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Strong electron correlations lie at the origin of transformative phenomena such as colossal
magneto-resistance and high-temperature superconductivity. Already near room temperature,
doped copper oxide materials display remarkable features such as a pseudo-gap and a “strange
metal” phase with unusual transport properties. The essence of this physics is believed to be cap-
tured by the Fermi-Hubbard model of repulsively interacting, itinerant fermions on a lattice. Here
we report on the site-resolved observation of charge and spin correlations in the two-dimensional
(2D) Fermi-Hubbard model realized with ultracold atoms. Antiferromagnetic spin correlations are
maximal at half-filling and weaken monotonically upon doping. Correlations between singly charged
sites are negative at large doping, revealing the Pauli and correlation hole—a suppressed probability
of finding two fermions near each other. However, as the doping is reduced below a critical value,
correlations between such local magnetic moments become positive, signaling strong bunching of
doublons and holes. Excellent agreement with numerical linked-cluster expansion (NLCE) and
determinantal quantum Monte Carlo (DQMC) calculations is found. Positive non-local moment
correlations directly imply potential energy fluctuations due to doublon-hole pairs, which should
play an important role for transport in the Fermi-Hubbard model.

A central question in understanding cuprate high-
temperature superconductors is how spin and charge cor-
relations give rise to the wealth of observed phenomena.
Antiferromagnetic order present in the absence of dop-
ing quickly gives way to superconductivity upon doping
with holes or electrons [1], suggesting the viewpoint of
competing phases. On the other hand, antiferromag-
netic correlations can also occur in the form of singlet
bonds between neighboring sites, and indeed Anderson
proposed [2] that superconductivity could result, upon
doping a Mott insulator, from the condensation of such
resonating valence bonds. It has also been argued [1]
that the pseudo-gap and “strange metal” regions are sup-
ported by a liquid of spin-singlets. This motivates the
simultaneous examination of nearest-neighbor spin and
charge correlations, which might reveal the underlying
mechanisms of pairing and transport.

In recent years, ultracold atomic gases have been es-
tablished as pristine quantum simulators of strongly cor-
related many-body systems [3–5]. The Fermi-Hubbard
model is of special importance due to its paradigmatic
role for understanding high-Tc cuprates. At low tem-
peratures and away from half-filling, its theoretical solu-
tion presents a severe challenge due to the fermion sign
problem. Central properties of Fermi-Hubbard physics,
from the reduction of double occupancy [6, 7] and com-
pressibility [8, 9] to short-range antiferromagnetic corre-
lations [10–12] and the equation of state [9, 13, 14], have
been observed in ultracold atom experiments. The re-
cently developed Fermi gas microscopes [13, 15–19] have

led to the direct observation of 2D fermionic Mott in-
sulators, band insulators, and metals with single-atom,
single-site-resolved detection [20, 21]. The full strength
of these microscopes, however, unfolds when single-site
detection is used to directly measure correlations in the
gas, as achieved with bosons in [22–24].

In this work, we directly observe charge and spin cor-
relations in the two-dimensional Fermi-Hubbard model
using a Fermi gas microscope of 40K atoms [15, 21]. Spin
correlations displaying antiferromagnetic behavior have
also been observed very recently with fermionic 6Li in
one [25] and two [26] dimensions. We employ the local
resolution to simultaneously obtain correlations in the
entire range from zero doping (half-filling) to full dop-
ing (zero filling), as the density varies in the underlying
trapping potential. The microscope measures the parity-
projected density on a given lattice site, i.e. doubly oc-
cupied sites (doublons) appear as empty. For a two-spin
mixture of fermions in the lowest band of the optical
lattice, this is described by the magnetic moment opera-
tor [21] m̂2

z,i = (n̂↑,i − n̂↓,i)2, where n̂σ,i = ĉ†σ,iĉσ,i is the

number operator and ĉσ,i (ĉ†σ,i) are fermion annihilation
(creation) operators for spin σ = ↑, ↓ on site i. Many
repeated images yield the average local moment on each
site, see Fig. 1(a,d). The average local moment is a
thermodynamic quantity that directly measures the in-
teraction energy of the gas. Indeed, the Fermi-Hubbard
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FIG. 1: Local moment and nearest-neighbor charge and spin correlations in an ultracold atom realization of the
Fermi-Hubbard model for U/t = 7.2(1). (a,b,c) Averaged local moment, nearest-neighbor moment correlation, and
nearest-neighbor spin correlation, respectively, as functions of position. The spatial variations reflect the varying

local doping due to the underlying trapping potential. (d,e,f) Radial averages of (a), (b), and (c) respectively. The
half-filling point is marked by vertical dotted lines.

Hamiltonian can be written in terms of local moments as

Ĥ = −t
∑
〈i,j〉,σ

ĉ†σ,iĉσ,j −
U

2

∑
i

m̂2
z,i − µ

∑
i

(n̂↑,i + n̂↓,i) .

(1)
Here, 〈i, j〉 denotes nearest-neighbor sites i and j, t is
the nearest-neighbor hopping amplitude, U is the on-
site interaction energy, and µ is the chemical poten-
tial. At moderate temperatures and various fillings
ni = 〈n̂↑,i + n̂↓,i〉, this model yields metallic, band insu-
lating, and Mott insulating states. At half-filling (ni =
1) and at temperatures below the super-exchange scale
4t2/U , quasi-long-range antiferromagnetic correlations
arise. For a fixed temperature, these correlations are
expected to be maximal when U ≈ 8t, where the interac-
tion energy equals the single-particle bandwidth. Upon
doping, a pseudo-gap phase emerges; at even lower tem-
peratures one expects a d-wave superconducting state [1].
While the super-exchange scale is a factor of about two
lower than the temperatures achieved here, site-resolved
detection of short-range correlations should already re-
veal precursory signs of physics at this energy scale.

Fig. 1(a) shows a typical measurement of the aver-
age local magnetic moment at a given lattice site, from
∼100 individual experimental realizations at U/t=7.2(1).
Atoms are confined in a radially symmetric trapping po-
tential. Under the local density approximation, this re-
sults in a varying local chemical potential, and thus a lo-
cally varying filling n throughout the sample. We prepare
samples where the maximum filling, which occurs in the
center of the trap, lies above n=1. The half-filling point is
then found from radially averaged profiles (see Fig. 1(d))

as the radial position where the moment reaches its max-
imum. This follows from the particle-hole symmetry of
the moment operator m̂2

z,i, a property that holds for all
its averages and cumulants [21].

While fluctuations of the local moment operator do not
yield additional information, correlations of the moment
on differing sites do [27]. We experimentally measure the
moment correlator at a separation of one site, Cm(1),
defined as

Cm(1) =
1

4

∑
j∈nni

(〈
m̂2
z,im̂

2
z,j

〉
−
〈
m̂2
z,i

〉 〈
m̂2
z,j

〉)
, (2)

where the sum is over all four nearest neighbors. The
locally resolved correlator Cm(1) and its radial average
are shown in Fig. 1(b,e) respectively. It displays non-
monotonic behavior, changing sign as the filling is low-
ered. As we discuss below, the negative regions, which
indicate anti-bunching of moments, constitute a direct
observation of the Pauli and correlation hole. The pos-
itive region near maximum moment, i.e. half-filling, re-
veals instead the bunching of moments, which as shown
below arises from an effective attraction between dou-
blons and holes.

Local moment correlations alone, however, are not sen-
sitive to the sign of the spin Ŝz,i=

1
2 (n̂↑,i − n̂↓,i). One

important correlator that does depend on the sign of

the spin is
〈
Ŝz,iŜz,j

〉
, which can reveal antiferromag-

netic ordering, expected to occur at half-filling and at
low temperatures. This correlator can be expressed as
1
2

∑
σ 〈m̂σ,im̂σ,j〉 − 1

4

〈
m̂2
z,im̂

2
z,j

〉
(see Supplemental Ma-

terial), where m̂σ,i = n̂σ,i − n̂↑,in̂↓,i. All terms can be
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FIG. 2: Spin and moment correlators as functions of
doping and temperature for U/t = 7.2(1). (a,b)

Nearest-neighbor moment correlator and spin correlator
as functions of the local moment, respectively, shown in
blue circles. Results from NLCE (DQMC) for a range of

temperatures T/t = 0.89− 1.22 are shown in shaded
green (gray triangles). (c) The maximum and minimum

of the moment correlator as functions of temperature
are shown in blue circles and red squares, respectively.
Corresponding results are obtained from NLCE, shown

in solid blue and solid red, respectively, for the
non-interacting gas, shown in black dashed and dotted

lines, respectively, and from DQMC for the correlator at
half-filling (gray triangles). (d) Nearest-neighbor spin
correlator as a function of temperature (blue circles).
Solid blue line: NLCE curve, gray triangles: DQMC;
black dotted line: non-interacting gas. For all graphs,
theory curves are not adjusted for the experimental

imaging fidelity of 95%.

obtained in separate experimental runs and are sepa-
rately averaged. Analogous to the nearest-neighbor mo-
ment correlator Cm(1), we define the nearest-neighbor
spin correlator

Cs(1) =
∑
j∈nni

(〈
Ŝz,iŜz,j

〉
−
〈
Ŝz,i

〉〈
Ŝz,j

〉)
. (3)

Fig. 1(c,f) show the locally resolved nearest-neighbor
spin correlation Cs(1) and its corresponding radial aver-
age. The fact that it is negative suggests antiferromag-
netic correlations, as expected [28–30]. However, even
without interactions, Pauli-blocking of like spins sup-
presses Cs(1). One can see this by noting that Cs(1)
contains density correlations of either spin species sep-
arately, 〈n̂σ,in̂σ,j〉 − 〈n̂σ,i〉2, which are negative even for

the non-interacting gas due to Pauli suppression. For
the lowest temperatures reached, we observe a maximum
absolute spin correlation of about a factor of two larger
than that of a non-interacting Fermi gas.

Fig. 2(a,b) show the nearest-neighbor moment and spin
correlations versus the measured local moment

〈
m̂2
z,i

〉
.

This representation allows for comparison with theory
under minimal assumptions. As a thermodynamic quan-
tity, the moment can replace the role of the chemical po-
tential µ. Indeed all thermodynamic variables can then
be viewed as functions of the local moment, the spin cor-
relation at half-filling, U , and t. In fact, the local spin
correlation at half-filling is itself a thermometer that does
not require any fit [31]. Also shown in Fig. 2(a,b) are
numerical linked-cluster expansion (NLCE) [32] and de-
terminantal quantum Monte Carlo (DQMC) [33] calcu-
lations, which agree with the data within experimental
uncertainties. Note that there are no free parameters,
since the temperature T/t = 1.16(16) is obtained from
the spin correlation at half filling. Concerning the NLCE
and DQMC calculations of the moment correlator per-
formed for this work, it is the first time such a high-order
correlator (involving terms with up to eight fermion op-
erators) has been calculated with these techniques.

As expected, the antiferromagnetic spin correlations
are maximum at half-filling and decrease with increased
doping. Moment correlations instead are negative at low
to intermediate fillings, crossing zero around a moment of
0.75 (doping ≈ 0.21) before turning positive towards half-
filling. This implies that moments change their character
from effectively repulsive (anti-bunching) to effectively
attractive (bunching). The anti-bunching and bunching
behaviors in the moments, as well as the antiferromag-
netic spin correlations, become more pronounced as the
temperature is lowered. Fig. 2(c) shows the positive peak
in the moment correlations at half-filling as well as the
minimum moment correlation versus temperature; the
spin correlator, shown in Fig. 2(d), displays the same be-
havior, reaching −0.09 at our lowest temperatures. This
is about 30% of the maximum spin correlation expected
for the spin-1/2 Heisenberg model at zero temperature
in 2D [34].

To interpret the moment correlations, one may recast
them in terms of the two-point correlator

g2(r) =
〈
m̂2
z(r)m̂

2
z(0)

〉
/
〈
m̂2
z

〉2
, (4)

which measures the probability of finding two moments a
distance r from each other. In the absence of correlations,
g2 = 1. At low filling, where the the doublon density is
negligible and the moment

〈
m̂2
z

〉
= 〈n̂〉 − 2 〈n̂↑n̂↓〉 ≈ n

is essentially the density, g2(r) measures density correla-
tions. These are non-trivial even for the spin-polarized
non-interacting Fermi gas, where fermion statistics im-
ply that g2(0) = 0, reflecting the fact that two fermions
cannot be on the same site. This Pauli suppression of
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FIG. 3: Two-point correlation function g2 for moments and ḡ2 for anti-moments at a separation of one lattice site
for U/t = 7.2(1). (a) g2(1) for moments. (b) ḡ2(1) for anti-moments. Blue circles: experimental data. Blue solid

line: NLCE theory. Gray triangles: DQMC theory. Both NLCE and DQMC calculations are performed at
T/t = 1.22, and are not adjusted for the experimental imaging fidelity of 95%. Black dotted lines: non-interacting

gas. The doping x is zero at maximum moment and one at zero moment; intermediate values of doping as a function
of local moment are determined from NLCE theory at T/t = 1.22, with adjustment for imaging fidelity. Inset:

typical image showing neighboring anti-moments (imaged holes) near half-filling.

g2 persists at short distances on the order of the aver-
age interparticle spacing, a feature known as the Pauli
hole. While implications of this fermion “anti-bunching”
have been observed in the suppression of density fluctua-
tions [35, 36] and momentum space correlations [37, 38],
the real space suppression g2(r) has not been observed in
situ before. In a non-interacting two-spin mixture, the
strength of the Pauli hole is halved, as only two iden-
tical fermions experience the Pauli hole. Nevertheless,
repulsive interactions between opposite spins also sup-
press g2(r), leading to a combined Pauli and correlation
hole.

In Fig. 3(a), we show the directly measured g2(1) as
a function of moment at an intermediate interaction of
U/t = 7.2. The strong suppression of g2(1) at low fillings
(large interparticle spacing) is observed, and is stronger
than Pauli suppression alone, reflecting short-range anti-
correlations due to repulsive interactions. As shown in
Fig. 3(a), the data is well described by NLCE and DQMC
calculations.

While g2(r) describes the probability of finding two
moments a distance r from each other, near half-filling,
where 〈m̂2

z〉 ∼ 1, the correlations arise mainly from sites
where the moment is zero, i.e. sites with holes and dou-
blons. The number of holes and doublons, which appear
empty after imaging, is given by 〈1 − m̂2

z〉. The cor-
responding two-point correlation function ḡ2(r) of these

“anti-moments” is thus

ḡ2(r) =
〈(

1− m̂2
z(r)

) (
1− m̂2

z(0)
)〉
/〈1− m̂2

z〉2. (5)

In Fig. 3(b), we observe that ḡ2(1) is strongly enhanced
near half-filling beyond the uncorrelated value of 1. ḡ2(1)
thus reveals the strong bunching of holes and doublons.
There are three contributions to ḡ2(1): correlations be-
tween pairs of holes, between pairs of doublons, and be-
tween holes and doublons. One expects neighboring holes
and neighboring doublons to show negative correlations,
due to Pauli suppression and strong repulsion. Hence
the bunching behavior must originate from positive cor-
relations between neighboring doublon-hole pairs. This
expectation is confirmed by NLCE and DQMC calcula-
tions (see Supplemental Material).

The strong doublon-hole correlation near half-filling
in the presence of antiferromagnetic correlations can
be qualitatively captured by a simple two-site Hubbard
model, experimentally realized in [39]. While in the
strongly interacting limit (U � t) the doublon density
vanishes and the ground state is a spin singlet, at in-
termediate interaction strengths, tunneling admixes a
doublon-hole pair into the ground state wavefunction,
with an amplitude ∼t/U . Thus, short-range singlet cor-
relations at moderate U/t occur naturally together with
nearest-neighbor doublon-hole correlations.

At a separation of one lattice site, we have revealed the
competition between Pauli- and interaction-driven repul-
sion of singly-occupied sites and the effective attraction
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FIG. 4: Spin and moment correlations as functions of
distance and doping. (a) Moment and spin correlations

for U/t = 7.2(1) are shown in top and bottom row
respectively, at various values of the local moment.

Correlation values are averaged over symmetric points.
The moment correlator Cm(1, 0) changes sign near a

doping of x ≈ 0.2. The anti-correlation of spins Cs(1, 0)
is observed to weaken upon increasing doping

(decreasing moment). In contrast, the
next-nearest-neighbor spin correlator Cs(1, 1) changes

from positive at zero doping to negative at large doping.
(b) Moment and spin correlations obtained from DQMC
theory for U/t = 7.2(1) and T/t = 1.22 are shown in top
and bottom row respectively, at various values of doping
x. The nonzero value of the spin correlator at distance
(i, j) = (0, 0) is omitted for clarity. NLCE results for
the spin correlator, not shown, are in agreement with

DQMC results.

of doublons and holes, which manifests itself in a sign
change of the correlator. The ability of the microscope to
measure at a site-resolved level also allows investigation
of longer-distance correlations. In Fig. 4(a,b), we show
the moment and spin correlations Cm(i, j) and Cs(i, j),
respectively, as a function of separation distance ix̂+ jŷ.
Near half-filling, even at the temperatures of this graph,
T/t ≈ 1.2, antiferromagnetic spin correlations beyond
the next neighbor are visible. With increased doping,
they give way to a more isotropic negative spin correla-
tion. For example, Cs(1, 1) changes sign from positive
at half filling to negative at large dopings. This resem-
bles the effect of Pauli suppression present already for
non-interacting fermions. For the moment correlator, we
observe clearly the sign change of Cm(1, 0) at a doping of
x ≈ 0.21, and that the correlations do not extend signif-
icantly beyond one site. To our knowledge, these are the

first observations and theoretical calculations of spatial
moment correlations in the 2D Fermi-Hubbard model.

The measurement of non-local moment correlations
also gives direct access to the associated potential energy
fluctuations. From the Fermi-Hubbard Hamiltonian in
Eq. (1), one finds that

∆E2
pot =

1

4
U2

(〈
M̂2
〉
−
〈
M̂
〉2)

=
1

4
U2
∑
i,j

(〈
m̂2
z,im̂

2
z,j

〉
−
〈
m̂2
z,i

〉 〈
m̂2
z,j

〉)
. (6)

where M̂ =
∑
i m̂

2
z,i is the total moment operator. At

half-filling, the contribution to the fluctuations from the
nearest-neighbor moment correlations is thus U2Cm(1) ≈
0.8 t2. This suggests that doublon-hole correlations can
indeed arise from coherent tunneling of particles bound
in spin singlets.

The microscopic detection of spatial correlations in
both the spin and charge as a function of tempera-
ture, doping, and interaction strength in the 2D Fermi-
Hubbard model presented here allowed the direct obser-
vation of the Pauli and correlation hole at high doping,
expected for a Fermi liquid, and of antiferromagnetic
correlations accompanied by doublon-hole bunching near
half-filling. These correlations were subsequently identi-
fied in novel theoretical calculations. It is interesting to
note that away from half-filling, both NLCE and DQMC
calculations are currently limited to a temperature range
around T/t ≈ 0.5, not far below what is reached exper-
imentally in this work. Further reduction in experimen-
tal temperatures will provide a valuable benchmark for
theoretical techniques, especially away from half-filling,
where the sign problem arises. The clear importance
of doublon-hole correlations motivates further studies of
their dynamics, especially away from half-filling, which
could elucidate their role for the transport properties of
a possible “strange metal” phase and potential pseudo-
gap behavior.
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support from CNPQ and FAPERJ. MR was supported
by the Office of Naval Research.
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Supplemental Material:
Observation of Spatial Charge and Spin Correlations in the 2D Fermi-Hubbard Model

Experimental Setup and Procedure

To prepare fermionic 40K atoms at low entropies in a
square optical lattice, we first sympathetically cool the
K atoms in a plugged magnetic trap with bosonic 23Na.
The atoms are subsequently transferred to an optical
trap. They are then transported optically into a single
2D layer below our high-resolution microscope objective,
where further evaporation occurs [21]. A square lattice
formed by retro-reflected lattice beams, with lattice spac-
ing of a = 541 nm, is then ramped to a depth that gives
the desired Hubbard parameters U/t. The Hubbard pa-
rameter U and the lattice depth are calibrated with mod-
ulation spectroscopy. The tunneling t is extracted from
the measured lattice depth using a tight-binding model.

To detect atoms, we freeze the position of the atoms
by ramping up the square lattice in 2 ms to a depth of

∼ 100ER, where ER = ~2

2m
π2

a2 and m is the mass of 40K.
The square lattice in the x-y plane, along with an addi-
tional 532 nm-spaced lattice along z, are further ramped
up to ∼ 1000ER. We subsequently perform site-resolved
fluorescence imaging using Raman sideband cooling. The
fluorescence images are then used to reconstruct the
parity-projected occupation at each lattice site [15].

Spin-sensitive Imaging

To realize spin-sensitive imaging, we first ramp
up the x-y lattice to 100ER to freeze the distribu-
tion. Then we transfer atoms in |F = 9/2,mF = −9/2〉
(|F = 9/2,mF = −7/2〉) to a different hyperfine state
|7/2,−7/2〉 (|7/2,−5/2〉) using a microwave sweep. This
is followed by a 5 ms pulse of light resonant with the
F = 9/2 → F ′ = 11/2 transition. We measure that this
removes > 95% of the atoms in F = 9/2, while removing
only < 0.03% in F = 7/2. Subsequently the x-y lat-
tice and the additional z-lattice with 532 nm spacing are
ramped to ∼ 1000ER for Raman imaging. Using sam-
ples with a band-insulating core, we have verified that
spin-sensitive imaging does not create more than 1(3)%
singly occupied sites from doubly occupied sites.

Measuring the Spin Correlation Function

In this section, we show how the spin correlation func-
tion Cs can be expressed in terms of experimentally ac-
cessible quantities. The spin correlator can be written
as

Cs = 4
〈
Ŝz,iŜz,j

〉
c

(1)

FIG. S1: Correlations vs U/t. (a) Nearest-neighbor
moment correlator and (b) nearest-neighbor spin

correlator at half-filling are shown in blue circles as
functions of U/t. Green shaded region indicates NLCE
theory curves for the temperature range T/t = 0.89 to

1.22.

where
〈
ÂB̂
〉
c

denotes the connected part
〈
ÂB̂
〉
−〈

Â
〉〈

B̂
〉

. We define the following quantities

n̂i = n̂↑,i + n̂↓,i (2)

d̂i = n̂↑,in̂↓,i (3)

Ŝz,i =
(n̂↑,i − n̂↓,i)

2
(4)

where n̂↑,i and n̂↓,i denote the on-site spin-up and spin-
down number operators, respectively. The directly mea-
sured experimental observables are then given by,

m̂2
z,i = n̂i − 2d̂i (5)

m̂σ,i = n̂σ,i − d̂i (6)

where m̂2
z,i represents the total moment operator on a

given lattice site, obtained by imaging both spin compo-
nents, and m̂σ,i represents the observable that we mea-
sure via the spin-sensitive imaging technique described
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FIG. S2: Temperature vs hold time in lattice. Blue
circles indicate temperature of samples at U/t = 7.2(1)

held in the lattice for varying times. Temperature is
extracted from the observed moment at half-filling

using NLCE theory. A linear fit, shown in blue solid,
gives a heating rate of 0.64(5)t/s.

above. The correlation signals available are then

m(2) (i, j) ≡
〈
m̂2
z,im̂

2
z,j

〉
c

(7)

m(2)
σ (i, j) ≡ 〈m̂σ,im̂σ,j〉c (8)

We begin by showing how the spin-spin correlation

function, 4
〈
Ŝz,iŜz,j

〉
c
, can be written in terms of these

quantities:

4
〈
Ŝz,iŜz,j

〉
c

= 〈(n̂↑,i − n̂↓,i) (n̂↑,j − n̂↓,j)〉c
= 〈(m̂↑,i − m̂↓,i) (m̂j↑ − m̂↓,j)〉c
= 〈m̂↑,im̂↑,j〉c + 〈m̂↓,im̂↓,j〉c
−〈m̂↑,im̂↓,j〉c − 〈m̂↓,im̂↑,j〉c . (9)

Next, we note that m̂2
z,i = m̂↑,i + m̂↓,i, which leads to

the following identity:〈
m̂2
z,im̂

2
z,j

〉
c

= 〈m̂↑,im̂↑,j〉c + 〈m̂↓,im̂↓,j〉c
+ 〈m̂i↑m̂j↓〉c + 〈m̂i↓m̂j↑〉c . (10)

Combining Eq. (9) and Eq. (10) then gives

4
〈
Ŝz,iŜz,j

〉
c

= 2
(
〈m̂↑,im̂↑,j〉c + 〈m̂↓,im̂↓,j〉c

)
−
〈
m̂2
z,im̂

2
z,j

〉
c

(11)

In terms of the experimentally measured correlators, we
thus have

Cs = 2(m
(2)
↑ (i, j) +m

(2)
↓ (i, j))−m(2) (i, j) (12)

Note that this expression is general for any spin imbal-
ance. For the data presented in this work, the ratio of
the two spin populations was found to be 1.02(1) by com-
paring the measured average atom number for each spin
species after the spin-sensitive imaging.

The above derivation assumes perfect fidelity. There
are a few sources of error, one of which is the overall
imaging fidelity f < 1. This reduces the correlation sig-
nal by a factor of f2, but does not introduce systematic
biases. Neglecting this fidelity f , errors that arise from
imperfect spin-imaging can be quantified by changing the
observable operators from Eqn. (6) to

ˆ̃mσ,i = (1− ε1σ) n̂σ,i+ε2σn̂−σ,i−(1− ε1σ + ε2σ) d̂i. (13)

Here ε1σ denotes unintended losses of spin-σ atoms when
performing spin-sensitive imaging, ε2σ denotes imperfect
removal of −σ atoms, and doubly occupied sites are as-
sumed to be dark. The experimentally available correla-
tors are then given by

m̃(2) (i, j) ≡
〈
m̂2
z,im̂

2
z,j

〉
c

(14)

m̃(2)
σ (i, j) ≡

〈
ˆ̃mσ,i

ˆ̃mσ,j

〉
c

(15)

Neglecting overall imaging fidelity f , to leading order in
ε1σ and ε2σ, the error in the spin correlator is

∆Cs =
∑
σ

{
−(ε1σ + ε2σ)Cs − (ε1σ − ε2σ)m(2)

−(ε1σ − ε1−σ)(m(2)
σ −m

(2)
−σ)
}

(16)

In other words, in the case of perfect non-detection of
doubly-occupied sites, each error term is separately pro-
portional to a measured correlator. This allows us to set
bounds on the magnitude of these errors. From our mea-
surements, we can bound the first term to −0.2(1)×Cs,
the second term to 0.02(2) × m(2), and the third term
to < 1 × 10−4 over all fillings. The latter two terms are
negligible compared to the first, as are terms of higher
order in ε1σ and ε2σ.

In the case of imperfect non-detection of doubly occu-
pied sites, where we image εd of the doublons, to leading
order in εd one has the additional error term of

εd

〈
2n̂id̂j + 4d̂id̂j

〉
c

(17)

Using an estimate of this correlator from NLCE data,
we expect the error to be bounded by 0.025εd. From
the agreement of NLCE data with the correlations versus
moment, we estimate that εd < 0.10, giving an error
bound of 2.5× 10−3.

Data Analysis and Error Estimates

In each experimental run, the fluorescence image is
reconstructed to determine the parity-projected occupa-
tion of each lattice site. To obtain the moment 〈m̂2

z,i〉 at
each site, we average over the reconstructed images from
∼ 100 experimental runs. To obtain the moment correla-
tor 〈m̂2

z,im̂
2
z,j〉, where sites i and j are separated by (p, q)
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FIG. S3: Charge and spin correlations versus temperature. Shown are DQMC and NLCE results for (a) the moment
correlator Cm(i, j), (b) the spin correlator Cs(i, j), and (c) the doublon-doublon correlator 〈didj〉c at half-filling as a
function of temperature, at U/t = 7.2. The NLCE results for 8th and 9th orders, and after numerical re-summations,

are shown in dotted, dashed and solid lines. Where available, DQMC and NLCE results agree for T/t > 0.5.

sites, we shift each reconstructed image by (p, q) and mul-
tiply the shifted image with the un-shifted image. This
multiplied image is then averaged over many experimen-
tal runs. A similar procedure is applied to the single-spin
images to obtain 〈m̂σ,im̂σ,j〉. For each separation (p, q),
the symmetry of the square lattice is employed to pro-
vide more statistics. For example, the correlator with
(p, q) = (1, 1) is averaged with correlators at equivalent
separations of (1,−1), (−1,−1) and (−1, 1).

Since the trap is radially symmetric, the site-resolved
moment 〈m̂2

z,i〉 can be radially averaged. The radial av-
eraging is performed with a bin size of 40 points. Error
bars are statistical, and denote the standard deviation in
each bin normalized by the square root of the number of
points in each bin. An analogous radial averaging pro-
cedure is performed on the correlators Cs and Cm, and
error bars are similarly obtained. This allows us to re-
plot the correlators as functions of the average moment
〈m̂2

z,i〉, which is a fit-free method to parametrize the fill-
ing.

To obtain the correlators Cs(i, j) and Cm(i, j) at var-
ious fillings for Fig. 4 of the main text, the correlators
are first plotted versus the average moment. A 6th order
polynomial spline is then fit to the data for each separa-
tion (i, j). This allows one to interpolate between various
fillings.

To determine the temperature of a sample with mini-
mal assumptions, we use the maximum value of the mo-
ment as a thermometer. The maximum value of the mo-
ment occurs at half-filling, due to particle-hole symme-
try. For the temperature range and interaction strength
accessed in this work, the moment is monotonic in tem-
perature. Comparison to NLCE theory, accounting for
imaging fidelity f = 95(1)%, allows us to estimate the
temperature of the gas. While this method is not par-

ticularly sensitive at low temperatures, it does not rely
on assumptions of the trapping potential. We find that
using temperatures obtained this way, the behavior of
correlators versus temperature agrees with DQMC and
NLCE theory.

Correlations versus U/t

As shown in Fig. S1, we observe the largest spin and
charge correlations near U/t ≈ 8, as expected from theo-
retical predictions. At higher U/t, the values of the spin
correlation do not lie on an isothermal curve. This could
indicate technical heating at the higher lattice depths
used, or difficulty reaching thermal equilibrium due to
the slower timescale when t is small. To estimate the
heating, we hold the gas at U/t = 7.2(1) and observe
how the temperature changes as a function of hold time.
We observe a heating rate of 0.64(5) t/s at this interac-
tion strength, as shown in Fig. S2.

Numerical Linked Cluster Expansion Results

In numerical linked-cluster expansions [32, 40] one ex-
presses extensive properties of a quantum lattice model in
the thermodynamic limit in terms of contributions from
finite clusters, up to a certain size, that can be embedded
in the lattice:

P =
∑
c

M(c)×WP (c), (18)

where P represents the extensive property per site, the
sum runs over all clusters that are not related by lattice
symmetries, M(c) is the number of ways per site in which
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each cluster c appears, and WP (c) is the contribution of
cluster c to property P . WP (c) is calculated using the
inclusion-exclusion principle,

WP (c) = p(c)−
∑
s⊂c

WP (s), (19)

where p(c) is the property calculated for cluster c and
the sum is over sub-clusters of c, all clusters with smaller
number of sites that can be embedded in c.

NLCEs use the same basis as high-temperature series
expansions (HTSEs), however, unlike HTSEs, in which
p(c) are expressed as perturbative expansions in terms of
the inverse temperature β, in NLCEs p(c) are calculated
exactly (to all orders in β) using exact diagonalization.
Despite the lack of an obvious small parameter in the
NLCEs, the convergence of the series is lost below a cer-
tain temperature where the correlations in the system
grow beyond a length of the order of the largest clusters
considered. Here, we have carried out the site expansion
for the Hubbard model [29, 41] to the 9th order (maxi-
mum cluster size of 9). We work in the grand canonical
ensemble and choose a fine chemical potential grid, lead-
ing to a high resolution also in the average density [42].
For the correlation functions and temperature ranges of
interest in this study, the series shows convergence at all
densities; therefore, in the main text, we show results in
9th order only. In Fig. S3, we show the 8th and 9th
orders along with results after numerical re-summations
using the Wynn algorithm [40] in an extended tempera-
ture region at half filling.

Determinantal Quantum Monte Carlo Results

The determinantal or auxiliary field quantum Monte
Carlo (QMC) for interacting fermions on a bipartite lat-
tice is an unbiased algorithm that provides statistically
“exact” answers for the energy and correlation functions
as a function of temperature [33, 43, 44]. By introduc-
ing auxiliary fields at each space-time point σ(x, t) in a
path integral representation of the partition function, the
quartic interaction terms can be factored into quadratic
forms âi. The fermions can now be integrated out yield-
ing a partition function Z =

∑
ρ as a sum of determi-

nants ρ = Tr{σ}
∏Nτ
i=1 exp[âi] over auxiliary field config-

urations [45, 46]. The negative sign or complex phase
of this determinant is the source of the so-called “sign-
problem” in QMC simulations that can limit the ability
to go to low temperatures away from half filling. How-
ever, in the present case when we compare our QMC
with the experimental data for the moment and spin cor-
relators presented in Fig. S3, we can bracket the lowest
temperatures T to be of order the hopping t, a regime
where the QMC simulations are completely reliable at
all fillings. Error bars reported are statistical.

FIG. S4: Contributions to the nearest-neighbor moment
correlator. Shown are the hole-hole (blue dotted),

hole-doublon (red dashed), and doublon-doublon (green
dot-dashed) contributions, obtained from NLCE theory
at U/t = 7.2 and T/t = 1.22. The moment correlator,

given by the sum of these three terms, is shown in solid
black.

Contributions to the Moment-Moment Correlation
Function

Since the local moment m̂2
z,i = (n̂↑,i − n̂↓,i)

2 can be

rewritten as n̂i − 2d̂i, the moment correlator can be ex-
pressed in terms of correlators of density and doublons:

Cm =
〈
m̂2
z,im̂

2
z,j

〉
c

= 〈n̂in̂j〉c − 4
〈
n̂id̂j

〉
c

+ 4
〈
d̂id̂j

〉
c
. (20)

Defining the number operator for a spin-σ hole at site
i to be ĥσ,i = 1 − n̂σ,i, and the total hole operator

ĥi = ĥ↑,i + ĥ↓,i = 2 − n̂i, one can rewrite the density-

doublon correlation 〈n̂id̂j〉c in terms of holes as −〈ĥid̂j〉c.
Similarly, the density-density correlation can be written
as 〈n̂in̂j〉c = 〈ĥiĥj〉c. For a homogeneous system, the
moment correlator can then be expressed as

Cm = 〈ĥiĥj〉c + 4〈ĥid̂j〉c + 4〈d̂id̂j〉c. (21)

One expects that holes and doublons are repulsive among
themselves due to fermion statistics and repulsion, while
holes and doublons attract. The moment correlator thus
contains the competing effects of inter-hole and inter-
doublon repulsion with hole-doublon attraction. The rel-
ative weights of the three terms, as extracted from NLCE
data, are shown in Fig. S4 for U/t = 7.2 and T/t = 1.22.
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