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ABSTRACT

APPROXIMATE DISASSEMBLY

by Dhivyakrishnan Radhakrishnan

     For the past two decades, computer viruses have been a constant security threat. A 

computer virus is a type of malware that may damage computer systems by destroying 

data, crashing the system, or through other malicious activity. Among the different types 

of viruses, metamorphic viruses are one of the most difficult to detect since such viruses 

change their internal structures with each mutation, making signature-based detection 

infeasible. Many construction kits are available that can be used to easily generate 

metamorphic strains of any given virus. 

     Previous work has shown that metamorphic viruses are detectable using Hidden 

Markov Models (HMM). In such an HMM-based approach, instruction opcodes are 

observed and a model is trained to detect a given virus family. These instruction opcodes 

are obtained by disassembling the binary executable file. However, the disassembling 

process is time-consuming, making the process impractical. In this project, we develop 

and demonstrate a technique to derive an approximate opcode sequence directly from the 

executable file, which, in general, reduces the time required as compared to a standard 

disassembly process. 
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1. Introduction

     A computer virus is a software program that infects a computer system without the 

user’s knowledge. The virus replicates itself into a computer system and affects the root 

functions of various programs. Computer viruses can cause many types of damage such 

as deletion of files, reformatting of hard drive, system slow down, or connectivity issues. 

Viruses usually spread through storage devices, computer networks or the Internet.

     Over the past two decades, viruses have evolved rapidly. They have caused crucial 

financial damage to businesses and organizations. For example, in 2000, the virus “Love

Letter” affected 10 million computers causing damages on the order of $10 billion [2].

     With the advent and growth of viruses, a variety of anti-virus tools have evolved to 

detect and manage the threats. These tools use a wide range of techniques to identify and 

remove viruses. However, there is no single antivirus software that protects a computer 

system from all viruses [1]. 

     Viruses continue to evolve in an effort to stay ahead of advances in anti-virus 

software. One of the most advanced classes of viruses are the metamorphic viruses which

change their structure with every mutation. They are harder to detect since the mutations

are not close to their parents [7]. However, such viruses can be detected using a Hidden 

Markov Model (HMM) [9].

     Most of the virus detection techniques use a disassembler to analyze the assembly 

code of the virus [7]. Our research focuses on improving the speed of the standard 

disassembler. This report is organized as follows. Section 2 contains a brief description of 

various types of viruses. Section 3 gives an overview of HMMs. Section 4 gives a 
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detailed explanation of the disassembly process. Section 5 explains our new method that

reduces the disassembly time as compared to a standard disassembly process. Section 6 

covers our results.
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2. Types of viruses

    There are several classes of viruses and each one of them affects the computer system 

in a different way. The following are some of the most popular computer viruses[7]:

 Macro virus

 Boot sector virus

 File infector virus

 Encrypted virus

 Polymorphic virus

 Metamorphic virus

2. 1 Macro viruses

     Macro virus is a virus that is embedded as part of a document or any other application 

such as Microsoft Office. These viruses may inflict harm to other documents available on 

the system when opened. Macro viruses usually spread through mail attachments or file 

transfers, and now they also occur in web pages. Recent versions of the Windows

operating system include antivirus tools that disable macro viruses by default [4]. A 

common example of a macro virus is the Melissa virus of 1999 [5].     

2.2 Boot sector viruses

     A Boot sector virus is a virus that causes damage to the boot sector of a hard drive, 

CD/DVD or floppy disks. Once the computer boots, the boot sector virus remains in the 

memory and infects floppy and other bootable media when they are being accessed. Boot 
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sector viruses have become relatively uncommon due to the rare use of floppy disks in 

recent times [4]. A fine example of a boot sector virus is the Michelangelo virus of 1991

[5].

2.3 File infector viruses 

     A file infector virus is a virus that infects files in a computer system. When an infected 

file is executed, the virus replicates itself to other applications in the system. File infector

viruses are usually common among .exe and.com files. File infector viruses cause system 

hang-ups and slow performance [4]. An example of a file infector virus is the Cleevix 

virus of 2006 [5]. 

2.4 Encrypted viruses

     An encrypted virus is a type of virus where the virus code is encrypted to avoid 

signature detection. The encrypted virus code changes with each infection by using a 

different encryption key but uses the same decryption key.  Hence, it is still possible to 

detect encrypted viruses based on the decryption key [6].

2.5 Polymorphic viruses

     Polymorphic viruses are an extension of encrypted viruses where the decryption key is 

different with each infection. But the decrypted virus code is the same regardless of the 

different decryption key. Antivirus programs that incorporate code emulation techniques 

can detect polymorphic viruses [6].
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2.6 Metamorphic viruses

     Metamorphic viruses are more powerful than polymorphic viruses. Unlike 

polymorphic viruses, they do not decrypt to the same virus code. Metamorphic viruses

change the structure of their code without affecting the functionality. The changed code is 

recompiled to create a virus executable that looks different from the original [6]. Such 

modification is achieved by using several metamorphic techniques that are explained in 

Section 2.6.1. Figure 1 shows multiple shapes of a metamorphic virus body.
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Figure 1: Multiple shapes of a metamorphic virus body [7]
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2.6.1 Different kinds of metamorphism

     Metamorphic viruses use different kinds of techniques to make the new infection look 

different from the existing one. The following are some of the commonly used 

metamorphic techniques explained by Szor in [7]:

 Garbage Insertion

 Register Usage Exchange

 Instruction Replacement

 Subroutine reordering

2.6.1.1 Garbage Insertion 

     This is a simple morphing technique that is widely used by metamorphic viruses. It 

inserts garbage or jump instructions into the code, which occupy space but do not affect 

the functionality of the code. These viruses are harder to analyze because unwanted or 

garbage instructions exist in larger quantities. These instructions might even introduce 

new errors in the program. Win32/Evol is a virus that inserts garbage instructions

between core instructions [7].

2.6.1.2 Register Usage Exchange

     Register usage exchange is another simple technique that uses different registers for 

new infections but continues to use the same virus code. However, such viruses can be



8

detected by using wild card strings. W95/Regswap is a virus that uses the register usage 

exchange technique [7].    

2.6.1.3 Instruction Replacement

     Instruction replacement technique replaces a set of instructions in a virus with an 

equivalent set. Instruction replacement also has no impact on the functionality of the 

code. Win95/Bistro is a virus that uses the instruction replacement technique [7].

2.6.1.4 Subroutine Reordering

     In this technique, the subroutines are reordered and branch instructions are used to 

connect them to maintain the functionality. The order of subroutines is different for each 

infection. If there are n subroutines in a given virus, then this technique creates n! 

variants of that virus. Win32/Ghost is a virus that uses the subroutine reordering 

technique [7].
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3. HMM and metamorphic virus detection 

     An HMM is a state machine with hidden states where the transitions between states 

have a fixed probability. The external observer can only see a set of observations which 

depend (probabilistically) on the hidden states. Once a HMM has been trained with a set 

of observation sequences, the model has the ability to detect similar sequences in a given 

input. HMM are well suited for statistical pattern analysis [9].

     Consider the following notations of HMM used in [8]:

T = the length of the observation sequence

N = the number of states in the model

M = the number of observation symbols

Q = {q0, q1, . . . , qN-1} = the states of the Markov process

V = {0, 1, . . . ,M − 1} = set of possible observations

A = the state transition probabilities

B = the observation probability matrix

π = the initial state distribution

O = (O0,O1, . . . ,OT-1) = observation sequence.

Xi  = Hidden state

     Figure 2 illustrates a generic HMM with the notation given above. 
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Figure 2: Hidden Markov Model [8]

         

     The matrix A = {aij} is of size N × N with

a ij = P(state qj at t + 1 | state qi at t)

     and A is row stochastic. Note that the probabilities aij are independent of t. 

     The matrix B = {bj(k)} is of size N ×M with

bj(k) = P(observation k at t | state qj at t).

     Thus, an HMM is denoted by (π, A, B), where the matrices π, A and B are row 

stochastic.

     Metamorphic viruses have similarities in their code structure, in spite of their ability to 

mutate with each infection. These similarities help HMM to detect metamorphic viruses. 

In the HMM, the virus characteristics are the states and the instruction opcode sequence 

is the observation set. Stamp et al in [9] used HMM to detect metamorphic viruses.

     The procedure involved in training the HMM is as follows:

1. Collect a set of executable files that belong to the same family

2. Disassemble the collected executable files into assembly code



11

3. Extract opcode sequence from the assembly code

4. Train the model with the extracted opcode sequence

Figure 3 illustrates the process involved in creating a HMM.

Figure 3: Creating a HMM model (Preprocessing of virus file) [9]

     A set of viruses of the same family are assembled into the corresponding set of 

executable files using an assembler (e.g. TASM, TLINK). Each executable file is then 

disassembled using a disassembler (e.g. IDA Pro). An opcode sequence is extracted from 

the disassembled files to create a HMM.          

     After the creation of HMM, the HMM is tested using a set of files. Some of the files in 

the set belong to the family of viruses for which the HMM is created and trained for. The 

HMM processes these files and should give a high score to the virus files of the same 

family and low score to the others [9]. 

      The next section describes about the disassembly process that plays a crucial role in 

detecting metamorphic viruses using HMM.
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4. Disassembly

     Computer programs are human readable programs written in a high-level language 

like C, C++, etc. These programs are translated into a CPU readable, executable file. The 

CPU uses these executable files to execute the instructions to perform the required 

operation. Figure 4 shows how human readable computer programs are converted into 

CPU readable machine code.

     

          Figure 4: Levels of Data Representation [10]           

     Disassembly is the process of converting machine language back into assembly 

language. Figure 5 illustrates the disassembly process. 
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                   Figure 5: Disassembly Process [10]   

     Section 4.1 describes details of the assembly language instruction set, by using Intel 

instruction set as an example. Section 4.2 describes details of the disassembler.    

4.1 Intel Instruction Set

     Instruction set architecture is a part of computer architecture that acts as an interface 

between hardware and software. It contains a list of instructions that the processor can 

understand and execute. The basic types of instructions are as follows:

 arithmetic (add, subtract) 

 logic (and, or)

 data (mov, load)

 control flow (call, return)

     Figure 6 shows the layout of the computer architecture in which the instruction set 

architecture lies between software and hardware. 
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         Figure 6: Layout of Computer Architecture [10]

      Intel x86 processors use complex instruction set computer (CISC) architecture that 

comprise large number of variable-length instructions and complex addressing modes.  In 

the Intel instruction set, there are more than 100 instructions and each instruction can be 1 

to 17 bytes long [11].

4.1.1 Instruction Format

     Instructions in the Intel instruction set start with an optional instruction prefix. The 

instruction prefix is followed by an opcode field, which can be 1 or 2 bytes.  The 

instruction also includes an addressing-form specifier (if required) consisting of the 

ModR/M byte and sometimes the SIB (Scale-Index-Base) byte, a displacement (if 

required), and an immediate data field (if required) [11]. Details of the individual fields in 

Computer Architecture

Hardware

                                              

                                              

Software 

         Inte rface between Hardware and Software

             (Instruction Set Architecture)

Application Program

Operating System

Compiler

CPU Memory I/O 
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the instruction are explained in the following subsections. Figure 7 illustrates the format 

of the instruction. 

Figure 7:  Intel Instruction Format [11]

4.1.1.1 Instruction Prefix

    Instruction prefix is divided into four groups. Each group has a set of allowable prefix 

codes.  Each prefix is of one-byte length. An instruction can have 1 prefix from each 

group with a maximum of 4 prefix bytes. The Intel manual specifies the following four 

groups of instruction prefixes [11]:

1. Segment override prefix (2EH,36H,3EH,26H,64H,65H) changes the default 

segment of the instruction

2. Operand-size override prefix (66H) overrides the default operand-size of the 

instruction. The default size is either 16-bit or 32-bit operand.

3. Address-size override prefix (67H) overrides the default address-size of the 

instruction. The default size is either 16-bit or 32-bit address.

4. Repeat (F2H,F3H) and Lock prefix(F0H) controls the loop in the string 

instructions and bus usage of the processors.
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4.1.1.2 Opcodes

     The primary opcode of the instruction is either 1 or 2 bytes. The opcode field defines a 

small encoding field, and the encoding field size varies depending on the operation. 

These encoded fields can determine displacement size, operational direction, conditional 

code, register encoding or sign extension of the immediate data field in the instruction. 

Sometimes an additional three-bit field from the ModR/M byte can also be used as part of 

the opcode [11].

4.1.1.3 ModR/M bytes

     The ModR/M byte is the first byte of the addressing-form specifier. This field gives 

information about which registers or memory locations are to be used by the instruction.

The ModR/M byte consists of three fields [11]:

 Mod: The mod field together with the r/m field defines one of the eight registers 

or one of the twenty-four addressing modes. It is a two-bit length field.

 Register/Opcode: The three-bit length register/opcode field specifies a register or 

three additional bits of opcode information.

 R/M: The r/m field is a three-bit length field that can either specify a register as an 

operand or can be used in conjunction with the mod field to encode an addressing 

mode.

4.1.1.4 SIB bytes

          The SIB byte, the second byte of the addressing-form specifier is used to determine 

the address of the operand's memory based on the following three fields [11]:
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 Scale: It is a two-bit length field that specifies the scale factor.

 Index: It is a three-bit length field that specifies the register number of the index 

register. It is used for index addressing.

 Base: It is a three-bit length field that specifies the register number of the base 

register. It is used for base addressing. 

     Figure 8 shows the calculation of operand's address based on scale, index and base 

value.

Figure 8:  Offset (or Effective Address Computation) in [12]

4.1.1.5 Displacement and Immediate bytes

     The displacement field is used when some instructions specify a displacement value 

that is added to the operands memory address. For example, in the instruction MOV 

EAX, DWORD PTR DS:[BX+SI+3124], 3124 is the displacement value added to the 

memory address. The displacement (if required) can be 1, 2, or 4 bytes long. An
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immediate field is used when the instructions specify an immediate operand. In the 

instruction, CMP BX, 20, the immediate operand is 20. The immediate operand can also 

be 1, 2, or 4 bytes long [11].

4.2 Disassembler algorithm

   Figure 9 shows the control flow of the disassembler algorithm.

Figure 9: Disassembler Algorithm
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     The disassembler algorithm takes a PE file as an input and identifies the compiler that 

built the PE file. The disassembler can achieve a high degree of accuracy in identifying 

variables, objects and procedures of the target file by knowing the compiler type. The 

disassembler reads each input byte and determines if it is a prefix byte. If the byte read is 

a prefix byte, then the next byte is an opcode byte. Then, the operand size of the 

instruction is determined based on the MOD R/M, SIB, displacement or immediate fields 

in the following bytes. The disassembler skips the operands and jumps to the next 

instruction. The disassembler continues the process until it reaches the end of the file. 

4.3 Disassembly techniques

     There are two main techniques for disassembling the machine code:

1. Linear Sweeping

2. Recursive Traversal

Each of the above technique is explained in detail in the following subsections.

4.3.1 Linear Sweeping

    Linear sweeping algorithm extracts the text section from the executable file. The 

instructions in the text section are sequentially processed until the end of file. Although 

this algorithm is quite simple and fast, it cannot detect data encoded in the instruction 

itself [13].

     In Figure 10, the sample disassembly file has a bunch of non-executable instructions 

(0040289D to 004028B5) between executable instructions which cannot be caught by the 
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linear sweeping algorithm because it considers each and every instruction as executable 

bytes. 

Figure 10: Disassembled File

Consider the non-executable instruction at 004028A5 in Figure 10:

004028A5        9cC144000          DD DAMsetup.004019c

The linear sweep algorithm disassembles the above non-executable instructions as 
executable instructions:

004028A5        9C             PUSHF

004028A6        1440 00     ADC AL , 00
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A single disassembly error as shown above can significantly affect the disassembled 

output. Thus the linear sweeping algorithm does not always produce the correct source 

code. SoftICE and WinDbg are disassemblers that use the linear sweeping algorithm [13].

4.3.2 Recursive Traversal

     Like the linear sweeping algorithm, recursive traversal algorithm starts processing the 

instructions from the beginning of the text section. The main difference is that the 

recursive traversal algorithm does not process the instructions sequentially. The 

algorithm depends on the control flow of the program. If the instruction processed is a

jump instruction, then the algorithm jumps to the jump address specified and starts

processing the bytes at the jump address instead of the consecutive bytes. This approach 

can detect data encoded in the instructions. But the recursive traversal algorithm cannot 

construct the correct code sequence in case of indirect branch instructions. So this 

algorithm also does not always produce the correct source code. IDA Pro and OllyDbg 

are disassemblers that use the recursive traversal algorithm [13].

4.4 Challenges in Disassembly

     The following elements in the instruction stream may pose significant challenges in 

the disassembly process:

 Variable length instructions 

 Embedded data in text sections(jump tables, alignment bytes)

 Branch instructions and indirect jumps

 Functions with no explicit call
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     Variable length instructions can cause a disassembler program to yield more than one 

reasonable disassembled output. Data embedded in text sections cannot be detected by 

disassembler algorithms like the linear sweep algorithm. Branch instructions, indirect 

jumps and functions with no explicit call may cause incorrect disassembled code when 

disassembled using the recursive traversal algorithm. 

     In addition to the above issues, memory requirements associated with the disassembly

process can also be quite significant. According to PE Explorer, “Disassembling files 

larger than 1 Mb in size can take several minutes depending on the capabilities of your 

system. Generally, each byte of a target file requires 40 bytes of memory for processing. 

For example, a 1 Mb file would require 40 Mb of processing memory, a 2 Mb file — 80 

Mb and so on” [14].
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5. Extraction of opcode sequence 

    In this section, we describe our method of extracting opcode sequences from a 

executable. Stamp et. al in [9] used IDA Pro to disassemble executable files. From the 

IDA Pro disassembled files, the opcodes are extracted and concatenated to form an 

opcode sequence. The extracted opcode sequence is then used as an observation set for 

HMM to detect metamorphic viruses. But the disassembly process consumes a lot of time 

and becomes impractical for large files. We implemented an alternative method that

efficiently parses the executable file and extracts an approximate opcode sequence from 

the file. The steps involved in extracting the approximate opcode sequence are as follows:

1. Extract the text section from executable file.

2. Extract the opcodes from the text section.

3. Concatenate the opcodes to form an approximate opcode sequence.

Each of above steps is explained in the following subsections.

5.1 Extraction of text section

     This section describes the structure of the Portable Executable (PE) format and the 

method used to extract the text from the PE file. 

5.1.1 PE File Format

          PE file format is the file format used in Microsoft Windows Operating Systems. 

We chose the PE executable format as our format, as it is the most commonly used file 

format and is the most vulnerable to virus attacks. PE file format is derived from the 

Common Object File Format (COFF), which is the file format of Unix System[15]. The 
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general layout of a PE file is shown in Figure 11

Figure 11: PE file format in [15]

The PE file consists of the following fields [15]:

 MS DOS header

 PE header

 Optional header

 Section header
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 Sections

Each field of the PE file is explained in detail in the following subsections.

5.1.1.1 MS DOS header

     An MS-DOS executable header is found at the start of the PE file. This header 

indicates that the PE file is a valid MS-DOS executable file. PE files with the MS-DOS 

header cannot be run on machines running different operating systems. The DOS header 

can be identified by a sixteen-bit signature. It is represented as “0x5A4D” in hex or “MZ”

in ASCII [15].

5.1.1.2 PE header

     The next field in the PE file format is the PE header. The PE header contains a thirty-

two- bit signature, which is “0x00004550” in hex or “PE\0\0” in ASCII. This signature 

indicates that the executable is a PE file. The PE header consists of a file signature, COFF 

header, and an optional header. Table 1 contains the description of the COFF header

fields [15].
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TABLE 1: COFF HEADER [15]

Offset Size Field Description

  0 2 Machine The number that identifies the type of target 

machine. 

Offset Size Field Description

  2 2 NumberOfSections The number of sections. This indicates the size 

of the section table, which immediately follows 

the headers.

  4 4 TimeDateStamp The low 32 bits of the number of seconds since 

00:00 January 1, 1970 (a C run-time time_t 

value), that indicates when the file was created.

  8 4 PointerToSymbolTable The file offset of the COFF symbol table, or 

zero if no COFF symbol table is present. This 

value should be zero for an image because 

COFF debugging information is deprecated.
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12 4 NumberOfSymbols The number of entries in the symbol table. This 

data can be used to locate the string table, which 

immediately follows the symbol table. This 

value should be zero for an image because 

COFF debugging information is deprecated.

16 2 SizeOfOptionalHeader The size of the optional header, which is 

required for executable files but not for object 

files. This value should be zero for an object 

file. 

18 2 Characteristics The flags that indicate the attributes of the file.

     The NumberofSections and the OptionalSizeheader fields are the only fields used in 

the extraction of the text section. 

5.1.1.3 Optional header 

     As the name indicates, this header is optional for executable files. This header 

provides information to the operating system’s loader. For example, this header is 

required for image files. Since the text section appears after the optional header, the 

optional header field is skipped in the extraction process [15].
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5.1.1.4 Section header

     The section header follows the optional header. It defines the structure of each section. 

The section header is 40 bytes long, and the following fields are needed for the text 

section extraction [15]:

 Name: This field determines the name of the section. It is used to identify the                        

text section.

 Characteristics: This field describes the characteristics of the section. It is also 

used to identify the text section.

 SizeOfRawData:  This field determines the size of the text section. It is used to 

extract the text section.       

 PointerToRawData : This field points to the start of the text section.  It is used to 

locate the code.    

5.1.1.5 Sections

     The sections are divided into the following five categories [15]:

 .text: This section contains executable instructions. These instructions cannot be 

altered, so it is a read-only section.

 .data: This section contains the global variables initialized by the programmer. 

These variables can be changed at runtime, so it is a read-write section.

 rdata: This section holds the debug data that is only present in executable files.

 .bss: This section contains uninitialized variables or common storage.

 idata: This section lists the symbols imported into a file.
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     Figure 12 shows the detailed layout of PE file including the different sections.

Figure 12: Detailed layout of PE Executable [15]

5.1.2 Extraction of text section

     This section explains how the text section is extracted from a PE executable file. 

Govindaraj [16] explains the steps to extract the text section from an executable file as 

shown in Figure 13. The program first searches for the DOS header by looking for the 

signature “0x5A4D” or “MZ.” Then the program looks for the PE signature 
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“0x00004550” or “PE”. The program obtains the size of the optional header from the 

SizeOfOptionalHeader field and uses that to skip the optional header.

     The program specifically looks for the text section. Each section can be identified by 

the name field or by the characteristics field. For the text section, the name field contains 

“.text” or “.code” name, and the characteristics field contains “0x0000020.” Since the 

name for the text section is not standardized, the program checks both the name and 

characteristic fields to identify the text section. The start of the text section is located 

using the PointerToRawData field. The text section is extracted using the 

SizeOfRawData field [16]. 
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Figure 13: PE Text Section flow [16]
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5.2 Approximate opcode sequence

The Intel instruction set contains more than 100 instructions.  Disassembly 

process gets very complicated and time consuming if all the instructions are taken into 

account. As the executable file size increases, the complexity increases manifold when all 

the instructions are accounted for. In order to reduce the complexity, we only consider the 

Most Frequently Occurred (MFO) instructions in our method.

     According to Billar, there are only 14 instructions in the Intel instruction set that are 

commonly used by PE files and these instructions are called MFO instructions. The MFO 

instruction set consists of ADD, AND, CALL, CMP, JMP, JNZ, JZ, LEA, MOV, PUSH, 

POP, RETN, TEST and XOR [17]. Figure 14 shows frequency of occurrence of MFO 

opcode mnemonics in normal files

Figure 14: Frequency of occurrence of MFO opcodes in normal files (in percentage)
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    As discussed in Section 4.1, instruction opcodes are either 1 or 2 bytes long. The 

maximum length of a given instruction is 17 bytes. So the operand size for a given

instruction can vary from 0 to 16 bytes. We divide the MFO instruction opcodes into

three sets of opcode tables based on operands as follows:

 a table that has a list of opcodes with no operand 

 a table that has a list of opcodes with one operand 

 a table that has a list of opcodes with more than one operand

In addition to the three sets of MFO opcode tables, we also collect statistical data for 

the occurrence of opcode pairs as shown in Table 2.

TABLE 2: SAMPLE STATISTICAL DATA OF OPCODE PAIRS

Opcode Pair

(opi , opi+1)

Length of bytes, n Probability value 

ff, ff 2 0.025

8b, 8b 4 0.014

50, ff 0 0.010

8d, 50 2 0.010

e8, 8b 4 0.009

ff, 8b 1 0.009 

8b,  83 2 0.009

ff, e8 5 0.008

85, 74 2 0.008

8d, e8 5 0.008
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     A large set of normal files is disassembled using IDA Pro. Then the frequency of 

occurrence of opcode pairs is collected from the disassembled files in addition to the 

number of bytes between them. The probability of opi followed by opi+1 when there are n 

bytes between them is calculated and stored as the statistical triplet (opi, opi+1, n). Using 

this statistical data, an approximate opcode sequence is extracted with our algorithm as 

shown. Figure 15 shows frequency of occurrence of MFO pairs in normal files

      

Figure 15: Frequency of occurrence of MFO pairs in normal files (in percentage)
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     Figure 16 shows the program flow of our method. In our method, the program takes a 

PE file as an input. Since the text section has he executable instructions, the program 

extracts that section from the PE file. We start processing the input one byte at a time. If 

the byte read is “0F”, then this can be a 2 byte opcode, so the next byte is read and 

appended to this byte. Else, the read byte is assumed to be a 1 byte opcode. The opcode 

that is read is then checked against each of the three tables. If the opcode occurs in the 

table with no operands, then the next byte is assumed to be the next opcode. If the opcode 

occurs in the table with one operand, the next byte is skipped and the following byte is 

assumed to be the next opcode. 

     If the opcode occurs in the table with more than one operand, then a solution tree is 

constructed with all possible operand sizes. The operand size varies from 0 to 16 bytes in 

the Intel instruction set. There are very few opcodes which use 16 byte operands, so we 

optimize the problem by restricting it to a maximum of 8 byte operands. So the next 

opcode can be anywhere from 1 to 9 bytes away from the current byte. For each of the 

possible opcode pairs, the probability of occurrence of these pairs and the distance 

between them is annotated by adding the logarithmic value of the probability from the 

statistical table into the solution tree. We use the logarithmic value of the probabilities to 

avoid a numerical underflow in calculations associated with multiplication of small 

numbers. If the opcode pair does not occur in the statistics then it is assigned a low 

probability value (-100.0). If the opcode does not occur in any of the tables, the read byte 

is skipped. This process is repeated for every byte until the end of the file and a full 

sequence list with multiple branches are constructed. As we continue processing bytes in 
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the input stream, we optimize the solution tree by removing branches with low 

probability values. At the end of the file, an approximate opcode sequence is obtained by 

choosing the branch with the highest probability.     

Figure 16: Method for extracting approximate opcode sequence
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For example, consider the following sequence of input stream

Input stream:  568b7424088a46103c017439 3c02751c8be83f00….

Let’s divide the input stream byte by byte as shown below

Input byte stream:  56 8b 74 24 08 8a 46 10 3c 01 20 39 3c 02 75 1c e8 3f 00….

   Let’s take the first input byte 56. Since the first input byte is an opcode with no 

operand, we know the next input byte 8b is an opcode that follows 56. The opcode 

sequence becomes 568b. The second input byte is 8b. The opcode 8b is in the list of 

opcodes with more than one operand. So we form a solution tree of next possible opcodes

based on 8 possible operands. Table 3 shows the next possible opcode depending on the 

operands of the opcode 8b. Note the opcode pair (8b, 20) is assigned the value of -100.0

as it does not appear in the statistical data. This process continues till the end of the input 

file. 

TABLE 3: SOLUTION TREE CALCULATION

Opcode Possible Operand # of 

Operands

Next 

opcode

Opcode 

sequence

Statistics 

Value

8b 74 1 24 8b 24 -10.761

8b 74 24 2 08 8b 08 -100.0

8b 74 24 08 3 8a 8b 8a -9.505

8b 74 24 08 8a 4 46 8b 46 -10.499

8b 74 24 08 8a 46 5 10 8b 10 -100.0

8b 74 24 08 8a 46 10 6 3c 8b 3c -10.291
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8b 74 24 08 8a 46 10 3c 7 01 8b 01 -12.136

8b 74 24 08 8a 46 10 3c 01 8 20 8b 20 -100.0

Figure 17 shows a section of the solution tree for the above example.

     

Figure 17: Example of solution tree in extracting opcode sequence
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6. Implementation Results

     An input set of 200 normal files are taken and 150 out of the 200 files are used to 

collect the statistical data of opcode pair occurrences. This statistical data is collected 

using the IDA Pro disassembler. Using the statistical data, an approximate opcode 

sequence is extracted from the remaining 50 files .Then the extracted opcode sequence of 

each file is compared with IDA Pro. An average of 70.2% accuracy is achieved in 

extracting the opcode sequence when compared with IDA Pro. 

    The test sets below measures the time vs. file size comparison between our algorithm 

and the IDA Pro disassembler. The time taken by both the algorithms for each file is 

measured. The test set measures a set of files that range from 1MB to 5MB. 

Test set 1: Average File Size = 1MB

     In this test set, the file size ranges from 0.5MB to 1.5MB. An average time of 4.4

seconds is taken by our algorithm whereas 5.3 seconds time is taken by the IDA Pro 

disassembler. For this set, our algorithm is about 20% faster than IDA Pro. For some files 

in the data set, IDA Pro is faster than our algorithm, but the majority of the files take a 

shorter time with our algorithm than IDA Pro.
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Figure 18: Comparison of time taken between our approach and IDA Pro, File set 
1MB

Test set 2: Average File Size = 2MB

     In this test set, the file size ranges from 1.5MB to 2.5MB. An average time of 5.7

seconds is taken by our algorithm whereas 7.3 seconds time is taken by the IDA Pro 

disassembler. For this set, our algorithm is about 28% faster than IDA Pro. 
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Figure 19: Comparison of time taken between our approach and IDA Pro, File set 
2MB

Test set 3: Average File Size = 3MB

     In this test set, the file size ranges from 2.5MB to 3.5MB. An average time of 10.87 

seconds is taken by our algorithm whereas 13.4 seconds time is taken by the IDA Pro 

disassembler. For this set, my algorithm is about 34% faster than IDA Pro. 

0

1

2

3

4

5

6

7

8

9

1.81 1.94 1.97 2.03 2.07 2.27

Ti
m

e 
in

 s
ec

s

File size in MB

Our Method

IDAPRo



42

Figure 20: Comparison of time taken between our approach and IDA Pro, File set 
3MB

Test set 4: Average File Size = 4MB

     In this test set, the file size ranges from 3.5MB to 4.5MB. An average time of 12.9 

seconds is taken by our algorithm whereas 16.7 seconds time is taken by the IDA Pro 

disassembler. For this set, our algorithm is about 38% faster than IDA Pro.
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Figure 21: Comparison of time taken between our approach and IDA Pro, File set 
4MB

Test set 5: Average File Size = 5MB

     In this test set, the file size ranges from 4.5MB to 5.5MB. An average time of 19.25

seconds is taken by our algorithm whereas 23.6 seconds time is taken by the IDA Pro 

disassembler. For this set, our algorithm is about 44% faster than IDA Pro.

0
2
4
6
8

10
12
14
16
18
20

3.8 4 4.1 4.3 4.4 4.5

Ti
m

e 
in

 s
ec

s

File size in MB

Our method

IDA Pro



44

Figure 22: Comparison of time taken between our approach and IDA Pro, File set 
5MB

Test set 6

     Figure 23 shows the average time taken for a given file size by our algorithm and IDA 

Pro. 

Figure 23: Average time comparison between our approach and IDA Pro
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     The graph shows that for small files, our algorithm is slightly better than IDA Pro. As 

the file size increases, IDA Pro’s disassembly time increases linearly. Our algorithm’s 

disassembly time also increase linearly. As the file size increases, the time difference 

between our algorithm and IDA Pro increases. 

Accuracy of opcode sequence

     The test set 7 below measures the accuracy of our algorithm as compared to IDA Pro 

for different file sizes. For a given file, we extract the output from IDA Pro and our 

algorithm. For every opcode pair in our output, we calculate the frequency of occurrence 

of the pair. We do the same for all the pairs in IDA Pro’s output and then calculate the 

difference in frequencies between our output and IDA Pro’s output. This difference is the 

number of misses that our algorithm has had with respect to IDA Pro. The total number 

of misses in the output divided by the total frequency in IDA Pro output gives us the 

accuracy of our algorithm for that file. We repeat this exercise for all the files in our test 

sets. Table 4 shows the error calculation for an example file of size 47KB.
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TABLE 4: ERROR CALCULATION OF AN EXAMPLE FILE

Opcode
Pair, Opi

IDA Pro Output
Pi for file(f)

Our method Ri

output for file(f)
Miss Calculation,

(Mi = Pi - Ri )
ff, ff 213 259 46
50, ff 72 78 6
8b, 8b 71 60 11
56, e8 63 57 6
68, ff 54 48 6
ff, 85 54 54 0
ff, 8b 53 69 16
57, e8 51 51 0
57, ff 50 54 4
6a, e8 49 73 24
85, 74 48 46 2
ff, e8 46 53 7
8b, 83 45 38 7
6a, ff 44 42 2
8d, 50 42 43 1
85, 75 38 37 1
ff, 6a 37 34 3
53, ff 34 37 3
ff, 83 34 31 3
50, e8 33 38 5
e8, 85 33 32 1
e8, 8b 33 39 6
39, 74 32 33 1
3b, 74 32 35 3
5f, 5e 32 30 2
83, 75 31 28 3
Total T(Pi)  =   1324 T(Ri)   = 1399 T(Mi) =  169
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From Table 4, the error percentage for the file (f) is calculated as:

Miss percentage, MP =   T (Mi)  

                                       ------------- X 100 where i= 0, 1, 2…N and N is the length

   T (Pi)  of opcode pair in a given file (f).

Accuracy percentage, AP = (100 - MP) %

For the sample file (f) in table 4, the miss percentage is calculated as 12%

((169/1324)*100). Thus the accuracy of opcode sequence for the file (f) with respect to 

IDA Pro is 88%.
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  Figure 24 shows the average accuracy of approximate opcode sequence with respect to 

IDA Pro for different file sizes in our test set. An average accuracy of 70.2% is achieved 

for all the files in our test set. 

Figure 24: Accuracy of Opcode Sequence

     As the file size increases, the accuracy decreases, but the drop in accuracy is not 

significant as the file size increases. This accuracy is good enough for detecting viruses 

using HMM.

These results prove that our approximate opcode sequence extraction algorithm is faster 

than IDA Pro for most cases and offers a significant speed up for larger files with a 

marginal loss of accuracy.
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7. Conclusion and Future works

     We implemented an approximate disassembly method that identified Most Frequently 

Occurred (MFO) instructions in the executable files and constructed three groups of 

opcode tables based on their operand sizes. We also collected the frequency of 

occurrence of opcode pairs from a set of files. An approximate opcode sequence is 

extracted from a given executable file, using the opcode tables and opcode pair statistics. 

Our method reduced the disassembly time by 45% as compared to the industry standard 

disassembler IDA Pro. It also achieved an accuracy of 70% as compared to IDA Pro. 

We collected opcode pair statistics to improve the extraction time. This concept 

can be extended to opcode triplets and, possibly longer opcode sequences, which might 

improve our accuracy. We currently use separate opcode tables for opcodes with zero and 

one operands. This can be extended to opcodes with two or three operands. This might 

reduce the extraction time and increase the accuracy of the extracted sequence.
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