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Quantum Criticality and Incipient Phase
Separation in the Thermodynamic
Properties of the Hubbard Model

By D. GaLanakis!, E. Kuatami?, K. MIKELSONS?, A. MACRIDIN?, J.
MoReNO!, D. A. BROWNE! AND M. JARRELL!

! Department of Physics and Astronomy, Louisiana State University, Baton
Rouge, Louisiana, 70803, USA
2 Department of Physics, Georgetown University, Washington, District of
Columbia, 20057, USA
3 Fermilab, P. O. Box 500, Batavia, Illinois, 60510, USA

Transport measurements on the cuprates suggest the presence of a quantum criti-
cal point hiding underneath the superconducting dome near optimal hole doping.
We provide numerical evidence in support of this scenario via a dynamical clus-
ter quantum Monte Carlo study of the extended two-dimensional Hubbard model.
Single particle quantities, such as the spectral function, the quasiparticle weight
and the entropy, display a crossover between two distinct ground states: a Fermi
liquid at low lling and a non-Fermi liquid with a pseudogap at high lling. Both
states are found to cross over to a marginal Fermi-liquid state at higher tempera-
tures. For nite next-nearest-neighbor hopping ¢ we nd a classical critical point at
temperature T,.. This classical critical point is found to be associated with a phase
separation transition between a compressible Mott gas and an incompressible Mott
liquid corresponding to the Fermi liquid and the pseudogap state, respectively.
Since the critical temperature T, extrapolates to zero as ¢ vanishes, we conclude
that a quantum critical point connects the Fermi-liquid to the pseudogap region,
and that the marginal-Fermi-liquid behavior in its vicinity is the analogous of the
supercritical region in the liquid-gas transition.

Keywords: Quantum criticality, DCA, Cluster methods

1. Introduction

(a) Relevance of quantum criticality in the cuprates

The unusually high superconducting transition temperature of the hole doped
cuprates (Bednorz & Miiller, 1986) remains an unsolved puzzle, despite more than
two decades of intense theoretical and experimental research. Pairing, which has
a d wave symmetry and short coherence length, but too high of a T, to be ac-
counted by BCS (Bardeen et al., 1957), is not the only unconventional property of
these materials. Their phase diagram, shown in Fig. 1, is a landscape of exotic states
of matter. Undoped cuprates are Mott insulators with antiferromagnetic long-range
order (Néel, 1949). Antiferromagnetism collapses upon small doping and it is re-
placed by a pseudogap state characterized by a suppression of spectral weight along
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the antinodal direction. Further doping turns the system into a conventional Fermi-
liquid metal. Between the Fermi-liquid and the pseudogap region lies a strange metal
phase with linear-T resistivity. The superconducting dome emerges in the cross-over
between the pseudogap and the Fermi-liquid regions at lower temperatures.

Strong electronic correlations are the cause of the rich phase diagram of cuprate
superconductors (Phillips, 2010). The same strong correlations render traditional
theoretical approaches, such as perturbation theory and Fermi-liquid theory, in-
applicable. Some recent conceptual progress has been achieved by associating the
optimal T, with a quantum critical point (QCP), lying underneath the supercon-
ducting dome and connecting the pseudogap and the Fermi-liquid regions (Broun,
2008; Sachdev, 2010). Unlike a classical critical point, a QCP a ects the behavior
of the system in a wide range of temperatures and might explain the emergence of
a linear-T resistivity up to room temperature.

Experimental evidence for a QCP comes from transport (van der Marel et al.,
2003; Daou et al., 2009; Balakirev et al., 2009) and thermodynamic measurements
(Bernhard et al., 2001). Angle-resolved photo-emission spectroscopy (ARPES) (Shen et al.,
2005; Platé et al., 2005) and quantum oscillation measurements (Doiron-Leyraud et al.,
2007) show that in the pseudogap region, the Fermi surface consists of small pockets
which have di erent topology than the large Fermi surface present in the Fermi lig-
uid. It is reasonable to assume that those two states are orthogonal to one another
and are connected through a transition. Additional evidence in support of quantum
criticality comes from measurements of the Kerr signal in YBCO by Jing Xia et
al. (Xia et al., 2008). They nd that at the pseudogap crossover temperature, ' a
non-zero Kerr signal develops sharply and persists even inside the superconducting
dome. This is consistent with earlier neutron scattering measurements by Fauqué
et al.(Fauqué et al., 2006), which show the development of magnetic order in the
pseudogap phase.

In this manuscript we review numerical evidence of quantum criticality in the
Hubbard model, the de-facto model for the cuprates, that appeared in earlier pub-
lications. In those cited works, the Hubbard model is solved using the dynamical
cluster approximation (DCA) in conjunction with several quantum Monte Carlo
(QMCQ) cluster solvers. In all calculations relevant for the phase diagram we neglect
the superconducting transition. The interplay between the QCP and superconduc-
tivity will be discussed in a future publication. (Yang et al., 2010) In this review
we focus on the thermodynamic quantities, such as the entropy and the chemical
potential, and also on single-particle quantities, such as the spectral weight and
the quasiparticle weight. The thermodynamic properties give unbiased evidence of
quantum criticality, whereas single-particle properties may be used to gain more
detailed insight on the ground state. Both set of quantities rely on the evaluation
of the self-energy which can be calculated using quantum cluster methods.

At a critical interaction-dependent lling, we nd that the entropy exhibits
a maximum, the quasiparticle weight displays a crossover from Fermi liquid to
pseudogap behavior, and the spectral function shows a wide saddle point region
crossing the chemical potential. This is consistent with the presence of a QCP, since
the lack of an energy scale results in an enhanced entropy at low temperatures.
We also nd that by tuning an appropriate control parameter, the next-nearest-
neighbor hoping, ¢, the QCP becomes a classical critical point associated with a
phase separation transition. We present our ndings in two sections. In section 2,
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Figure 1. The phase diagram of the
cuprates. As a function of temperature and
doping, the cuprates display antiferromag-
netic order at low doping, a non-Fermi lig-

) uid pseudogap region at intermediate dop-
2 ing and a metallic region at higher doping.
g T Strange Metal Around optimal doping, superconductivity
develops, and above the superconducting

GE, Tx dome, a strange metal with non-Fermi lig-
= Pseudogap uid properties appears. T' separates the
Superconductivity Metal pseudogap from the marginal Fermi-lig-

uid phase. T'x is the crossover tempera-
ture between the Fermi and the marginal
doping Fermi-liquid regions. A quantum critical
point hides underneath the superconduct-
ing dome near optimal hole doping.

QCP
o

we discuss the single-particle spectra and the thermodynamics properties of the
t = 0 Hubbard model. In section 3, we discuss the phase separation in the ¢ > 0
Hubbard model.

(b) Hubbard Model

Short after the discovery of high-T, superconductors, Anderson (Anderson,
1987) suggested that the Hubbard model captures the basic properties of the high
temperature superconductors and Zhang and Rice (Zhang & Rice, 1988) demon-
strated that only a single band is needed. The single-band Hubbard model is rep-
resented by the Hamiltonian:

H= t ¢, ¢g +He +U  nmny (1.1)

ij i

where ¢; (c¢; ) is the creation (annihilation) operator of an electron at site ¢ and spin

, n; is the corresponding number operator, t is the hopping parameter between
nearest-neighbor sites, and U the on-site Coulomb repulsion. Despite its apparent
simplicity, the Hubbard model is notoriously di cult to solve. No analytical so-
lutions exist except in one dimension (Lieb & Wu, 1968; Frahm & Korepin, 1990;
Kawakami & Yang, 1990). However, tremendous theoretical and computational ef-
forts have resulted in approximation schemes that provide access to the physics of
this model in higher dimensions. In this manuscript we also discuss results for the
generalized Hubbard model which includes hopping between next-nearest neighbor
with amplitude ¢ :

H= t ¢; ¢; +Hec. t ¢; a +He +U n; N (1.2)
L] il i

Important progress in our understanding of strongly correlated models has been
achieved by the development of nite size methods, including exact diagonalization
and QMC. The latter works well in the simulation of bosonic systems where creation
and annihilation operators commute. However, due to the minus sign problem asso-
ciated with the anticommutation relations of fermionic operators, QMC is limited
to small lattice sizes and consequently give questionable predictions for correlated

electronic systems in the thermodynamic limit.
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Another successful approach is the dynamical mean- eld approximation (DMFA)
which treats the local dynamical correlations explicitly and non-local (inter-site)
correlations in a mean- eld approximation (Georges et al., 1996; Metzner & Vollhardt,
1989; Miiller-Hartmann, 1989¢,b). This technique becomes exact in the limit of in-

nite dimensions (Georges & Kotliar, 1992; Jarrell, 1992). However, when applied
to nite dimensions, the DMFA fails to describe the renormalization e ects due
to momentum-dependent modes and the transitions to phases with non-local order
parameters. Thus, DMFA misses physical phenomena that are abundant in strongly
correlated systems, such as the development of spin or charge density wave phases,
localization in the presence of disorder, spin-liquid physics, unconventional super-
conductivity, etc.

The limitations of the DMFA are addressed by cluster mean- eld theories. Those
fall into two categories (Maier et al., 2005): the cluster dynamical mean eld the-
ory (CDMFT) (Kotliar et al., 2001), which is formulated in real space, and the
DCA (Hettler et al., 1998) which is formulated in momentum space. In both cases
the system is viewed as a cluster embedded in an e ective medium. The formal
di erence between DCA and CDMFT is that in real space, the DCA cluster sat-
is es periodic boundary conditions whereas the CDMFT cluster is open. The two
methods should give the same results for large enough clusters. In this work we
present DCA (Hettler et al., 1998, 2000) results.

DCA treats short-ranged correlations explicitly, while longer ranged ones are
approximated by the mean eld. By increasing the cluster size, the length-scale
of the explicitly treated correlations can be gradually increased while the calcula-
tion remains in the thermodynamic limit. In momentum space, the DCA can easily
be conceptualized as the approximation in which the self-energy calculated by the
coarse grained green function. Quantum Monte Carlo based solvers such as Hirsch-
Fye (HFQMC) (Hirsch & Fye, 1986), continuous-time (CTQMC) (Rubtsov et al.,
2005) and determinantal quantum Monte Carlo (DQMC) (Blankenbecler et al.,
1981) are used to solve the cluster problem. QMC methods are often formulated in
imaginary time and an analytic continuation to real time is necessary to evaluate
physical quantities. Fortunately, powerful techniques such as the maximum entropy
method (MEM) (Gubernatis et al., 1991; Jarrell & Gubernatis, 1996) are able to
successfully select the most likely solution.

Even though quantum cluster schemes have provided a tremendous breakthrough
in our understanding of the Hubbard model, they are also subject to limitations.
Quantum Monte Carlo solvers su er from the sign problem, which scales exponen-
tially with inverse temperature, interaction strength and cluster size. This limits the
application of the method to relatively small cluster sizes, higher temperatures and
intermediate interactions. The limitation in the cluster size is particularly problem-
atic close to a phase transition where the correlation length diverges. The coarse-
graining also limits the momentum resolution, which for typical cluster sizes is too
small to capture detail features of the spectra, such as van Hove singularities. For
a Fermi liquid, this is not a limitation since the physics is dominated by the low
frequencies in which the self-energy is momentum independent. However, intrinsi-
cally anisotropic states, such as the pseudogap, or possibly the quantum critical
region, can be captured only approximately. Finally, MEM uses Bayesian statistics
to nd the most likely spectra for the QMC data, subject to sum rules, such as
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conservation of the spectral weight. Because of the statistical errors in the QMC
data, the frequency spectrum resolved using MEM has a limited resolution.

Despite those limitations, progress can be achieved in accessing the quantum
critical region by algorithmic optimizations. A truly universal way in dealing with
the severity of the sign problem is to vastly increase the statistics, using massively
parallel QMC algorithms with highly optimized codes.

2. From Fermi Liquid to Pseudogap

A great advantage of the DCA is its ability to evaluate the self-energy as a func-
tion of momentum k and Matsubara frequency ¢ ,, (k ¢ ;). From the self-energy
various single-particle quantities, such as the spectral function, A(k ), the quasi-
particle weight, Zy, and the energy can be derived. All those quantities provide
insight about the ground state of the system. In this section we will show how
the transition from the Fermi-liquid to the pseudogap state is re ected in such
single-particle quantities.

(a) Spectral Function

The single-particle spectral function shows a clear evolution from a Fermi-liquid

to a pseudogap state as the lling increases towards half lling. Fig. 2 displays a

1
density plot of the spectral function, A(k )= — G(k ), which is extracted by

analytically continuing the imaginary time Green function. At low lling, n < 0 85,
the spectral function exhibits a typical Fermi-liquid form. A notable characteristic
is the presence of a wide saddle point region, reminiscent of a van Hove singular-
ity, (Radtke & Norman, 1994) along the antinodal direction. Around the critical
lling of n = 0 85 this saddle point feature crosses the chemical potential. This
crossing results in a sharp peak in the density of states (Vidhyadhiraja et al., 2009),
which displays low-energy particle-hole symmetry (Chakraborty et al., 2008). We
are currently exploring the in uence of the van Hove singularity on the supercon-
ducting transition. (Pathak et al.) At higher lling, n > 0 85, the spectral weight
collapses along the antinodal direction and a pseudogap opens. The Fermi surface
obtained by extremizing njy shows a similar evolution (see lower panels in Fig. 2).
The Fermi-liquid region consists of a large hole pocket, which extends and touches
the edges of the Brillouin zone (0 ), ( 0) at n = 0 85. In the pseudogap region
the Fermi surface consists of four Fermi arcs centered around the nodal points, sim-
ilar to the ones obtained from ARPES. These results clearly demonstrate that the
DCA can capture qualitatively the evolution of the ground state from a Fermi-liquid
to a pseudogap phase.
(b) Quasiparticle Weight
Whereas the spectral function gives a qualitative understanding of the ground
state, it relies on the analytic continuation of numerical data. Since extracting
quantitative information from analytically continued data is di cult, a more robust
way is to rely on imaginary time quantities, such as the quasiparticle weight Z (k).
Since the quasiparticle weight is nite across a Fermi surface, but vanishes if the
spectrum is incoherent, it will allows to clearly distinguish between a Fermi liquid
and a pseudogap state. The quasiparticle weight can be directly obtained from the

(ki o)
0

Matsubara frequency self-energy as Zp (k) = 1 ,where o= T
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OJOF
7

Figure 2. Upper panels: Density plots of the spectral function A(k,w) for the Fermi
liquid (left), marginal Fermi liquid (middle) and pseudogap region (right) for filling
n = 0.75,0.85 and 0.95, respectively. (The dashed feature seen in the regions of steep-
est dispersion, especially for n = 0.75, is a plotting artifact). The momentum is along the
path G(0,0) — M (7, 7) — X(7,0) — G(0,0). A wide saddle point region between X and
G sits above the chemical potential in the Fermi-liquid region and crosses it around the
critical filling (n = 0.85). In the pseudogap region this features sits below the chemical
potential leaving a gap along the antinodal direction behind it. Note that the fact that the
dispersion looks discontinuous along G(0,0) — M (m,7) in the left and middle panels is
an artifact of our interpolation algorithm. Lower panels: Fermi surface as extracted from
|Vnk| in the Fermi liquid (left), marginal Fermi liquid (middle) and pseudogap (right) re-
gion showing the development of the pseudogap in the antinodal direction. The Coulomb
repulsion is U = 6t, the temperature 7' = 0.069¢, and the cluster size N. = 16. The energy
unit is 4¢.

is the lowest fermionic Matsubara frequency. At the limit 7" — 0 and for a well-
behaved self-energy, Z; (k) converges to the quasiparticle weight, Z (k). Fig. 3 (a)
displays Zan = Zo(wo = «T,k || (0,0) — (0,7)), the Matsubara quasiparticle
weight along the antinodal momentum direction for U = 6t and a cluster of size
N, = 16 (Vidhyadhiraja et al., 2009). The momentum k at the Fermi surface is
determined by maximizing |Vn(k)|. Zan exhibits two distinguishable behaviors:
for n > n. = 0.85 the quasiparticle weight vanishes, whereas it approaches a finite
value for n < n.. The n > n, region corresponds to the pseudogap state in which

Article submitted to Royal Society



Quantum Criticality and Incipient Phase Separation... 7

0.08

0.06

0.04

0.02

0% 0.1 02 03
T 0 L ! ! !

02— ‘
20 0.1 02 03 1 09 09 085 08 075 07
T Filling

Figure 3. a) The antinodal quasiparticle fraction Zan as a function of temperature for
di erent values of lling, U = 6t and cluster size N. = 16 (the unit of energy is 4t). The
onset of the pseudogap region is determined by the vanishing of the antinodal spectral
weight at zero temperature. The dashed and solid lines represent ts of the low tem-
perature (7' < 0 3) data to marginal Fermi liquid (red solid curves), Fermi liquid (black
solid curves) and crossover forms (dashed black curves), respectively. The arrows show
the corresponding crossover temperatures Tx and 7' . The value of T' presented here is
obtained from the spin susceptibility as explained in (Vidhyadhiraja et al., 2009), but is
consistent with the one extracted from the from the tting forms. The ratio Zny Zan
of the quasiparticle weight in the nodal ((  )) and antinodal ((0 )) directions (inset)
diverges as the pseudogap develops in accordance with Fig. 2. b) The crossover tempera-
tures Tx and T as a function of lling as extracted from the temperature dependence of
Zan (Vidhyadhiraja et al., 2009) for the same parameters.

the spectral weight collapses along the antinodal direction, while the n < n. region
behaves as a Fermi liquid.

The temperature dependence of Z,n (Fig. 3 (a)) not only provides information
about the ground state but also allows the extraction of relevant energy scales.
By comparing the numerical results with analytical expressions derived from par-
ticular phenomenological forms of the self-energy, we obtain Tx and T . At low

lling, n < n¢, the high T" dependence of Z 4 is best t by a marginal Fermi-liquid
form, whereas for low T the data is best t by a Fermi liquid. The crossover oc-
curs at a temperature T'x, which is extracted by tting with a crossover function,
and is accompanied by a change in the sign of the curvature of Z4x. At higher

lling (n > 0 85), the high temperature Z,n can also be t by a marginal Fermi
liquid, whereas at low temperatures, it cannot. The crossover temperature 7' can
be extracted as the lowest temperature where the marginal Fermi liquid t lies
within the statistical error. However a more accurate value can be obtained from
the bulk spin susceptibility which exhibits a peak at T' and the two values are
found to be consistent (Vidhyadhiraja et al., 2009). The crossover temperatures
Tx and T are shown in Fig. 3 (b). Both of them converge to zero as the lling
approaches n, = 0 85, which is the same value for which the peak in the density of
states (Vidhyadhiraja et al., 2009) crosses the chemical potential.

(¢) Thermodynamics

A di erent perspective at the transition from a Fermi liquid to the pseudogap

Article submitted to Royal Society



)51 a) T/t=0.077
0.129
2 [
4
= 1.5¢
N
Ir 100 ( 0.80
\ 1
- 0.75
0.5 T/t=4.00 T
p—O 0—0—00—0 O ¢ «  FL
| | |
07 0.8 0.9 10 0.2 0.4 0.5
n T/t

Figure 4. a) The lling dependence of the entropy divided by temperature, S T, for various
temperatures at U = 6t and N, = 16. With decreasing temperature a peak develops around
the critical lling of n. = 0 85. b) The temperature dependence of the chemical potential

for di erent llings. At the critical lling, n., becomes temperature independent at
low temperatures.

state comes from the evaluation of the entropy. We obtain the entropy by integrating
the energy using the formula:

S( n)=S0O0n)+ E( n) E( n)d (2.1)
0

where  is inverse temperature and S(0 n) is the in nite temperature entropy.
Equation 2.1 is appropriate for QMC calculations, because the integration reduces
the statistical error. The challenge is to have good enough statistics to control the
error of the surface term, FE( n). In Mikelsons et al. (Mikelsons et al., 2009) large
statistics was possible simply by using large computational resources. The entropy
divided by the temperature, shown in Fig. 4 (a), exhibits a maximum at exactly the
same critical lling that was identi ed before from the spectral function and the
quasiparticle weight. In Fig. 4 (b), we show the chemical potential, , as a function
of temperature. We note that at the critical lling d dI" = 0, since the entropy
and the chemical potential are related by the Maxwell relation:

S (2.2)

n oy T yn
Also the temperature dependence of the chemical potential can be used as a
practical criterion to identify the location of the critical lling, because evaluat-
ing the chemical potential is much less computationally intensive than evaluating
the entropy. Using this criterion we investigate the important question of the de-
pendence of n. on the Coulomb repulsion U. As it is shown in Fig. 5, we nd
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Figure 5. a) The chemical potential as a function of temperature for llings of n = 085
and 0 90 and for a variety of interaction strengths U for N. = 12. b) The critical lling,
de ned by the lling in which T = 0 versus U. The critical lling decreases with U
monotonically and is projected to reach the atomic limit value of n. =2 3 at U. = 30¢.

that increasing U reduces the critical lling and thus enlarges the pseudogap re-
gion in the phase diagram. Our results follow the trend proposed in earlier argu-
ments (Chakraborty et al., 2008) according to which the critical lling decreases in
order to reach the atomic limit value of n. =2 3.

In this section we have shown that several single-particle quantities are con-
sistent with the presence of a QCP. The qualitative form of the single-particle
spectrum shown in Fig. 2 is fundamentally di erent in the Fermi-liquid and the
pseudogap regions, which points to orthogonal ground states. The temperature
dependence of the quasiparticle weight reveals the presence of two crossover tem-
peratures ' and T, which converge to zero at n. as shown in Fig. 3 (b). If the
crossover temperatures Tx and T constitute energy scales that suppress degrees
of freedom, their vanishing at n. means that there are no relevant energy scales to
quench the entropy and therefore it collapses at a slower rate, which is consistent
with the peak of the entropy observed at n.. The natural next step to investigate
quantum criticality is to access the QCP. However the fermion sign problem severely
limits the applicability of quantum Monte Carlo techniques close to a QCP. It is
possible however, as we will discuss in the next section, that by tuning an appro-
priate control parameter, the critical point may be lifted to nite temperature and
thus studied with QMC.

3. Phase Separation and Quantum Criticality

Experiments suggest that cuprate superconductors are susceptible to charge in-
homogeneities, such as stripes or checkerboard modulations (Hinkov et al., 2004).
These inhomogeneous charge patterns have stimulated intense theoretical and ex-
perimental research. Here we will consider the possibility that those charge insta-
bilities are evidence that the cuprates are close to a phase separation transition,
and this proximity may be related to the nature of the QCP.

Our ndings suggest that the Hubbard model displays a phase diagram similar
to the one for the gas-liquid transition with Mott liquid (ML) and Mott Gas (MG)
regions. Fig. 6(a) shows a possible phase diagram for the Hubbard model as a
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Figure 6. a) The schematic phase diagram in the presence of charge separation. This phase
diagram describes the transition between two states labeled Mott Liquid (ML) and Mott
Gas (MG) as a function of temperature, T', chemical potential, , and lling, n. The red
surface represents the coexistence region, which terminates in a critical point (CP). As
we go around the critical point the state changes smoothly from ML to MG. Along the

rst order transition line and for a xed 7" and , the lling has two values. b) Filling
as a function of chemical potential for several temperatures in the vicinity of the charge
separation critical point. The number next to each curve represents the temperature. The
coexisting phases are an incompressible Mott liquid at n 1 and a compressible Mott
gas at n 093. The critical temperature is T, = 0 1t. The blue dashed line represents
the surface of metastability which is not accessible within the DCA. The green dotted line
represents the isothermal of the metastable state inside the phase coexistence region (gray
zone). At the critical point the isothermals for 7' > T, cross. The inset shows the scaling
curve (n n)(T Te) vs( (T To) in arbitrary units for . = 3¢, n. =0 96,
Te = 0 1t. The scaling exponents, =010 005 and 1, are roughly consistent with
the Ising universality class.

function of ', , and n. The red-colored surface is a schematic of the region where
the Mott liquid and Mott gas states, characterized by di erent densities, coexist
for T' < T,. The critical point is located at temperature T, lling n., and chemical
potential .. One can go from one state to the other either smoothly, by avoiding
the phase separation region, or through a rst-order transition by crossing it. Right
on the phase separation region, the density has two values for a given value of
and T.

Macridin et al. (Macridin et al., 2006) provided compelling evidence of phase
separation in the case of the generalized Hubbard model (Eq. (1.2)) with positive
next-near-neighbor hopping ¢ = 03¢t and U = 8t. Using the DCA in a N, = 8
cluster with HFQMC as the cluster solver, they showed that below a critical tem-
perature T, 0 1t a rst order transition occurs, which is identi ed by a hysteresis
in the n versus curve for T < T,. As shown in Fig. 6(b) with more precise data
obtained using DQMC as the cluster solver, the hysteresis is between two states
of di erent lling, the Mott liquid at half lling and the Mott gas at a lling of
about 0.93 for T" = 0 071¢. The Mott liquid is incompressible and insulating. Its
compressibility, which is the slope of the lling vs curve in the high lling side
of the hysteresis curve, is small and decreases with temperature. Also the density
of states of the ML phase, shown in Fig. 7(a), exhibits a gap as expected for an
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|a) ML — 57t |b) MG

0.8

Figure 7. The density of states of the a) Mott liquid and b) Mott gas states at 7' = 0.077t
(dotted line) and T' = 0.057 (solid line). The Mott liquid is an incompressible insulator

with a pseudogap while the Mott gas is weakly compressible with a Fermi liquid peak in
the DOS.

insulator. On the other hand, the Mott gas is compressible and metallic; the density
of states is finite at the chemical potential (1 = w = 0), as displayed in Fig. 7(b).

The analogy to the well-known phase diagram of a liquid-gas mixture, such as
water and steam, is useful to understand this phase transition. At low temperatures,
there is a region in the pressure-volume phase diagram in which water and steam
coexist for a range of pressures. As the temperature is increased, the region of coex-
istence contracts and finally terminates at a critical point where the compressibility
diverges. In the pressure-temperature phase diagram, this region of coexistence be-
comes a line of first order transitions which terminates at a second order point where
the water and gas become indistinguishable and the compressibility diverges. Since
the line terminates, it is possible for the system to evolve adiabatically from steam
to water without crossing a phase transition line; therefore, the steam and water
must have the same symmetry.

In the Mott liquid and Mott gas system the chemical potential p replaces the
pressure and the density n replaces the volume of the water-gas mixture. Because
the order parameter separating the ML from the MG, the density n, does not
have a continuous symmetry, order may occur at finite temperatures, and the ML-
MG transition will most likely be in the Ising or lattice gas universality class.
Within this context, one may then understand the hysteresis of Fig. 6(b). The solid
lines are isotherms which show how the system evolves with increasing density.
At the temperature T = T, the compressibility diverges at the critical filling.
As the temperature is lowered further, there is a region where the ML and MG
coexist. Inside this region the isothermals contain unphysical regions of negative
compressibility (dashed green line in Fig. 6(b)) along with metastable regions of
positive compressibility. The metastable branch of the isothermal in the vicinity
of the ML is a "supercooled" ML, whereas the one in the vicinity of the MG is a
"superheated" MG. The translational invariance of DCA along with the stabilizing
effect of the mean-field host enable access to those metastable states. However
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Figure 8. (a) The chemical potential-temperature phase diagram of the ML and MG
mixture for ¢ > 0. The ML and MG coexist on a line of rst order transitions with
positive slope. Since ML and MG have the same symmetry this line can terminate in a
second order critical point. The blue dashed lines de ne the boundaries of the supercritical
region where the ML and MG cannot be distinguished. Outside this region either the ML
or MG character dominates. (b) The chemical potential-temperature phase diagram for
t 0. The rst-order line is absent but supercritical region remains as a quantum critical
region. In the Hubbard model the lines 7' and Tx (Fig. 3(b)) de ne the boundaries of
this region.

the real physical system will phase separate and the two phases will co-exist in
equilibrium (dotted blue line in Fig. 6(b)).

We can sketch the phase diagram in the T’ plane using the analogy to the
water-steam mixture. The most generally applicable rule governing the shape of
phase diagrams was established by Gibbs. For a system of ¢ conserved components
and f phases, the Gibbs constraint is give by the relation =c¢ [+ 2 where
is the number of independent variables needed to specify the state of every phase.
In this case, as in the water-steam system, the number of components ¢ = 1, since
the particle number is conserved. At a location in the phase diagram where only
one phase exists, =1 14 2 = 2, so there are two independent variables, and
the phase diagram is a surface on the , T and n three-dimensional space. There
will be places in the phase diagram where two phases exist simultaneously, then

=1 2+ 2 =1, implying that two phases co-exist only along lines in the
phase diagram. At the lines in the T' plane where two phases coexist, n is also
determined for each phase, but its value can be di erent. That is a line of rst order
transitions.

Additional information about the lines of rst order transitions is obtained from
the Clapeyron s equation. The Gibbs free energy G = E TS N, and dG =

SdT'" Nd , must be the same for the coexisting phases on a line. If we label the
two phases 1 and 2, then

(S1 So)dT = (N, Ny)d (3.1)

If we identify the latent heat L = (S; S3)T,thend dT = L (T n)represents
the slope of the rst order transition line. Since the latent heat L of going from
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Figure 9. (a) Filling, n, vs. chemical potential, , for T = 0077¢t, N. = 16, U = 6t and
various ¢ is shown in solid lines and the compressibility Z—n in dashed lines. A critical

lling, identi ed by the peak in the compressibility appears at higher temperatures and

llings as ¢ is increased. The inset shows the ¢ dependence of the critical lling, n.. (b)
Schematic phase diagram of the Hubbard model in the , ¢ and T space (neglecting su-
perconductivity). The classical critical point turns asymptotically into a quantum critical
point as t 0.

ML to MG is positive, but dn is negative, the slope d dT of the line of rst order
transitions is positive.

Above the critical point terminating the ML-MG transition, the system displays
supercritical behavior in a region where the gas and the liquid cannot be distin-
guished thermodynamically (c.f. Fig. 8). It is possible for the system to evolve adi-
abatically through a counterclockwise path from deep in the MG region, through
the supercritical region, into the ML region. At the lower edge of the supercritical
region, the system loses the Fermi-liquid character of the MG, and at the upper
edge, it begins to acquire the pseudogap character of the ML.

Let us discuss now how this phase separation, which occurs at nite temperature,
is related to quantum criticality. The key parameter is the next-nearest-neighbor
hoping, t . For ¢ = 0 there is no evidence for phase separation at nite 7', but such
a phase separation occurs for positive ¢ . Khatami et al. (Khatami et al., 2010)
performed a systematic analysis of the phase diagram of the extended Hubbard
model as a function of ¢ . As shown in Fig. 9 (a) the compressibility, .=dn d ,
exhibits a peak for all positive ¢t at a critical lling that depends on ¢ . The width of
the peak measures the distance from the critical temperature: the sharper the peak
the closer to T, the employed temperature is. We see that the critical temperature
increases with ¢ and it starts from 7T, = 0 at ¢ = 0. These results point to the
phase diagram of Fig. 9 (b). At a positive ¢ a charge separation occurs at tem-
peratures T' < T.(t ) and at a critical lling n.(¢ ) between an incompressible and
insulating Mott liquid and a compressible metallic Mott gas. Right at T, there is a
terminating second-order critical point. By decreasing ¢ this second-order critical
point is pushed down to lower temperatures. Presumably the line of second-order
critical points terminates at the QCP.

Such a scenario constitutes a new path to quantum criticality as it is closely
tied to charge uctuations rather than spin uctuations. However, numerous sim-
ulations suggest that a nite positive ¢ enhances antiferromagnetic correlations,
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and since phase separation is only present for ¢ > 0 it suggests that it is driven by
strong spin correlations. In addition, previous simulations incorporating Holstein
phonons to the Hubbard model found that phonons also enhance the phase sepa-
ration instability (Macridin & Jarrell, 2009). As¢ ¢ 0 (and the electron-phonon
coupling vanishes), the phase separation critical point approaches zero temperature
becoming a QCP. Here, the rst-order behavior is absent from the phase diagram
(Fig. 3(b)) leaving only the adiabatic path from the ML to the MG, which passes
through the supercritical region, which is now the quantum critical (QC) region.
The crossover scale Tx and the pseudogap scale T' are now understood as the
boundaries of the QC region. As we cross the line of 7' from the QC region into
the ML region, the characteristics of the ML become apparent, including the pseu-
dogap in the DOS and the insulating behavior. As we cross the line of T'x from the
QC region into the MG, the characteristics of the MG become apparent, including
Fermi liquid formation.

Those calculations certainly do not elucidate the nature of the Mott liquid and
Mott gas states in real materials. The long-ranged nature of the Coulomb inter-
action prevents true charge separated states, but the phase separation we observe
may also correspond to other charge instabilities, such as stripes or checkerboard
patterns. To distinguish between di erent charge instabilities, systematic calcula-
tions in much larger clusters are necessary which are not practical at the moment.
However, whatever the type of order, those calculations provide convincing evidence
for the existence of a rst-order transition at low temperatures. Such a transition
is similar to the liquid-gas or the ferromagnetic transition and its phase diagram
would look like Fig. 6(a): a rst order line of coexistence which terminates at a
critical point at a critical temperature T, and a critical lling n..

4. Conclusions

The presence of a QCP at nite lling in the cuprate phase diagram is a topic of
active theoretical and experimental research. Quantum cluster methods are able
to shed some light in this phase diagram. By studying single-particle quantities
for t = 0, such as the spectral function and the entropy, it can be shown that a
Fermi-liquid region at low lling and the pseudogap region at higher lling have
di erent spectral signatures, and are connected through an intermediate "marginal
Fermi-liquid" region of maximal entropy. Due to limitations of quantum Monte
Carlo, the ground state and quantum criticality are not accessible. We also neglect
the superconducting phase transition. The connection with quantum criticality is
established by switching on ¢ . For positive ¢ a classical critical point emerges at

nite temperature 7, which increases with ¢ . We note that ¢ is not the only control
parameter that may be able to tune the critical point to nite temperatures, but
other parameters, such as phonon coupling, may have the same e ect. The phase
diagram around the critical point is similar to that of the gas-liquid transition, where
the incompressible Mott liquid and the compressible Mott gas are the coexisting
phases. The strange metal region in this context may be viewed as the supercritical
region lying in the vicinity of the critical point. Within the scenario we presented,
the pseudogap region is not characterized by an order parameter, rather it must
have the same symmetry as the Fermi-liquid and the marginal Fermi-liquid, since
these regions are connected by an adiabatic path in the T phase diagram.

Article submitted to Royal Society



Quantum Criticality and Incipient Phase Separation... 15

Further investigation is necessary to fully characterize the pseudogap region, and
also to investigate the connection of those results with other scenarios of quantum
criticality.
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