
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2010

APPROXIMATE DISASSEMBLY APPROXIMATE DISASSEMBLY

Dhivyakrishnan Radhakrishnan
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Radhakrishnan, Dhivyakrishnan, "APPROXIMATE DISASSEMBLY" (2010). Master's Projects. 155.
DOI: https://doi.org/10.31979/etd.bjm4-qe5u
https://scholarworks.sjsu.edu/etd_projects/155

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/155?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F155&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

APPROXIMATE DISASSEMBLY

By

Dhivyakrishnan Radhakrishnan

May 2010

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science in Computer Science

© 2010

Dhivyakrishnan Radhakrishnan

ALL RIGHTS RESERVED

SAN JOSÉ STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Thesis Titled

APPROXIMATE DISASSEMBLY

by

Dhivyakrishnan Radhakrishnan

 Dr. Mark Stamp, Department of Computer Science Date

 Dr. Robert Chun, Department of Computer Science Date

__

 Dr. Araya Agustin, Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

ABSTRACT

APPROXIMATE DISASSEMBLY

by Dhivyakrishnan Radhakrishnan

 For the past two decades, computer viruses have been a constant security threat. A

computer virus is a type of malware that may damage computer systems by destroying

data, crashing the system, or through other malicious activity. Among the different types

of viruses, metamorphic viruses are one of the most difficult to detect since such viruses

change their internal structures with each mutation, making signature-based detection

infeasible. Many construction kits are available that can be used to easily generate

metamorphic strains of any given virus.

 Previous work has shown that metamorphic viruses are detectable using Hidden

Markov Models (HMM). In such an HMM-based approach, instruction opcodes are

observed and a model is trained to detect a given virus family. These instruction opcodes

are obtained by disassembling the binary executable file. However, the disassembling

process is time-consuming, making the process impractical. In this project, we develop

and demonstrate a technique to derive an approximate opcode sequence directly from the

executable file, which, in general, reduces the time required as compared to a standard

disassembly process.

iv

Table of Contents

1. Introduction..1

2. Types of viruses ..3
2. 1 Macro viruses ... 3

2.2 Boot sector viruses ... 3

2.3 File infector viruses... 4

2.4 Encrypted viruses ... 4

2.5 Polymorphic viruses.. 4

2.6 Metamorphic viruses.. 5

2.6.1 Different kinds of metamorphism..7
2.6.1.1 Garbage Insertion... 7

2.6.1.2 Register Usage Exchange .. 7

2.6.1.3 Instruction Replacement .. 8

2.6.1.4 Subroutine Reordering ... 8

3. HMM and metamorphic virus detection ...9

4. Disassembly ..12
4.1 Intel Instruction Set .. 13

4.1.1 Instruction Format..14
4.1.1.1 Instruction Prefix..15
4.1.1.2 Opcodes..16
4.1.1.3 ModR/M bytes..16
4.1.1.4 SIB bytes ..16
4.1.1.5 Displacement and Immediate bytes..17

4.2 Disassembler algorithm.. 18

4.3 Disassembly techniques ... 19

4.3.1 Linear Sweeping ...19
4.3.2 Recursive Traversal ..21

4.4 Challenges in Disassembly.. 21

v

5. Extraction of opcode sequence..23
5.1 Extraction of text section.. 23

5.1.1 PE File Format ...23
5.1.1.1 MS DOS header... 25

5.1.1.2 PE header.. 25

5.1.1.3 Optional header.. 27

5.1.1.4 Section header.. 28

5.1.1.5 Sections.. 28

5.1.2 Extraction of text section ...29
5.2 Approximate opcode sequence.. 32

6. Implementation Results...39

7. Conclusion and Future works...49

8. References...50

vi

LIST OF FIGURES

FIGURE 1: DIFFERENT SHAPES OF METAMORPHIC VIRUS... 6

FIGURE 2: HIDDEN MARKOV MODEL [8].. 10

FIGURE 3: CREATING A HMM MODEL (PREPROCESSING OF VIRUS FILE) [9] 11

FIGURE 4: LEVELS OF DATA REPRESENTATION [10] ... 12

FIGURE 5: DISASSEMBLY PROCESS [10].. 13

FIGURE 6: LAYOUT OF COMPUTER ARCHITECTURE [10] .. 14

FIGURE 7: INTEL INSTRUCTION FORMAT [11] ... 15

FIGURE 8: OFFSET OR (EFFECTIVE ADDRESS COMPUTATION) IN [12] 17

FIGURE 9: DISASSEMBLER ALGORITHM ... 18

FIGURE 10: DISASSEMBLED FILE .. 20

FIGURE 11: PE FILE FORMAT IN [15] .. 24

FIGURE 12: DETAILED LAYOUT OF PE EXECUTABLE [15] ... 29

FIGURE 13: PE TEXT SECTION FLOW [16].. 31

FIGURE 14: FREQUENCY OF OCCURRENCE OF MFO OPCODES IN NORMAL FILES (IN

PERCENTAGE)... 32

FIGURE 15: FREQUENCY OF OCCURRENCE OF MFO PAIRS IN NORMAL FILES (IN PERCENTAGE)

.. 34

FIGURE 16: METHOD FOR EXTRACTING APPROXIMATE OPCODE SEQUENCE 36

FIGURE 17: EXAMPLE OF SOLUTION TREE IN EXTRACTING OPCODE SEQUENCE......................... 38

FIGURE 18: COMPARISON OF TIME TAKEN BETWEEN OUR APPROACH AND IDA PRO, FILE SET

1MB.. 40

vii

FIGURE 19: COMPARISON OF TIME TAKEN BETWEEN OUR APPROACH AND IDA PRO, FILE SET

2MB.. 41

FIGURE 20: COMPARISON OF TIME TAKEN BETWEEN OUR APPROACH AND IDA PRO, FILE SET

3MB.. 42

FIGURE 21: COMPARISON OF TIME TAKEN BETWEEN OUR APPROACH AND IDA PRO, FILE SET

4MB.. 43

FIGURE 22: COMPARISON OF TIME TAKEN BETWEEN OUR APPROACH AND IDA PRO, FILE SET

5MB.. 44

FIGURE 23: AVERAGE TIME COMPARISON BETWEEN OUR APPROACH AND IDA PRO................. 44

FIGURE 24: ACCURACY OF OPCODE SEQUENCE... 48

viii

LIST OF TABLES

TABLE 1: COFF HEADER [15] .. 26

TABLE 2: SAMPLE STATISTICAL DATA OF OPCODE PAIRS... 33

TABLE 3: SOLUTION TREE CALCULATION.. 37

TABLE 4: MISS CALCULATION OF AN EXAMPLE FILE .. 46

1

1. Introduction

 A computer virus is a software program that infects a computer system without the

user’s knowledge. The virus replicates itself into a computer system and affects the root

functions of various programs. Computer viruses can cause many types of damage such

as deletion of files, reformatting of hard drive, system slow down, or connectivity issues.

Viruses usually spread through storage devices, computer networks or the Internet.

 Over the past two decades, viruses have evolved rapidly. They have caused crucial

financial damage to businesses and organizations. For example, in 2000, the virus “Love

Letter” affected 10 million computers causing damages on the order of $10 billion [2].

 With the advent and growth of viruses, a variety of anti-virus tools have evolved to

detect and manage the threats. These tools use a wide range of techniques to identify and

remove viruses. However, there is no single antivirus software that protects a computer

system from all viruses [1].

 Viruses continue to evolve in an effort to stay ahead of advances in anti-virus

software. One of the most advanced classes of viruses are the metamorphic viruses which

change their structure with every mutation. They are harder to detect since the mutations

are not close to their parents [7]. However, such viruses can be detected using a Hidden

Markov Model (HMM) [9].

 Most of the virus detection techniques use a disassembler to analyze the assembly

code of the virus [7]. Our research focuses on improving the speed of the standard

disassembler. This report is organized as follows. Section 2 contains a brief description of

various types of viruses. Section 3 gives an overview of HMMs. Section 4 gives a

2

detailed explanation of the disassembly process. Section 5 explains our new method that

reduces the disassembly time as compared to a standard disassembly process. Section 6

covers our results.

3

2. Types of viruses

 There are several classes of viruses and each one of them affects the computer system

in a different way. The following are some of the most popular computer viruses[7]:

 Macro virus

 Boot sector virus

 File infector virus

 Encrypted virus

 Polymorphic virus

 Metamorphic virus

2. 1 Macro viruses

 Macro virus is a virus that is embedded as part of a document or any other application

such as Microsoft Office. These viruses may inflict harm to other documents available on

the system when opened. Macro viruses usually spread through mail attachments or file

transfers, and now they also occur in web pages. Recent versions of the Windows

operating system include antivirus tools that disable macro viruses by default [4]. A

common example of a macro virus is the Melissa virus of 1999 [5].

2.2 Boot sector viruses

 A Boot sector virus is a virus that causes damage to the boot sector of a hard drive,

CD/DVD or floppy disks. Once the computer boots, the boot sector virus remains in the

memory and infects floppy and other bootable media when they are being accessed. Boot

4

sector viruses have become relatively uncommon due to the rare use of floppy disks in

recent times [4]. A fine example of a boot sector virus is the Michelangelo virus of 1991

[5].

2.3 File infector viruses

 A file infector virus is a virus that infects files in a computer system. When an infected

file is executed, the virus replicates itself to other applications in the system. File infector

viruses are usually common among .exe and.com files. File infector viruses cause system

hang-ups and slow performance [4]. An example of a file infector virus is the Cleevix

virus of 2006 [5].

2.4 Encrypted viruses

 An encrypted virus is a type of virus where the virus code is encrypted to avoid

signature detection. The encrypted virus code changes with each infection by using a

different encryption key but uses the same decryption key. Hence, it is still possible to

detect encrypted viruses based on the decryption key [6].

2.5 Polymorphic viruses

 Polymorphic viruses are an extension of encrypted viruses where the decryption key is

different with each infection. But the decrypted virus code is the same regardless of the

different decryption key. Antivirus programs that incorporate code emulation techniques

can detect polymorphic viruses [6].

5

2.6 Metamorphic viruses

 Metamorphic viruses are more powerful than polymorphic viruses. Unlike

polymorphic viruses, they do not decrypt to the same virus code. Metamorphic viruses

change the structure of their code without affecting the functionality. The changed code is

recompiled to create a virus executable that looks different from the original [6]. Such

modification is achieved by using several metamorphic techniques that are explained in

Section 2.6.1. Figure 1 shows multiple shapes of a metamorphic virus body.

6

Figure 1: Multiple shapes of a metamorphic virus body [7]

7

2.6.1 Different kinds of metamorphism

 Metamorphic viruses use different kinds of techniques to make the new infection look

different from the existing one. The following are some of the commonly used

metamorphic techniques explained by Szor in [7]:

 Garbage Insertion

 Register Usage Exchange

 Instruction Replacement

 Subroutine reordering

2.6.1.1 Garbage Insertion

 This is a simple morphing technique that is widely used by metamorphic viruses. It

inserts garbage or jump instructions into the code, which occupy space but do not affect

the functionality of the code. These viruses are harder to analyze because unwanted or

garbage instructions exist in larger quantities. These instructions might even introduce

new errors in the program. Win32/Evol is a virus that inserts garbage instructions

between core instructions [7].

2.6.1.2 Register Usage Exchange

 Register usage exchange is another simple technique that uses different registers for

new infections but continues to use the same virus code. However, such viruses can be

8

detected by using wild card strings. W95/Regswap is a virus that uses the register usage

exchange technique [7].

2.6.1.3 Instruction Replacement

 Instruction replacement technique replaces a set of instructions in a virus with an

equivalent set. Instruction replacement also has no impact on the functionality of the

code. Win95/Bistro is a virus that uses the instruction replacement technique [7].

2.6.1.4 Subroutine Reordering

 In this technique, the subroutines are reordered and branch instructions are used to

connect them to maintain the functionality. The order of subroutines is different for each

infection. If there are n subroutines in a given virus, then this technique creates n!

variants of that virus. Win32/Ghost is a virus that uses the subroutine reordering

technique [7].

9

3. HMM and metamorphic virus detection

 An HMM is a state machine with hidden states where the transitions between states

have a fixed probability. The external observer can only see a set of observations which

depend (probabilistically) on the hidden states. Once a HMM has been trained with a set

of observation sequences, the model has the ability to detect similar sequences in a given

input. HMM are well suited for statistical pattern analysis [9].

 Consider the following notations of HMM used in [8]:

T = the length of the observation sequence

N = the number of states in the model

M = the number of observation symbols

Q = {q0, q1, . . . , qN-1} = the states of the Markov process

V = {0, 1, . . . ,M − 1} = set of possible observations

A = the state transition probabilities

B = the observation probability matrix

π = the initial state distribution

O = (O0,O1, . . . ,OT-1) = observation sequence.

Xi = Hidden state

 Figure 2 illustrates a generic HMM with the notation given above.

10

Figure 2: Hidden Markov Model [8]

 The matrix A = {aij} is of size N × N with

a ij = P(state qj at t + 1 | state qi at t)

 and A is row stochastic. Note that the probabilities aij are independent of t.

 The matrix B = {bj(k)} is of size N ×M with

bj(k) = P(observation k at t | state qj at t).

 Thus, an HMM is denoted by (π, A, B), where the matrices π, A and B are row

stochastic.

 Metamorphic viruses have similarities in their code structure, in spite of their ability to

mutate with each infection. These similarities help HMM to detect metamorphic viruses.

In the HMM, the virus characteristics are the states and the instruction opcode sequence

is the observation set. Stamp et al in [9] used HMM to detect metamorphic viruses.

 The procedure involved in training the HMM is as follows:

1. Collect a set of executable files that belong to the same family

2. Disassemble the collected executable files into assembly code

11

3. Extract opcode sequence from the assembly code

4. Train the model with the extracted opcode sequence

Figure 3 illustrates the process involved in creating a HMM.

Figure 3: Creating a HMM model (Preprocessing of virus file) [9]

 A set of viruses of the same family are assembled into the corresponding set of

executable files using an assembler (e.g. TASM, TLINK). Each executable file is then

disassembled using a disassembler (e.g. IDA Pro). An opcode sequence is extracted from

the disassembled files to create a HMM.

 After the creation of HMM, the HMM is tested using a set of files. Some of the files in

the set belong to the family of viruses for which the HMM is created and trained for. The

HMM processes these files and should give a high score to the virus files of the same

family and low score to the others [9].

 The next section describes about the disassembly process that plays a crucial role in

detecting metamorphic viruses using HMM.

12

4. Disassembly

 Computer programs are human readable programs written in a high-level language

like C, C++, etc. These programs are translated into a CPU readable, executable file. The

CPU uses these executable files to execute the instructions to perform the required

operation. Figure 4 shows how human readable computer programs are converted into

CPU readable machine code.

 Figure 4: Levels of Data Representation [10]

 Disassembly is the process of converting machine language back into assembly

language. Figure 5 illustrates the disassembly process.

13

 Figure 5: Disassembly Process [10]

 Section 4.1 describes details of the assembly language instruction set, by using Intel

instruction set as an example. Section 4.2 describes details of the disassembler.

4.1 Intel Instruction Set

 Instruction set architecture is a part of computer architecture that acts as an interface

between hardware and software. It contains a list of instructions that the processor can

understand and execute. The basic types of instructions are as follows:

 arithmetic (add, subtract)

 logic (and, or)

 data (mov, load)

 control flow (call, return)

 Figure 6 shows the layout of the computer architecture in which the instruction set

architecture lies between software and hardware.

14

 Figure 6: Layout of Computer Architecture [10]

 Intel x86 processors use complex instruction set computer (CISC) architecture that

comprise large number of variable-length instructions and complex addressing modes. In

the Intel instruction set, there are more than 100 instructions and each instruction can be 1

to 17 bytes long [11].

4.1.1 Instruction Format

 Instructions in the Intel instruction set start with an optional instruction prefix. The

instruction prefix is followed by an opcode field, which can be 1 or 2 bytes. The

instruction also includes an addressing-form specifier (if required) consisting of the

ModR/M byte and sometimes the SIB (Scale-Index-Base) byte, a displacement (if

required), and an immediate data field (if required) [11]. Details of the individual fields in

Computer Architecture

Hardware

Software

 Inte rface between Hardware and Software

 (Instruction Set Architecture)

Application Program

Operating System

Compiler

CPU Memory I/O

15

the instruction are explained in the following subsections. Figure 7 illustrates the format

of the instruction.

Figure 7: Intel Instruction Format [11]

4.1.1.1 Instruction Prefix

 Instruction prefix is divided into four groups. Each group has a set of allowable prefix

codes. Each prefix is of one-byte length. An instruction can have 1 prefix from each

group with a maximum of 4 prefix bytes. The Intel manual specifies the following four

groups of instruction prefixes [11]:

1. Segment override prefix (2EH,36H,3EH,26H,64H,65H) changes the default

segment of the instruction

2. Operand-size override prefix (66H) overrides the default operand-size of the

instruction. The default size is either 16-bit or 32-bit operand.

3. Address-size override prefix (67H) overrides the default address-size of the

instruction. The default size is either 16-bit or 32-bit address.

4. Repeat (F2H,F3H) and Lock prefix(F0H) controls the loop in the string

instructions and bus usage of the processors.

16

4.1.1.2 Opcodes

 The primary opcode of the instruction is either 1 or 2 bytes. The opcode field defines a

small encoding field, and the encoding field size varies depending on the operation.

These encoded fields can determine displacement size, operational direction, conditional

code, register encoding or sign extension of the immediate data field in the instruction.

Sometimes an additional three-bit field from the ModR/M byte can also be used as part of

the opcode [11].

4.1.1.3 ModR/M bytes

 The ModR/M byte is the first byte of the addressing-form specifier. This field gives

information about which registers or memory locations are to be used by the instruction.

The ModR/M byte consists of three fields [11]:

 Mod: The mod field together with the r/m field defines one of the eight registers

or one of the twenty-four addressing modes. It is a two-bit length field.

 Register/Opcode: The three-bit length register/opcode field specifies a register or

three additional bits of opcode information.

 R/M: The r/m field is a three-bit length field that can either specify a register as an

operand or can be used in conjunction with the mod field to encode an addressing

mode.

4.1.1.4 SIB bytes

 The SIB byte, the second byte of the addressing-form specifier is used to determine

the address of the operand's memory based on the following three fields [11]:

17

 Scale: It is a two-bit length field that specifies the scale factor.

 Index: It is a three-bit length field that specifies the register number of the index

register. It is used for index addressing.

 Base: It is a three-bit length field that specifies the register number of the base

register. It is used for base addressing.

 Figure 8 shows the calculation of operand's address based on scale, index and base

value.

Figure 8: Offset (or Effective Address Computation) in [12]

4.1.1.5 Displacement and Immediate bytes

 The displacement field is used when some instructions specify a displacement value

that is added to the operands memory address. For example, in the instruction MOV

EAX, DWORD PTR DS:[BX+SI+3124], 3124 is the displacement value added to the

memory address. The displacement (if required) can be 1, 2, or 4 bytes long. An

18

immediate field is used when the instructions specify an immediate operand. In the

instruction, CMP BX, 20, the immediate operand is 20. The immediate operand can also

be 1, 2, or 4 bytes long [11].

4.2 Disassembler algorithm

 Figure 9 shows the control flow of the disassembler algorithm.

Figure 9: Disassembler Algorithm

19

 The disassembler algorithm takes a PE file as an input and identifies the compiler that

built the PE file. The disassembler can achieve a high degree of accuracy in identifying

variables, objects and procedures of the target file by knowing the compiler type. The

disassembler reads each input byte and determines if it is a prefix byte. If the byte read is

a prefix byte, then the next byte is an opcode byte. Then, the operand size of the

instruction is determined based on the MOD R/M, SIB, displacement or immediate fields

in the following bytes. The disassembler skips the operands and jumps to the next

instruction. The disassembler continues the process until it reaches the end of the file.

4.3 Disassembly techniques

 There are two main techniques for disassembling the machine code:

1. Linear Sweeping

2. Recursive Traversal

Each of the above technique is explained in detail in the following subsections.

4.3.1 Linear Sweeping

 Linear sweeping algorithm extracts the text section from the executable file. The

instructions in the text section are sequentially processed until the end of file. Although

this algorithm is quite simple and fast, it cannot detect data encoded in the instruction

itself [13].

 In Figure 10, the sample disassembly file has a bunch of non-executable instructions

(0040289D to 004028B5) between executable instructions which cannot be caught by the

20

linear sweeping algorithm because it considers each and every instruction as executable

bytes.

Figure 10: Disassembled File

Consider the non-executable instruction at 004028A5 in Figure 10:

004028A5 9cC144000 DD DAMsetup.004019c

The linear sweep algorithm disassembles the above non-executable instructions as
executable instructions:

004028A5 9C PUSHF

004028A6 1440 00 ADC AL , 00

21

A single disassembly error as shown above can significantly affect the disassembled

output. Thus the linear sweeping algorithm does not always produce the correct source

code. SoftICE and WinDbg are disassemblers that use the linear sweeping algorithm [13].

4.3.2 Recursive Traversal

 Like the linear sweeping algorithm, recursive traversal algorithm starts processing the

instructions from the beginning of the text section. The main difference is that the

recursive traversal algorithm does not process the instructions sequentially. The

algorithm depends on the control flow of the program. If the instruction processed is a

jump instruction, then the algorithm jumps to the jump address specified and starts

processing the bytes at the jump address instead of the consecutive bytes. This approach

can detect data encoded in the instructions. But the recursive traversal algorithm cannot

construct the correct code sequence in case of indirect branch instructions. So this

algorithm also does not always produce the correct source code. IDA Pro and OllyDbg

are disassemblers that use the recursive traversal algorithm [13].

4.4 Challenges in Disassembly

 The following elements in the instruction stream may pose significant challenges in

the disassembly process:

 Variable length instructions

 Embedded data in text sections(jump tables, alignment bytes)

 Branch instructions and indirect jumps

 Functions with no explicit call

22

 Variable length instructions can cause a disassembler program to yield more than one

reasonable disassembled output. Data embedded in text sections cannot be detected by

disassembler algorithms like the linear sweep algorithm. Branch instructions, indirect

jumps and functions with no explicit call may cause incorrect disassembled code when

disassembled using the recursive traversal algorithm.

 In addition to the above issues, memory requirements associated with the disassembly

process can also be quite significant. According to PE Explorer, “Disassembling files

larger than 1 Mb in size can take several minutes depending on the capabilities of your

system. Generally, each byte of a target file requires 40 bytes of memory for processing.

For example, a 1 Mb file would require 40 Mb of processing memory, a 2 Mb file — 80

Mb and so on” [14].

23

5. Extraction of opcode sequence

 In this section, we describe our method of extracting opcode sequences from a

executable. Stamp et. al in [9] used IDA Pro to disassemble executable files. From the

IDA Pro disassembled files, the opcodes are extracted and concatenated to form an

opcode sequence. The extracted opcode sequence is then used as an observation set for

HMM to detect metamorphic viruses. But the disassembly process consumes a lot of time

and becomes impractical for large files. We implemented an alternative method that

efficiently parses the executable file and extracts an approximate opcode sequence from

the file. The steps involved in extracting the approximate opcode sequence are as follows:

1. Extract the text section from executable file.

2. Extract the opcodes from the text section.

3. Concatenate the opcodes to form an approximate opcode sequence.

Each of above steps is explained in the following subsections.

5.1 Extraction of text section

 This section describes the structure of the Portable Executable (PE) format and the

method used to extract the text from the PE file.

5.1.1 PE File Format

 PE file format is the file format used in Microsoft Windows Operating Systems.

We chose the PE executable format as our format, as it is the most commonly used file

format and is the most vulnerable to virus attacks. PE file format is derived from the

Common Object File Format (COFF), which is the file format of Unix System[15]. The

24

general layout of a PE file is shown in Figure 11

Figure 11: PE file format in [15]

The PE file consists of the following fields [15]:

 MS DOS header

 PE header

 Optional header

 Section header

25

 Sections

Each field of the PE file is explained in detail in the following subsections.

5.1.1.1 MS DOS header

 An MS-DOS executable header is found at the start of the PE file. This header

indicates that the PE file is a valid MS-DOS executable file. PE files with the MS-DOS

header cannot be run on machines running different operating systems. The DOS header

can be identified by a sixteen-bit signature. It is represented as “0x5A4D” in hex or “MZ”

in ASCII [15].

5.1.1.2 PE header

 The next field in the PE file format is the PE header. The PE header contains a thirty-

two- bit signature, which is “0x00004550” in hex or “PE\0\0” in ASCII. This signature

indicates that the executable is a PE file. The PE header consists of a file signature, COFF

header, and an optional header. Table 1 contains the description of the COFF header

fields [15].

26

TABLE 1: COFF HEADER [15]

Offset Size Field Description

 0 2 Machine The number that identifies the type of target

machine.

Offset Size Field Description

 2 2 NumberOfSections The number of sections. This indicates the size

of the section table, which immediately follows

the headers.

 4 4 TimeDateStamp The low 32 bits of the number of seconds since

00:00 January 1, 1970 (a C run-time time_t

value), that indicates when the file was created.

 8 4 PointerToSymbolTable The file offset of the COFF symbol table, or

zero if no COFF symbol table is present. This

value should be zero for an image because

COFF debugging information is deprecated.

27

12 4 NumberOfSymbols The number of entries in the symbol table. This

data can be used to locate the string table, which

immediately follows the symbol table. This

value should be zero for an image because

COFF debugging information is deprecated.

16 2 SizeOfOptionalHeader The size of the optional header, which is

required for executable files but not for object

files. This value should be zero for an object

file.

18 2 Characteristics The flags that indicate the attributes of the file.

 The NumberofSections and the OptionalSizeheader fields are the only fields used in

the extraction of the text section.

5.1.1.3 Optional header

 As the name indicates, this header is optional for executable files. This header

provides information to the operating system’s loader. For example, this header is

required for image files. Since the text section appears after the optional header, the

optional header field is skipped in the extraction process [15].

28

5.1.1.4 Section header

 The section header follows the optional header. It defines the structure of each section.

The section header is 40 bytes long, and the following fields are needed for the text

section extraction [15]:

 Name: This field determines the name of the section. It is used to identify the

text section.

 Characteristics: This field describes the characteristics of the section. It is also

used to identify the text section.

 SizeOfRawData: This field determines the size of the text section. It is used to

extract the text section.

 PointerToRawData : This field points to the start of the text section. It is used to

locate the code.

5.1.1.5 Sections

 The sections are divided into the following five categories [15]:

 .text: This section contains executable instructions. These instructions cannot be

altered, so it is a read-only section.

 .data: This section contains the global variables initialized by the programmer.

These variables can be changed at runtime, so it is a read-write section.

 rdata: This section holds the debug data that is only present in executable files.

 .bss: This section contains uninitialized variables or common storage.

 idata: This section lists the symbols imported into a file.

29

 Figure 12 shows the detailed layout of PE file including the different sections.

Figure 12: Detailed layout of PE Executable [15]

5.1.2 Extraction of text section

 This section explains how the text section is extracted from a PE executable file.

Govindaraj [16] explains the steps to extract the text section from an executable file as

shown in Figure 13. The program first searches for the DOS header by looking for the

signature “0x5A4D” or “MZ.” Then the program looks for the PE signature

30

“0x00004550” or “PE”. The program obtains the size of the optional header from the

SizeOfOptionalHeader field and uses that to skip the optional header.

 The program specifically looks for the text section. Each section can be identified by

the name field or by the characteristics field. For the text section, the name field contains

“.text” or “.code” name, and the characteristics field contains “0x0000020.” Since the

name for the text section is not standardized, the program checks both the name and

characteristic fields to identify the text section. The start of the text section is located

using the PointerToRawData field. The text section is extracted using the

SizeOfRawData field [16].

31

Figure 13: PE Text Section flow [16]

32

5.2 Approximate opcode sequence

The Intel instruction set contains more than 100 instructions. Disassembly

process gets very complicated and time consuming if all the instructions are taken into

account. As the executable file size increases, the complexity increases manifold when all

the instructions are accounted for. In order to reduce the complexity, we only consider the

Most Frequently Occurred (MFO) instructions in our method.

 According to Billar, there are only 14 instructions in the Intel instruction set that are

commonly used by PE files and these instructions are called MFO instructions. The MFO

instruction set consists of ADD, AND, CALL, CMP, JMP, JNZ, JZ, LEA, MOV, PUSH,

POP, RETN, TEST and XOR [17]. Figure 14 shows frequency of occurrence of MFO

opcode mnemonics in normal files

Figure 14: Frequency of occurrence of MFO opcodes in normal files (in percentage)

33

 As discussed in Section 4.1, instruction opcodes are either 1 or 2 bytes long. The

maximum length of a given instruction is 17 bytes. So the operand size for a given

instruction can vary from 0 to 16 bytes. We divide the MFO instruction opcodes into

three sets of opcode tables based on operands as follows:

 a table that has a list of opcodes with no operand

 a table that has a list of opcodes with one operand

 a table that has a list of opcodes with more than one operand

In addition to the three sets of MFO opcode tables, we also collect statistical data for

the occurrence of opcode pairs as shown in Table 2.

TABLE 2: SAMPLE STATISTICAL DATA OF OPCODE PAIRS

Opcode Pair

(opi , opi+1)

Length of bytes, n Probability value

ff, ff 2 0.025

8b, 8b 4 0.014

50, ff 0 0.010

8d, 50 2 0.010

e8, 8b 4 0.009

ff, 8b 1 0.009

8b, 83 2 0.009

ff, e8 5 0.008

85, 74 2 0.008

8d, e8 5 0.008

34

 A large set of normal files is disassembled using IDA Pro. Then the frequency of

occurrence of opcode pairs is collected from the disassembled files in addition to the

number of bytes between them. The probability of opi followed by opi+1 when there are n

bytes between them is calculated and stored as the statistical triplet (opi, opi+1, n). Using

this statistical data, an approximate opcode sequence is extracted with our algorithm as

shown. Figure 15 shows frequency of occurrence of MFO pairs in normal files

Figure 15: Frequency of occurrence of MFO pairs in normal files (in percentage)

24%
PUSH PUSH

14%
MOV MOV

10%
PUSH CALL

10%
LEA PUSH

9%
CALL MOV

9%
PUSH MOV9%

MOV CMP8%
PUSH CALL

8%
TEST JZ

8%
LEA CALL

7%
MOV CALL

7%
CALL MOV

7%
CALL TEST

6%
POP POP

5%
4%

4%
3%

3% 3%

35

 Figure 16 shows the program flow of our method. In our method, the program takes a

PE file as an input. Since the text section has he executable instructions, the program

extracts that section from the PE file. We start processing the input one byte at a time. If

the byte read is “0F”, then this can be a 2 byte opcode, so the next byte is read and

appended to this byte. Else, the read byte is assumed to be a 1 byte opcode. The opcode

that is read is then checked against each of the three tables. If the opcode occurs in the

table with no operands, then the next byte is assumed to be the next opcode. If the opcode

occurs in the table with one operand, the next byte is skipped and the following byte is

assumed to be the next opcode.

 If the opcode occurs in the table with more than one operand, then a solution tree is

constructed with all possible operand sizes. The operand size varies from 0 to 16 bytes in

the Intel instruction set. There are very few opcodes which use 16 byte operands, so we

optimize the problem by restricting it to a maximum of 8 byte operands. So the next

opcode can be anywhere from 1 to 9 bytes away from the current byte. For each of the

possible opcode pairs, the probability of occurrence of these pairs and the distance

between them is annotated by adding the logarithmic value of the probability from the

statistical table into the solution tree. We use the logarithmic value of the probabilities to

avoid a numerical underflow in calculations associated with multiplication of small

numbers. If the opcode pair does not occur in the statistics then it is assigned a low

probability value (-100.0). If the opcode does not occur in any of the tables, the read byte

is skipped. This process is repeated for every byte until the end of the file and a full

sequence list with multiple branches are constructed. As we continue processing bytes in

36

the input stream, we optimize the solution tree by removing branches with low

probability values. At the end of the file, an approximate opcode sequence is obtained by

choosing the branch with the highest probability.

Figure 16: Method for extracting approximate opcode sequence

37

For example, consider the following sequence of input stream

Input stream: 568b7424088a46103c017439 3c02751c8be83f00….

Let’s divide the input stream byte by byte as shown below

Input byte stream: 56 8b 74 24 08 8a 46 10 3c 01 20 39 3c 02 75 1c e8 3f 00….

 Let’s take the first input byte 56. Since the first input byte is an opcode with no

operand, we know the next input byte 8b is an opcode that follows 56. The opcode

sequence becomes 568b. The second input byte is 8b. The opcode 8b is in the list of

opcodes with more than one operand. So we form a solution tree of next possible opcodes

based on 8 possible operands. Table 3 shows the next possible opcode depending on the

operands of the opcode 8b. Note the opcode pair (8b, 20) is assigned the value of -100.0

as it does not appear in the statistical data. This process continues till the end of the input

file.

TABLE 3: SOLUTION TREE CALCULATION

Opcode Possible Operand # of

Operands

Next

opcode

Opcode

sequence

Statistics

Value

8b 74 1 24 8b 24 -10.761

8b 74 24 2 08 8b 08 -100.0

8b 74 24 08 3 8a 8b 8a -9.505

8b 74 24 08 8a 4 46 8b 46 -10.499

8b 74 24 08 8a 46 5 10 8b 10 -100.0

8b 74 24 08 8a 46 10 6 3c 8b 3c -10.291

38

8b 74 24 08 8a 46 10 3c 7 01 8b 01 -12.136

8b 74 24 08 8a 46 10 3c 01 8 20 8b 20 -100.0

Figure 17 shows a section of the solution tree for the above example.

Figure 17: Example of solution tree in extracting opcode sequence

39

6. Implementation Results

 An input set of 200 normal files are taken and 150 out of the 200 files are used to

collect the statistical data of opcode pair occurrences. This statistical data is collected

using the IDA Pro disassembler. Using the statistical data, an approximate opcode

sequence is extracted from the remaining 50 files .Then the extracted opcode sequence of

each file is compared with IDA Pro. An average of 70.2% accuracy is achieved in

extracting the opcode sequence when compared with IDA Pro.

 The test sets below measures the time vs. file size comparison between our algorithm

and the IDA Pro disassembler. The time taken by both the algorithms for each file is

measured. The test set measures a set of files that range from 1MB to 5MB.

Test set 1: Average File Size = 1MB

 In this test set, the file size ranges from 0.5MB to 1.5MB. An average time of 4.4

seconds is taken by our algorithm whereas 5.3 seconds time is taken by the IDA Pro

disassembler. For this set, our algorithm is about 20% faster than IDA Pro. For some files

in the data set, IDA Pro is faster than our algorithm, but the majority of the files take a

shorter time with our algorithm than IDA Pro.

40

Figure 18: Comparison of time taken between our approach and IDA Pro, File set
1MB

Test set 2: Average File Size = 2MB

 In this test set, the file size ranges from 1.5MB to 2.5MB. An average time of 5.7

seconds is taken by our algorithm whereas 7.3 seconds time is taken by the IDA Pro

disassembler. For this set, our algorithm is about 28% faster than IDA Pro.

0

1

2

3

4

5

6

7

0.53 0.74 0.9 1 1.2 1.4

Ti
m

e
in

 s
ec

s

File size in MB

Our method

IDA Pro

41

Figure 19: Comparison of time taken between our approach and IDA Pro, File set
2MB

Test set 3: Average File Size = 3MB

 In this test set, the file size ranges from 2.5MB to 3.5MB. An average time of 10.87

seconds is taken by our algorithm whereas 13.4 seconds time is taken by the IDA Pro

disassembler. For this set, my algorithm is about 34% faster than IDA Pro.

0

1

2

3

4

5

6

7

8

9

1.81 1.94 1.97 2.03 2.07 2.27

Ti
m

e
in

 s
ec

s

File size in MB

Our Method

IDAPRo

42

Figure 20: Comparison of time taken between our approach and IDA Pro, File set
3MB

Test set 4: Average File Size = 4MB

 In this test set, the file size ranges from 3.5MB to 4.5MB. An average time of 12.9

seconds is taken by our algorithm whereas 16.7 seconds time is taken by the IDA Pro

disassembler. For this set, our algorithm is about 38% faster than IDA Pro.

0
2
4
6
8

10
12
14
16
18
20

2.95 3.01 3.1 3.15 3.2 3.3

Ti
m

e
in

 s
ec

s

File size in MB

Our method

IDA Pro

43

Figure 21: Comparison of time taken between our approach and IDA Pro, File set
4MB

Test set 5: Average File Size = 5MB

 In this test set, the file size ranges from 4.5MB to 5.5MB. An average time of 19.25

seconds is taken by our algorithm whereas 23.6 seconds time is taken by the IDA Pro

disassembler. For this set, our algorithm is about 44% faster than IDA Pro.

0
2
4
6
8

10
12
14
16
18
20

3.8 4 4.1 4.3 4.4 4.5

Ti
m

e
in

 s
ec

s

File size in MB

Our method

IDA Pro

44

Figure 22: Comparison of time taken between our approach and IDA Pro, File set
5MB

Test set 6

 Figure 23 shows the average time taken for a given file size by our algorithm and IDA

Pro.

Figure 23: Average time comparison between our approach and IDA Pro

0

5

10

15

20

25

30

4.8 4.9 5.2 5.39 5.5 5.6

Ti
m

e
in

 s
ec

s

File size in MB

Our method

IDA Pro

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

Ti
m

e
in

 s
ec

s

File size in MB

Average time Comparison

Our method

IDA Pro

45

 The graph shows that for small files, our algorithm is slightly better than IDA Pro. As

the file size increases, IDA Pro’s disassembly time increases linearly. Our algorithm’s

disassembly time also increase linearly. As the file size increases, the time difference

between our algorithm and IDA Pro increases.

Accuracy of opcode sequence

 The test set 7 below measures the accuracy of our algorithm as compared to IDA Pro

for different file sizes. For a given file, we extract the output from IDA Pro and our

algorithm. For every opcode pair in our output, we calculate the frequency of occurrence

of the pair. We do the same for all the pairs in IDA Pro’s output and then calculate the

difference in frequencies between our output and IDA Pro’s output. This difference is the

number of misses that our algorithm has had with respect to IDA Pro. The total number

of misses in the output divided by the total frequency in IDA Pro output gives us the

accuracy of our algorithm for that file. We repeat this exercise for all the files in our test

sets. Table 4 shows the error calculation for an example file of size 47KB.

46

TABLE 4: ERROR CALCULATION OF AN EXAMPLE FILE

Opcode
Pair, Opi

IDA Pro Output
Pi for file(f)

Our method Ri

output for file(f)
Miss Calculation,

(Mi = Pi - Ri)
ff, ff 213 259 46
50, ff 72 78 6
8b, 8b 71 60 11
56, e8 63 57 6
68, ff 54 48 6
ff, 85 54 54 0
ff, 8b 53 69 16
57, e8 51 51 0
57, ff 50 54 4
6a, e8 49 73 24
85, 74 48 46 2
ff, e8 46 53 7
8b, 83 45 38 7
6a, ff 44 42 2
8d, 50 42 43 1
85, 75 38 37 1
ff, 6a 37 34 3
53, ff 34 37 3
ff, 83 34 31 3
50, e8 33 38 5
e8, 85 33 32 1
e8, 8b 33 39 6
39, 74 32 33 1
3b, 74 32 35 3
5f, 5e 32 30 2
83, 75 31 28 3
Total T(Pi) = 1324 T(Ri) = 1399 T(Mi) = 169

47

From Table 4, the error percentage for the file (f) is calculated as:

Miss percentage, MP = T (Mi)

 ------------- X 100 where i= 0, 1, 2…N and N is the length

 T (Pi) of opcode pair in a given file (f).

Accuracy percentage, AP = (100 - MP) %

For the sample file (f) in table 4, the miss percentage is calculated as 12%

((169/1324)*100). Thus the accuracy of opcode sequence for the file (f) with respect to

IDA Pro is 88%.

48

 Figure 24 shows the average accuracy of approximate opcode sequence with respect to

IDA Pro for different file sizes in our test set. An average accuracy of 70.2% is achieved

for all the files in our test set.

Figure 24: Accuracy of Opcode Sequence

 As the file size increases, the accuracy decreases, but the drop in accuracy is not

significant as the file size increases. This accuracy is good enough for detecting viruses

using HMM.

These results prove that our approximate opcode sequence extraction algorithm is faster

than IDA Pro for most cases and offers a significant speed up for larger files with a

marginal loss of accuracy.

66

67

68

69

70

71

72

73

1 2 3 4 5

P
er

ce
n

ta
ge

File size in MB

Opcode Sequence
Accuracy

49

7. Conclusion and Future works

 We implemented an approximate disassembly method that identified Most Frequently

Occurred (MFO) instructions in the executable files and constructed three groups of

opcode tables based on their operand sizes. We also collected the frequency of

occurrence of opcode pairs from a set of files. An approximate opcode sequence is

extracted from a given executable file, using the opcode tables and opcode pair statistics.

Our method reduced the disassembly time by 45% as compared to the industry standard

disassembler IDA Pro. It also achieved an accuracy of 70% as compared to IDA Pro.

We collected opcode pair statistics to improve the extraction time. This concept

can be extended to opcode triplets and, possibly longer opcode sequences, which might

improve our accuracy. We currently use separate opcode tables for opcodes with zero and

one operands. This can be extended to opcodes with two or three operands. This might

reduce the extraction time and increase the accuracy of the extracted sequence.

50

8. References

[1] Computer virus protection, Norton anti-virus software 2010

< http://www.norton-security-store.com/knowledge-center/computer-virus-
damage.html>

[2] LOVELETTER virus <http://en.wikipedia.org/wiki/ILOVEYOU>

[3] Hidden Markov Model (HMM)
<http://en.wikipedia.org/wiki/Hidden_Markov_model>

[4] Types of viruses

<http://www.buzzle.com/articles/different-types-of-computer-viruses.html>

[5] Real-time example of viruses

<http://antivirus.about.com/cs/tutorials/a/bsvirus_2.htm>

[6] W. Wong, "Analysis and detection of metamorphic computer viruses"

< http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf>

[7] P. Szor & P. Ferrie," Hunting For Metamorphic", Symantec Security Response.

< http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf>

[8] M. Stamp, "A revealing introduction to hidden Markov models"

 <www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf>

[9] M. Stamp & W. Wong, "Hunting for metamorphic engines"

< http://www.cs.sjsu.edu/faculty/stamp/papers/Wing.pdf>

[10] K. Gershon CPS 104, Fall 2009, Lectures.

<http://kedem.cs.duke.edu/cps104/Lectures.html>

[11] Intel Architecture Software Developer’s Manual (1997).

51

 <http://download.intel.com/design/PentiumII/manuals/24319102.PDF>

[12] Intel 64 and IA-32 Architectures Software Developer’s Manual (2010).

 <http://www.intel.com/Assets/PDF/manual/253665.pdf>

[13] A. Singh, "Identifying Malicious Code Through Reverse Engineering"

<http://books.google.com/books?id=YKl6XnEa_CAC&pg=PA130&lpg=PA130
&dq=linear+sweeping+disassembler&source=bl&ots=0KsLjMAvmU&sig=SxCO
F4RpvBNJ61b9V3FOXgezhkU&hl=en&ei=sbylS975AY6QsgPanvEh&sa=X&oi
=book_result&ct=result&resnum=1&ved=0CAgQ6AEwAA#v=onepage&q&f=tr
ue>

[14] PE Explorer Disassembler

<http://www.pe-explorer.com/peexplorer-tour-disassembler.htm >

[15] Microsoft Portable Executable and Common Object File Format Specification.

<http://www.scribd.com/doc/8345966/Microsoft-Portable-Execution- and-

Common-Object-FIle-Format-Specification>

[16] S.Govindaraj “Practical Detection of Metamorphic Computer Viruses, masters

 project" Department of Computer Science, San Jose State University

<http://www.cs.sjsu.edu/faculty/stamp/students/Govindaraj_Sharmidha.pdf>

[17] Billar, D. “Statistical Structures: Fingerprinting Malware for Classification and

Analysis”

<http://cs.wellesley.edu/~dbilar/papers/Bilar_OpcodeDistribution_ICGeS07.pdf>

	APPROXIMATE DISASSEMBLY
	Recommended Citation

	tmp.1295901364.pdf.4D6fL

