spent by a new user in learning the system. The analogy would be
that no matter how experienced a C programmer is, she still must name her variables, allocate
her data structures, and work out the logic of how to translate her human idea of processing the
data into official C commands and syntax. However, unlike a novice programmer who is just
learning C, she does not have to spend time flipping through tutorials and books; she is past that
point thanks to her previous experience. She also does not have to write, for example, a
quicksort function, as programming libraries will provide such a standard piece of code.

This programming analogy gave me my first few categories. One category would try to
encompass just the rote, laborious work of converting one’s mathematical ideas into the proper
syntax that the Coq interpreter understands. Another clearly different category would be related
to learning the system itself, figuring out the syntax. Yet another would try to capture the
portion of time that I spent finding and learning how to properly make use of the work of others
before me. Instead of a quicksort algorithm, I would be searching for and trying to comprehend
theorems and definitions upon which I would build my own proof of the orbit-stabilizer theorem.

1.1. Categorization explanation

We describe the seven categories which capture the essential tasks a new user of Coq faces in
more detail. Much of the explanation applies to the Mizar categorization also; we will note the
differences.

Proof Checking

4

1.1.1. Rote work

This is the simplest category and also the largest, in the sense that it takes up the largest
proportion of total time in the formalization. As mentioned above, this category is meant to
contain any busy, tedious work that does not involve much thought on the user’s part.
Translating human mathematical statements into Coq syntax is one part of this. For example, to
state that a set is countable, to a person we might say something like “there is a surjection from
the natural numbers onto this set,” but in Coq we will assign specific names to all variables,
convert loose English phrases into exact keywords like exists , -> , and Ensemble , and fix
simple syntax errors.

Figure 1.1.1.1. A definition of countability in Coq.

At first, this kind of work might seem to the reader to be fairly complex, not really falling under
the category of “rote” or mindless work. The reader would be correct for the initial stages. It
certainly takes thought to write statements in Coq, especially debugging the errors that arise
when trying new syntax for the first time. However, once one has used a piece of syntax several
times and figured out all the nuances, just as in a programming language, the translation of
human thought to Coq statement (when the syntax is familiar) is really second nature. At a
certain point, it is only fair to start putting most of this formulation and translation work into the
rote work category. So, throughout this categorization process, I made judgment calls as time
progressed as to what kind of work went where. The first time I tried writing functions with
Coq’s fun syntax, I ran into hosts of problems and it was certainly hard to figure them all out.
But months later, writing a fun expression was like using printf in C, and I viewed it as busy
work, with more difficult things to worry about.

Another major subcategory of rote work is the portion concerning Coq tactics themselves. Again,
Coq tactics are the interactive commands that one types in to reduce goals of the proof to simpler
and simpler forms until they are completely satisfied by known facts or assumptions. At first,
my use of tactics consisted of blindly flailing at the goal with them, trying random commands in
the hope they would miraculously solve the problem. I learned a few simple scenarios where
this tactic worked or that one, and eventually I built up knowledge of the commonly used tactics
to the point where I had mastered them. So the same scenario plays out; during this first major
proof of the orbit-stabilizer theorem, it seemed as if an interminable time was spent grappling
with these tactics, but as time passed, they became less daunting and more like busy work: just
typing them in and doing away with goals as quickly as I could hammer out the tactics sequence.
The first portion of time would go into a category of time spent learning tactics; the second
belongs in this rote catch-all category.

Fixing common errors, formulating human reasoning in Coq syntax, and doing away with easier
lemmas using tactics one is proficient with – those are the main types of rote work one does in
Coq.

Definition cntabl(U:Type)(C:Ensemble(Ensemble U)):=
exists f:nat->Ensemble U,forall c,C c->exists i:nat ,f i=c.

Proof Checking

5

In Mizar, the analog to typing out the tactics as quickly as one can in easy Coq proofs would be
the writing out of simple logical chains of statements and citing all the proper theorems. It is not
hard work, but it is slow. One segment of rote work in Coq that has no Mizar analog is the act of,
having completed typing out a definition or a statement of a lemma, sitting back and verifying
that the written Coq syntax actually is what I intended or needed to write. This is because Coq
syntax is simply more complex and deep than Mizar’s, often having the writer delve deep into
several layers of definitions in the middle of a statement, then rise back up and reaffirm himself
with the bigger picture. This does not occur in Mizar, as statements are more flat and concise,
dealing with one concept at a time, and the syntax itself is structured more similarly to English
sentences, or at least logical statements, than Coq’s syntax.

1.1.2. Learning Coq syntax

The category of learning Coq syntax is fairly broad. It encompasses the main ways I generally
learn syntax, which is looking for an existing model, trying to adapt that model to my own uses
(in other words, copying it but replacing the variables to fit my own situation), and finally fixing
errors, trying tweaks, and just basically learning through trial and error how the syntax works.
Again there is a difference in this category between Coq and Mizar. In Coq, we also include
browsing the internet for helpful information people have written about using particular pieces of
syntax, as this information exists for many constructions in Coq. I have used papers, tutorials,
read others’ forum posts and mailing list threads, and as a last but invaluable resort, asked people
personally for help with Coq syntax. Mizar, however, has very little documentation beyond a
handful of tutorials, the most helpful of which were notes from an introductory lecture in
Dagstuhl by Piotr Rudnicki in 1997 and the two tutorials Mizar: an Impression and Writing a
Mizar article in nine easy steps by Dr. Freek Wiedijk.

Note that this category is restricted to Coq syntax; user-defined terms, user-defined libraries, and
the tactics are not included here.

For certain parts of the Coq system, determining whether or not they fell into this category was
tricky. The result is that I define Coq syntax as the set of Coq primitives that one is likely to
encounter in every user-defined library as well as every proof one sets out to formalize. They are
essential and used often. We are getting a little into the nitty-gritty of Coq here, but, for example,
I consider the term sigT part of Coq syntax, as well as the many formulations of the axiom of
choice set out in the Coq standard library. Technically, both of these terms are user-defined;
they are defined by members of the official Coq committee that designed and approved the Coq
standard library. However, they are so basic that I see them having more in common with, say,
the proper way to structure a Fixpoint definition, than with learning how to use the group
theory lemmas in Dr. Loïc Pottier and Jasper Stein’s combined Algebra and Linear Algebra
library. (That is the user-contributed library on which I built the orbit-stabilizer theorem; it
contains a lot of results of group theory and a predicate definition of subsets. From now on, I
will refer to it as Pottier-Stein.)

Proof Checking

6

On the other hand, terms like Ensembles , Union , and Complement , fundamental pieces of set
theory defined in the Coq standard library, do not in my view fall into the category of syntax.
While they are primitive, and integral to any theorem built on the set theory foundations defined
in the Coq standard library, they are still set-theory-only terms, and unique to the Coq standard
library. A user library that is formalizing some type of mathematics not based on ZF set theory,
or that wishes to define its own formalization of set theory (as Pottier-Stein and the Constructive
Coq Repository at Nijmegen, known as C-CoRN, library both did, predating this version of the
Coq standard library), will not use these terms or any theorems associated with them. Also, the
Coq committee has a history of revamping their standard library. Overall, learning these basic
set theory notions has more in common with learning any other user-defined library’s definitions
and theorems than it does with figuring out basic syntax like Fixpoint definitions and sigT .

The main purpose of clarifying the distinction between spending time learning Coq syntax and
spending time learning user-defined Coq libraries is to separate out the work that an experienced
Coq user would have to do (the latter category) from the work a novice Coq user would have to
do (both categories).

1.1.3. Experimenting with Coq tactics

The interactive portion of Coq is best understood through an analogy with programming. While
most proof verifiers, including Mizar, are like structured programming in that the user prepares
as much input as she wishes before running the Mizar compiler to point out errors, a Coq user
enters commands, the tactics, into an interpreter that gives feedback after every command in real-
time. As touched on before, the main ways I learned how tactics work are simply trying all of
them until one worked (only in the cases where there are not too many options for arguments to
pass), reading documentation on the internet, and searching for hints and ideas in others’ usage
of them.

I also include in this category any portion of the hashing out of a proof that did not strike me as
rote and second nature, as this kind of extra-tactical thinking still centered around how to lay out
the logical argument in terms of tactics. For example, I learned how to use a theorem called
NNPP to do proof by contradiction in Coq. NNPP states that for a proposition A, (not not A) implies
A. While NNPP is not a Coq tactic per se, it required a new way of using the interactive
interpreter to accomplish a goal. I knew the idea of proof by contradiction before Coq, but the
process of replacing the current goal with a goal of False to signify trying to prove a
contradiction, and then applying theorems that implied False (negative statements) was a new
way of looking at this old concept.

1.1.4. Browsing the user-supplied library

We now get to one of the main parts of formalizing a proof, building upon others’ previous work.
For example, in formalizing the orbit-stabilizer theorem, we first sought out a user-defined

Proof Checking

7

library that defined groups and basic results of group theory. To do this, we had to browse the
current repository of Coq user submissions, figure out which ones dealt with groups, and review
them to select the best one.

This category distinguishes determining whether a branch of mathematics or a particular theorem
has been formalized at all from the process of learning how to use such user-defined terms and
theorems. It is meant to gauge the proportion of time in doing a formalization that one spends
just browsing and interpreting others’ work. How hard is it to search the global repository of
Coq knowledge, at the moment?

In contrast to Mizar, searching the user-defined libraries for definitions in Coq employs reading
what others have written in articles, mailing lists, and forums on the internet. In Mizar, to find
out if a definition or theorem exists, we do text searches on the actual Mizar code of the entire
database of user-submitted Mizar formalizations (the MML), because there is little human-
language documentation written about Mizar on the internet or elsewhere. Though this is not the
most user-friendly way of locating things, Mizar syntax is still more readable than Coq and lends
itself better to straight text searching (such as grep in Unix and findstr on Windows).
Browsing Coq user libraries is difficult, and any information that other people have written
explaining what a library contains is invaluable.

1.1.5. Familiarizing with user-defined library

This category takes care of the act of learning how to use others’ definitions, theorems, and
lemmas for the first time. That means interpreting their variable names and choice of data
structures, which may entail sitting and staring at complex expressions for several minutes, as
well as, for tactile learners, loading in their file and instantiating the definitions and terms and
experimenting with them. A useful technique is to state some very basic results that should be
true about the terms if one’s interpretation is correct, and doing a quick throwaway proof to
verify one’s intuition – “Is this supposed to be the definition of integral? Let me see if I can
quickly prove that the integral of the zero function is zero.”

If one were completely familiar with a particular library, from long experience or if one were the
original author, this section would be completely empty, showing the advantage of experienced
users and heavily-used standardized libraries.

1.1.6. Planning out proof strategy

The final category is sort of a rogue. For this orbit-stabilizer theorem as well as Markov’s
inequality later, I wrote a pencil-and-paper version of the proof beforehand, based on an example
of the proof I found online. Carefully going over each step to be sure I fully understood the
reasoning took time. But as I meant to simulate a mathematician who was already familiar with
the proof she was trying to formalize, it would not be fair to confuse the time and work I spent

Proof Checking

8

formalizing the proof in Coq with the time I spent learning the proof I was already supposed to
know. With that in mind, I did not expect to spend much time on this kind of “human
mathematical reasoning” at all once beginning the actual formalization. It turned out that I did,
not for the details of the human reasoning proof, but for the details of the human reasoning proof
properly processed into a form that could be entered into Coq.

To better explain what I mean, one example of this was when I had to define simple functions to
create the notion of a limited Lebesgue integral to state Markov’s inequality. In normal
mathematics, the definition of a simple function is short: it is just a function with a finite number
of values in its range. However, to put this notion into Coq, I had to define all the intermediate
data structures involved. That means, since the simple function is essentially a partition of its
domain into a finite number of pieces, each piece mapping to a specific single range value (real
number), I had to create a finite list mapping some identification tag (natural number) to each
partition piece, and a finite list linking those tags to their respective range values. Then I had to
come up with the logic, the restrictive facts about these lists, that would make them actually
represent simple functions.

So there was a significant amount of actual mathematics-related thinking involved, the fleshing
out and filling in minute details of the conceptual proof written down on paper. Since the part
relating to these data structures, and the associated work of planning out proofs involving them,
was a direct result of the necessity of having to be extremely detailed and precise when
formulating ideas to a computer, I considered this worthy of being included in an analysis of the
work one has to do to formalize a proof in Coq, and thus gave it its own category. This also
seems to me to be a category of work which does not depend on the user’s expertise with Coq or
any other proof system, at least in the sense that no matter how well-versed one is with the
system, one will still have to do this kind of detailed formulating of and thinking about data
structures for any proof one wishes to check.

1.1.7. Housekeeping

The final category is a miscellaneous category to catch various logistics of setting up and
running the Coq computer program itself. Installing and configuring Coq on one’s personal
computer, updating it, and downloading user-defined libraries and properly installing them
comprise most of this category.

1.2. Breakdown of formalization time

For our first analyzed formalization, we chose a medium-sized theorem, the orbit-stabilizer
theorem of group theory. When talking about a left action of a group G on a set S, a function

Proof Checking

9

from G × S to S that satisfies certain properties, group theorists define two sets for an element p
of S. The orbit of p is the set of all possible results of the left action when it is applied to an
element of G and p. The stabilizer of p is the set of elements of G that when applied with the left
action to p, produce p again. The orbit-stabilizer theorem states that

|G| = |the orbit of p|•|the stabilizer of p|.

(I borrow the notation used by Rahbar Virk in his lecture notes.) This is actually the statement of
the theorem when G is finite, which is the version we formalized, on the assumption that
restricting to finite groups was simpler (an idea this formalization cured me of).

We kept an approximate log of the time spent in various tasks during the formalization; the
consolidation of it into several broad categories is listed below. The entire formalization process
took about seven and a half weeks, working on average three to four hours a day.

Category of work Approximate work
(hrs.)

Percentage of total
work

Learning Coq syntax 18 9%
Experimenting with Coq tactics 27 14%
Browsing the user-supplied library 22 11%
Familiarizing with new structures, terms of
library

60 31%

Actual formalizing 48 25%
Planning out actual proof strategy 14 7%
Housekeeping (installing and setting up
Coq)

3 1%

Table 1.2.1. Breakdown of Coq formalization time.

We can consolidate these categories into the three main categories with which a new Coq user
would be concerned. How much time is spent on learning a new Coq library (the kind of work a
professional user of Coq would have to do also) versus learning the syntax and user interface of
the Coq software itself? Do these two areas take up the bulk of the time to complete the proof,
with the actual formalization being a negligible amount of time?

Proof Checking

10

0

5

10

15

20

25

30

35

40

45

Learning Coq Learning Library Formalization

Figure 1.2.1. Simplified breakdown of Coq formalization time.

At this stage of Coq experience, formalization remains a significant part of the time invested,
almost a third according to the record. However, formalization seems to go faster and faster the
more tactics of Coq one becomes familiar with. Likewise, getting used to Coq’s style or
paradigm of operation, the “learning Coq” portion, is probably a one-time cost. An advanced
user probably spends the bulk of his time in a new formalization with browsing the new user-
supplied library, getting used to its structure, new terms, and just what lemmas are available.
After getting up to speed with the new library (usually done ad hoc, by experimenting with
sections of the library as they become necessary in each step of the proof), the actual
formalization process goes by quickly. In fact, not only the time is divided in this way, but often
the actual thinking is mostly concentrated in figuring out the library too. Formalization becomes
mechanical after a while – kind of like the difference between writing a computer program and
debugging it.

While this formalization did take longer than expected (the human-readable proof, jotted down,
took up about a page), afterward, I felt that my comfort level with Coq had increased from
“novice” to “intermediate.” I felt that this one, fairly sized proof contained enough aspects of
Coq formalization that the next proof would go by with fewer hurdles.

1.3. Estimation of amount of work done by the library

To estimate what percentage of the work was done for us by the Pottier-Stein library, we
separate the theorem into its component lemmas and classify them according to difficulty. An
“A” lemma is basically trivial to prove, “B” is of medium difficulty, and a “C” lemma is arduous
to prove; we would really like as many of those to be existing parts of the library as possible.

Proof Checking

11

We also ask of each lemma if it “should be in” the library. This is a fairly optimistic definition
of shouldness. We approach answering the question from the perspective: “If the library were
comprehensive and 100% ideal, this lemma would exist for us.” That is, it is possible that a
library creator would have thought that this lemma might be useful and general enough to be
worth including in a library. That does not mean that in a real-world library the creator should
really have included it for reasons of clutter or time. Also note that if the lemma is of size A or
B, it can be reasonable to expect a competent Coq user to be able to construct it on the fly.

Likewise, an answer to “should be in” of “no” means that we expected when embarking on the
formalization that this would have to be proven by us. We would be very surprised if it actually
were already included by a general-library-writing author. An example would be the definition
of “left action of a group on a set,” one of the foundations of the orbit-stabilizer theorem. This
kind of map has applications beyond the orbit-stabilizer theorem, but it is obscure enough that
we expect it not to be defined, especially as the focus of the Pottier-Stein library is linear algebra,
not group theory.

The point is to get a gauge of how many holes in the proof we had to fill in ourselves. Naturally,
we expect to have to fill in some holes; otherwise there would be no theorem to formalize. The
amount of holes is not to say the library writer is bad or in error. As mentioned, size
considerations prevent any library from having the answer to every step at every time. The point
of this exercise is simply to gauge or evaluate the “completeness” of a real-world library applied
to a real-world problem. For anyone approaching the idea of formalizing a particular theorem in
Coq, what amount of help can he expect?

The italicized portions indicate the holes we had to fill in. A lemma is italicized if it were
category B or C (had a significant impact on the formalization), and if it “should have been”
included.

Proof Checking

12

Name Category Should be
in?

In library?

Axiom of excluded-middle A yes yes
Axiom of choice A yes yes
Definition of union A yes yes
Definition of subset A yes yes
Definition of power set A yes yes
Membership is compatible (in_part_comp_l) A yes yes
A ⊆ B and B ⊆ A implies A = B B yes yes
Subset of empty set is empty A yes no
Nonempty iff contains an element B yes no
Set equality is transitive (Trans) A yes yes
Natural number addition is commutative A yes yes
Natural number addition is associative A yes yes
Natural number addition is compatible A yes no
Natural number is positive implies predecessor A yes yes
Conversion of type (full)
(seq_set_n_element_subset)

B yes yes

Conversion of type (full) for finite set B yes no

Table 1.3.1. Lemmas of basic set theory.

Name Category Should be in? In library?
Cardinality definition B yes yes
Cardinality is zero iff empty B yes yes
Cardinality is unique (has_n_elements_inj) C yes yes
Cardinality is same implies bijection B yes no
Cardinality decremented by removing an element B yes no
Cardinality of subset is not greater C yes yes
Map constructed from function definition
(Build_Map)

C yes yes

Map restricted to subset of domain B yes yes
Map is injective implies it has inverse B yes no
Map composition definition B yes yes
Map exists of set onto subset C yes no
Inclusion-exclusion principle C yes no
Sum of a sequence definition B yes no
Sum of a sequence is compatible B yes yes
Sum of a constant sequence equals multiplication B no no
Sum of a sequence with one element changed B yes no*
Sum of a sequence ignores zeroes
(sum_omit_zeroes)

B yes yes

Pairwise disjoint definition A yes no
Pairwise disjoint implies cardinality of union is sum B yes no

Proof Checking

13

Name Category Should be in? In library?
Partition definition B yes no
Partition union incremented by adding element B no no
Sequence element has an index A yes yes
Sequence elements have index after a removal C yes yes
Conversion of type (range of sequence) (seq_set) B yes yes
Conversion of type (same length)
(cast_doesn’t_change)

C yes yes

Change an element of a sequence definition
(modify_seq)

C yes yes

Change an element is compatible A yes yes
Change an element can be undone B yes yes
Change an element affects head (modify_hd_hd) A yes yes
Change an element affects tail (modify_hd_tl) B yes yes
Change an element affects only that index
(modify_seq_modifies_one_elt)

B yes yes

Head tail definition B yes yes
Head of a sequence in range of sequence A yes no
Head not equal to and injective means element in tail B yes no
Remove an element maintains injectivity
(omit_preserves_distinct)

C yes yes

Remove an element and injective means entirely
removed

C yes yes

Remove head leaves sequence (Seqtl_to_seq) B yes yes
Remove head means elements that remain are in tail B yes no
Remove an element means range is subset
(omit_seq_in_seq_set)

B yes yes

Finite-domain map has finite range C yes no
Finite set has bijection with some natural number C yes no

Table 1.3.2. Lemmas related to sequences and cardinality.

*How changing one element of a sequence of natural numbers changed the sum of the sequence was proved as
sum_modify , but since it was defined to work on elements of Abelian_Group , and cardinality was defined on Nat ,
we had to write a simpler version specifically for sequences of Nat .

Proof Checking

14

Name Category Should be in? In library?
Left action definition A no no
Left action compatible A no no
Left action regular B no no
Group operation definition C yes yes
Group operation associative A yes yes
Group operation identity A yes yes
Group inverse property A yes yes
Definition of orbit A no no
Definition of stabilizer A no no
Definition of H(x) A no no
Union of H(x)s ⊆ G B no no
G ⊆ union of H(x)s B no no
H(x) • stabilizer in stabilizer B no no

Table 1.3.3. Lemmas directly related to the orbit-stabilizer theorem.

Category of lemma Total number Number already
done

Percentage already
done

B 26 15 58%
C 13 9 69%

Table 1.3.4. Estimate of amount of work done by the library.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M edium difficulty High difficulty

Figure 1.3.1. Percentage of lemmas already completed by the library.

My personal impression was that I was very satisfied with the Pottier-Stein library in terms of
which lemmas were provided to me, especially dealing with sequences. The slightly lower
percentage of medium difficulty lemmas which had been completed for me reflects the toolbox
philosophy of library construction, where a minimum of lemmas are actually completed, making

Proof Checking

15

it easier for a new user to browse the library and get a general feel for the material it covers.
Lemmas are building blocks of theorems, rather than databases meant to instantly satisfy many
similar cases. The analogy would be a library of basic Unix file commands like fopen() ,
fseek() , fread() , fwrite() , and such, rather than fcompress() , freadfirsthalf() , or
fseparatefileintopieces() .

Again, real-world considerations mean that one cannot really expect a library to satisfy over 90%
of the “high difficulty” lemmas of a proof immediately, or even provide a good percentage of the
building blocks that would make this high difficulty lemma feel more like a medium difficulty
one. If it did, it might mean that one’s theorem was nearly already proven, and as proof
formalizers we naturally direct our attention toward theorems which have not been addressed yet.
The only theorem which I was a little disappointed had not been included was the inclusion-
exclusion principle, or a simplified version of it (we used the simplification of only working on
partitions). However, again I note that this library focused on linear algebra.

1.4. One difficulty for a new user of Coq: inability to look at old proofs for
hints

A large portion of the work for a new Coq user is learning the basic strategies of attack to a goal.
Some of these come very quickly, for example, figuring out that elim is the proper tactic to use
to “instantiate” a variable locked up in an exists hypothesis. This is a basic tool and would
appear in Chapter 1 or 2 of a Coq textbook. However, in general, the process of finding these
basic strategies of attack is usually through trial and error – from essentially copying and pasting
the strategies used by other proof authors in published work.

One example is when I was trying to define the orbit of a point p in a set S. I had invoked
Build_Predicate (the operator for defining new Predicate s) and now the goal was reduced to
“pred_compatible [something].” I did not know what that term meant or how to prove it. But I
was well-versed enough in Coq to know about the usefulness of unfold . So that was my first
idea, and I unfold ed pred_compatible . That produced a new goal of the form “exists g,
[something].” At the time I did not know how to solve this goal either. I knew I wanted to
explain to Coq, “Yes, I have an element g that satisfies what you want,” but did not know the
command to say that. So what was I left with? The time-honored strategy of going to others’
work for hints.

In the end, I found the proper tactic by manually typing out the proofs of some other simple
Predicate s, empty and full , defined by Dr. Pottier himself in the very Algebra library of his I
was learning how to use. But this was after some browsing of .v files and more or less random
selection of existing proofs to try and manually type out for myself: a clumsy way of looking for
help. The problem is that there is no way, from browsing any number of .v files, to know when
in a particular proof the user was actually faced with a goal of the form “exists [something]”!

Proof Checking

16

This is unique to Coq, because Coq proofs have the goal “invisible” at all times. A proof in Coq
is a sequence of commands to the interpreter, with no information about what the environment
looks like at each step in the sequence (Wiedijk, 1999, p. 13). Mizar, on the other hand, does not
use this interactive style. Statements are asserted one by one, each a refinement of the previous
one, until the final statement which is the theorem itself. It is thus easy to do a text search of
Mizar files to find a similar quandary to one’s current situation, and then see exactly what a more
experienced user did in that situation.

One solution would be to have a command-line utility that does what coqc (the command-line
Coq compiler) does, but even more. It would compile the proofs in a .v file, but at each step,
save a snapshot of what the goal looked like at that time. Then it would simply output all this
data to another text file. Of course, the result would be huge, but if it is feasible to have an entire
library, or useful section of library, snapshotted in this way, one would be able to text search the
result a là Mizar.

Instead of text search, it may be possible to automatically pattern-match one’s current goal
against one of these huge text files. The auto tactic itself is a pattern-matcher, so this would be
more or less an extension of auto applied to a very large “library” of goals to match against.
However, this has the same concern as any other pattern-matching algorithm: exponential
running speed.

Rather than get too fancy, why not let the human user retain some of the work. If the text search
adopted the simple criterion of “match two keywords in my goal in any order,” the text search
would return perhaps a few hundred results, but the user could filter out the useful results by
inspection fairly quickly. For example, if the user faced the goal of in_part (subtype_elt a)

A, she could search on the two keywords in_part and subtype_elt . She would mentally toss
out results such as subtype_elt x =’ y /\ in_part b B and zero in on a true match. This
kind of search is already possible with grep and similar utilities.

1.5. Strict typing in Coq leads to library incompatibility

As I surveyed the database of user-supplied libraries and compared them with the growing
“standard library” produced by the official Coq designers, it struck me that most user-supplied
Coq libraries were already obsolete in the sense of being compatible with the Coq standard
library.

Coq has a centralized standard library overseen by the designers of Coq itself. Throughout
Coq’s history, each revision has added significant portions to this standard library. For example,
the most recent revision from 8.0 to 8.1 added finite sets and lists. The Pottier-Stein library is
now incompatible with the current standard library. It defined its own concepts of Predicate s,

Proof Checking

17

Setoid s, and seq s as a necessary foundation. The Coq standard library only recently added
Ensemble s and sequences (FSetList s) to serve essentially the same purpose.

For another example, the extensive C-CoRN (the Constructive Coq Repository at Nijmegen)
library, which includes a formalization of the Fundamental Theorem of Calculus, built its own
notion of setoids, CSetoid s, from the ground up. A user wishing to use C-CoRN’s statement of
the Fundamental Theorem of Calculus in verifying another theorem would either have to rewrite
C-CoRN’s work in terms of Ensemble s or avoid using other user-supplied libraries not already
based on C-CoRN’s CSetoid foundations. Because most Coq formalizations, now that version
8.1 has been released, will now be based on the new Ensemble s, in some sense C-CoRN’s
formalization has been made obsolete.

All proof verification programs face this issue, but Coq especially so. Coq is fundamentally
abstract, being based on the Calculus of Inductive Constructions. The building blocks are Prop s
and Set s. One can build practically anything from these building blocks; set theory is merely
one use of this foundation. Since a proof in Coq is essentially equating a very complex type with
the type True , equality must be defined for many, many different Types. For example, in Pottier-
Stein, there is the concept of a setoid S and the setoid (full S) . (full S) is the “full” subset
of S, the entire set S. However, they have different, incompatible types (S is whatever type S
happens to be in the current context, and full S has type part_set S , or “subset of S”), and
one cannot even pose the question “Does S equal (full S)?” because of that. The C-CoRN
developers noticed a similar problem when defining their own foundations, and as a result
bounced between defining their set theory foundations in the Prop domain, then defining them in
the Set domain, and finally settling on a hybrid (Karrmann, 2005, para. 4).

Another example I personally encountered was the two formalizations of the cardinality concept:
cardinal in Dr. Loïc Pottier’s Algebra section and has_n_elements in Jasper Stein’s Linear
Algebra section. Although Mr. Stein built his Linear Algebra section on top of the Algebra
section, he found Dr. Pottier’s cardinal definition inadequate, being a resident of the Prop
domain with no connection to concrete Set s. He defined has_n_elements to contain an exists
statement from which one could “instantiate” a bijection between the natural number n and the
set with cardinality n. Because his definition required the definition of a finite ordinal (fin n),
which did not exist in the Algebra library, the lemmas referring to cardinal could not be used
with statements involving has_n_elements . I had formalized some work using a lemma from
the Algebra library called cardinal_image_injective . When I later switched over to
has_n_elements , to make use of some of Mr. Stein’s lemmas there, I had to write a new version
of cardinal_image_injective , as well as adapt all the work I had done that had
cardinal_image_injective as a basis.

Mizar, in contrast, assumes from the start that its users are only interested in ZF set theory with
the axiom of choice (Wiedijk, 1999, p. 8). Since its first release in 1975, the Mizar designers
have not changed this assumption (Matuszewski & Rudnicki, 2007, p. 3). It permits only
specific avenues of defining new terms or capabilities: definitions and clusters, primarily.
This restriction of viewpoint allows a simpler typing framework (only one notion of equality)
and promotes interlibrary compatibility.

Proof Checking

18

In closing, the writer of a Coq library must stay abreast of the latest news in the Coq community
to know which libraries to use as his foundation. Just because a theorem has been proved using
some library does not mean that theorem is conquered for the whole proof verification
community: it will only be useful as long as the libraries used to prove it remain in use.

1.6. Interface concerns

We describe issues we faced with the Coq interface as a new user.

1.6.1. Quotations

One small issue that nonetheless led to the loss of a good deal of work was when at one point I
thought I had actually crashed the Coq interpreter. It seemed to be “dead” and would not execute
commands or print error messages no matter what I typed. I basically saw:

Figure 1.6.1.1. Dead interpreter?

Eventually I resigned myself to restarting the Coq interpreter, losing my work for this session
(Coq work is not saved until a proof is completely closed off, either by “giving up” by admitting
it as an axiom or successfully completing it). It was then that Coq printed Syntax error:

Unterminated string as I returned to DOS. Perhaps Coq could display a prompt to reflect that
one is currently inside a quote, especially as I was not aware that Coq recognized quotation
marks and used them for anything.

1.6.2. Refolding “->False ”

unfold is a common and useful tactic, but fold is more mysterious. Sometimes it undoes an
unfold and sometimes it does nothing. One of the cases in which this caused trouble was when
I defined a lemma with the notation ~, the shorthand for “->False .” When faced with a goal of
False (proof by contradiction), one can only apply a hypothesis that ends in “->False ,” so most
lemmas must have their “~” unfold ed before they can be used. Unfortunately, the process does

proof_name <
proof_name < aaa
proof_name < a
proof_name < .
proof_name < . a. a.

Proof Checking

19

not work in reverse, so I had to rewrite my lemma in unfolded form. Had I been a library writer,
this might have meant breaking the work of previous users of my library.

1.6.3. Operator precedence

When using min , the keyword for taking the group_inverse of an element, I was surprised to
find that it had a lower precedence than the group operation. While this is an issue for the library
writer, not the designers of Coq, it nonetheless caused me to have to back up and redo the
simplification of a long expression because I could not attempt to apply the group inverse
property “min y +' y =' (monoid_unit G) ” (more commonly y-1 • y = 1) until I had reduced
the lengthy expression f(couple y(f (couple(min y +' subtype_elt h'')p))) ='

f(couple y p) down to this final fact. This is a consequence of the proof-by-reduction style of
formalization in Coq, where the user reduces the final, complex goal to trivial statements, rather
than introducing many simple statements and tying them together to build up to a complex goal
(Wiedijk, 1999, p. 14). At any rate, only at the very end was I able to see that I was trying to
prove a false fact: (y • y) -1 = 1, thus the need to restart.

This is fundamental to the design of Coq, however, and I do not think it is worth adding a new
feature just to deal with this. A user simply should be aware of this fact and check the
precedence of operators in his expressions before embarking on simplifying a complex
expression. However, one feature worth adding to Coq that would lower the chances of running
into this pitfall (among others) is the idea of a save point.

1.6.4. Save points

If there were one single user-interface feature I could add to Coq, it would be the ability to create
a save point. A save point would be the current location on the Coq command stack plus a
snapshot of the current Coq global environment (external Lemmas and Axiom s temporarily added
to the environment). It might be a surprise to a non-Coq-user that the command-line interpreter
does not have this ability, but in fact the usual mode of operation is to complete the entire proof
of a lemma before Coq will return the entire “source code” of the proof, the list of commands to
the interpreter that make up the proof, at which point the user can copy and paste that output to
a .v file for saving. A save point would give the user the peace of mind to experiment, by for
example assuming facts temporarily to jump ahead to a later point in the proof, to test whether
the current path one is thinking of really does lead to the ultimate goal. After verifying this, the
user could then undo everything back to that save point, and not worry about erroneously
assumed facts or temporary variables floating around.

This feature would also avoid the problem of formalizations that are too large for the window
buffer. There were times I had to redo entire sections of proof because the top portion of my
work scrolled off the edge of the DOS window when I was done. (Coq’s formatting of user
commands adds many carriage returns.)

Proof Checking

20

It would also help in situations like the following. At one time I was working on a lemma
dealing with removing an element from a sequence. There were two nested excluded-middle
cases, so I had to prove a certain fact for four different cases:

(k = i) ∨ (k ≠ i)

(F(v k)= F(v i)) ∨ (F(v k) ≠F(v i)) (F(v k)= F(v i)) ∨ (F(v
k) ≠F(v i))

proof proof proof proof

Figure 1.5.4.1. Four similar cases as part of one proof.

However, it turned out that two of these four cases had basically identical proofs! Unfortunately,
since I had no way to look at previous work, I had to feel my way through the argument from
scratch again.

One may ask why not simply keep a record of one’s work from the beginning of the proof in a
separate text editor as one works simultaneously in the other Coq window. The problem is that
using Coq’s interactive commands is often exploratory, and one types a rapid succession of
commands just to see if a particular branch of argument will work. Frequently one goes down
several paths and must Undo away wrong paths before finding one that actually worked. It
makes it tedious to keep a copy of the current stack by hand.

2. The orbit-stabilizer theorem in Mizar

I undertook this formalization simultaneously with the Coq formalization, by interleaving my
work on this theorem in the two systems.

2.1. Breakdown of formalization time

We do a breakdown of the total time spent on formalizing the orbit-stabilizer theorem in Mizar
similar to the previous Coq analysis. This formalization took about four and a half weeks,
working two to three hours on average a day. As with Coq, I had had some experience with

Proof Checking

21

Mizar already before starting on the finite orbit-stabilizer theorem. I had formalized the
statement that the limit of (sin x)/x as x approaches 0 is equal to 1. From that exercise, I learned
how to write a basic Mizar file, compile it, and include files from the Mizar library, the MML.
(Because Mizar user-defined libraries, although written by different authors, usually are good
about building off the same foundations, one comes to view the MML as a single unit.) I learned
the systematic, step-by-step style of Mizar formalizations, but none of the advanced features like
defining one’s own terms, or even how to do proofs by induction or contradiction.

The categories are mostly the same as those for the Coq formalization. In any case, the intent is
the same: to distinguish the time spent on learning Mizar and the time spent on necessary work
that even expert Mizar users must do (familiarizing oneself with new theorems and terminology,
and the actual typing out of all the proof steps). The categories have similar general intents and
meanings to the Coq categories. The “actual formalizing” category is the rote work of typing in
steps and fixing common syntax errors. As in Coq, after a while this work does not need much
real thought, and has the potential for computer optimizations or automation. “Learning syntax
by trial and error” in large part refers to the process of using an example from a user-defined
library as a guide for the first time one has to use a new piece of Mizar syntax, for example, how
to define a new term referring to the left action of a group on a set and its properties of identity
and associativity.

2.1.1. The environment category

One difference from the Coq division of labor, as mentioned before, is the lack of a category
related to learning the Coq tactics. Another is the addition of a category specifically related to
the Mizar environment.

Although fixing errors related to the Mizar environment – the vocabularies , notations ,
constructors , registrations , requirements , definitions , theorems , and schemes lists at
the top of every Mizar file – could be grouped under rote formalization time, or seen as part of
learning new user libraries, I feel it deserves its own category. Even after working with the
environment for a long time, I still do not know how it works – I simply know some strategies
for fixing the errors that appear whenever I import new definitions. In Dr. Wiedijk’s Mizar
tutorial Writing a Mizar article in nine easy steps, the section on the environment is the second
longest section, taking ten of the paper’s fifty-four pages.

2.1.2. Judgment calls and categorization

Although I took careful notes as I proceeded with the formalization, going back and classifying
all my work as falling into one category or another at the end required some judgment calls.
Suppose I go to use a new term from the MML, integral (the Lebesgue integral defined on
simple measurable functions), and get the familiar *103 typing error. (*103 means Mizar did not
recognize the functor, which often means one is supplying the wrong types of arguments to a

Proof Checking

22

functor keyword.) I solve the error without too much difficulty by carefully testing the types of
each argument to the integral term to narrow down which argument causes the error, and then
finding out what type it should have (by checking the original definition) and adding steps to cast
that argument to the needed type. Do I classify that as rote formalization, or as part of learning
the new integral term (which would then contribute to the time tallied toward learning the
MML)? I actually decided to classify these sorts of activities as rote formalization and not
related to the MML, and here is why. The above process was arrived at through experience.
With the additional step of, if the types of all arguments turn out to be correct, merging the
relevant MML file’s environment with my own to ensure that the proper MML files are named in
the proper places for use of this term, the process solves 99% of *103 and *102 errors in a
reliable and systematic way.

So for the purposes of differentiating between rote work where I do not learn anything new about
Mizar and exercises and experiences that force me to learn something new that I have never
encountered before, the aforementioned process clearly falls in the first category.

2.1.3. Results

Now let us look at the observed time breakdown for the orbit-stabilizer theorem in Mizar.

Category of work Approximate work
(hrs.)

Percentage of total
work

Learning Mizar syntax by trial and error 14 16%
Searching libraries for examples of new
syntax

8 8%

Familiarizing with user-defined libraries 16 18%
Searching for existence of terms or
theorems

11 13%

Actual formalizing 26 30%
Fixing the Mizar environment 4 4%
Logically planning out the proof itself 10 12%

Table 2.1.3.1. Breakdown of formalization time in Mizar.

One interesting point is that I spent a significant amount of time (13%) simply searching the
MML to see if a term or theorem is defined already. Again, since searching the internet for hints
on what has been defined in the MML does not yield much, the best method is grep search with
a dash of creativity, done over the whole MML (Wiedijk, 1999, p. 33). In searching for a
theorem that says “the subset of a finite set is finite,” one might search the whole MML for the
string A c= B implies , and if that fails, check if there is an actual keyword finite that an
author may have used to write his theorems about finite sets. As a last resort, one can simply
scroll through the entire MML file list, pick out good candidate files based on their eight-digit

Proof Checking

23

DOS name (here CARD_FIN seems good), and browse them from top to bottom, looking at and
interpreting theorem statements and definitions manually.

Searching for examples of Mizar syntax, on the other hand, can be a bit trickier. When I was
looking for an example of how to define a new operation, the left action of a group on a set, there
was not an exact Mizar keyword I could search for like define_binary_operator . Eventually I
realized that the normal binary operation on groups itself would be a good model: a binary
operator from a group to itself, with the properties of having an identity element and associativity,
was pretty similar. For ideas on how to make the operation take operands of two different sets
(as the left action does, while the group operation does not) I could go to a familiar operation that
works on two different sets: raising a real number to a natural number power. (In this case, as
often, a definition I had seen in passing while looking for some other definition or theorem many
days ago would come to mind, and be of use, later.)

Now we take a simplified look at the division between the three categories of work, that is, the
work to learn Mizar itself, the work to familiarize oneself with a new section of the MML, and
the rote formalization work:

0

5

10

15

2 0

2 5

3 0

3 5

4 0

4 5

5 0

Lea rning M iza r Lea rning Libra ry F o rm a liza t io n

Figure 2.1.3.1. Simplified breakdown of Mizar formalization time.

This is a relative graph, of course, and does not mean that the pure formalization aspect is more
time-consuming in Mizar than in Coq. This graph simply reflects that Mizar has a more limited,
simpler syntax than Coq. The number of “general categories” of syntax and techniques one
needs to learn to use Mizar feels more limited and manageable. Besides very basic syntax like
ending statements with semicolons, surrounding all proofs with proof and end brackets, and the
mizar_file: theorem_number syntax for citing a theorem, the major techniques one needs to learn
are few. Important ones are the deffunc keyword for defining an “out of the set theory”
function, the Function keyword for defining a function “in the underlying set theory” (Wiedijk,
1999, p. 4), and the proper structuring of proofs by induction and contradiction (mostly getting
one’s ends to line up with one’s per cases and let blocks). Coq, by contrast, has the feeling of
great depth. After struggling with a new concept in Coq, slowly gaining a working
understanding of it, and finally applying it, it often seemed that that only opened a new door to a

Proof Checking

24

new, equally difficult, concept, that I could not even begin to work with until mastering the
previous layer.

Although this is a subjective criterion, it speaks to the difficulty of learning Coq on one’s own
that I sought help from real users of the Coq system on several occasions: seven to be exact, by
requesting help through email, mailing lists, and forums. I kept this a last resort to keep my
experience of the two systems as uniform as possible, but here I had no choice. In each of these
cases, I literally felt that I could not progress on my own without external human help in
answering a particularly confusing error message or roadblock related to the underlying theory of
Coq. At least, I could not figure it out without spending an indeterminate amount of time. With
Mizar, although there were several tricky problems involving syntax and the environment, the
available papers, internet searches, and trial and error eventually produced a solution.

A further way the simplicity of Mizar syntax helps the new user is shown in my experience of
one of the most tricky parts of Coq, the if -then construction. Unable to find information about
others’ experience with this piece of syntax, and unable to figure it out on my own, I had to start
emailing people for help. The problem was that even if there were some help online for this
construction, I would not find it because of the commonality of the words “if” and “then.” With
Mizar, although I would too have difficulty trying to find help for the if -otherwise
construction for deffunc , Mizar syntax is deducible enough that I would eventually be able to
figure it out by trial and error and deduction. This is just a microcosm of the continual difference
in syntax difficulty I find in Coq and Mizar, and its consequences.

Perhaps the highest-level comparison of interest we can do is the total time spent on each
formalization of this same theorem. We can look at it from the perspective of a new user, who
takes into account time spent on learning the Coq and Mizar systems themselves, and from an
expert user with and without the benefit of being familiar with the relevant user-defined libraries.

0

50

100

150

200

Coq Mizar

Hours

Days

Figure 2.1.3.2. Formalization time in Coq and Mizar (new user).

Proof Checking

25

0

50

100

150

200

Coq Mizar
Without knowledge of external library

Hours

0

50

100

150

200

Coq Mizar
With knowledge of external library

Hours

Figure 2.1.3.3. Formalization time in Coq and Mizar (experienced user).

When we attempt to separate out just the formalization aspect, the time difference between Coq
and Mizar narrows. The experience of the rote formalization portion is again very different
between the two, and the perceived difficulty in Coq is higher, but in the end the two systems are
comparable.

2.2. Estimation of amount of work done by the Mizar MML

We estimate the proportion of work done by the Mizar MML in the same way we did for the Coq
user-supplied libraries, with the same general classification of lemma difficulty. However, what
made a particular lemma difficult was slightly different in the Coq world than in the Mizar one.
In Coq, difficulty usually stemmed from the extremely unwieldy and complex expressions that
would unfold, and some rather art-like tactics of dealing with them. In Mizar, most of the
difficulty was due to learning the syntax, as many proofs seemed to go down to the nuts and
bolts of the definition, no matter how many helpful lemmas were applied to simplify the task.
Yet the exercise of sorting out all the details to massage one’s hypothesis and assumed variables
into the exact form desired by the Mizar theorem was more time-consuming than mentally
taxing; proving a difficult Coq lemma was more the other way around.

Proof Checking

26

Name Category Should be in? In library?
Definition of union A yes yes
Definition of subset (TARSKI:def 2) A yes yes
Definition of power set (bool) A yes yes
Definition of family of subsets A yes yes
Function exists for any coherent operation
(BINOP_1:sch 3)

C yes yes

Function composed with identity function is the
function (FUNCT_1:38)

A yes yes

Set has zero elements iff empty (XBOOLE_0:def 1) A yes yes
Set defined by a function; all elements have
preimage

B yes no

A ⊆ B and B ⊆ A implies A = B (XBOOLE_0:def

10)
B yes yes

Subset of a finite set is finite (FINSET_1:13) C yes yes
Natural number is greater than or equal to zero A yes yes
Natural number exponentiation definition B yes yes
Natural number raised to zero power is one A yes yes
Real number inequality preserved by addition
(XREAL_1:8,10)

A yes yes

Real number multiplied by zero is zero A yes yes

Table 2.2.1. Lemmas of basic set theory.

Proof Checking

27

Name Category Should be in? In library?
Equipotent definition A yes yes
Equipotent sets have a bijection between them
(WELLORD2:def 4)

B yes no*

Identity map is bijection B yes yes
Cardinality definition B yes yes
Cardinality of set and the set are equipotent B yes yes
Cardinality of finite cardinal is the cardinal B yes no
Cardinality is natural number for finite set
(CARD_4:4)

B yes yes

Cardinality of natural number is the natural
number

B yes yes

Cardinality finite for natural number B yes yes
Cardinality is positive iff nonempty A yes no
Cardinality greater than one implies two distinct
elements

C no no

Sequence definition B yes yes
Sequence length equivalent to domain (EULER_1:1) B yes yes
Sequence length greater than natural number
implies in domain (AFINSQ_1:1)

B yes yes

Sequence implies exists function with domain its
cardinality (RLVECT_1:def 12)

B yes yes

Sequence exists consisting of +/-
Card_Intersection(k)

C yes yes

Finite number of finite sets’ union is finite C yes yes
Sum definition C yes yes
Sum of sequence of zeroes is zero B yes no*
Sum of constant sequence equals multiplication A yes yes
Sum of sequence consisting of +/-
Card_Intersection(k) equals cardinality of the
union (CARD_FIN:67)

C yes yes

Pairwise disjoint definition A yes yes
Pairwise disjoint implies cardinality of intersection
is zero

C yes no

Table 2.2.2. Lemmas relating to cardinality, sums, and pairwise disjointness.

*These theorems were proved in the MML, but in a significantly different format. Massaging the variables on hand
and the statement of the existing theorem until they matched was time-consuming enough to be classified as a
difficult lemma.

Proof Checking

28

Name Category Should be in? In library?
Left action definition B no no
Left action associativity B no no
Left action identity property B no no
Group operation definition C yes yes
Group operation associative B yes yes
Group operation identity B yes yes
Group inverse property B yes yes
Definition of orbit B no no
Definition of stabilizer B no no
Definition of H(x) B no no
Union of H(x)s ⊆ G B no no
G ⊆ union of H(x)s B no no
Stabilizer ⊆ G A no no
H(x)s and orbit are equipotent B no no
H(x)s are pairwise disjoint C no no

Table 2.2.3. Lemmas directly related to the orbit-stabilizer theorem.

Again, the italicized lemmas are the ones that could have been reasonably included in the MML
given that a Mizar article devoted to that area of mathematics exists. We see that Mizar indeed
has a fairly comprehensive database of theorems available, at least for proving this finite version
of the orbit-stabilizer theorem.

A difference from Coq was that some of the most difficult portions of a Mizar proof (which were
done for us) were the definitions of new terms, as observed by the complexity of the code in the
MML. In Coq, the most difficult portions were lemmas.

Category of lemma Total number Number already
done

Percentage already
done

B 19 15 79%
C 8 7 88%

Table 2.2.4. Estimate of amount of work already completed by the MML.

Proof Checking

29

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Medium difficulty High difficulty

Figure 2.2.1. Percentage of lemmas already completed by the MML.

It is well-known that Mizar (partially due to being one of the first theorem verifiers in existence)
has an extensive database of work already compiled in it. We stress, however, that this particular
metric, the analysis of the raw number of lemmas already proved for us, does have a Mizar bias.
The lack of theorem names or descriptions shifts a little of the work toward finding the theorem
as opposed to using it, so simply having every theorem one could possibly want is not the end-all.
Also, although it sounds odd to say it, even the longest and most difficult of Mizar proofs were
not as mentally taxing as learning the syntax itself. The most difficult parts of the entire proof,
subjectively, were learning how to use the scheme functionality (how to create a function object
from a declaration of the computation of that function) and comprehending the statement of the
inclusion-exclusion principle. So for a novice Mizar user, at least, perhaps having almost all of
the smaller lemmas already proved to him is not his biggest concern.

2.3. Analysis

2.3.1. Issues of the Mizar environment

Dr. Wiedijk suggested that “if you are completely mystified by a Mizar typing error, start
thinking ‘cluster’!” (1999, p. 16). Indeed, 102: Unknown predicate and 103: Unknown

functor , two of the most common Mizar compilation errors, are nearly always environment-
related. The most effective way to handle these is to use the findvoc command-line program to
locate the originating file of that term or keyword and then simply add that file’s name to various
categories of the environment. If that solves the error, great. Otherwise a more painful merge of
the environment is necessary, which consists of transplanting the entire environment – all eight
lists of MML references – of the originating file, removing duplicates, and seeing if that fixes the

Proof Checking

30

problem. Usually it does, and then it is a good idea to follow up by removing excess
unnecessary files that were added. This is because order and inclusion matters in some
environment directives, especially notations (Wiedijk, 1999, p. 18). I did encounter cases
where I had to reorder or remove extraneous references from environment directives to fix errors.

One wonders why Mizar does not adopt the simple package model of modern programming
languages such as Java. Perhaps the complicated environment system is needed to keep some
consistencies with the underlying theory of Mizar. However, one aspect of the package model
that would benefit Mizar is the concept of prefixing package names.

The issue here is that Mizar supports operator overloading. In actual mathematics, one pays little
attention to the “types” of variables, but in Mizar, as in most programming languages, types are
paramount. For example, the usual notation for power in Mizar is |^ , and is defined in different
files for natural numbers, real numbers, and complex numbers. In mathematics one does not
need to worry as much about making sure one’s variables are the proper types when using the
power operation with them, but in Mizar, of course, one has to have all the types match up for a
proof to compile. This can cause subtle difficulties since Mizar does not identify “which” |^ it is
using in a compilation. Is my Unknown functor error occurring because I have not imported the
power operation properly or is it because the types of my variables are wrong? It would be nice
to be able to write Real.|^ in a Mizar formalization, and perhaps this should even be forced
upon Mizar proof writers for their own good.

I encountered this problem when trying to apply CARD_FIN:67 , a statement of the inclusion-
exclusion principle by Karol Pak.

Figure 2.3.1.1. The inclusion-exclusion principle in CARD_FIN.MIZ .

In originally attacking the problem, I browsed the MML to learn about this new keyword Sum,
referred to in the last line of the theorem statement. GR_CY_1.MIZ (a Mizar article by Dr.
Dariusz Surowik about cyclic groups) defines a keyword Sum on a structure known as
FinSequence of INT .

theorem Th67:
 for Fy be finite-yielding Function,X st dom Fy=X
 for XFS be XFinSequence of INT st
 dom XFS= card X &
 for n st n in dom XFS holds XFS.n=
 ((-1)|^n)*Card_Intersection(Fy,n+1)
 holds

Card union rng Fy= Sum XFS

Proof Checking

31

Figure 2.3.1.2. Definition of Sum in GR_CY_1.MIZ.

There are many redefinitions of Sum in the MML, so when I saw this one, FinSequence looked
close enough to XFinSequence that I did not press on and try to find an exact match, assuming
XFinSequence was a subtype of FinSequence (the statement of CARD_FIN:67 indicates that the
argument to Sum is a variable of type XFinSequence). The two types are not actually related as
far as Mizar is concerned. I spent several hours following this wrong track, delving into the
definitions of FinSequence and the $$ operator referred to in GR_CY_1’s definition of Sum,
before I finally came back and tried to apply my results to the original theorem, which is when I
found the typing error. If the author of CARD_FIN had been able to notate CARD_FIN.Sum or
XFinSequence.Sum , to indicate that he was using his own redefinition of the keyword, I would
have avoided that red herring.

2.3.2. Theorem location systems

Clearly, a grep search is not the best way to go about finding out if a theorem or definition has
already been proved for us, in either Mizar or Coq. There has already been research into more
sophisticated systems of theorem searching. The Alcor assistant for Mizar uses a latent semantic
indexing (LSI) algorithm and has been fairly successful in finding theorems using a kind of
fuzzy logic. Alcor’s search algorithm returns multiple results based on the structure of the
theorem query, instead of a simple yes or no answer for an exact match (Cairns & Gow, 2006, p.
9). This would be helpful in locating theorems or definitions whose name is not universally
agreed on. For example, when searching to see if there were a Mizar article treating pairwise
disjoint sets, I had to try multiple iterations of text search: “empty” cross-referenced with
“intersection,” “pairwise-disjoint,” and “pairwise” and “disjoint” separately, which eventually
found that Mariusz Giero had defined the concept as mutually-disjoint in TAXONOM2.MIZ.

Another example I encountered was when trying to find the indicator functions referenced by
Wikipedia in the proof of Markov’s inequality. I looked fairly extensively for the definition of
this concept and did not find it. Later, after having defined the term myself, I was looking for
some other definitions when I happened across a strange Ch keyword, which I realized was
characteristic function, the term that MML writer had used to define the concept of indicator
functions. Characteristic function is a well-known alternate name for the idea and I should have
known to search for it, but for some reason it did not occur to me during the original search.

A final example was SetSequence s. In this case, there is not even an agreed-upon name for this
concept, that of numbering the collection of partition pieces of a simple function. I did not think
the concept would have its own term, and the keyword is_simple_func_in , through which I
found most of the material related to simple functions, did not reference it. I again found the

definition let F be FinSequence of INT;
 func Sum(F) -> Integer equals
 addint $$ F;
 coherence;
end;

Proof Checking

32

term by accident while searching for something else, after already writing the definition of the
concept myself and proving results about it. The idea of proving that a function has a finite
number of possible values by actually instantiating the finite list of partition pieces themselves is
beyond the interest of normal mathematicians. How, as a library writer, am I to indicate to
potential users that I have created such a thing, since even adding comments will not help as they
will have no clue how to begin searching for it?

Dr. Michael Beeson suggests a solution based on the Mathematica® scientific computing
software. Mathematica®’s Help Browser is a menu system for locating theorems (or definitions)
with an intuitive tree structure. Most mathematicians will agree what category a particular
theorem or definition falls in even if they do not agree on what to name it, or how exactly to
word its statement. This would help in the case of SetSequence or characteristic functions,
because even if the name were unfamiliar to the searching user, Help Browser would present the
concept to them incidentally since they are in the right place to see it. The category for
SetSequence s would be simple functions, for example. This kind of system also separates a
library writer from the problem of not being able to put her theorem, definition, or lemma in the
expected MML file because that file is already finalized or because she was not the author. That
does happen in Mizar, and as Dr. Wiedijk says, theorems “can be in unexpected places” as a
result (Wiedijk, 2006b, 33).

Figure 2.3.2.1. Mathematica® Help Browser.

2.3.3. Mizar file documentation

Most Mizar files restrict their comments to little more than a one line description of the contents
of the file. For example, XREAL_0.MIZ , an invaluable file for any proof involving real numbers,
has the title Introduction to Arithmetic of Real Numbers at the top, and a single
comment labeling where in the file begin the definitions of min & max .

Proof Checking

33

Assuming the lack of a more intelligent system for locating a particular theorem or definition, a
short title for each theorem and definition would go a long way to both helping a new user get up
to speed on the contents of a file and facilitating text searches. The “central” theorem of a file,
or very well known ones, actually do often have a heading of this sort. For example, Karol Pak
labeled his statement of the inclusion-exclusion principle:

Figure 2.3.3.1. The inclusion-exclusion principle.

Even a more readable statement like A c= B & B is finite implies A is finite
(FINSET_1:13) could benefit from having the description The subset of a finite set is

finite above it.

For complex statements like the inclusion-exclusion principle, once located, the task becomes
then to understand what each part of the statement is referring to. A significant part of the
“familiarizing with new terms and theorems” portion of the work in Table 2.1.3.1 was decoding
the statement of this theorem and learning what each piece meant. The Mizar statement of a
theorem is usually more detailed than the colloquial version, and yet each variable usually has a
one or two letter name, due to the need to keep expressions fitting on one or two lines. I spent
several hours drawing pictures to represent all the layers of bijections between cardinalities and
subsets, before I could begin writing any Mizar code involving this theorem.

In fact, there were several instances where I guessed that a certain lemma had already been
proved in the MML, but because proving it myself would be fairly straightforward, I preferred to
reinvent the wheel instead of assembling text searches and comprehending lemma statements.

3. Formalizing Markov’s inequality in Coq

The other major theorem I formalized in Coq and Mizar was Markov’s inequality, which
provides a loose bound on the probability of a random variable taking on values greater than or

:: The principle of inclusions and the disconnectio ns

theorem Th67:
 for Fy be finite-yielding Function,X st dom Fy=X
 for XFS be XFinSequence of INT st
 dom XFS= card X &
 for n st n in dom XFS holds XFS.n=
 ((-1)|^n)*Card_Intersection(Fy,n+1)
 holds

Card union rng Fy=Sum XFS

Proof Checking

34

equal to some fixed constant. If For a nonnegative random variable f and a real number a,
Markov’s inequality states that

the probability that f ≥ a ≤ _the expected value of f_ .
 a

We do the same analysis of categories for this formalization.

Category of work Approximate work
(hrs.)

Percentage of total
work

Learning Coq syntax 8 9%
Experimenting with Coq tactics 10 11%
Browsing the user-supplied library 12 13%
Familiarizing with new structures, terms of
library

6 7%

Actual formalizing 43 48%
Planning out actual proof strategy 11 12%
Housekeeping (installing and setting up
Coq)

<1 negligible

Table 3.1. Breakdown of Coq formalization time.

The major difference from the proof of the orbit-stabilizer theorem is the cutting down of time
spent on learning the new library I needed for this proof, the Coq standard library. Although I
was using it for the first time, I used only a small portion, mainly the axioms of and results about
real numbers, and the Ensemble s section. I used the standard library more often as a model for
learning how to write definitions, or ideas for how to work with functions and sequences, than a
place from which to take definitions of needed terms. This is because a large part of the proof of
Markov’s inequality was writing the definitions of the basic terms of Lebesgue integrals like
sigma-algebras and simple functions, as the Coq standard library does not include these.

3.1. Coq file documentation

Coq libraries mostly try to label their theorems with descriptive names, and the authors of the C-
CoRN, Pottier-Stein, and Coq standard libraries included some helpful comments as well.
Overall, Coq user libraries seem to have a little more documentation in-file than Mizar MML
contributions. This is especially useful for concepts with canonical names. For example, what is
a good grep search to find a Mizar lemma stating “for reals x,y,z, x≤y and y≤z implies x≤z,”
knowing that variable names and whitespace may be different, and the Mizar author may have

Proof Checking

35

used the holds keyword instead of implies ? In Coq this theorem can be located instantly by
searching for “trans” and picking out the one related to reals, Rle_trans .

For concepts without canonical names, the descriptive theorem titles still help. What I think of
as injective the Pottier-Stein library terms distinct , but when searching the Pottier-Stein library,
all theorems relating to injectivity have distinct somewhere in the name.

3.2. Library incompatibility

The reason we moved to the Coq standard library for Markov’s inequality, abandoning the
previous two libraries we learned, was a current problem with the Coq contribution repository.
Even though the C-CoRN library I knew had deep support for real numbers, and the Pottier-Stein
library had definitions and support for the basic concepts I would use to build measure theory
and Lebesgue integrals, including sequences, functions, and predicate treatment of subsets, I
ultimately could not use any portion of either in my work.

To do measure theory, I needed a formulation of the real numbers (usually measure theory is
defined using the extended reals; however, since we were considering Markov’s inequality as it
applied to probability spaces, the normal reals would do). Pottier-Stein does not treat reals at all.
On the other hand, C-CoRN lacks the notion of predicate subsets, which allows one to define
countably infinite collections of sets, a concept needed to define sigma-algebras, in a natural way.
(In a predicate subset foundation, a subset is implicitly defined by a predicate that acts like a
filter; the sets that pass through the filter, from the original set, comprise the intended subset.) I
could not see a clean way to do this with C-CoRN’s CSetoid -based class hierarchy. In other
words, both libraries lacked one essential piece. The Coq standard library has good support for
predicate subsets in its Ensemble s files as well as a treatment of reals. I also noticed that it has
the Riemann integral defined, which would be useful as a model for how to define the Lebesgue
integral later. But this would still mean learning an entirely new library.

The unfortunate part was that I could not simply pull out the predicate subset portion of Pottier-
Stein and the real number portion of C-CoRN. I needed to have one library which had support
for both concepts, because of the incompatibility of each library’s foundations. As mentioned
before, each of these three libraries build their foundations for set theory (setoids and how to
create subsets) from the ground up: Setoid versus CSetoid versus Ensemble . Trying to
combine theorems from different ones would be like trying to write a program in C and asking if
I could pick a few of my favorite functions from a Java package, and a few from a Visual Basic
library. It just does not work; I have to start in C with what support there is for what I need to do,
and write the whole program based on that.

Proof Checking

36

3.3. Finding out which axioms we’ve used

One of the main strengths of Coq, and one of its important differences from Mizar, is its abstract
foundation. Mizar has a broad scope in starting from ZF set theory, but Coq goes one level more
abstract by beginning with only the most fundamental rules of first-order logic, set theory being
just one application of this foundation. An advantage of this is being able to do things like either
assume the axiom of choice or not. One simply chooses to invoke the axiom of choice in one’s
proofs or not, through a variety of formulations like choice , constructive_choice , and
constructive_definite_description . The only issue is that it is not easy to figure out when
looking at others’ results and theorems, whether or not they used the axiom of choice. To know
for sure, one would have to recursively backtrace every lemma or theorem used in a particular
proof, searching for any use of one of the axiom of choice’s many formulations.

This problem, from the standpoint of the design of Coq, is an easy one to fix. Coq needs a utility
that will step through an entire proof and run tree recursion on theorem calls all the way down to
component axioms, and see if any of them are a form of the axiom of choice. This process could
even assemble the complete list of axioms the theorem depends on. This process may actually
tie into Coq’s normal compilation algorithm in a natural way.

3.4. Coq is more difficult to read

One of the realizations that came to me after the formalization of Markov’s inequality in Coq
was the striking difference between Coq expressions and Mizar syntax: how differently
expressions written in these two systems “read.”

The Calculus of Inductive Constructions’ idea of proofs as types has something in common with
the programming language Lisp: rapid growth of nested parenthetical expressions, though the
mechanism is different. Let me give an example.

Consider a sigma-algebra F, a “nice” family of subsets of the universe set X. Now, in Coq, if we
want to say that a set t is an element of F, Element of F in Mizar parlance, we do this by
simply supplying a little proof that t is in F: probably trivial or assumed as a hypothesis, but
necessary to have explicitly named. Suddenly the set t has become a pair (t ,t’) where t’ is the
proof that t is indeed in F, and now that pair can be thought of as the set t , but tagged as type
Element of F . Now consider a subset of the sigma-algebra F called T. (This is a common setup
in many of the lemmas I wrote during Markov’s inequality.) So T is also a family of subsets of
the universe X; in fact, T is a subset of our sigma-algebra on X known as F. Now consider our set
t from F again; only this time, we even know that t is in T, not just in F. So once again, the pair
(t ,t’) where t’ is now the proof that t is in T, can be thought of as a variable whose value is t ,
but has type Element of T .

Proof Checking

37

Now, suppose I am moving along in a proof, proving various things about t , and I come to a
point where I want to use some theorem that applies to arguments of type Element of F ; that is,
this theorem is generally meant to be used on elements of the sigma-algebra. Well, in Mizar
thinking, or object-oriented programming language thinking if the reader prefers, since F is a
“parent” of T, then obviously if t is in T then t is in F! Should we even have to tell Coq this?
Well, in Mizar or most OOP languages one does not, but one must in Coq. Moreover, the proof
that t is in T, which we do have at the moment, has no obvious way to be “converted” into a
proof that t is in F, at least not a nice looking way.

The only way is to create a “proof converter theorem” that takes a proof that something is in T,
and outputs a proof that that thing is in F. In the end, the exact Coq syntax one has is (T’ t t’) ,
where T’ is the proof converter, and this triplet is the proof that t is in F. Then, to get the actual
item t “cast” to type Element of F , we have (t ,(T’ t t’)). That is, we have the original set t ,
accompanied by a proof that t is in F. Any element of T cast to type Element of F will look
similar: (s,(T’ s s’)) or (v,(T’ v v’)).

This is the most direct and proper way to do a type cast in Coq. It is a consequence of the highly
structured and exact nature of the Coq proof verifier, and is probably the single biggest culprit in
making Coq expressions (and thus, the interactive Coq proof process) difficult to read and follow
for humans.

3.4.1. A more detailed example

For another, more detailed example of this phenomenon, let us look at what happened later in
Markov’s inequality. One step in the proof required me to show that for a constant c,

c×integral of indicator function = integral of (c×indicator function).

My statement of this fact in Coq:

Figure 3.4.1.1. Formulation of a property of Lebesgue integral.

The bold portion of the lemma is somewhat decipherable as the asserted fact. lebint_s is the
Lebesgue integral for a simple function. v is the finite sequence representing the list of possible
range values, and w is the associated list of partition pieces. The lengthy expressions simple_P9
through simple_P13 are what I did not realize I needed until actually sitting down to write this
statement. They are proof converter lemmas, saying that multiplying a simple measurable

forall(c:R)(c':0<c),lebint_s _ _ _ _ _ u u' u'' u'' ' n(fun i:
nat=>v i*c)w (simple_P9 _ n v w S0 S1 S2 S3 c c')(simple_P10 _ n
v w S0 S1 S2 S3 c c')(simple_P11 _ n v w S0 S1 S2 S 3 c c')(
simple_P12 _ n v w S0 S1 S2 S3 c c')(simple_P13 _ _ F' F'' F'''
n v w S0 S1 S2 S3 M c c') E E' =
c*lebint_s _ _ _ _ _ u u' u'' u''' n v w S0 S1 S2 S3 M E E')% R.

Proof Checking

38

function by a constant still preserves the four qualifications for a function to be simple and the
one description that says a function is measurable. In other words, these long expressions
popped in unexpectedly – when I thought I would be writing simply a statement about a constant
and a Lebesgue integral, I failed to see that I would need to include lengthy expressions related
to proper typing of arguments.

Imagine what would happen if writing out those lemmas necessitated filling in the blanks of
more expressions as we broke each hypothesis down to its component basic assumptions, and
having to verify each one in turn. This cascade of expressions is, again, the mechanism by which
Coq expressions quickly become very large. It happens to a greater degree when one enters the
interactive proof of a theorem and begins to unfold the various definitions in the statement to
prove and use facts about them. Anyone who uses Coq for a nontrivial application runs into
unmanageably large expressions. Figuring out how to do anything with these is one of the most
difficult hurdles to overcome in learning how to use Coq. (One way to deal with this issue is by
going around these large expressions, stepping out of the current situation and defining helper
lemmas that simplify pieces of the expression until it is whittled down to a manageable size, at
which point one can proceed with the original proof.)

Mizar, like a structured programming language, can hold information about current variables and
types invisibly in the current environment or scope and avoids generating large expressions that
in a sense try to include the whole environment within themselves. However, this is because
Mizar does not seek to support the more powerful and fundamental idea of proofs as types in the
Calculus of Inductive Constructions.

3.4.2. Implicit arguments

Coq actually does have an attempt at a solution for these large expressions, implicit arguments.
After interacting with it, I feel that this is not the final solution, as it creates its own issues. For
an example, here is the syntax of the ifdec_right theorem.

Figure 3.4.2.1. The ifdec_right theorem from the Coq standard library.

The idea is that it simplifies one level of an if -then expression. Even to a seasoned Coq user,
the statement and arguments are difficult to interpret, and I needed to do some testing to figure
out exactly what to pass as arguments. However, the use of implicit arguments in this theorem
(specified by an earlier directive) makes it extremely hard to use the normal procedure of
deducing argument types by guessing and checking. In Coq, learning how to use a theorem
usually means invoking it and supplying one’s best guess for the arguments, which Coq responds
to with typing errors, which one reads to get hints on what to try next. Depending on the

Theorem ifdec_right :
 forall (A B:Prop) (C:Set) (H:{A} + {B}),
 ~ A -> forall x y:C, ifdec H x y = y.

Proof Checking

39

theorem, this might take one round of guesses or dozens. This process, while tedious, is at least
predictable and methodical, and works.

It does not work as well when the theorem uses implicit arguments. The implicit arguments
functionality will fill in certain arguments for the user based on the arguments the user supplies,
but Coq’s algorithm for deciding which arguments to fill in and when is hard to figure out. It is
often not clear what place a particular argument one supplies is going in when implicit
arguments are involved. The effect is to multiply the number of combinations of arguments one
has to try as well as make the returned error messages harder to take hints from. I remember
trying about forty iterations of different attempts at argument lists to the function.

The point of implicit arguments is to let a seasoned user of the theorem input a few less
arguments, thus shortening the expression and saving space and typing time. However, without
author-written documentation on how to use the theorem, the added frustration for new users is
unacceptable. In the end, I actually gave up and wrote a version of ifdec_right without the
implicit arguments specifier, adapting their proof of ifdec_right to work with the change in
convention.

4. Formalizing Markov’s inequality in Mizar

We use the same Mizar categories as for the orbit-stabilizer theorem, and see if the proportions
of time change as we expect.

4.1. Breakdown

Category of work Approximate work (hrs.) Percentage of total work

Learning Mizar syntax by trial and error 7 8%
Searching libraries for examples of new
syntax

2 2%

Familiarizing with user-defined libraries 7 8%
Searching for existence of terms and
theorems

8 10%

Rote formalizing 48 56%
Fixing the Mizar environment 4 5%
Logically planning out the proof itself 10 11%

Table 4.1.1. Time breakdown of Markov’s inequality in Mizar.

Proof Checking

40

As expected, the proportion of time for rote work has increased significantly from the previous
formalization of the orbit-stabilizer theorem. This makes sense given my increased experience
with many aspects of Mizar, including creating skeletons for inductive proofs and proofs by
cases, as well as using Mizar “schemes” and defining functors with deffunc . By a certain point
in this formalization, I had solved all those problems several times, so even if I needed to look
back at some old examples, or do a little trial and error to refresh my memory, I was confident
that I could write the portions of code involving these pieces of syntax without significant
trouble. Thus, I file much of the time associated therewith under rote formalization for Markov’s
inequality, while they were partially or completely new to me during the orbit-stabilizer theorem.

A category that ended up taking the same proportion of time as it did with the orbit-stabilizer
theorem was the searching for the existence of terms or theorems in the MML. Again, we note
that this category reflects only searching for the term or theorem itself. For example, we might
be asking, “Okay, is there a definition for Lebesgue integral?” Or, “Is there a theorem that tells
us that every set in a sigma-algebra is necessarily a subset of the universe set X?” Looking up
these answers is purely the action of doing findstr or grep text searches, employing findvoc ,
or browsing MML files. To be pedantic, once I went into the realm of trying to use or get
familiar with the new MML term or theorem, I felt that I had gone into a different category,
related to the ease or difficulty of getting up to speed with some new Mizar entity once I had
already found it. This division allows us to separate two issues with the Mizar system: that of a
user-friendly search capability and that of the ease or difficulty with which one can interpret and
make use of others’ Mizar creations.

It makes sense that the proportion of time should be roughly the same, as my skill with searching
out things in the MML plateaued a while ago. This is a skill that one learns early on in one’s
Mizar career. There is actually a slight drop in the proportion of time; this is either experimental
error or a result of being familiar with a slightly larger section of the MML after completing the
orbit-stabilizer theorem. That theorem gave me a lot of experience with the MML files about
finite sequences and real numbers, which I used often in Markov’s inequality.

Looking at the other categories, the results show that the time spent learning Mizar has
approximately been cut in half. The two main types of work related to learning Mizar, all of
which can be viewed as a one-time cost, are the time spent figuring out how to use new Mizar
syntax, which in this formalization mainly consisted of writing term and functor definitions, and
the time spent reading and getting familiar with user-defined MML terms and theorems. We
notice that the time spent on these categories dropped from 16% to 8% and from 18% to 8%.
This is good news, as these percentages are becoming small enough that if one could find a way
to partially automate the rote work portions of a formalization, it would have a large effect on the
total time required.

For the total time, although the orbit-stabilizer theorem and Markov’s inequality turned out to be
very different styles of proofs – the orbit-stabilizer theorem was almost pure logical reasoning,
while Markov’s inequality contained a significant amount of work related to simply defining
new terms – the total time was about the same. Markov’s inequality tallied 86 hours while the
orbit-stabilizer theorem tallied 89 hours.

Proof Checking

41

At this point, I expect that further exercises with Mizar will have diminishing returns toward
improving my proficiency with Mizar. Although there are a few terms and structures of Mizar
syntax that I have not yet tried, such as defining records or schemes, I am certain that I can
deduce the proper syntax for those with the same trial and error method that has served me well.
As for the proofs themselves, I have pretty much established the basic style of approach. First, I
try to understand the proof conceptually, writing out a proof in normal mathematical notation.
Then I peruse the MML to see what previous Mizar users have proved and defined already for
me, browse the associated lists of theorems to get a feel for what facts I already have, and then
write a skeleton of the entire proof in Mizar to hash out all the environments, definitions, and
typing errors. Once the skeleton is complete, one can then simply pick out lemmas or parts to
begin the rote formalizing work, and slowly fill in the proof, gap by gap, until the blessed
moment when one runs mizf for the last time and no *4 errors appear in the checker, meaning
that as far as the checker is concerned, one’s proof is completely valid.

4.2. Markov in Mizar analysis: syntax and interface

We cover a few issues and potential areas of improvement discovered during this formalization
of Markov’s inequality in Mizar. We begin with syntax- and interface-related issues.

4.2.1. Piecewise functions must be named

I am not sure if this is inherent in set theory, but in Mizar, defining a piecewise function is a
tricky process. The best way is to use the func keyword to create a functor (also known as a
metalanguage function, as it exists outside of the set theory universe in which Mizar
formalizations live) and then use the if -otherwise construction for the separation of cases.
(One cannot use the if -otherwise construction outside of a func definition.) Then one must
convert this functor into a Function in the Mizar set theory universe by use of FUNCT_1:sch 3 .
I used this process to define indicator functions as well as two auxiliary piecewise functions that
might as well have been nameless, being only intermediaries to details of the proof. My slight
quibble with this is having to take up keyword space to name these minor functions.

4.2.2. Mizar theorem numbering

Mizar requires all theorems to be numbered. However, authors of MML files often must revise
their submissions as time passes, and insert or delete theorems.

Proof Checking

42

When deleting a theorem, Mizar allows one to replace it with a canceled statement. That single
keyword takes the place of the theorem, and aside from having to remove all references to that
theorem by other files, one needs do nothing else as the placeholder canceled preserves the
original numbering of all other theorems. However, it would probably be cleaner to, instead of
using the canceled keyword, simply keep the theorem around and change its statement to
something meaningless like 0=0 or not contradiction , so that one can do text searches and
simply count the number of times the word theorem appears to get to a specific theorem number.

There is currently no good way to insert a theorem into a finished MML file since Mizar theorem
numbers are integers; no Dewey Decimal System here. Again, this contributes to newer
theorems cropping up in odd places. One is used to going to FINSEQ_1 for all one’s finite
sequence needs, and then finds that a useful singleton sequence theorem is located in CONVFUN1.

I see no problem with the idea of numbering theorems in general, as it cuts down on typing long
theorem names repeatedly, as is sometimes needed in Coq. Comments could take the place of
the descriptive theorem names. To alleviate the theorem insertion problem, MML writers could
start numbering theorems by tens, as BASIC programmers of old were taught to do.

4.2.3. findvoc does not cover redefinitions

The findvoc utility is good at finding the original definition of a term, quicker than grep or
findstr . However, it cannot find redefinitions, and using grep or findstr in this way requires
fairly sophisticated regular expressions. Again, Mizar would benefit here from a feature of
modern programming environments where an intelligent piece of software compiles a list of all
definitions and redefinitions of a particular term and displays them when the user right-clicks the
term. One model is Microsoft Visual Studio’s dynamic popup interface.

Proof Checking

43

Figure 4.2.3.1. Microsoft Visual Studio dynamic list of all member functions.

Even better would be if that piece of software determined which particular redefinition of the
term is being used in the context. Indeed, it is often not clear to the Mizar user which version of
a term Mizar is interpreting a particular usage as. The most common example, mentioned earlier,
is Sum() , which has been defined on many different types over the years. Another example is
the innocuous <=, which while only being defined on two major types, reals and extended reals,
due to the nature of reals being a subset of extended reals causes many typing errors.

4.2.4. Order of hypotheses

One odd discovery was that combining two logical statements with the “&” operator is not
necessarily symmetric when expanding a definition. This was surprising because Mizar is
usually robust in this regard, for example, when combining multiple statements to draw a
conclusion. Let us look at an example involving the union term.

Here is the definition of union in TARSKI.MIZ (Def4):

Figure 4.2.4.1. Definition of union in TARSKI.MIZ .

 definition let X;
 func union X means
 x in it iff ex Y st x in Y & Y in X;
 correctness;
 end;

Proof Checking

44

Compare the following four usages of the term, only one of which generates an error when
compiled. These are direct applications (either unfoldings or collapsings of the exact definition).
(The reader can verify these results using a bare-bones environment with just TARSKI in
vocabularies , constructors , notations , and theorems .)

Figure 4.2.4.1. Reversing the order of hypotheses causes an error with union .

Notice that the order of the two logical parts of the definition of union – that for x to be in the
union of Z, there must exist an intermediate set Y in Z and Y must contain x – matters when we
are unfolding the definition, but not when we are collapsing it. This would be a good candidate
for inclusion in a FAQ about Mizar for new users, if there were such a document. (Coq has one
and was a useful reference at all stages of my learning it.)

4.2.5. Order of notations

One troublesome aspect of the Mizar environment lists is that not only must one make sure that
one has all the needed files in the lists, but one must occasionally play around with the order of
the files. The phenomenon seems to be related to redefinitions. In one occurrence of this issue,
a file I was adding to the notations list had to be placed before another specific file to prevent
typing errors. This does not bode well for the MML persisting as a single database of all
mathematics. With enough layering of redefinitions and cross-referencing of MML files, two
files from the MML might become completely incompatible, unable to both be used for a given
proof.

Here are the essential portions taken from my larger Markov’s inequality file, with which the
reader can reproduce the error. The statement about X, f , and x at the end is not true; it is merely
there to showcase the error. The error is that, if FUNCT_1 occurs after SUPINF_2, one gets a *102
typing error, which is probably because Mizar is interpreting the expression f.x as returning the
default type set , which does not make sense with the <= (less than or equal to) operator. If
FUNCT_1 is placed before SUPINF_2, Mizar returns a *4 logical error, correctly as the test
statement is not true, and the fact that Mizar got to this stage of error shows that Mizar accepts
the statement as well-typed. In other words, the typing processed properly, and Mizar knows

for x,Z be set st x in union Z holds
ex Y be set st x in Y & Y in Z by TARSKI:def 4;

for x,Z be set st x in union Z holds
ex Y be set st Y in Z & x in Y by TARSKI:def 4;
::> *4

for x,Y,Z be set st
x in Y & Y in Z holds x in union Z by TARSKI:def 4;

for x,Y,Z be set st
Y in Z & x in Y holds x in union Z by TARSKI:def 4;

Proof Checking

45

that f.x returns something of type ExtREAL (extended real) for which the <= operator makes
sense.

Figure 4.2.5.1. Consequences of the order of the files in the notations directive.

I believe this error is related to redefinitions because SUPINF_2 redefines the . operator (function
notation) to work intelligently on functions that output extended real numbers. This redefinition
lets Mizar know automatically that such functions will output objects of type ExtREAL (without
the redefinition, the Mizar user would have to do a little proof each time she uses the function to
show that the output is, indeed, of type ExtREAL). Hence, placing FUNCT_1 after SUPINF_2 in
notations overrides SUPINF_2’s redefinition, and so Mizar goes back to the original FUNCT_1
definition of . where f.x is of type set , which makes no sense with <= (thus the typing error).

Figure 4.2.5.2. The definition of the . operator in FUNCT_1.MIZ.

environ
vocabularies PARTFUN1,SUPINF_1,FUNCT_1;
notations XXREAL_0,PARTFUN1,SUPINF_2,FUNCT_1;
constructors MESFUNC3,MEASURE6;
registrations SUPINF_1,RELSET_1,NAT_1;
requirements NUMERALS,SUBSET;
begin

for X be set,f be PartFunc of X,ExtREAL,x be set
holds 0<=f.x;
::> *102
::>
::> 102: Unknown predicate

 func f.x -> set means
:Def4: [x,it] in f if x in dom f otherwise it = {};
 existence by RELAT_1:def 4;
 uniqueness by Def1;
 consistency;
end;

Proof Checking

46

Figure 4.2.5.3. The redefinition of the . operator in SUPINF_2.MIZ .

4.2.6. reconsider s do permanent damage

I recall this as one of the most difficult idiosyncrasies of Mizar to uncover overall. The initial
error was the common typing-related error *103 .

At least in the environment I was working in, if one reconsider s a variable from type non

empty set , to Element of S , then back to non empty set , the variable has been permanently
changed. Where previously it was valid in a particular expression, after the change-to-and-back,
it generated a *103 in that same expression.

Here is the actual occurrence in my work, pared down to only what is necessary for the reader to
duplicate the error. This code also needs a MARKOV.VOC vocabulary file containing the single line
of text Ofsepseq to be placed in the \dict directory, for the definition of the fsepseq term. The
different situations have been bolded: before the reconsider to and back from a different type,
there is no typing error, only a logical error. Thus, the statement is parsing correctly with the
appropriate types. But after the reconsider to and back, we get a typing error, meaning
something has irrevocably changed in the variable X. The first part of the code is the
environment, the second is the definition of the custom term fsepseq which seems to have a
property that makes this strange behavior possible, and the third is the test expression and
illustration of the different situations before and after the reconsider s.

definition
 let X be non empty set;
 let Y be non empty Subset of ExtREAL;
 let F be Function of X,Y;
 let x be Element of X;
 redefine func F.x -> R_eal;
coherence
proof
 F.x in ExtREAL by TARSKI:def 3;
 hence thesis;
end;
end;

Proof Checking

47

Figure 4.2.6.1. A reconsider followed by its reverse causes a permanent change in a variable.

This is another example of an error that I resolved through trial and error, but for which I could
not figure out the underlying reason. It may have something to do with the fact that the original

environ
vocabularies MARKOV,PARTFUN1,SUPINF_1,MEASURE1,RELA T_1,FUNCT_1,
 ORDINAL2,PROB_1,MESFUNC2,BOOLE,INTEGRA1,RLVECT_1,MEASURE6,ARYTM_3,
 TARSKI,COMPLEX1,ABSVALUE,FINSEQ_1,MESFUNC1;
notations FUNCT_1,XBOOLE_0,XXREAL_0,ORDINAL2,RELAT_ 1,PARTFUN1,PROB_1,
 SUPINF_2,MEASURE1,REAL_1,SUBSET_1,FUNCT_2,MESFUNC2,TARSKI,MESFUNC3,
 SUPINF_1,EXTREAL1,MEASURE6,RELSET_1,NAT_1,COMPLEX1,FINSEQ_1,MESFUNC1;
constructors MESFUNC1,MESFUNC3,MESFUNC2,EXTREAL1,ME ASURE6,REAL_1;
registrations SUPINF_1,RELSET_1,NAT_1,SUBSET_1,NUMB ERS,XREAL_0;
requirements NUMERALS,SUBSET,BOOLE,REAL,ARITHM;
theorems PROB_1;

begin
definition
let X be non empty set;
let S be SigmaField of X;
let M be sigma_Measure of S;
let f be PartFunc of X,ExtREAL such that
 for x be set st x in dom f holds 0<=f.x;
let a be Real such that a>0;
let n be set;
func fsepseq(X,S,M,f,a,n) -> set equals :Def4:
 {x where x is Element of X:f.x>=a} if n=1
 otherwise {x where x is Element of X:f.x<a};
coherence;
consistency;
end;

for X be non empty set,
S be SigmaField of X,
M be sigma_Measure of S,
f be PartFunc of X,ExtREAL,
a be Real
st (for x be set st x in dom f holds 0<=f.x) & a>0 holds 0=0 proof
let X be non empty set;
let S be SigmaField of X;
let M be sigma_Measure of S;
let f be PartFunc of X,ExtREAL;
let a be Real;
assume A0:(for x be set st x in dom f holds 0<=f.x) &a>0;
fsepseq(X,S,M,f,a,0)=0;
::> *4
reconsider X as Element of S by PROB_1:43;
reconsider X as non empty set;
fsepseq(X,S,M,f,a,0)=0;
::> *103
0=0;hence thesis;
end;
::>
::> 4: This inference is not accepted
::> 103: Unknown functor

Proof Checking

48

type, non empty set , is a two-part type: it contains a main type, set , and an attribute, non

empty . Perhaps some attribute information is lost through the two reconsider s.

4.3. Markov in Mizar analysis: matters of style

4.3.1. Syntactic sugar

The MML seems to define many new types and predicates just to shorten Mizar phrases or make
Mizar statements more closely resemble English mathematical statements. In some cases, user-
defined types and predicates do clarify code. are_Re-presentation_of and
is_simple_func_in have a clearer purpose than an ordered list of subsets of the universe set X
and an ordered list of extended-real values.

But what about Function of A,B and PartFunc of A,B ? Why not stick with the already
existing terms dom and rng and say f is Function & dom f = A & rng f c= B , if that is
precisely what Function of A,B means? That is completely clear and needs no new looking up
of definitions and flipping back and forth between files.

One reason for the proliferation of terms may be that Mizar has trouble linking multiple logical
steps together in a single justification. Mizar’s automatic reasoning can occasionally surprise,
but overall I have learned to break arguments down into the smallest possible steps. Let us look
more closely at what Mizar can and cannot do.

Figure 4.3.1.1. Mizar’s automatic reasoning capability.

We examine the Mizar subset operator, c= , and what Mizar implicitly knows about it and how
well it reasons with it. We have three hypotheses, A1, A2, and A3, and try a few test statements,

consider x,X,Y,Z be set;
A1:x in X;
::> *4
A2:X c= Y;
::> *4
A3:Y c= Z;
::> *4

B1:X c= Z by A2,A3;
::> *4
B2:X c= Z by A2,A3,XBOOLE_1:1;
B3:x in Y by A1,A2;
B4:x in Z by A1,A2,A3,XBOOLE_1:1;
::> *4

Proof Checking

49

B1, B2 , B3 , and B4. The failure of the first statement, B1, may be surprising to a new Mizar user.
Transitivity of the subset operation is not implicitly known by Mizar; it is proved in the theorem
XBOOLE_1:1. So B2 does not generate a logical *4 error, while B1 does. B3 is an example of the
kind of two-step reasoning that Mizar can do. Beyond a trivial logical step like replacing a term
with its exact definition (a common single step in Mizar), here Mizar actually combines two
separate facts in a creative way. Or does it? If one looks at the definition of c= in TARSKI.MIZ ,
one sees that Mizar is simply directly applying the definition of c= here, nothing creative.

Figure 4.3.1.2. The definition of c= in TARSKI.MIZ .

B4 is a true attempt to get Mizar to make a two-step logical jump. We know that XBOOLE_1:1
combined with the facts A2 and A3 is enough to justify that X c= Z in this example. Adding A1
as another hypothesis produces the exact same scenario of directly applying the definition of c=
that Mizar knows without needing to cite any special theorem in B3. However, trying to do both
of these steps at once fails: B4 gets a *4 error.

Seeing the level of detail Mizar needs explains why Mizar proofs are so long. This may be the
true reason for having a lot of terms. The terms are not to make Mizar look like English
mathematical writing; they are for unifying the many small hypotheses and variables of a
mathematical concept under a single term such as “simple function” so that we may then write
clusters about simple functions. Clusters cannot operate on groups of many small hypotheses;
they are one-to-one relationships. If s is a simple function, then this cluster says that it has
some_property . If s is a simple function, then this other cluster says that s has
some_other_property . But are clusters really worth it?

4.3.2. Clusters considered harmful

Clusters are the only way to expand Mizar’s ability to reason implicitly. They do so in two ways:
they use a hierarchical structure similar to inheritance in object-oriented programming, giving
the illusion that Mizar knows more about transitivity that it really does (we saw an instance of its
limits in the above example), and they outright tell Mizar rules for making logical jumps.

For the hierarchical structure, consider that a FinSequence (finite sequence) is a Function , and
a Function is a Relation . When we start applying theorems that ostensibly deal with
Relation s directly to FinSequence s, it feels like Mizar is employing logic on multiple fronts at
once, reasoning about transitivity (knowing that FinSequence is a Relation) while at the same
time applying a theorem. This is an example of how clusters allow Mizar to seem to elide many
steps into one step. But really, Mizar is doing nothing special. That theorem about Relation s

definition let X,Y;
 pred X c= Y means
 x in X implies x in Y;
 reflexivity;
 end;

Proof Checking

50

only applies to my FinSequence because I was asking something about dom and rng , basic
properties of Relation s, and FinSequence , if that term had never been defined, would just be
another conglomerate of a dom and rng and some pairs – a Relation is exactly what it is. Mizar
needed no logic to do this; it only seems like Mizar is reasoning because we have labeled
identical things with different names.

Where clusters really do elide multiple steps in one is when the third type of cluster is used
(Wiedijk, 1999, p. 10). This kind of cluster is essentially a theorem that has been stamped with a
note to Mizar to try to use this theorem automatically whenever it sees the type on the left-hand
side. For example, the cluster sigma_Field(C) -> sigma-additive compl-closed non

empty from MEASURE4.MIZ allows one to state that one’s sigma-algebra is non empty in one’s
code without any justification. Now we see why clusters operate only on specific types, and
hence the ultimate reason for types existing at all. They are to give Mizar an easier time with
knowing when to try to apply which clusters. If we did not have clear, succinct labels of
Function and FinSequence , Mizar would have to try to apply hundreds of clusters on every
statement, and it would run very slowly (Wiedijk, 1999, p. 10).

So clusters require the existence of types. Types, as a side effect, do eliminate a significant
amount of writing in any proof. If types like Function were not defined, and we kept long
assumption lists such as f is Function & dom f = X & rng f c= Y in their place, whenever
we applied a theorem we would take up many lines simply citing to Mizar that, indeed, every
single one of these twenty-seven or so hypotheses is satisfied by the environment we are
currently in, before we could get around to actually using the theorem.

Still, Mizar proofs are already long and detailed, and having to type in even more steps, tedious
as it sounds, is preferable to the trouble of looking up a dozen new definitions several times, until
the definitions are finally burned into memory from sheer repetition, for every MML file one
builds upon in one’s proof.

Another argument against types is that they obscure the nuts and bolts of mathematical concepts,
making it harder to convert between types. One must spend time unrolling layers of definitions,
proving equality of underlying basic parts, and then recompiling the basic parts into the new type.
This happened when I failed to find the SetSequence type on an initial search for helping me
define the partition piece list for a simple function. I found the SetSequence type later, by
accident, after already defining the partition piece list myself. I considered trying to write a
lemma that would convert my creation into a SetSequence , so that I could use a useful theorem
on SetSequence s, but after some analysis I judged that it would be easier to write the theorem
for my own partition piece list from scratch. The proof was fairly long, but it was still
comparable to the work I would have had to do to convert to the SetSequence type.

A problem with clusters themselves is that they introduce unreliability. At one time, I was trying
to figure out how to show that if x is real, then |.x.| , the absolute value of x, is real also.
Searching the MML, I found a cluster in COMPLEX1:

Proof Checking

51

Figure 4.3.2.1. A cluster from COMPLEX1.

Since any Real is also a complex number , I attempted to use reconsider to cast x to complex

number , and then presumably the cluster would take care of the rest. However, trying to cast x to
complex number created environment errors, and I did not feel like modifying my environment
at that point, having recently resolved issues with ordering some of the lists. I went to look for a
workaround.

Now imagine if Mizar were really bare-bones: no clusters, no types, just predicates. This
particular step would have been simple. There would be a theorem that said for x st x in

REAL holds x in COMPLEX and a theorem that said for z st z in COMPLEX holds |.z.|

in REAL , and these kinds of modus ponens applications never fail in Mizar. It would be nice if
every time one went to apply some logic involving a cluster, one had that degree of assurance.

The idea of this simplified system comes from Coq, where one works with basic predicates and
equality almost exclusively, and one gets used to applying many small obvious logical steps to
minute parts of data structures, instead of thinking in broader human terms that resemble Mizar
clusters.

4.3.3. Operator overloading and mistaken identities

The single largest avoidable issue that I encountered during this formalization was the issue of
operator overloading. Convenient in programming languages, in proof verification it seems to
create a lot of trouble with little benefit.

Here is a particularly confusing example. In measure theory, we have the idea of a universe X
and a sigma-algebra S which is a set of “nice” subsets of that universe X. From here we can talk
about “nice” functions which are S-measurable. That simply means for any subset of the range
of the measurable function, the preimage of that set will definitely be in S. Put another way, all
preimages are well-behaved.

Some measure theorists apply the term measurable to sets as well to mean that the set is a
member of the sigma-algebra, in keeping with the idea that the sigma-algebra contains all sets
that behave properly with the measure function. The authors of MESFUNC1 define the binary
predicate is_measurable_on to mean this, with the first argument any set and the second
argument the sigma-algebra.

registration let z be complex number;
 cluster |.z.| -> real;

Proof Checking

52

Figure 4.3.3.1. The first definition of is_measurable_on .

Later, they overload is_measurable_on to have a different meaning when the first argument is a
function from X to the extended reals, the expected meaning that the supplied function is S-
measurable. What if a user intending to use the second definition of is_measurable_on
accidentally supplies a non-PartFunc argument, perhaps because he got his variable names
mixed up? Normally, Mizar would generate a typing error and immediately alert the user to his
mistake, but since the original definition takes set s for the first argument, and everything in
Mizar has the type set , Mizar will accept the phrase as written. Mizar will probably report a
logical error though, because whatever the user is formalizing here is probably talking about
measurable functions, not set membership. I made this very mistake in my code, and seeing the
logical error, I spent considerable time trying to track down the failure in logic, when all along
the real problem was that Mizar was not using the version of is_measurable_on that I thought it
was. It defeats the point of predicates that take arguments of specific types, if when one puts in a
bad type, Mizar cannot report that one did so. This is one way operator overloading can be
detrimental.

Another serious instance of mistaken identity that arose from operator overloading occurred with
the overloading of the * operator, used to denote composition of both functions and relations.
This may also say something about the inherent difficulties with having many Mizar cooks
contributing to the same broth: the author of the MML files on relations was not the same person
who wrote the MML files on functions, but both wanted to use * to represent composition, and in
different ways.

The original snippet of code that uncovered the problem:

Figure 4.3.3.2. The composition operator * .

Ignoring the difference between Function and PartFunc for now (it does not cause problems
here), as well as the meanings of Seg 1 , S, and ExtREAL (in this example, they are just sets),
which of the third and fourth statements should compile correctly? Given that M and p are
functions, usual mathematical notation reverses the order of application, so since p outputs an
element of S, and M accepts elements of S, the proper notation would be M*p.

definition
 let X be set;
 let S be SigmaField of X;
 let A be set;
pred A is_measurable_on S means :Def11:
A in S;
end;

M is Function of S,ExtREAL;
p is Function of Seg 1,S;
p*M is PartFunc of Seg 1,ExtREAL;
M*p is PartFunc of Seg 1,ExtREAL;

Proof Checking

53

Mizar actually compiles the third line as correct and the fourth as wrong. It turns out that the
author of the MML file on relations, RELAT_1, defined the * operator to denote composition
when applied to relations, but in the opposite order that the writer of FUNCT_1 defined it. Since
functions are relations (Relation is a supertype of Function), one might ask the question of
how Mizar decides which * operator to use when faced with two functions applying it. Might it
be that Mizar chooses whichever definition came first in the environment lists (in other words,
whichever definition Mizar “loaded” first)? No, because swapping the order of RELAT_1 and
FUNCT_1 in the environment does not move the error from the fourth line to the third. In the end,
only a fix I found from another MML file that also used both RELAT_1 and FUNCT_1 solved the
problem, and I still am not sure exactly how:

Figure 4.3.3.3. Reconciling the two definitions of the composition operator * .

This seems to beg the question of how Mizar would decide on one version over another when
faced with the * operator being applied to two functions. Resolving this issue was both
confusing and time-consuming (looking for special code to reconcile the two versions of * was
not part of my typical plan of attack for typing errors), and the issue would not have arisen if
Mizar forced authors to adopt unique notation for composition of relations and composition of
functions. (This is another benefit that Coq demonstrated; its type semantics prevents these
kinds of confusion with operator overloading.)

4.3.4. Operator overloading and syntax

Accommodating operator overloading can lead to bizarre constructions. In this example, we use
MEASURE6:16 to convert an extended real number to a real number when we know that the
extended real number is sandwiched between two finite reals.

Figure 4.3.4.1. Theorem for converting extended real to real.

Notice that it uses the <= operator to show the sandwiching, and that the arguments are type
extended real (R_eal). This leads to difficulties trying to apply the theorem. One must ensure
that the x <= y and y <= z preconditions one supplies are using the proper version of <=, the
version that has been overloaded to work with R_eal s. Since Real s are R_eal s (every real
number is an extended real number), this would seem to be straightforward, and often is in
similar situations, but for some reason, this particular operator overloading combined with the

notation let f,g be Function;
synonym g*f for f*g;
end;

theorem
 for x,y,z being R_eal holds
 x is Real & z is Real & x <= y & y <= z implies y is Real

Proof Checking

54

structure of MEASURE6:16 required a unique construction. Here is the simplest solution I could
find that works:

Figure 4.3.4.2. Instantiation of extra variables.

The instantiation of the Zer and One R_eal wrappers for the numbers 0 and 1, bolded above, are
necessary. This was the only time in Mizar that I needed to create wrapper variables to resolve a
typing error.

4.3.5. Operator overloading and user-friendliness

A final way operator overloading can create problems for users is in blurring users’ abilities to
easily see what is going on. Mizar always has a better handle on the current types of variables
than its users do, because users often declare and modify the types of their variables (with
reconsider) in places far off from their current section of code. A Mizar author can use the
reserve keyword to localize type declarations in a standard place, but still must flip back and
forth to remind herself of the types of variables. reserve also cannot completely overcome the
localization of type information problem, because reconsider s are often the most direct way to
fix typing errors. (This may be an argument for removing the current ability of Mizar to
reconsider the original variable to a different type, instead only allowing the secondary mode
of reconsider , which creates a new variable with the desired type and leaves the original one
untouched.)

With Mizar as it is now, users have no confidence when looking at an expression that they can
interpret it properly. They must always search throughout theirs’ and others’ code for type-
modifying statements, and use test statements often to refresh their memory. This is solely
because operator overloading allows a keyword or symbol to change meanings depending on its

for i be Nat st i in dom F holds(M*F).i is Real
& 0<=(M*F).i & (M*F).i<=1 proof
 let i be Nat;
 assume C0:i in dom F;
 C1:F.i in S by B1082,C0;
 C2:(M*F).i=M.(F.i) by B1120,C0;
 M is nonnegative by MEASURE1:def 11;
 then 0. <= M.(F.i) by C1,MEASURE1:def 4;
 then C3:0 <= M.(F.i) by SUPINF_2:def 1;
 reconsider Zer=0 as R_eal by SUPINF_1:10;
 reconsider One=1 as R_eal by SUPINF_1:10;
 M.(F.i) <= M.X' by MEASURE1:62,C1;
 then M.(F.i) <= 1 by A0;
 then 0<=(M*F).i & (M*F).i<=1 by C3,C2;
 then Zer<=(M*F).i & (M*F).i<=One;
 then (M*F).i is Real & 0<=(M*F).i & (M*F).i<=1 by MEASURE6:16;
 hence thesis;
end;

Proof Checking

55

arguments, and arguments are only ambiguous in the first place because type information is
invisible lexically. Again the type system interacts with a feature of Mizar (operator overloading
currently, previously clusters) to create an unfriendly environment for the user.

For an illustration, here is another sample from my code for Markov’s inequality:

Figure 4.3.5.1. Unfriendly code.

Most of the above code is background and the reader can ignore it; the important lines are in
boldface type. Just from a user-friendliness standpoint, a proof checker should not say to its user,
“The fact that Sum(a) = 0. does not imply that Sum(a) = 0. .” (0. is the symbol for zero with
the type extended real.) The reason, of course, is that the two Sum(a) s are actually different
expressions, with different meanings, as one is the sum of a sequence of reals and the other is the
sum of a sequence of extended reals. Note the reconsider changing a from FinSequence of

REAL to FinSequence of ExtREAL .

Besides emotional distress, this particular piece of code led me to embark on a chain of work that
turned out at the end to be irrelevant. As shown, I was working to show Sum(a)=0. , a necessary
fact for a different part of the proof. This should not be too difficult, I thought, since a is a
singleton sequence containing 0. . I found a chain of theorems: 0 = Sum<*0*> and <*0*> =

1|->0 and 1|->0 = Seg 1-->0. , which is exactly what I defined a to be in the first line of the
sample code. But writing this out, it was only at the last link that the error appeared; only at the
end did I notice that the theorems in my chain were dealing with FinSequence of REAL s, not
FinSequence of ExtREAL s. All along the Sum(a) I was equating to was not the Sum(a) I
needed. If the authors of the MML had not overloaded Sum() , I would have known from the
start that I needed to find theorems about finite sequences of extended reals.

reconsider a=Seg 1-->0. as Function of Seg 1,ExtREA L by FUNCOP_1:57;
A90:a is FinSequence of ExtREAL proof
 dom a = Seg 1 by FUNCOP_1:19;
 then reconsider a as FinSequence by FINSEQ_1:def 2 ;
 rng a c= ExtREAL by RELSET_1:12;
 hence thesis by FINSEQ_1:def 4;
end;
then reconsider a as FinSequence of ExtREAL;
A91:Sum(a)=0. proof
 a = 1|->0. by FINSEQ_2:def 2;
 then a = 1|->0 by SUPINF_2:def 1;
 then B0:a = <*0*> by FINSEQ_2:73;
 then reconsider a as FinSequence of REAL;
 Sum(a) = Sum<*0*> by B0;
 then Sum(a) = 0 by RVSUM_1:103;
 then B1:Sum(a) = 0. by SUPINF_2:def 1;
 reconsider a as FinSequence of ExtREAL by A90;
 Sum(a) = 0. by B1;
::> *4
 hence thesis;
end;

Proof Checking

56

4.3.6. The legacy of MML authors

In a way, the problems with operator overloading are not the fault of operator overloading itself,
but related to a general issue with proof checker systems. After all, when mathematics textbooks
or literature set up their conventions of terminology and notation, the worst that can happen is
that the reader must learn to think in an unusual notation for the duration of this textbook or
paper. Once the user has absorbed the meaning of the paper, she is free to build on that
knowledge using whatever notation she prefers. But in formal proof checker systems, future
users are more or less stuck with adopting in their own work any previously created notation. If
one wishes to use a different notation, one either has to rewrite each file one uses from the MML
to use that notation, or write some conversion theorems that can mediate between logical
statements in one’s preferred notation and statements formatted in existing notation. Either way,
this is too much to ask.

4.3.7. Mathematics is not uniformly canonized

That concerns different notations for the same concept, but what about the same notation for
different concepts? What if an MML author’s definition of a foundational piece differs from a
future proof writer’s concept of it? The writer must first understand that he has found someone’s
attempt to define whatever particular term or theorem he is looking for, and then he must
convince himself without the benefit of human interaction that the piece he is about to use is
indeed the same piece that he originally thought he would be using.

The example that came up in my own experience was researching the existing definition of
Lebesgue integral. The definition in MESFUNC3 had the unusual property that it did not specify
over which subset of the measure space’s universe to take the integral. (This is analogous to
being unable to take a Riemann integral over the closed interval [0,1] instead of the entire real
line.) This definition of Lebesgue integral loses no generality, because any subset of a measure
space is a measure space. It should be able to be used, with a little massaging, in any case in
which the more common definition could be.

Nevertheless, this reminds us that one cannot simply add a comment “Lebesgue integral” next to
a definition and have that be the end of the story. There are different definitions of Lebesgue
integral, measure space, measurability, and just about any other complex concept in mathematics,
and without actually looking at the exact axioms or hypotheses described when an MML author
defines their terms, one cannot be sure if one’s proof is on the foundation one thinks it is.

For another example that arose in this formalization, let us look at the extended real numbers.
Pop quiz: does 0 multiplied by infinity equal 0? I believe this is not necessarily true of all
definitions of extended real numbers. Some systems have this hold and others leave the
operation undefined. At any rate, I found myself in a situation where I needed to prove this, and
automatically I went the usual route of searching for a theorem that would prove this (assuming
it was derived from basic axioms), before it occurred to me that it might be an axiom in the
definition of the ExtREAL set itself, which it turned out to be.

Proof Checking

57

Now, although this particular example did not take that long to figure out, this idea might cause
problems more generally. Suppose some mathematicians are using measure theory to prove a
theorem, and they proceed happily using theorems out of MESFUNC3.MIZ. Suddenly, they hit a
snag in a particular lemma. Puzzled, and having trouble finding out exactly why the logical step
is failing, they trace backwards through the relevant terms, unrolling definitions, until they
finally find the reason – the writers of MESFUNC3.MIZ had used a different set of assumptions to
define their measure theory to begin with! In other words, because the basic assumptions of
measure theory have not been canonized, one runs the danger of trying to use a library or set of
theorems that are not talking about what one really needs. The upshot is that one must verify
each library and its assumptions before use. Since libraries build upon other libraries, the farther
afield one’s topic is from set theory’s fundamentals, the more work this is.

4.3.8. Reinventing the wheel

This is not the theorem you’re looking for. – Obi-Wan Kenobe, if he were a user-defined proof checker library

When browsing MML files, it becomes apparent that comments really do go a long way. It is
true in computer programming, but it is even more pertinent in Mizar because variable names are
more terse and obscure. MML writers have to think up names for all their intermediate variables,
and due to referring to these variables many times over the course of a proof, just as in normal
mathematical writing they choose short, often one-letter names. For example, when I was trying
to find out if there were a theorem stating that the sum of a sequence equals the sum of that
sequence with all zeroes removed, I ran into new notation that I had never seen before. In
addition to the alphabet soup of variables names themselves, the terminology was mostly new:
Ser() , vol() , SUM() (all caps, not the Sum() I knew about).

Experience has taught me that sometimes it is easier to reinvent the wheel than to learn other
authors’ uncommented, mysterious syntax well enough to determine if they have proven a
theorem I need. Depending on how difficult the needed theorem is, one has to make a judgment
call of whether it is likely to be worth examining MML files for an hour or two.

A policy of casual documentation would help; a few sentences on the meaning of each variable
and term should be enough to communicate the intents of each to a human reader. As noted
above, though, this is more for a user roadmap; it does not get around the problem of authors
having different ideas of what mathematical terms mean.

Proof Checking

58

5. Comparison

We discuss a few high-level differences between Coq and Mizar.

5.1. Underlying theory

The semantics of Mizar is fairly straightforward. Mizar is about ZF style set theory with first order logic
 –Dr. Freek Wiedijk, Mizar: an Impression, p. 10

Coq is a proof tool based on a type system with inductive types called the Calculus of Inductive Constructions (CIC).
Through the Curry-Howard isomorphism, proofs are identified with terms and proof-checking with type checking;
the construction of a proof then becomes simply the interactive construction of a term which is at the end type-
checked. –Dr. Luís Cruz-Filipe, Formalizing Real Calculus in Coq, p. 2

As I have alluded to before, understanding the underlying theory of Coq will be one of the main
challenges for a new user. The Calculus of Inductive Constructions, the general concept of
constructive logic, and the Curry-Howard isomorphism are not widely known outside the
computer proof checking community. In contrast, any mathematician seeking to check his
proofs by computer will be relatively familiar with set theory and first-order logic, which is all
one needs to know about the underlying theory of Mizar.

Besides the main concept of “proofs as types,” the Calculus of Inductive Constructions theory
has a lot of subtleties, each of which was a challenge for me to get used to. One involves the
idea of equality. Suppose we have two sets, each containing the natural numbers 1, 2, and 3.
However, the first set we build up in the order 1, 3, 2 (perhaps because we apply the if -then
construction of Coq in that order) and the second set we build up in the order 1, 2, 3. In that case,
according to Coq, the two sets are not equal, since their structure is clearly different. Even
though we could prove that the two sets contain exactly the same elements, this is immaterial
from the viewpoint of Coq’s “=” operator. Of course, most mathematics defines equality for sets
based on whether or not they contain the same elements regardless of how the sets were
“constructed” (indeed, in most mathematics there is not even the idea of “constructing” a set –
this is analogous to the issue in computer programming that every group of data has an order to it,
the order that the data is laid out in memory, whether or not the programmers want to think about
the data as being ordered at all). In each of the three major libraries I used, there is a provision
for allowing Coq to have a more traditional idea of equality. C-CoRN defines an equals operator
[=] for all its types, and Pottier-Stein similarly defines multiple versions of the Equal predicate.
The Coq standard library has the Extensionality_Ensembles axiom to essentially modify the
equality operator to accept sets which have proofs that they are subsets of each other as equal, as
opposed to only accepting sets which have exactly the same structure as equal.

Proof Checking

59

5.2. Constructivity

Being able to enter a fully constructive proof into Coq and have it generate an algorithm for
computing an object stated to exist by the theorem (extraction) was one of Coq's main goals from
the beginning (Filliâtre, 2000, p. 2; Letouzey, 2003, p. 1). Kleene first described this idea of
generating algorithms from proofs, called realizability, in 1945, although the idea exists in
Gödel’s work dating as far back as 1932 (2000, van Oosten, pp. 2-3).

One of the main aspects of constructivity new Coq users must wrap their heads around is the
difference between being able to state that something exists and actually being able to compute
it. A basic rule of constructive logic is that, if one has proved that for all x there exists a y such
that property A(x,y) holds, then that means one has a process by which one can, given an x,
produce the actual y satisfying the property A(x,y). In classical logic, the statement of existence
does not inherently bring along a way to specify or describe the y; in other words, classical logic
is looser and less stringent about letting mathematicians say things exist.

The real numbers provide an interesting case study in constructivity. A common way to
constructively define the reals is as infinite sequences of rationals that approach a certain value
(the real number) with increasing accuracy. One valid way to mandate this accuracy is that for a
real number r, any two rationals in the sequence rn and rm must satisfy the condition |rn - rm| <
1/n + 1/m. From this, logically two reals r and s are indistinguishable, and thus equal, if every
pair of terms from the sequences satisfies |rn| - |sn| ≤ 2/n. Since the sequences are infinite, we can
never finish a computation to conclude that every pair from the sequences satisfies this rule, and
this lack of computability equates to a lack of a proof of equality in pure constructive
mathematics.

A new Coq user will likely first run into this difference between constructive and classical logic
in Coq when he first encounters the wall between the Prop domain and the Set domain.
Although it is not obvious unless one reads the manual and learns some of the underlying
workings of Coq, there are two “modes” of proof writing in Coq, Prop and Set . A major
separation occurs when one looks at the exists keyword, which talks about existence in the
Prop domain (any statement of the form “exists [something]” in Coq is an object in the Prop
domain), and the sig keyword, which is its counterpart in the Set domain. One may, as I did,
get used to using the elim tactic to convert an exists statement into the claimed object itself,
which is the only way to use existence hypotheses to produce new existence theorems. This
works fine until one attempts to use an existence hypothesis from the Prop domain to build a
proof in the Set domain. The Set domain is the true constructive arena we talked about above.
The minute one jumps into trying to build a proof in the Set domain – perhaps because one is
starting to use a new user-defined library, or section of library that works in that domain – one
finds that all one’s storehouse of knowledge built on exists keywords is moot. New users must
be cautious of this to avoid building a large database of theorems in the Prop domain and
suddenly having to redo it due to not entering the Set world early enough.

Proof Checking

60

5.3. Readability

A major difference between Mizar and Coq is apparent when browsing the user-defined
contributions of each system. Coq’s expression syntax is harder for humans to parse than
Mizar’s. Consider the following statement of a well-known theorem in Coq. First are the
variables and preconditions, followed by the statement.

Figure 5.3.1. A Coq theorem statement.

Despite some descriptive term names like Derivative , Continuous , interval , PartIR , (partial
function from the reals to the reals) and Integral , it is difficult to interpret this. The meaning of
arguments with respect to their terms is not as clear as in Mizar. For example, why is the only
argument of the Integral expression a single precondition H? Does not an integral require a
function and an interval at minimum? (Integral actually does require those; the explanation is
that all the needed information is contained implicitly in H.) At any rate, this is Barrow's rule, a
formulation of the fundamental theorem of calculus, the main goal of the C-CoRN library.

Figure 5.3.2. The real Barrow.

Let us look at the Mizar formulation (INTEGRA5:13):

Figure 5.3.3. A Mizar theorem statement.

If I mention that f` is the derivative of f , this statement is almost conventional mathematical
writing. This is pretty typical of Mizar. As mentioned in the Mizar analysis, Mizar authors tend

Variable J : interval.
Variable F : PartIR.
Hypothesis contF : Continuous J F.
Variable x0 : IR.
Hypothesis Hx0 : J x0.
Hypothesis pJ : proper J.
Variable G0 : PartIR.
Hypothesis derG0 : Derivative J pJ G0 F.
Let G0_inc := Derivative_imp_inc _ _ _ _ derG0.

Theorem : forall a b
 (H : Continuous_I (Min_leEq_Max a b) F) Ha Hb,
 let Ha' := G0_inc a Ha in
 let Hb' := G0_inc b Hb in
 Integral H [=] G0 b Hb'[-]G0 a Ha'.

for f being PartFunc of REAL,REAL st A c= X & f is_ differentiable_on X &
f`|X is_integrable_on A & f`|X is_bounded_on A hold s
integral(f`|X,A) = f.(sup A)-f.(inf A)

Proof Checking

61

to create new terms for most concepts, here including differentiability, integrability, and
boundedness, not to mention integral, supremum, and infimum, and the ̀ notation for
derivatives. If we add and rename some terms in the Coq version to improve readability, the
result is still murky:

Figure 5.3.4. Coq statement of Barrow’s rule with renaming.

The unorthodox placing of the arguments to terms such as included_in ,
Is_deriv_implies_interval_is_included , and continuous_on , and the lack of a clear
operator for function evaluation make this about the best one can do.

6. The Book proof

There is a book by Martin Aigner and Günter M. Ziegler called Proofs from THE BOOK
(Wikipedia, 2007). This is a reference to a saying of Paul Erdıs about how God has a Book
which contains perfect, the “most elegant,” proofs of all mathematical facts. It makes sense to
try to come up with an elegant, succinct handwritten proof before trying to convert it into Mizar
or Coq. Optimizing the human proof by minimizing the number of steps should decrease the
formalization time proportionally.

I used this strategy in the formalizations described in this paper. First I browsed basic
explanations of the theorems, and then sat down and wrote a complete proof by hand, polishing it
until I felt it elegantly captured the essentials and nothing more. Let us look at how this
optimization bore out during formalization.

Variable J : interval.
Variable F : PartFunct_Real.
Hypothesis contF : is_continuous J F.
Variable x0 : Real.
Hypothesis Hx0 : J x0.
Hypothesis pJ : proper_interval J.
Variable Fprime : PartFunct_Real.
Hypothesis is_deriv : Derivative J pJ G0 F.
Let included_in :=
 Is_deriv_implies_interval_is_included
 _ _ _ _ is_deriv.

Theorem : forall F:PartFunct_Real,
 forall a:Real, forall b:Real,
 (H : continuous_on (interval_well_defined a b) F) Ha Hb,
 let Ha' := Is_deriv_implies_interval_is_included a Ha in
 let Hb' := Is_deriv_implies_interval_is_included b Hb in
 Integral H [=] Fprime b Hb'[-]Fprime a Ha'.

Proof Checking

62

6.1. Cons

One inevitably makes changes to one’s Book proof as one progresses through the formalization.
Some logic that is easy to understand for humans is difficult for computers, and vice versa. For
example, in the Wikipedia proof of Markov’s inequality, the writers state as a single step that,
given a random variable f and a particular set of points where f takes on values greater than a
constant a, a multiplied by the indicator function for f is less than or equal to f for all points in
the measure space universe. With a little thought, the reader can see that this is true where the
indicator function is 0, because a is mandated in the assumptions to be greater than 0, and this is
true where the indicator function is 1, because by the definition of indicator function, f is greater
than or equal to a at precisely those points.

However, using this as a step in Coq or Mizar requires the knowledge of a fact that you can pull
out a constant from a Lebesgue integral in general. This fact is lengthy to prove. So, in the
formalization, we restricted ourselves to only proving the fact for simple functions. One often
chooses data structures or lemma statements that represent easily in the proof checker system
over structures or statements that seem elegant or most natural to humans.

Streamlining a pencil-and-paper proof beforehand is still necessary, because it gives a clear
understanding of the proof from start to finish. However, it is best not to think about the data
structures and minute lemmas when writing the handwritten proof, leaving that for when one
begins browsing the user-defined libraries of the proof checker system.

6.2. Pros

A good thing about writing out a Book proof first is that it forces one to decide on what sets of
assumptions and versions of used terms one plans to use. I have been tempted to “cheat” when
looking too soon at the actual Coq or Mizar terms I will be using in the formalization.

To give an example, another step in the Wikipedia proof of Markov’s inequality is that the
probability that f ≥ a equals the expected value of the indicator function. Where does this fact
come from? Might not some mathematicians define “probability” in measure theory to exactly
to be the integral of the indicator function of the event? But in that case, a large step of the proof
is just a definition! On the other hand, mathematicians might define probability in any number
of other ways, perhaps, just to give an example, as the limit of some carefully chosen expression.
In that case, I would be in for a very long lemma equating that complex definition to the
Lebesgue integral of an indicator function. The reader can see how it can be tempting to choose
the easy definition that absorbs most of the work into an axiom.

How about definitions of measurability? Some authors define a function to be measurable if the
preimages of every subset of its range are in the sigma-algebra. This is a natural and direct

Proof Checking

63

definition. But some authors choose to define it in a more restrictive way to avoid talking about
intractable, badly-behaved sets. They define measurability as the property that all half-lines of
its range have preimages in the sigma-algebra. Both definitions are fairly common. So which
shall we choose? The first one, of course saves us more work.

6.2.1. “Cheating” in Coq

The first time the idea that I might be “cheating” in some way occurred to me was during
formalizing Markov’s inequality in Coq.

I was describing the structure of a countable collection of subsets of the measure space, as part of
writing the definition of measure. (The sets in the collection can be thought of as intervals of the
real line, except that they can be “spotty,” and we are interested in the additivity of measure, that
is, what the measure of the union of this collection of intervals will be.) For proving certain
lemmas in Coq regarding this union of a countable collection, the most convenient way to
represent the collection was a serial numbering of the sets, and a separate map taking the serial
numbers to the measures of the sets. But it occurred to me that the future user of my statement
of Markov’s inequality (after all, theorems are meant to be used to prove other theorems) would
probably find it more natural for his own work to simply have a map taking each element of the
collection to its measure, not this intermediate serial-numbering system.

Thinking about how this idea might apply elsewhere in my proof, I returned to my definition of
countability. I had chosen, again, the definition of countability that made my future work the
easiest. (I actually did not realize before this proof that there were so many ways to define
countability: with injective maps, with surjective maps, and with relationships with subsets of the
natural numbers.)

I decided that I should at least go with the two most common formulations of countability, and
prove them equivalent. Then I would not be clearly foisting as much work as possible upon the
user – I was simply choosing what honestly seemed to me to be the two most accepted
formulations and proving their equivalence so that I could use either one without feeling lazy.
The proofs of equivalence (both ways, showing that each definition implied the other) were
fairly complex and took 45 lines of compressed code, so this decision was not without
consequence.

Despite that, in the end I realized that this issue is not so clear-cut. The Coq standard library
itself does not contain an official definition of countability. In fact, as far as I could tell, the
concept is only used once in the whole standard library. In Coq.Logic.ConstructiveEpsilon ,
Yevgeniy Makarov formulates his own version of countability for a small proof at the end.

When I saw an author of the Coq standard library himself choose a definition of countability that
is most natural for his own purposes, exactly engaging in this practice of removing the most
work from his proof, it struck me that in some sense this is justified. The author of
Coq.Logic.ConstructiveEpsilon may know that the Coq standard library will later come up

Proof Checking

64

with proofs of equivalence of all formulations of countability, and perhaps such a basic concept
should be kept the domain of the (rest of) the standard library anyway.

6.2.2. Mizar

Of course, this phenomenon is not restricted to Coq. In Mizar, it happened to me at the very
beginning of my formalization of Markov’s inequality, during the definitions phase. One of the
first things needed is the idea of the set of all elements of the measure space universe that f maps
to something greater than or equal to a. In this picture from the Wikipedia proof, it is the two
segments at the bottom which correspond to the portion of f that rises above the dotted line.

Figure 6.2.2.1. Illustration of the set of all elements that f maps to something greater than or equal to ε.

The dilemma was, do I state the theorem of Markov’s inequality such that “for all sets that
exactly capture this set of points that f maps to something greater than or equal to a...” or do I say
“for a given fixed real constant a, there exists a unique set which captures all elements that f
maps to something greater than or equal to a...” On the surface, the main difference is that one
way requires me to prove something extra that the other does not, the existence and uniqueness
of a certain set. But the important question is, which is the “fair” way to state Markov’s
inequality? Is it really my problem to establish whether or not such a set exists and is unique, or
should I concentrate on just the logic of Markov’s inequality itself? If it is true that some
standard library should cover this for me, because it is really a fundamental fact and more or less
tangential to the real issues being addressed by Markov’s inequality, I do not want to duplicate
their work when they do get around to it. (The C-CoRN developers saw the consequences such a
choice can have for the size of one’s proof. In their formalization of the fundamental theorem of
algebra, the constructive definition of and basic theorems about the real numbers took up 865 KB
of Coq code, while the code directly related to the logic of the theorem’s proof was 65 KB
(Geuvers et al., 2001, p. 4)).

The situation as it actually arose turned out to have a solution that had its cake and ate it too. It
turned out to be almost trivial (as the reader may already have questioned) to say that this set
exists and is unique by the axiom of separation. It was not completely trivial because I had to
familiarize myself with the Fraenkel operator in Mizar, one of the tougher pieces of syntax, to
use this axiom. Still, these questions of fairness and putting work upon others persist in general.

Proof Checking

65

7. Conclusions

We make observations on the future of proof checking in general, based on the experiences of
doing these formalizations in Coq and Mizar.

7.1. An eye for detail

Formalizing a proof forces one to look at mathematical details that one otherwise overlooks.
One example I encountered concerns the definition of measurable functions. I have a function f
which is measurable on the sigma-algebra, a basic requirement to take a Lebesgue integral.
Since most of the MML deals with PartFunc (partial functions), and to be consistent I had typed
f as a PartFunc also, is it necessary that the domain of f equals the entire universe of the measure
space to know that f is measurable on the sigma-algebra? After all, measurable simply means
that for every subset of the range, the preimage of that set is in the sigma-algebra. But what
exactly does this statement mean when f is only partially defined on the universe of the measure
space? The preimage will be the intersection of the portion of the universe upon which f is
defined and the “true” preimage of the range subset. Will the preimage always be contained in
the sigma-algebra? In general, it seems not, since the partial function’s domain could be any
badly-behaved subset of the universe.

The paper formulations of Markov’s inequality that I read were mute on the subject. It seems
that this concept of measurability as related to partial functions is too obscure for most people to
notice, myself included, even in expositions of measure theory intended to be fairly
comprehensive tutorials and explorations of the basic definitions. It is the sort of thing that only
comes to the forefront when one begins instantiating variables and data structures for a computer
formalization of a proof.

In general, the exact nature of computers when formalizing mathematics in proof checker
systems trained me to develop an eye for detail. For example, I had to reformulate my four
axioms of what it means to be a simple function several times. The concept of a simple function
is easy, but I kept uncovering errors and things I had overlooked in my formulations as I used
them in later sections of the proof. I learned that it is one thing to understand the concept of a
function with a finite number of values in its range, but it is another to be able to formulate that
in terms of precise data structures and statements about restrictions on those data structures.

One such mistake involved the axiom describing the finite list of range values. The natural way
to represent a finite list of reals in Coq is a function from the natural numbers to the reals. For
this list to be a legal representation of the range values of a simple function, we add the
restriction that we only care about the portion of this function below a certain fixed natural
number n representing the end of the list. For clarity and to make future lemmas easier, I
mandated that the range values be distinct as well. That is, I did not want to allow the possibility

Proof Checking

66

of the simple function being broken up into partition pieces such that there were multiple
partition pieces all mapping to the same real number.

Long after writing this axiom, I was creating an actual simple function, the indicator function of
an event A. In other words, A was a subset of the universe domain X, and its indicator function
would be a simple function mapping points in A to 1 and points outside of A to 0. As another
simplification to make life easier, instead of mapping 0 to the complement of A, and 1 to A, and
natural numbers from 2 to infinity to some null value, I just mapped 0 to the complement of A,
and all other natural numbers to A – why? Because that required only one use of the if -then
construction in Coq (it is somewhat cumbersome to work with).

Having created the indicator function, I proceeded on, and suddenly was amazed to hit a brick
wall: looking at the current list of known facts and comparing it with the current goal, I saw that
I was attempting to prove a falsehood. I had stated some hypothesis incorrectly. After some
analysis, I realized the culprit was not the current lemma’s preconditions, but my old axiom of
simple functions! The current proof depended on the fact that all partition pieces would have a
distinct range value. But, in my axiom, I had neglected to add in a note that I only cared that
range values would be distinct for the “relevant” natural numbers, that is, the ones below the
length of the list! I had left out the phrase “for natural numbers less than or equal to n” from the
distinctness axiom, again, for simplicity. Since at the moment, all natural numbers from 1 to
infinity were mapping to A, in terms of the current language I indeed had multiple “serial
numbers” of partition pieces mapping to the same range value, contradicting the axiom! It
impressed me that an innocuous concept like the partitioning of a simple function could lead to
mistakes like this.

If I were to sum up the main difference between pencil-and-paper mathematics and computer
formalizations in a single phrase, it would be “instantiation of data structures.”

7.2. Subjective experience

Although I find Coq much harder to learn than Mizar, I do want to mention something good
about this. One has to come up with creative solutions to problems caused by Coq’s many
nuances, and this makes the process of becoming proficient with Coq continually new and
satisfying. Figuring things out in Mizar, including learning new syntax and user-defined terms,
is like debugging a memory dump. One knows that one can find the answer, eventually, given
enough time and poring over pages of data (or, in Mizar, using many test statements to narrow
down the causes of an error). However, this kind of problem solving is not very inventive or
rewarding. In Coq, there is always the element of wondering, “Will Coq stymie me this time or
will I be able to figure this one out?” After reaching a certain level of experience with Coq,
having gotten through enough problems (with help from others or without) and having mastered
a significant portion of the system, some of the worries about never being able to figure out this

Proof Checking

67

system disappeared. Feeling a little more confident, it started to become fun learning each new
layer, digging deeper into Coq’s world. Working on a formalization became something I would
look forward to.

Most of this paper has been devoted to criticism and problems with Coq and Mizar, but I do not
want to give the wrong impression. After some initial diving into the systems followed by two
medium-sized proofs in each, I feel competent enough with Coq and Mizar to formalize
theorems in the accepted amount of time (several months for a group to formalize a fairly
complex theorem, longer for an individual). So while learning them was definitely challenging
and time-consuming, the experiment succeeded.

For the person who wants to pick up a system and begin checking proofs as quickly as possible, I
would suggest Mizar. Mizar’s learning curve flattens relatively rapidly compared to Coq’s. One
fairly quickly gets to the point where the majority of one’s time is spent on busy work (the
necessary work), and not always having to learn new syntax.

7.3. General benefits

The main benefit of proof checking is a standardized method of verifying proofs, especially for
ones like Kepler’s conjecture which required computer intervention either way. By having a
system universally considered reliable, as time goes by and the system maintains its reliability,
the confidence of users only increases. It may also take less time than human verification of
proofs, as also noted in the Flyspeck project, where the committee of referees felt that verifying
the proof by hand, while possible, was too laborious.

Proof Checking

68

Acknowledgements

I would like to thank my advisor for this project, Dr. Michael Beeson, for his encouragement,
proofreading, suggestions for revisions, and the general idea. Dr. Beeson also corrected some of
my misunderstandings of constructive logic. I also thank Dr. Philippe Audebaud, Dr. Gilles
Barthe, Dr. Thierry Coquand, Seokhyun Han, Dr. Christine Paulin, and Dr. Jan Reimann for
responding to my inquiries. I would like to thank Lionel Elie Mamane and Nickolay Shmyrev
for their extremely helpful answers to my questions on the Coq-club mailing list. I especially
wish to thank Russell O’Connor and Jasper Stein for teaching me several of the ins and outs of
Coq. I would like to thank the committee members who attended the defense of this paper, Dr.
Michael Beeson, Dr. Chris Pollett, and Dr. Mack Stanley. I would also like to thank Deanna
Diaz, Dr. Horstmann, and Dr. Louden for their help with administrative issues.

Proof Checking

69

Bibliography

Alama, Jesse. (2007, February 17). Re: referring to unlabeled theorems. Message posted to
http://www.nabble.com. Retrieved April 25, 2007, from http://www.nabble.com/Re:-referring-
to-unlabeled-theorems-p9022199.html.

Anderson, Robert M. Lecture Notes on Measure and Probability Theory. (n.d.). Retrieved June
26, 2007, from http://elsa.berkeley.edu/users/anderson/Econ204/
MeasureTheoryLectureNotesTimeless.pdf.

Ash, Robert B. Some basic techniques of Group theory. (2002, November). Retrieved March
12, 2007, from http://www.math.uiuc.edu/~r-ash/Algebra/Chapter5.pdf.

Audebaud, Philippe, and Paulin-Mohring, Christine. Proofs of randomized algorithms in Coq.
(n.d.). Retrieved June 23, 2007, from http://www.lri.fr/~paulin/ALEA/article.pdf.

Barthe, Gilles, Forest, Julien, Pichardie, David, and Rusu, Vlad. Defining and reasoning about
recursive functions: a practical tool for the Coq proof assistant. Retrieved December 27, 2006,
from http://www-sop.inria.fr/everest/personnel/David.Pichardie/Publis/genfixpoint.pdf.

Bass, Richard F. Real Analysis. (2007, April 10). Retrieved June 25, 2007, from
http://www.math.uconn.edu/~bass/meas.pdf.

Bass, Richard F. Probability Theory. (2001). Retrieved June 25, 2007, from
http://www.math.uconn.edu/~bass/prob.pdf.

Bertot, Yves, and Pierre, Castéran. On Well Founded sets and the Axiom of Choice. (2004).
Retrieved May 9, 2007, from https://www.labri.fr/perso/casteran/CoqArt/newstuff/notwf.html.

Bogomolny, Alexander. (n.d.). The Inclusion-Exclusion Principle. Retrieved May 7, 2007,
from http://www.cut-the-knot.org/arithmetic/combinatorics/InclusionExclusion.shtml.

Bray, Nicholas. (2002, December 3). Subgroup Index. From MathWorld--A Wolfram Web
Resource. Retrieved March 12, 2007, from http://mathworld.wolfram.com/SubgroupIndex.html.

Byliński, Czesław. Strengthening the Computational Power of the Mizar Checker. (2004,
November 1). Retrieved March 30, 2007, from http://www.fnds.cs.ru.nl/typesworkshop/slides/
bylinski.pdf.

Cairns, Paul, and Gow, Jeremy. Integrating Searching and Authoring in Mizar. (2006, January
31). Retrieved August 1, 2007, from http://www.uclic.ucl.ac.uk/people/j.gow/papers/alcor-
jar.pdf.

Candel, Alberto. (2003). The limit of sin(x)/x as x→0. Retrieved January 8, 2007, from
http://www.csun.edu/ac53971/courses/math350/xtra_sine.pdf.

Proof Checking

70

C-CoRN -- History. (n.d.). Retrieved December 22, 2006, from http://c-corn.cs.kun.nl/
history.html.

The C-CoRN library. (n.d.). Retrieved May 8, 2007, from http://c-corn.cs.ru.nl/downloads/
CoRN.tar.gz.

Chen, Beifang. The Inclusion-Exclusion principle. (2005, March 31). Retrieved May 7, 2007,
from http://www.math.ust.hk/~mabfchen/Math391I/Inclusion-Exclusion.pdf.

Chicli, L., Pottier, L., and Simpson, C. Mathematical quotients and quotient types in Coq.
(2002). Retrieved May 9, 2007, from http://www-sop.inria.fr/lemme/Loic.Pottier/
chicli_pottier_simpson.ps.

Chlipala, Adam. (2006, June 16). Equality modulo proofs. Message posted to the Coq-club
electronic mailing list. Retrieved July 3, 2007, from http://pauillac.inria.fr/pipermail/coq-
club/2006/002404.html.

Chlipala, Adam. Propositional and First-Order Logic. (2006, August 31). Retrieved May 11,
2007, from http://www.cs.berkeley.edu/~adamc/itp/lectures/lecture2.pdf.

Coleman, Mark. Measurable functions. (n.d.). Retrieved June 26, 2007, from
http://www.maths.manchester.ac.uk/~mdc/old/341/not4.pdf.

Coleman, Mark. Simple functions. (n.d.). Retrieved June 26, 2007, from
http://www.maths.manchester.ac.uk/~mdc/old/341/not5.pdf.

Coleman, Mark. Integration. (n.d.). Retrieved June 26, 2007, from
http://www.maths.manchester.ac.uk/~mdc/old/341/not6.pdf.

Coleman, Mark. Integration of measurable functions. (n.d.). Retrieved June 26, 2007, from
http://www.maths.manchester.ac.uk/~mdc/old/341/not8.pdf.

Construction of real numbers. (December 22, 2006). In Wikipedia, The Free Encyclopedia.
Retrieved December 22, 2006, from http://en.wikipedia.org/wiki/Construction_of_real_numbers.

The Coq proof assistant, version 8.0, for Windows. (2006, December 15). Retrieved February
27, 2007, from ftp://ftp.inria.fr/INRIA/coq/V8.0/Coq-8.0-Win.zip.

The Coq proof assistant, version 8.1, for Windows. (2007, September 3). Retrieved September
14, 2007, from http://coq.inria.fr/V8.1/files/coq-8.1-win.exe.

The Coq standard library. (n.d.). Retrieved April 6, 2007, from http://coq.inria.fr/library-
eng.html.

The Coq users’ contributions. (2006, December 15). Retrieved February 27, 2007, from
ftp://ftp.inria.fr/INRIA/coq/V8.0/contrib-8.0.tar.gz.

Proof Checking

71

Cruz-Filipe, Luís, Geuvers, Herman, and Wiedijk, Freek. C-CoRN, the Constructive Coq
Repository at Nijmegen. (n.d.). Retrieved January 16, 2007, from http://www.cs.math.ist.utl.pt/
s84.www/cs/lcf/pubs/report3.pdf.

Cruz-Filipe, Luís. A Constructive Formalization of the Fundamental Theorem of Calculus.
Retrieved December 25, 2006, from http://www.cs.ru.nl/~lcf/pubs/paper2.ps.

Cruz-Filipe, Luís. (2004, June 15). Constructive Real Analysis: a Type-Theoretical
Formalization and Applications. (Doctoral dissertation, University of Nijmegen, 2004).
Retrieved December 28, 2006, from http://www.cs.ru.nl/~lcf/pubs/phd.pdf.

Cruz-Filipe, Luís. Formalizing Real Calculus in Coq. (n.d.) Retrieved April 3, 2007, from
http://slc.math.ist.utl.pt/lcf/pubs/report1.pdf.

Denney, Ewen. The Synthesis of a Java Card Tokenisation Algorithm. (2001, November).
Retrieved July 2, 2007, from http://www.inf.ed.ac.uk/publications/online/0143.pdf.

Desmettre, Olivier. A formalization of real analysis in Coq. (2003, February 27). Retrieved
June 23, 2007, from http://pauillac.inria.fr/~desmettr/publications/Reals.ps.

ExistsFromPropToSet. (2006, June 12). In Cocorico!, the Coq Wiki. Retrieved June 8, 2007,
from http://cocorico.cs.ru.nl/coqwiki/ExistsFromPropToSet.

FAQ about Coq. (n.d.). Retrieved June 10, 2007, from http://coq.inria.fr/V8.1/faq.html.

Felty, Amy. Coq Session 1. (n.d.). Retrieved December 12, 2006, from
http://www.site.uottawa.ca/~afelty/csi5110/CoqSession1.txt.

Felty, Amy. Coq Session 2. (n.d.). Retrieved December 12, 2006, from
http://www.site.uottawa.ca/~afelty/csi5110/CoqSession2.txt.

Filliâtre, Jean-Christophe. Design of a proof assistant: Coq version 7. (2000, October).
Retrieved November 17, 2007, from http://72.14.253.104/search?q=cache:oQO1KLG1pIEJ:
www.lri.fr/~filliatr/ftp/publis/coqv7.ps.gz+%22Design+of+a+proof+assistant:+Coq+version+7%
22&hl=en&ct=clnk&cd=3&gl=us.

Geuvers, Herman, Pollack, Randy, Wiedijk, Freek, and Zwanenburg, Jan. The algebraic
hierarchy of the FTA project. (2001, June). Proceedings of Calculemus 2001, 13-27. Retrieved
February 3, 2007, from http://www.calculemus.net/meetings/siena01/Papers/overall.ps.

Geuvers, Herman, Pollack, Randy, Wiedijk, Freek, and Zwanenburg, Jan. A Constructive
Algebraic Hierarchy in Coq. (2002, October). Retrieved December 28, 2006, from
http://www.cs.ru.nl/~freek/pubs/alghier1.pdf.

Geuvers, Herman, and Niqui, Milad. Constructive Reals in Coq: Axioms and Categoricity.

Proof Checking

72

(2000). Retrieved December 25, 2006, from http://www.cs.ru.nl/~milad/publications/
TYPES00.ps.

Geuvers, Herman, Wiedijk, Freek, and Zwanenburg, Jan. A Constructive Proof of the
Fundamental Theorem of Algebra without using the Rationals. (2001). Retrieved November 17,
2007, from http://citeseer.ist.psu.edu/rd/27441992%2C466997%2C1%2C0.25%2CDownload/
http://citeseer.ist.psu.edu/cache/papers/cs/24588/http:zSzzSzwww.cs.kun.nlzSz%7EfreekzSznote
szSzkneser.pdf/geuvers01constructive.pdf.

Giménez, Eduardo. Co-Inductive Types in Coq: An Experiment with the Alternating Bit
Protocol. (1995, June). Retrieved December 27, 2006, from ftp://ftp.ens-lyon.fr/pub/LIP/
Rapports/RR/RR1995/RR1995-38.ps.Z.

Gonthier, Georges. A computer-checked proof of the Four Colour Theorem. (n.d.). Retrieved
March 31, 2007, from http://research.microsoft.com/~gonthier/4colproof.pdf.

Gonthier, Georges. Notations of the Four Colour Theorem proof. (n.d.). Retrieved March 31,
2007, from http://research.microsoft.com/~gonthier/4colnotations.pdf.

Group action. (2007, March 12). In Wikipedia, The Free Encyclopedia. Retrieved March 12,
2007, from http://en.wikipedia.org/wiki/Group_action.

Gupta, Maya R. A Measure Theory Tutorial (Measure Theory for Dummies). (2006, May).
Retrieved June 24, 2007, from https://www.ee.washington.edu/techsite/papers/documents/
UWEETR-2006-0008.pdf.

Hales, Thomas C. Introduction to the Flyspeck Project. (2005). Retrieved October 31, 2007,
from http://drops.dagstuhl.de/opus/volltexte/2006/432/pdf/05021.HalesThomas.Paper.432.pdf.

Han, Seokhyun. Personal site. (n.d.). Retrieved June 23, 2007, from http://www.cs.rhul.ac.uk/
~seokhyun/.

Har-Peled, Sariel. Lecture 8. (2004, February 18). Retrieved June 23, 2007, from
http://valis.cs.uiuc.edu/~sariel/teach/2003/b_273/notes/08_prob_III.pdf.

Herbelin, Hugo. (2006, February 14). On the form of the axiom of description [Message-ID:
200602140912.KAA30896@pauillac.inria.fr]. Message posted to the Coq-club electronic
mailing list, archived at http://pauillac.inria.fr/pipermail/coq-club/. Retrieved June 11, 2007,
from http://pauillac.inria.fr/pipermail/coq-club/2006.txt.

Huet, G., Kahn, G., and Paulin-Mohring, C. The Coq Proof Assistant: A Tutorial. (2004, April
27). Retrieved July 3, 2007, from http://flint.cs.yale.edu/cs428/coq/pdf/Tutorial.pdf.

Hurd, Joe. HOL Theorem Prover Case Study: Verifying Probablistic Algorithms. (2002).
Retrieved June 23, 2007, from http://www.cl.cam.ac.uk/~jeh1004/research/talks/holprob-
short.pdf.

Proof Checking

73

Imura, Hiroshi, Kimura, Morishige, and Shidama, Yasunari. The Differentiable Functions on
Normed Linear Spaces. (2004, May 24). Retrieved February 10, 2007, from
http://www.cs.ualberta.ca/~piotr/Mizar/mirror/http/fm/2004-12/pdf12-3/ndiff_1.pdf.

Inclusion-exclusion principle. (2007, May 7). In Wikipedia, The Free Encyclopedia. Retrieved
May 7, 2007, from http://en.wikipedia.org/wiki/Inclusion-exclusion_principle.

Index of MML Identifiers. (n.d.). Retrieved February 6, 2007, from http://mizar.org/JFM/
mmlident.html.

Introduction to Group Theory. (n.d.). Retrieved March 12, 2007, from
http://members.tripod.com/~dogschool/.

Invited talks. (n.d.). Retrieved June 23, 2007, from http://www.cs.ru.nl/lc2006/invited.html.

Karrmann, Stefan. (2005, October 27). Early versus late (non-)informative terms. Message
posted to the Coq-club electronic mailing list. Retrieved November 5, 2007, from
http://pauillac.inria.fr/pipermail/coq-club/2005/002133.html.

Koprowski, A. (2007, March 21). Setoid for arbitrary relation? Message posted to
http://www.nabble.com/Setoid-for-arbitrary-relation--t3441453.html. Retrieved April 3, 2007.

Kouba, Duane. The method of integration by parts. (2000, April 23). Retrieved February 22,
2007, from http://www.math.ucdavis.edu/~kouba/CalcTwoDIRECTORY/intbypartsdirectory/
IntByParts.html.

Lebesgue integration. (2007, July 5). In Wikipedia, The Free Encyclopedia. Retrieved July 5,
2007, from http://en.wikipedia.org/wiki/Lebesgue_integration.

Lecture 1 – the first Mizar article. (2004, May 10). Retrieved October 5, 2006, from
http://ysserve.int-univ.com/Lecture/MizarLecture/lecture1.pdf.

Letouzey, Pierre. (2005, February 21). Manipulating proof terms [Message-ID: Pine.LNX.
4.44.0502211639260.30942-100000@pc8-142]. Message posted to the Coq-club electronic
mailing list, archived at http://pauillac.inria.fr/pipermail/coq-club/. Retrieved June 11, 2007,
from http://pauillac.inria.fr/pipermail/coq-club/2005.txt.

Letouzey, Pierre. A New Extraction for Coq. (2003, January 22). Retrieved November 17,
2007, from http://www.pps.jussieu.fr/~letouzey/download/extraction2002.ps.gz.

Luo, Zhaohui. Annual site reports 2001 for the TYPES project. (2002, October 8). Retrieved
June 23, 2007, from http://www.dur.ac.uk/TYPES/report-2001.ps.

MacQueen, David. Using Dependent Type to Express Modular Structure. (1985, October 30).
Retrieved January 2, 2007, from http://www.cs.cmu.edu/~rwh/courses/modules/papers/

Proof Checking

74

macqueen86/paper.pdf.

Mamane, Lionel Elie. (2007, January 2). sin_seq. Message posted to the Coq-club electronic
mailing list. Retrieved November 5, 2007, from http://mailman.science.ru.nl/pipermail/c-
corn/2007-January/000051.html.

Maor, Eli. (1998). Trigonometric delights. New Jersey: Princeton University Press. Retrieved
January 8, 2007, from http://press.princeton.edu/books/maor/chapter_10.pdf.

Marzocchi, M., Brand, H., and Edgar, G. A. (1997, October 27-30). Re: Question: Lebesgue
Measurable but not Borel. Message posted to news://sci.math. Retrieved June 25, 2007, from
http://www.math.niu.edu/~rusin/known-math/97/measure.

Matuszewski, Roman and Rudnicki, Piotr. Mizar: the first 30 years. (n.d.). Retrieved
November 5, 2007, from http://www.cs.ualberta.ca/~piotr/Mizar/History/04MMA/M30.pdf.

McCarty, M., Leibel, S., Davis, D., Edgar, G. A., and Boden, J. (1999, May 7-8). Re: I am
losing my math ability. Message posted to news://sci.math. Retrieved June 24, 2007, from
http://www.math.niu.edu/~rusin/known-math/99/lebesgue.

The Mizar Mathematical Library, version 4.60.938. (2006, March 8). Retrieved January 31,
2007, from ftp://mizar.uwb.edu.pl/pub/system/i386-win32/mizar-7.6.02_4.60.938-i386-
win32.exe.

The Mizar system, version 7.6.02, for Windows. (2006, March 8). Retrieved January 31, 2007,
from ftp://mizar.uwb.edu.pl/pub/system/i386-win32/mizar-7.6.02_4.60.938-i386-win32.exe.

Mizar Verifier Basic Package (ver 7.8.05 mml 4.87.985). (n.d.). Retrieved September 29, 2006,
from http://www.wakasato.org/mizar/s7.8.05m4.87.985/verifier1/cai-start.cgi.

MML Search. (2005, December 30). Retrieved September 29, 2006, from
http://www.wakasato.org/mizar/s7.8.05m4.87.985/mml_search.php.

Monoid. (2007, May 16). In Wikipedia, The Free Encyclopedia. Retrieved May 16, 2007, from
http://en.wikipedia.org/wiki/Monoid.

The most important facts in MML. (n.d.). Retrieved February 6, 2007, from
http://merak.pb.bialystok.pl/mmlquery/fillin.php?filledfilename=mml-facts.mqt&argument=
number+102.

mulhern@gmail.com. (2006, June 16). Equality modulo proofs. Message posted to the Coq-
club electronic mailing list. Retrieved July 3, 2007, from http://pauillac.inria.fr/pipermail/coq-
club/2006/002403.html.

Muzalewski, Michał. An Outline of PC Mizar. (1999, August 13). Retrieved March 30, 2007,
from http://www.cs.ru.nl/~freek/mizar/mizarmanual.ps.gz.

Proof Checking

75

Nakamura, Yatsuka, Watanabe, Toshihiko, Tanaka, Yasushi, and Kawamoto, Pauline. Mizar
Lecture Notes. (n.d.). Retrieved March 20, 2007, from http://markun.cs.shinshu-u.ac.jp/
kiso/projects/proofchecker/mizar/Mizar4/printout/mizar4en_prn.doc.

Naumowicz, Adam. (2006, November 23). Re: Re: a term representing the extension of a type.
Message posted to http://www.nabble.com. Retrieved March 29, 2007, from
http://www.nabble.com/Re:-Re:-a-term-representing-the-extension-of-a-type-p7506530.html.

Naumowicz, Adam. (2007, February 17). Re: referring to unlabeled theorems. Message posted
to http://www.nabble.com. Retrieved April 25, 2007, from http://www.nabble.com/
Re:-referring-to-unlabeled-theorems-p9022084.html.

Naumowicz, Adam. (2007, February 22). Re: unused loci. Message posted to
http://www.nabble.com. Retrieved March 28, 2007, from http://www.nabble.com/Re:-unused-
loci-p9095762.html.

O'Connor, Russell. (2007, February 18). le_or_lt for CReals. Message posted to the Coq-club
electronic mailing list. Retrieved November 5, 2007, from http://mailman.science.ru.nl/
pipermail/c-corn/2007-February/000059.html.

O'Connor, Russell. (2007, January 2). sin_seq. Message posted to the Coq-club electronic
mailing list. Retrieved November 5, 2007, from http://mailman.science.ru.nl/pipermail/c-
corn/2007-January/000052.html.

O'Connor, Russell. (2007, January 19). sin x < x. Message posted to the Coq-club electronic
mailing list. Retrieved November 5, 2007, from http://mailman.science.ru.nl/pipermail/c-
corn/2007-January/000056.html.

O’Connor, Russell. (2006, December 6). Using a Prop to bound recursion [Message-ID:
Pine.LNX.4.64.0612060242110.25142@erdos.theorem.ca]. Message posted to the Coq-club
electronic mailing list, archived at http://pauillac.inria.fr/pipermail/coq-club/. Retrieved June 8,
2007, from http://pauillac.inria.fr/pipermail/coq-club/2006.txt.

Oliver, M., Taylor, B., Grambsch, P., and Renfro, D. L. (1999, March 4). Re: Borel-sets.
Message posted to news://sci.math. Retrieved June 25, 2007, from http://www.math.niu.edu/
~rusin/known-math/97/measure.

Paulin, Christine. (1997, January 14). Re: Problems with exist [Message-Id:
199701140842.JAA11521@aquavit.ens-lyon.fr]. Message posted to the Coq-club electronic
mailing list, archived at http://www.iist.unu.edu/~alumni/software/other/inria/www/coq/mailing-
lists/coqclub/. Retrieved July 3, 2007, from http://www.iist.unu.edu/~alumni/software/other/
inria/www/coq/mailing-lists/coqclub/0168.html.

Paulin-Mohring, Christine. A library for reasoning on randomized algorithms in Coq. (2007,
May 30). Retrieved June 23, 2007, from http://www.lri.fr/~paulin/ALEA/library.pdf.

Proof Checking

76

Plume. (n.d.). Retrieved June 23, 2007, from http://www.ens-lyon.fr/LIP/PLUME/.

Pollack, Robert. Dependently Typed Records in Type Theory. (2002, February 5). Retrieved
January 2, 2007, from http://homepages.inf.ed.ac.uk/rpollack/export/recordsFAC.ps.gz.

Pottier, Loïc. Basic notions of algebra. (1999, March). Retrieved May 9, 2007, from
http://coq.inria.fr/contribs/algebra.tar.gz.

Probability Tutorial. (n.d.). Retrieved June 24, 2007, from http://tutors4you.com/
probabilitytutorial.htm.

Proofs from THE BOOK. (2007, October 19). In Wikipedia, The Free Encyclopedia. Retrieved
October 29, 2007, from http://en.wikipedia.org/wiki/Proofs_from_THE_BOOK.

Raamsdonk, Femke van. Inductive types. (n.d.). Retrieved December 11, 2006, from
http://www.cs.vu.nl/~femke/courses/lv/notes/week04.pdf.

Raamsdonk, Femke van. Logical verification 06-07 practical work week 1. (n.d.). Retrieved
December 11, 2006, from http://www.cs.vu.nl/~femke/courses/lv/prac/pw01_answers.v.

Raamsdonk, Femke van. Logical verification 06-07 practical work week 2. (n.d.). Retrieved
December 11, 2006, from http://www.cs.vu.nl/~femke/courses/lv/prac/pw02_answers.v.

Raamsdonk, Femke van. Logical verification 06-07 practical work week 3. (n.d.). Retrieved
December 11, 2006, from http://www.cs.vu.nl/~femke/courses/lv/prac/pw03_answers.v.

Raamsdonk, Femke van. Logical verification 06-07 practical work week 4. (n.d.). Retrieved
December 11, 2006, from http://www.cs.vu.nl/~femke/courses/lv/prac/pw04_answers.v.

Renfro, D. L. and Rubin, H. (1999, August 27). Re: nonmeasurable sets and non_Borel sets in
R. Message posted to news://sci.math. Retrieved June 25, 2007, from http://www.math.niu.edu/
~rusin/known-math/97/measure.

Richter, Stefan. Formalizing Integration Theory, with an Application to Probabilistic Algorithms.
(2005, October 14). Retrieved June 25, 2007, from http://afp.sourceforge.net/browser_info/
current/HOL/HOL-Complex/Integration/outline.pdf.

Rideau, Laurence, and Théry, Laurent. Formalising Sylow’s Theorems in Coq. (2006,
November 22). Retrieved March 31, 2007, from http://hal.inria.fr/docs/00/11/56/32/PDF/RT-
0327.pdf.

Riemann integral. (2007, July 4). In Wikipedia, The Free Encyclopedia. Retrieved July 4, 2007,
from http://en.wikipedia.org/wiki/Riemann_integral.

Proof Checking

77

Rudnicki, Piotr. A Mizar demo. (1997, March 13). Retrieved September 29, 2006, from
http://www.cs.ualberta.ca/~piotr/Mizar/Dagstuhl97/.

Rusin, Dave. Measure and integration. (2000, January 24). In The Mathematical Atlas.
Retrieved June 24, 2007, from http://www.math.niu.edu/~rusin/known-math/index/28-XX.html.

Setoid. (2007, March 22). In Wikipedia, The Free Encyclopedia. Retrieved April 6, 2007, from
http://en.wikipedia.org/wiki/Setoid.

Shmyrev, Nickolay V. (2007, January 19). sin x < x. Message posted to the Coq-club
electronic mailing list. Retrieved November 5, 2007, from http://mailman.science.ru.nl/
pipermail/c-corn/2007-January/000055.html.

Simpson, Carlos. Set-theoretical mathematics in Coq. (2004, February 20). Retrieved April 3,
2007, from http://arxiv.org/pdf/math.LO/0402336.pdf.

Smith, Geoff. The Inclusion Exclusion Counting Principle. (1998, February). Retrieved May 7,
2007, from http://people.bath.ac.uk/masgcs/book1/amplifications/inc_exc.pdf.

Sozeau, Matthieu. Subset coercions in Coq. (2006, April). Retrieved July 3, 2007, from
http://www.lri.fr/~sozeau/research/russell/article.pdf.

Stein, Jasper. Linear algebra. (2003, September 19). Retrieved May 12, 2007, from
http://coq.inria.fr/contribs/LinAlg.tar.gz.

Stump, Aaron. sni_sec. (2005). Retrieved July 13, 2007, from http://cl.cse.wustl.edu/classes/
cse545/lec/sni.v.

Urban, Josef. (2002, July 25). Error Number: 129. In Mizar TWiki. Retrieved March 30, 2007,
from http://wiki.mizar.org/cgi-bin/twiki/view/Mizar/ErrorNo129.

van Oosten, Jaap. Realizability: An Historical Essay. (2000, December 29). Retrieved
November 17, 2007, from http://www.math.uu.nl/people/jvoosten/realizability/history.ps.gz.

Viltersten, K., gowan4@hotmail.com, Santos, J. C., and Jules. (2006, January 20). What is a
Borel set? Message posted to news://sci.math. Retrieved June 29, 2007, from
http://groups.google.com/group/sci.math/browse_thread/thread/d3160c9928ec1b42/
77352d6bbf0bfe00?lnk=st&q=borel+set+real&rnum=6#77352d6bbf0bfe00.

Virk, Rahbar. The Orbit-Stabilizer Theorem. (n.d.). Retrieved March 12, 2007, from
http://www.math.wisc.edu/~virk/notes/pdf/orphans/orbit-stabilizer_thm.pdf.

Wenzel, Markus, and Wiedijk, Freek. A Comparison of the Mathematical Proof Languages
Mizar and Isar. (2002). Retrieved February 6, 2007, from http://www4.in.tum.de/~wenzelm/
papers/romantic.pdf.

Proof Checking

78

Werner, Benjamin. Sets in Types, Types in Sets. (2007, March 6). Retrieved June 8, 2007,
from http://www.lix.polytechnique.fr/Labo/Benjamin.Werner//publis/tacs97.pdf.

Werner, Benjamin, Paulin, Christine, dowek@pomerol.inria.fr, Despeyroux, Joelle, and Kahn,
Gilles. (1993, August 31). Various answers to Gilles Kahn's question about Sets in Coq.
Messages posted to the Coq-club electronic mailing list. Retrieved July 3, 2007, from
http://www.iist.unu.edu/~alumni/software/other/inria/www/coq/mailing-lists/coqclub/0018.html.

Weisstein, Eric W. (2002, June 24). Fundamental Theorems of Calculus. From MathWorld--A
Wolfram Web Resource. Retrieved November 1, 2007, from http://mathworld.wolfram.com/
FundamentalTheoremsofCalculus.html.

Weisstein, Eric W. (2003, September 2). Inclusion-Exclusion Principle. From MathWorld--A
Wolfram Web Resource. Retrieved May 7, 2007, from http://mathworld.wolfram.com/
Inclusion-ExclusionPrinciple.html.

Wiedijk, Freek. (2007, May 7). Formalizing 100 Theorems. Retrieved May 7, 2007, from
http://www.cs.ru.nl/~freek/100/.

Wiedijk, Freek. Mizar: An Impression. (1999, September 27). Retrieved March 20, 2007, from
http://www.cs.ru.nl/~freek/mizar/mizarintro.ps.gz.

Wiedijk, Freek (Ed.). The Seventeen Provers of the World. (2006a, March). New York:
Springer-Verlag. Retrieved February 6, 2007, from http://www.cs.ru.nl/~freek/comparison/
comparison.pdf.

Wiedijk, Freek. Writing a Mizar article in nine easy steps. (2006b). Retrieved March 14, 2006,
from http://www.cs.ru.nl/~freek/mizar/mizman.pdf.

Wilde, Ivan F. Measure, integration & probability. (2006, February 2). Retrieved July 1, 2007,
from http://www.mth.kcl.ac.uk/~iwilde/notes/mip/mip.pdf.

Zanella, Santiago. (2007, March 21). Re: Setoid for arbitrary relation? Message posted to
http://www.nabble.com. Retrieved April 3, 2007, from http://www.nabble.com/Re:-Setoid-for-
arbitrary-relation--p9668747.html.

Zumkeller, Roland. (2006, November 23). Newbie questions [Message-ID:
d02dcb040611231401r47ed3f46j2d19b565356f9e5f@mail.gmail.com]. Message posted to the
Coq-club electronic mailing list, archived at http://pauillac.inria.fr/pipermail/coq-club/.
Retrieved June 11, 2007, from http://pauillac.inria.fr/pipermail/coq-club/2006.txt.

	Case Studies in Proof Checking
	Recommended Citation

	Microsoft Word - writproj_title.doc

