San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

2010

DETECTING UNDETECTABLE COMPUTER VIRUSES

Sujandharan Venkatachalam
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

6‘ Part of the Computer Sciences Commons

Recommended Citation

Venkatachalam, Sujandharan, "DETECTING UNDETECTABLE COMPUTER VIRUSES" (2010). Master's
Projects. 156.

DOI: https://doi.org/10.31979/etd.j6tm-a5pd

https://scholarworks.sjsu.edu/etd_projects/156

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/156?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

DETECTING UNDETECTABLE COMPUTER VIRUSES

A Project Report
Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science in Computer Science

by

Sujandharan Venkatachalam

May 2010

© 2010

Sujandharan Venkatachalam

ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Erdjded

DETECTING UNDETECTABLE COMPUTER VIRUSES

by

Sujandharan Venkatachalam

Dr. Mark Stamp, Department of Comp8eience Date
Dr. Robert Chun, Department of Cotepscience Date
Mr. Manikandan Alagappan, Cisco Systémes Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Sisdind Research Date

ABSTRACT

Signature-based detection relies on patterns pras&ituses and provides a relatively simple
and efficient method for detecting known virusesppesent, most anti-virus systems rely

primarily on signature detection.

Metamorphic viruses are one of the most difficyftets of viruses to detect. Such viruses change
their internal structure, which provides an effeetmeans of evading signature detection.
Previous work has provided a rigorous proof thiidy simple metamorphic engine can

generate viruses that will evade any signatureebdstection.

In this project, we first implement a metamorphigi@e that is provably undetectable—in the
sense of signature-based detection. We then shatwaih expected, the resulting viruses are not
detected by popular commercial anti-virus scanrgrally, we analyze the same set of viruses
using a previously developed approach based orehitithrkov models (HMM). This HMM-

based technique easily detects the viruses.

ACKNOWLEDGEMENTS

| would like to thank my project advisor Dr. Markagp for his guidance and insights
throughout the project. | would also like to thani committee members — Dr. Robert Chun and

Mr. Manikandan Alagappan for providing me with thealuable feedback.

| would also like to thank my parents and friendistheir support and encouragement

throughout the Masters program.

1

2

Table of Contents

INEFOAUCTION.....ceiiee e ettt b b bbbt st e b et e e et ebees e b e nn s ene e 1

EVOIULION Of VITUSES....c..cnieeeeeeeeeee ettt sttt naea 2
N R - 1 Y] = 1o [LTS 2
2.2 STEAIN VITUSES.....oiiiiiiieteeee ettt b e s e eseene e 3
2.3 POIYMOIPNIC VIMUSES.....ccueiiieieieiteiestee ettt ettt ettt 3
2.4 MetamOrPRNIC VIMUSES.......couiiiiieieiieiertestesetet ettt ettt sttt sa bt es e s n e ene b 5

INtruSioN DELECHION SYSTEIMIS.....c.eiiiiiiiieiirtet ettt ettt se e s 7
3.1 Signature based INtrusion deteCLOMN..........ccueiiiririreieeeeeeeee e 7
3.2 Anomaly based deteCHON........ccciiiriiieeer e 8
3.3 Emulation based deteCtiQn............ccviiiririeiiiiieeree e 8

Code 0bfUSCAtION tECNNIGUES........coveiiieieettrteeee e 9
4.1 Garbage INSIIUCLIONS........cciiieeeeeee ettt ettt e te st e testesaeensesneesneeneenses 10
4.2 INSLrUCLION REOIAEIING......civieeieiieieeiee ettt st ae st sre s e sae e sneeneennes 10
G T 10 | o] £ T U [T L= =0 o 1=] o TSR 11
4.4 Interchangeable INSITUCHIONS.........ccoiiiieiieeeee et 11
4.5 SWAPPING Of TEQISTEIS....c.eiiiieiieiieiertertetet ettt ettt sttt et be e b 12

Virus detection using machine learning teCANIGUES...........coerererieieeneneneeere e 14
5.1 NEUIal NEIWOIKS ..ottt e se e e 14
5.2 Data miNing tECNNIQUES........cooieieieeciece ettt e et te e s eestesneeneessesneeeneensens 14
5.3 Hidden MarkoV MOUEIS.........cooiiiiiriicce e 15
5.4 Training the MOUEL........o ettt sesreeneeneens 15

Generation of MetamOorphiC VIMUSES.......coiiiriiieieiieseeee ettt 16
6.1 Implementation METNOM........cccou i e 16
6.2 Training the HMM MOUEL.......cc.ooiieeeeee ettt 19

6.3 Testing the HMM MOGEL........cco ittt s ra e s n e ne s 20

7 EXperiment SEIUP @Nd FESUILS.........ocveiiiieeeeseeeeste sttt sttt st r e s e st esre et e besreessnensenes 21
7.1 EXPErimental SEIUR......cccicieieicieeesestetese sttt sttt re et e e s teesa e e s teesaetesreeseesrbesreernenrans 21
7.2 Creation Of SEEU VIIUS.......ccciiiiiiiiriceeeee ettt 22
7.3 Creation of MetamorphiC ViFUSES........ccoiiieievieieeeeese sttt 23
7.4 Testing SigNature DELECHON.........cciiieiece ettt sttt sra e s e s be e eaesre e 23
7.5 Testing usSiNng HMM MOUEL........cooiiieieececeec ettt sttt sre e 26

8 ConClUSION aNd FULUIE WOIKc.ooiiuiiiiiiciiiiieiee et 27

RETEIBNCES.....c.e et bbbt bbbt e bbb es 29

Appendix A: HMM Scores for different MetamorphiCrUMBES.........c.ccovevveviiiececiceeeceeeee e 31

Appendix B : Scatter plot of HMM Scores of MetamigpVIrUSES........coeveeievevieeiereseeeere e 37

Appendix C : Garbage INSIrUCLIONS USEA.......ccvcieiiiiieieiseeee ettt a ettt ae e 40

Vi

List of Figures

FIGURE 1: GENERATIONS OF A POLYMORPHIC VIRUS[L7] .ecitiiiiiierieeeenee e 4
FIGURE 2: GENERATIONSOF A METAMORPHIC VIRUS [17] coviiiiiiiiiieeienee e 6
FIGURE 3: SEARCH PATTERN FOR STONED VIRUS[18]ciiiiiiiiiiieiieeiesee e 8
FIGURE 4: CODE REORDERING [18] ...ueiiiieiiieieitiesiesieseesieeeesee e eeesseesseesaesseesenensesneesseenessneessens 11
FIGURE 5: CODE OBFUSCATION IN OUR ENGINEceeiiuiieeiteeesireeesteeesneessssessssseessseessseesssesssnses 18
FIGURE 6: TEST DATA PREPARATION ...uiiiiiieiitieeeittiesiteeesiteeesseeesseesssseessssessnsseessseessessssesssnses 19
FIGURE 7: TRAINING A HMM MODEL ...cociiiiiiiiieccttee sttt stee e tee et snae e e esnee e s e sne e enneas 20
FIGURE 8: TESTING SEED VIRUSWITH MCAFEE ANTIVIRUS ...cccitieieieeeceeeesreeeteeesveeesve e 22
FIGURE 9: SAMPLE VERSIONS GENERATED BY CODE OBFUSCATION ENGINEcccceeeevvieeennnee. 23
FIGURE 10: SCANNING THE GENERATED METAMORPHIC VIRUSESUSING M CAFEE................... 24
FIGURE 11: SCANNING THE GENERATED METAMORPHIC VIRUSESUSING AVASTc.ccccuvreeennee. 25
FIGURE 12: LOG FILE GENERATED BY AVAST ...ttt iiiiie ettt e e ettt e e e stre e e s esanae e e e ennee e e e snnneeasennnes 25
FIGURE 13: HMM SCORES GRAPH ...cecitiieitiieeitieeestteesiteeesiseeesseeesseesssseessssessnssessssesssesssnsesssnses 26
FIGURE 14: NGVCK FAMILY VIRUSESWITH 2 HIDDEN STATES....ceciiiieiieeeereeeereeesneeesneeesnneas 37
FIGURE 15: G2 FAMILY VIRUSESWITH 2 HIDDEN STATES ..eccctieeiiieeiieeesneeesneeesveeesseessneessnneas 37
FIGURE 16: VCL 32 FAMILY VIRUSESWITH 2 HIDDEN STATEScetiiiiieiieeeeseeeereeesreeesneeesnneas 38
FIGURE 17: NGVCK FAMILY VIRUSESWITH 3HIDDEN STATES....cccciiiieeeiirieeeeeireeeeesnneeeeennas 38
FIGURE 18: G2FAMILY VIRUSESWITH 3HIDDEN STATES ..uttieiiiiiieeeiirieeeeiteeeeeenreeeeesnnneeesennnas 39
FIGURE 19: VCL32 FAMILY VIRUSESWITH 3HIDDEN STATES ...uttiieiiitiieeeeirieeeeecireeeeesnneee e e 39

vii

List of Tables

TABLE 1: VIRUSDETECTION TECHNIQUES [2] .cveetieierieesteeieseesiee e siee st st nnens 9
TABLE 2: CODE OBFUSCATION TECHNIQUESIN DIFFERENT VIRUSES [4] ..oveeiiiiereeie e 10
TABLE 3: CODE OBFUSCATION OF NGV CK VIRUS[6] ...veiveerieeirneesieeieseesieesee e sieeee e sseeee e 13
TABLE 4: EXPERIMENTAL SETUP ..oeiiitieeitiecciteeestteeesteeessseeesseesssseesassessssseessssessnsesesnsesssnseessnsesens 21
TABLE 5: HMM SCORESFOR NGV CK VIRUSESWITH 2 HIDDEN STATES.....ccoiieeiireeesreeesveeens 31
TABLE 6: HMM SCORESFOR G2 VIRUSESWITH 2 HIDDEN STATES ..cecivieiiueeeeteeesveeesveeesneeens 32
TABLE 7: HMM SCORESFOR VCL 32 VIRUSESWITH 2 HIDDEN STATES.....cocoiiiieeeeeireeeeeenneean. 33
TABLE 8 HMM SCORESFOR NGV CK VIRUSESWITH 3HIDDEN STATES ..ccccocuvieeeeeiieee e 34
TABLE 9: HMM SCORESFOR G2 VIRUSESWITH 3 HIDDEN STATES ...coieiiiiieeeeireeeeeenreeeeeenneeaas 35
TABLE 10: HMM SCORESFOR VCL32 FAMILY WITH 3HIDDEN STATES....cccciiiiieeeeireeeeeenneean. 36

viii

1

I ntroduction

Malware are programs that infect a machine andparmalicious actions on that machine.
Viruses, worms and trojan horses are some typatalgories of malware. The first PC virus,
called Brain, was created in 1986; it infectedltbet sector of the storage media [21]. Since
the creation of Brain, virus creation and detectimethodologies have evolved considerably
[21]. Virus creators try to evade popular detectimechanisms. Once a virus bypassed an
anti-virus system and infects a large number offmaters, virus detection mechanisms are

generally updated to prevent further infections.

Virus programmers have created several types ofeg that attempt to bypass certain
detection systems [21]. Polymorphic viruses sptedtbst machines after encrypting their
code with unique keys to hide their signature.dntcast, metamorphic viruses change their
signature by altering their code [15]. The ultimgtal of an antivirus program is to develop
a security mechanism that is strong enough to tlatgcvirus and prevent further infection.
However, the detection mechanisms currently avigildb not detect all types of viruses. In
particular, metamorphic viruses are difficult tdetg. In this project, we implement a
metamorphic technique that evades any signaturedldetection system. We then show

that a machine learning technique can efficiendtedt these types of viruses.

2 Evolution of Viruses

2.1 Early stages

During the early stages of virus creation, virusggpammers tried to infect a large number of
victims throughout the world. Viruses created wamailar in their type of infection, but the
malicious actions performed were different. Virugese created to corrupt the disk system,
email accounts, private networks, etc. The methusesl to infect a host machine and spread to
other machines were similar for all these viruségis detection systems attempted to detect the
infections based on the signature files and acf@m®rmed by viruses. Most of the early stage
viruses were detected based on their signaturegirds detection systems detected and stopped
the infections with increasing strength, virus pesgmers started implementing new methods

for creating viruses and spreading the infections.

During recent years, the number of malicious progréas grown rapidly. According to security
experts, the number of viruses will be more thamilaon before the end of this decade [16].
Even though there the number of viruses has dedistincreased, patches and removal tools for
most of the viruses have been created immediat@y their appearance. In addition, the
infections spread by these malware are decreasorgexample, the amount of infections spread
by email attachment viruses has reduced from od@ ito one in 1000 in the last 10 years. This
decrease in infections is due to efficient intrasietection systems [16]. On a similar note, virus
writers are developing new techniques to createsanead viruses without being detected. Thus,

an intelligent intrusion detection system is neags$o handle different types of viruses.

2.2 Stealth Viruses

Stealth viruses are the first step taken by vimagammers to elude virus detection
systems. These types of viruses take control ofildhnenanagement system and conceal the
changes it has made to the infected files. Dubdastealth nature, these types of viruses reside in
memory and hide from virus detection systems. Thasses corrupt the files and sometimes
encrypt the data present in the files [21]. Whens/scanners attempt to scan the files, viruses
redirect them to the proper data location and adetéction. In order to detect such memory
resident viruses, virus detection systems werd baithat the active memory could be scanned
for infections before the files were scanned. Thgpes of detection systems worked more
effectively when executed from a compact disc opfbly disk, which is write-protected. Brain,

Frodo and Whale are some of the popular stealtiseg [21].

2.3 Polymorphic Viruses

Polymorphic viruses try to bypass virus detectigstems by mutating themselves through
self-encryption [5]. The code encryption implemehite polymorphic viruses hides the signature
of virus files. The code is encrypted using diffdrkeys for the victim host machines. The
decryption engine is attached in the code itsdtiictv will then decrypt the code and execute the
virus. This type of viruses is harder to detectsisignature is hidden using encryption. Figure 1

illustrates different variants of a typical polymabic virus.

DIFFERENT GEMNERATIONS DECREYFTED VIRUS

OF A FOLYMORPHIC VRIS BODY
7 7
o o
1 777 777
M. 77
- Al o
N o

_
00

Figure 1: Generations of a Polymorphic Virus[17]

Although the code is encrypted, the decryption eagised is the same. In order to bypass
the detection systems, these viruses use multifgig/ption schemes and carry different
decryption engines [17]. While decrypting the canlee of the decryption engines is used. So
this type of viruses can be possibly detected usinglation based detection systems [2]. The
virus named 1260 was the first polymorphic virigaved the way to the creation of

sophisticated polymorphic viruses with differenthtriques for encryption and decryption.
4

24 Metamorphic Viruses

Metamorphic viruses modify their code to producesgquivalent one during propagation
[3]. These viruses attempt to evade detection tilr@iatic analysis by implementing code
obfuscation techniques. Such techniques implemeargedwapping interchangeable instructions,
inserting garbage instructions and introducing domthl jumps to produce the child virus [9].
The child virus will basically do the same functiouat will have a different signature. In this
method, the signature of a virus is broken by civanthe order of instructions without altering
the control flow. A sophisticated type of this \8rwill generate code based on the host’s
operating system by translating the instructionth&corresponding machine code [8]. Figure 2

illustrates different variants of a typical metaiac virus.

7
@?ﬁ%ﬁ%ﬁ/
7
7
004
ﬁf%%ﬁ*/%fﬁ%}ﬂﬁw
s //A’}J}"
7, // //ﬁ"f%&?

7 /yﬁfﬂfﬁﬁ?ﬁ"zﬁf
o A AL e
z/ﬁﬁcﬁ%/z/x/%ﬁg
i i
/%//%/ﬁ/ﬂ/

77 ,44;::4//,5
A
e / S
3

Figure 2: Generations of a Metamor phic Virus[17]
The detection of these viruses using their sigeaichallenging since the signature is
broken in each version of the virus. In order ttedesuch metamorphic viruses, the detection
system should be designed to extract the essamtalictions of the virus from virus instance.

This extracted instruction set should be used teai¢he viruses of that type [9].

3 VirusDetection Systems

3.1 Signaturebased virusdetection

Signature based detection systems scan the filespémzific signatures that are present in
them. The pattern of instructions present in asvocode is identified as the signature of the virus
file. This will raise an alarm for virus if the sigture of a virus is detected in any of the files
scanned. This method of intrusion detection is dast accurate since the chances of false alarms
are very low in this system. The main requireménhe system is to have an updated database
of all the signature files of malware. The accurectptally dependent on the signature database
of the system. Signature based detection systenmotdetect a new virus since the database

will not have any information about the new virus.

An antivirus scanner extracts the opcode pattenm fan executable file and searches the
signature database for the input opcode pattera.ifput opcode pattern is considered as the
signature of the input file. If a match is foundlfire signature database, the input file is classifi
as the corresponding virus family matched in tigaaiure database. For example, if the
signature of the input file is 83EB 0274 EBOE 748¥B 0301 0000, then this will be searched
in the signature database and the file will besifeesi as W32/Beast virus since 83EB 0274
EBOE 740A 81EB 0301 0000 is the signature of theXB8ast virus [18]. A similar search

pattern used to detect Stoned virus is shown iargi§ [18].

seq@00:7C40 BE [64 00 mov si, 4 ; Try it & times
seqB@@:7cuya 3

seqBea:7C43

seqBBB:7C43 next: ; CODE XREF: sub_7C3A+27}]
seqBB@:7CL43 moy ax, - ; read one sector
seqBBB:7C4b push cs

seqB@@:7CL7 pop es

seqBB@:7CA8 assume es:seqBp@

seqBAB:7CLHE mow bx, } ; to here
seqBBB@:7C4B xor Cx, CX

seqBaa:7caD mov dx, cx

seqBOB:7C4F inc Ccx

segBea:7C5o pushf

seqB@B8:7C51 2E FF 1E 89 @808 call dword ptr cs:9 ; int 13
seqBB@:7C56 73 BE jnb short fine

seqBap:7C58 33 €O =or ax, ax

seqB@@:7c5a 9C pushf

seqBBB@:7C5E 2E FF 1E 89 6@ call dword ptr cs:9 ; int 13
seqBO0:7C60 4E dec si

segB@a:7cal1 75 EB jnz short next

seqBap:7c63 EB 35 jmp short giveup

Figure 3: Search Pattern for Stoned virus[18]

3.2 Anomaly based virus detection

Anomaly based detection systems monitor the presess a host machine for any
abnormal activity. If any abnormal activity is idéied, the system raises an alarm signaling the
possible presence of malware [15]. In this detedzhnique, the system uses the collected
heuristics to categorize an activity as normal atioous. Even though chances of false alarm
are relatively higher in this method, it is moréaiele because it is also capable of detecting new
viruses. The important thing to note is that rajsanfalse alarm is not as potential harmful as
allowing a new virus. However, these systems caimdiieed gradually by intruders to consider
abnormal behavior as normal. Thus, system willttadletect the abnormal activity in such cases

[15].

3.3 Emulation based detection

The emulation based detection is an effective ntethlwere a virus is executed in a virtual
environment by emulating the instructions in theisicode. This type of detection is used to

detect polymorphic, as well as metamorphic, viruée virus instance can be executed in the

8

virtual environment in order to identify instruatidequence or behavior of the virus [21]. In
addition to the virtual environment, code optimiaattechniques can be applied to the execution
process to decrease the time for detection. Thb#ts the strength and weakness of these

detection methods.

Table 1: Virus Detection Techniques|[2]

Detection technique Strength Weakness
Signature based Efficient New malware
Anomaly based New malware Costly to implement, &als

Positives, unproven

Emulation based Encrypted viruses Costly to implame

4 Code obfuscation techniques

Metamorphic viruses use one or more code obfustatichniques to produce different
metamorphic versions of the same virus. The obtimtéechniques are used in this method to
break the signatures of the virus files. Therefarest of the virus programmers will implement
as many as possible obfuscation techniques to bytpasntrusion detection systems. In some
cases, the obfuscation techniques implemented mlgytine detection systems detect the viruses.
This is due to the excess amount of obfuscationamented rather than the obfuscation required
to bypass the detection system. The code obfuscetahniques implemented in various viruses

are shown in Table 2.

Table 2: Code obfuscation techniquesin different viruses[4]

Evol Zmist Zperm Regswap MetaPHOR
(2000) | (2001) (2000) (2000) (2001)
Instruction Substitution v
Instruction Permutation v v v
Garbage code Insertion v v v
Variable Substitution v v v v
Altering Control Flow v v v

4.1 Garbagelnstructions

Inserting garbage instructions like NOP instrucsion opaque predicates in between the
actual code blocks is a simple obfuscation techaigged in all of the virus generators. These
garbage instructions will not alter the functiotyabf the code but will increase the size of the
code. Viruses that contain garbage instruction$are to detect using the signatures since these
instructions break the signature of the virus. §agbage instructions should be inserted within a
threshold value. If the number of garbage instamdiis high, the intrusion detection systems can
easily detect the abnormality in the code. In mdecobfuscation engine, the garbage
instructions are inserted at random with a thregkelue. Also, the instructions inserted between

the blocks are not similar.

4.2 Instruction Reordering

In this method, the instructions in the virus cade reordered in a random fashion and
control flow is adjusted to make it execute in $ene order. This is accomplished by providing
labels for each reorder and then using conditipmap instructions to jump the control to the
labels. Thus, the instructions are reordered ingidecode without altering the control flow. This

method of obfuscation is well known for bypassimgnature detection since it changes the order

10

of opcode sequence. The instructions are reordergach a way that it does not introduce too
many jump instructions. If too many jump instruasoare inserted, the intrusion detection
systems may detect the abnormal behavior and répairas malware. Figure 4 shows an

example of code reordering

Instruction 4 &—— Instruction 2 & Instruction 3 &

Instruction 5 Tmp Instruction 4

Jnp garbage jnp

garbage Instruction 3 ¢ garbage :I

start: 1mp Instruction 5

Instruction 1 garbage IRp S

Instruction 2 —_— Instruction § ¢ start:

Inp Imp Instruction 1

garbage] start: Imp

Instruction 3 Instruction 1 garbage :I

Jmp _ Imp — Instruction 2

garbage 1 Instruction 4 «— Jnp _
Imp _— garbage

Figure 4: Code Reordering [18]

4.3 Subroutine Reordering

In this method, the subroutines in the virus cageraordered without changing the control
flow of the virus code. This method is similar tsiruction reordering where the subroutines are

reordered using labels and conditional jump instons.

4.4 InterchangeableInstructions

In this method, the instructions that have manyhadent instructions performing the
same operation are replaced by one of its equivaistructions. This introduces a smaller
amount of metamorphism since the opcode patterhasged due to this method. Thus, the
metamorphic versions of a virus will have a diffarpattern of opcode but perform the same
functionalities. This method is only successfulsgnature detection systems because it totally

detects the viruses based on the opcode pattesa, thie obfuscation introduced through this

11

method is not permanent. When the assembled exdesitaf different virus forms, which uses
this obfuscation method, are disassembled usinglessagsembler, these obfuscation are

removed.

45 Swapping of registers

This is a similar method to Interchangeable indioms; instead of replacing instructions,
the registers are replaced with equivalent regsiene underling idea is same in both the
methods, which try to change the opcode patterrbgpdss the signature detection. This
technique was used in the generation of W95/Regsiwvap [18]. Table 3 provides an example

of code obfuscation used by the Next Generations/€onstruction Kit (NGVCK) [21].

12

Table 3: Code obfuscation of NGVCK [6]

Basic Version Morphed Version 1 (Code Morphed Version 2
Reordering) _
(Garbage I nsertion)
Call Delta Call Delta Add ecx, 0031751B ; junk

Delta: pop ebp

Sub ebp, offset Delta

Delta: sub dword ptr[esp], offset Del

Pop eax

Mov ebp, eax

taCall Delta

Delta: sub dword ptr[esp], offset

Delta

Sub ebx,00000909 ;junk

Mov edx, [esp]

Xchg ecx, eax ; junk

Add esp, 00000004

And ecx, 00005E44 ; junk

Xchg edx, ebp

HEX equivalent:

E8000000005D81ED051040(

HEX equivalent:

(E800000000812C2405104000588B

HEX equivalent:

E812C240B104000*8B1424*83C

404*87EA

13

5 Virusdetection using machine lear ning techniques

Machine learning techniques can be applied to tletetamorphic viruses since they can
be used to detect patterns between the generati@anspecific family of virus. These detected

patterns from a training model that can be usdddbany input instance for similarities.

5.1 Neural networks

The Neural networks can be implemented in detedtinges that possess a specific set of
features. Initially, the features of a virus shobddanalyzed and the networks should be trained
based on the features [7]. Then, the network mcaielbe used to identify viruses that contain
most of the features present in the model. Theseank models are well known for detecting
viruses that are not in the same family as thaittgimodel, but possess some of the malicious

features from the training model.

The efficiency of these network models also depepas the threshold values for the
minimum number of features to be present in afiestA higher threshold value trains the
network model to detect viruses only from the sipewirus family whereas a lower threshold
value results in higher false positive rates. Tagection technique was implemented in IBM
Antivirus program to detect boot sector virusese phogram was able to detect the boot sector
viruses efficiently with a very low false positivate [7]. This is because the scanner was able to

cover most of the features of boot sector virusghé network model.

5.2 Data miningtechniques
Most data mining techniques are rule based mettih@dgrain the models with a set of
rules about the functionality of the viruses. Trarting model classifies the test files based on

14

the rules covered by those files [22]. Once aghimchance of false positives is high in this
case. However, this technique is used widely fétepa detection in a large set of data.
Researchers have shown that the data mining taedsigroduce effective results when multiple

data mining models are combined.

5.3 Hidden Markov models

Hidden Markov models (HMM) are statistical modeted to analyze and understand a
Markov process and provide a result based on assefiobservations related to the process. This
is a state machine based model, which completébsren the current state and does not
consider the past states. This model is used dakisions based on a process using the
observations that are obtained as input to the mbisvever, the underlying process is always
hidden in this model and the observations and tesué only visible to the outside world. It is
demonstrated in [22] that hidden Markov models (H&)Mould be used for detection of

metamorphic viruses.

5.4 Training the model

The HMM can be trained for a particular model ugimg observations and state transitions
from a training set. Once the model is trained oraming data set, it is able to detect the simila
patterns from any set of observations and make stasitions according to that. In this project,
we train a HMM model with the observations for atjgallar metamorphic virus family. Once
the model is trained, it is able to detect the metghic viruses using the similarities between

the opcode patterns.

15

6 Generating Metamorphic Viruses

In this project, a metamorphic virus generatomplemented in Perl, which satisfies the
conditions specified in [4]. This engine generatetamorphic versions of a seed virus, which is
given as input. It also implements code obfuscatgahniques, like instruction reordering and

garbage insertion, to produce the metamorphic eessof a virus.

6.1 Implementation method

The input virus code is split into smaller blocksode and then reordered using
conditional jump instructions and labels. The nunddenstructions in each block is set to a
variable and it is initially set to six. The viraede is split into blocks based on conditions
provided in [4]. The code blocks should not endhvaijump instruction or a NOP instruction. In
addition to that, the entire virus code should fEsent in the code section of the assembly file.
Viruses, which contain a part of the code in thead&ction, could not be given as input to the
generator. After splitting the code into smalleydis of code, the blocks are randomly shuffled.
Then, labels are placed for each block of codetbadontrol flow is then maintained by placing
conditional jump instructions for each block. Tioele obfuscation techniques implemented in
the generator are instruction reordering and garlragertion. The overall process of the code

obfuscation process is shown in Figure 5.
The low level description of the functions perfodri®y the code obfuscation engine is:
* Any valid instruction present in the assembly fedentified

» Block generator generated the blocks based orotlenving specific conditions.

16

» The first and last block of the code should nothanged.

* The last instruction of the block could not belaglaJMP and NOP

* Insert garbage instructions within a minimum thoddtvalue. Also, the inserted

instructions should not have affected the originals code.

* The block numbers are generated using permutaticandom.

* Then, the output file is written with the code iMsavritten in the order computed

through permutation

The garbage insertion is implemented in the geoeest an optional element. The amount
of garbage instructions inserted could be contdalising a threshold value. Based on the
threshold value selected, the garbage instructsard) as dummy copy instructions and opaque
predicates, are inserted in between each pairag béocks. The garbage instructions are
inserted into the virus code after the blocks dimgffis done. Since the amount and content of
obfuscation is varied every time for each genenatibba virus, the metamorphic form generated
has a different signature every time. The genetssrbeen tested with virus families like

NGVCK, Phalcon Skism G2 and PS-MPC.

17

Input Seed Virus

Set Threshold Values for Block and
Garbage Instructions

Set No of Output files from Obfuscation

engine B

Spilt source code into blocks as per
threshold value

Reorder blocks by random permutation

Insert Garbage instructions as per threshold
value

Write the code blocks and
garbage instructions to
file

No

All output files generated?

End

Figure5: Code Obfuscation in our engine
18

6.2 TrainingtheHMM M odel

The HMM Engine developed for [22] is used for tegtour implementation. In order to
train the HMM engine, 200 different versions ofegd virus are created using the code
obfuscation engine. The files created by the cdifeszation engine are ASM files with same
functionality but different signatures. These 2&sfare assembled using Borland Turbo TASM
5.0 assembler to produce corresponding OBJ and M&g? Then, Borland Turbo TLINK 7.1
linker is used to produce EXE files from the OBddi The EXE files obtained in the previous
step are disassembled using IDA Pro disassembdeth@ncorresponding ASM files are

produced. The steps performed in preparing thededstis shown in Figure 6.

TASM 5.0 TLINK 7.1 IDA Pro

200 EXE 200 ASM

Code obfuscation)
Files

engine

» 200 ASM Files 200 OBJ Files

A 4

A 4

Files

Figure 6: Test Data Preparation

Among the 200 ASM files, only 160 files are usedToaining and the rest 40 ASM files
are used for testing the HMM model. Instead of gsire ASM files generated by the code
obfuscation engine, the disassembled ASM filesinbthfrom IDA Pro are used for final
testing. This increased the efficiency of the congee and removed the coding style
discrepancies between the source ASM files [22¢ Jteps involved in training a HMM model

is shown in Figure 7.

19

25 Virus Files

HMM Model HMM Scores

v

HMM Engine

v

160 ASM Files

v

A 4

40 ASM Files

200 ASM Files

40 Clean files

Figure7: TrainingaHMM Moded

6.3 TestingtheHMM Model

The HMM engine is tested using the 40 ASM filed tieanained in the set of 200 files
disassembled using IDA Pro. In addition to thesdilé8, the test set also includes 25 other
family viruses and 40 clean files. The other famvilyises are included in the test case to ensure
that scores between the family viruses and othreses are different. We perform a k-fold cross
validation with the data set provided as inputetst the HMM model. It splits the input data set
with 200 files into 5 equal sets. Among these Beés, four sets of files are used for training the

model and one set is used to test the trained HMideh

20

7 Experiment Setup and results

We analyzed viruses generated using different \gargerators like MPCGEN

(Phalcon/Skism Mass Code Generator), G2 (GenerdtMinus Generator), VCL32 (Virus

Creation Lab for Win32) and NGVCK (Next GeneratMinus Creation Kit). In each test case,

the popular anti-virus scanners could not detexgimerated virus files. We were able to

successfully bypass the signature detection, brespective of the seed viruses that were used,

HMM engine was able to detect the viruses effeffivia addition to that, the HMM engine was

able to clearly distinguish between virus files aadmal files.

7.1 Experimental Setup

Virus creation, analysis and testing were execusaag the setup listed in Table 4.

Table 4: Experimental Setup

Experiment platform

Windows XP
VMware virtual machine

Programming language

Perl5
Disassembler OllyDbg v1.10

IDA Pro 4.9
Assembler

Borland Turbo Assembler 5.0
Linker

Borland Turbo Linker 7.1

Virus generator

MPCGEN (Phalcon/Skism Mass Code Generg
G2 (Generation 2 Virus Generator)

VCL32 (Virus Creation Lab for Win32)
NGVCK (Next Generation Virus Creation Kit)

jtor)

Virusscanners

Avast Home Edition 4.8

McAfee Antivirus 2009

21

7.2 Creation of Seed Virus

The seed virus, which was given as the input tacttee obfuscation engine, was created
using a virus construction kit. Virus generatorat tive used for this implementation were
MPCGEN (Phalcon/Skism Mass Code Generator), G2d@¢ion 2 Virus Generator), VCL32
(Virus Creation Lab for Win32) and NGVCK (Next Geagon Virus Creation Kit). These
generators were downloaded from the vxheaven welisich constructor had specific
instructions and options to create a seed virusd Sguses were created following the
instructions given by the virus construction Kitéhen the created ASM file of the seed virus
was compiled, the anti-virus scanners detecte@xtbeutables as the corresponding virus. This
test was done to ensure that the anti-virus scamseat for testing the obfuscated files was able
to detect the seed virus. The screenshot of thaitgalert displayed as soon as the seed virus is

compiled is shown in Figure 8.

W McAfee

McAfee detected and automatically quarantined an infected file on
your PC, Mo further action is required,

Quarantine is a secure area where suspect items are unable to harm
your PC. You can delete, restore, or send them to McAfee for
analysis.

About This Virus

Detected: W32/NGVYCE.d.gen (Virus)
Quarantined From: I\NGYCE.EXE

[Do not show this alert again

Figure 8: Testing Seed viruswith McAfee Antivirus
22

7.3 Creation of Metamor phic Viruses

The metamorphic variants of the seed virus weratedeusing our code obfuscation
engine. The parameters were set to generate 2f@@ettif variants of seed virus with a threshold

of two garbage instructions. The screenshots ofuar@ants of NGVCK seed virus is shown in

Figure 9.
- ng¥ck98.asm - ngvckl4l.asm
; Win32 NGVCE by SnakeByte ; Win32 NGVCK by SnakeBvte
; Thiz Wirus is created with ; Thiz Virus iz created with
; the Hext Generation VCE by SnakeByte : the Hext Generation VCK by SnakeBvte
; to get a copy of this Kit ; to get a copy of this Kit
; check wwy kryptocrew. de-snakebytes : check www krvptocrew.dessnakebytes
.GREp .E8bp
model flat .model flat]
Jjunps Jjunps
.radix 16 .radiz 16
extrn ExitProcess: FPROC extrn ExitProcess: PROC
.data .data
VirusSize equ (off=set EndVirus — offset Virus) YirusSize equ (offset EndVirus - offset Virus)
HumberDfipi=s equ 104 HunberOfApis equ 104
.code .code
start: start:
VirusCode: VirusCode:
Virus: Virus:
jmp labelblockl jmp labelblockl
add bz, 0 Hor bz, 0
=hl cx, 0 shr cx, O
labelblock22:
add eax, -1 labelblockE0:
inc eax puzh dword ptr [ebp+Hapiddre==]
j= UnMapFile pop ebx
mov dword ptr [ebp+Mapiddress]. eax nov ebx. [ebx+3Ch]
cle add ebx. dword ptr [sbp+Hapiddress]
ret nov edx, dword ptr [ebp+CheclSum]
UnMapFile: ; Unmap the file and store it to disk now dword ptr [ebz+58h]. ed=
Call UnMapFileZ HoCheckSum:
CloseFile: ; Close the file nov ecx, dword ptr [ebp+InfCounter]
push dword ptr [ebp+FileHandle] add ecx, -1
jmp labelblock23 jmp labelblockEl
shr b=, 0 or cx. 0
test cx, O add cx, O
labelblockbe :
Hotagoodfile: labelbloclkbe:
J 1

Figure 9: Sample versions generated by Code Obfuscation Engine

7.4 Testing Signature Detection

Viruses created using the code obfuscation engere assembled and compiled using

TASM and TLINK to produce executables of the vitisBhese viruses were scanned using

23

popular anti-virus scanners like Avast and McAfElee post-scan summary is shown in Figure

10 and Figure 11.

Home

Mavigation

Subscription
Help

J ‘ Your computer is secure {no action required)

'ﬂy_ McAfee ‘ Internet Security

2 (B3| e

Issues Right Click S5can complete

" Mchfee did not detect any issues on your PC.
| Mo further action is required,

Mext scheduled scan: Friday, April 23, 2010 4:00 AM

Mo Issues Detected

During your scan, McAfee did not detect any viruses, spyware, or other threats. Rermember,
you can run a full scan any time to thoroughly chieck your PC for threats.

Scan Summary

Total: 102

Files 102
Cookies; 0
Processes: 0
Registry iterms: O
Boot records; 0

L N B R B)

Figure 10: Scanning the generated metamor phic virusesusing McAfee

These scanners were not able detect these exexsutabViruses since the signature was

totally broken with the help of code obfuscatiomjiee.

24

3726 KB

Figure 11: Scanning the generated metamor phic viruses using Avast

The log file generated by Avast antivirus after $lean is also provided. The log file did
not have any information about malicious executblée screenshot of the log file is shown in

Figure 12.

_H Simple user interface.taf - Nc:tepad
File Edit Format View Help

avast! Report
This file is generated automatically

Task "simple user interface’ used
started on Sunday, april 11, 2010 9:53:46 PM
vPs: 100308-1, 03,/08/2010

BB R B B B % %

iInfected files: O
Total files: 208
Total folders: 3
Total size: 372.6 KB

"

#* Task stopped: sunday, Agrﬁ1 18, 2010 9:53:56 FM

* Run-time was 0 second(s
=&

Figure 12: Log file generated by Avast

25

75 TestingusngHMM M odel

A HMM model was trained using the viruses generatadl then tested against variants.
The executables generated to test the antivirumsea were disassembled using IDA Pro, and
the ASM files produced were given as the inputiier HMM Model. Then, we perform a k-fold
validation with 800 iterations and 5 sets of 4us&s each. Among the five sets, four sets were
used for training the model and one set was use$ting the model. The number of
observation symbols was in the range from 40 tari®the total number of observations ranged

from 41472 to 42151. The HMM score graph is showRigure 13.

0] 5 10 15 20 25 30
~
] / \/ W /.
YWY
-100 /\/\
s NEVCK Files
s Wormal Files
Other Viruses
-150
=200 U

=250

Figure 13: HMM Scores graph

26

8 Conclusionsand Future Work

This project’s main goal is to show that the metgsh@ viruses generated satisfying the
conditions in [4] will bypass the signature detectsystems. This is due to the code obfuscation
techniques implemented in generating the metamonmphises. The second goal of the project is
to prove that the machine learning methods are@fiein detecting these metamorphic viruses.
In our second phase, a HMM model is trained usatgsets from different metamorphic viruses
and then used to detect the metamorphic virusesrgead using the code obfuscation engine

developed in the previous phase.

We performed a five-fold cross validation by dividgithe data set containing 200 viruses
into five equal sets. Among these five sets, fais svere used for training the HMM model and
the excluded set was used to test the model. Sifméows five-fold cross validation, five
different models were generated and tested fociefft results. Finally, we were able to
conclude that metamorphic viruses generated bgiatlg the conditions in [4] successfully
evaded signature detection. The experiment reskglésly showed that HMM models were able

to detect these metamorphic viruses efficiently.

In this project, we obfuscated the code by insgrgjarbage instructions and shuffling the
code blocks without altering the control flow. TH&M model was able to detect the opcode
patterns in these viruses even after obfuscatibis implementation can be improved further by
strengthening the code obfuscation process. Thmigaees currently used by metamorphic
generators are not producing variants that chadlétigM models. The obfuscation process

should be able to replace one or more instructrgtis a different set of equivalent instructions

27

performing same functions. As a result, viruse$ eahtain different opcode sequences which

might be challenging to detect by an HMM model.

The disassembly process implemented in our impléstien takes considerable amount of
time to prepare the input data files for HMM deimat Virus executables were disassembled
using IDA Pro disassembler. Due to this, the tialeeh for the detection process is relatively
more than signature detection. This time factorlmaneduced by designing a disassembler that
can speed up this process by extracting the opdoalasthe raw binary file. If a faster
disassembly process is implemented, the HMM macheisbe used to analyze a large set of

virus variants and increase the efficiency of tagedtion.

28

References

[1] Avast Antivirus, http://www.avast.com/

[2] S. Attaluri, “Profile hidden Markov models fonetamorphic virus analysis,” Master’'s
thesis, San Jose State University, 2007.
http://www.cs.sjsu.edu/faculty/stamp/students/8rdacs298Report.pdf

[3] “Benny/29A", Theme: metamorphism,
http://www.vx.netlux.org/lib/static/vdat/epmetam@rh

[4] J. Borello and L. Me, “Code Obfuscation Teajures for Metamorphic Viruses”,
Feb 2008http://www.springerlink.com/content/233883w3r265253

[5] P. Desai, “Towards an undetectable Computeud/irMaster’s
thesis, San Jose State University, 2008.
http://www.cs.sjsu.edu/faculty/stamp/students/DeRati. pdf

[6] J. Dickinson, “The New Anti-Virus Formula,” Meaging News Press 2005.
http://www.ironport.com/pdf/ironport_new_anti-viruermula.pdf

[7] IBM Corporation. (1996). “Neural Networks foro@puter Virus Recognition”,
Retrieved April 10, 2010, from
http://www.research.ibm.com/antivirus/SciPapersales/NeuralNets.html

[8] IDA Pro, http://www.hex-rays.com/idapro/

[9] E. Konstantinou, “Metamorphic Virus: AnalysiadDetection,” January 2008.

[10] A. Lakhotia, “Are metamorphic viruses realtwincible?” Virus Bulletin,
December 2005.

[11] P. Mishra, “A taxonomy of software uniquenéssmsformations”, master’s thesis,
San Jose State University, Dec. 2003.
http://home.earthlink.net/~mstampl/mss_v.html#master

[12] Orr, “The molecular virology of Lexotan32: Metambrgm illustrated,” 2007.
http://www.antilife.org/files/Lexo32.pdf

[13] Orr, “The viral Darwinism of W32.Evol: An in-dep#malysis of a metamorphic
engine,” 2006http://www.antilife.org/files/Evol.pdf

[14] M. Stamp, “A Revealing Introduction to Hiddéfarkov Models”, January 2004.
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf

29

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Stamp, “Information Security: PrinciplesdaRractice,” August 2005.

PCWorld. (2008). “Viruses Expected to Hit 1INin This Year”, Retrieved April 10,
2010, from

http://www.pcworld.com/article/144181/viruses expected to hit 1 million this year.
html

P. Szor, P. Ferrie, “Hunting for MetamorphiSjmantec Security Response.
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf

P. Szor, “The Art of Computer Virus Defensald®esearch,” Symantec Press 2005.

A. Venkatesan, “Code Obfuscation and Metammapvtirus Detection,” Master’s thesis,
San Jose State University, 2008.

virus-scan-software.com, “A history of computruses”, Retrieved April 10, 2010,
from http://www.virus-scan-software.com/virus-sdagip/answers/the-history-of-
computer-viruses.shtml

VX Heavenshttp://vx.netlux.org/

W. Wong, “Analysis and Detection of Metamorpl@omputer Viruses,” Master’s thesis,
San Jose State University, 2006.
http://www.cs.sjsu.edu/faculty/stamp/students/Repdf

30

Appendix A: HMM Scoresfor different Metamor phic Viruses

Table5: HMM Scoresfor NGVCK viruseswith 2 hidden states

Scoresfor N=2, E=2

NGVCK Files | Other Viruses Clean Files
-2.795638257 -20.46668687 -51.84229625
-2.783737261 -22.8211953 -49.4776919
-2.809481701 -11.16723377 -51.804289
-2.928199381 -18.3846972 -58.59448795
-2.907143378 -14.58048271 -48.46444149
-2.792977033 -9.25559972 -58.13471737
-2.775864355 -8.526595463 -52.36134393

-2.8068171 -8.792757183 -61.3422692
-2.754450714 -9.306025624 -51.9870939§
-2.798528503 -19.65062141 -48.72447636

-2.738060287

-7.265326069

-52.20651307

-2.783705431

-22.09065629

-49.04912269

-2.819092617

-41.67066789

-54.80200888

-4.113166106 -24.57961899 -37.80392716

-2.8290365] -136.2418744 -48.92127877
-4.094386148 -24.91196494 -35.49476913
-2.840284307 -6.0192656071 -31.160086
-4.120369751 -10.25663359 -28.18345634
-2.979024953 -13.29981934 -24.43932791
-2.843236131 -27.07212734 -18.06110464
-2.785269053 -13.85353246 -26.77224016
-4.120656331 -15.95424393 -36.33806748

-2.7836135] -14.21023597 -29.28831
-2.880753103 -165.5174174 -28.31494963

-2.799422536

-22.17690111

-27.95208466

31

Table6: HMM Scoresfor G2 Viruseswith 2 hidden states

Scoresfor N=2, E=2

G2 Files

Other Viruses

Clean Files

-2.6205159877821

3 -12.24747933703¢

5-79.324678575561

-8.1435869008644

P -12.5246913133]

| -72.366064740154

-5.2992122363855

b-12.237135069859

1-45.283343233853

-5.3398479751739

D-12.339544599370

3-98.546340728110

-2.7716342122865

-12.205357578715

1-68.367648182559

-2.6975159017088

3-12.266100378360

b -65.792285489484

3=

-5.3131428023354

-12.376346191860

7-60.884537391126

-2.6225655576531

3-12.276777400844

6 -64.27205038952

= Q)

-2.6349049926017

5-12.308019318192

7-64.615963585405

Ul

-2.6048946863388

3-12.239086808939

D-94.713977833537

-2.7810214737922

1-30.538914264506

3-52.741114714220

-5.2736909693447

r-41.791842002409

3-110.89561490844

= W 0O

-5.1729032877466

2-32.046821900927

8-67.334390231558

-2.612965222762¢

5-41.725097734390

D -97.57683045757

-2.607709059391

3-41.757587194856

r-217.67045101602

-2.6021030615485

3-149.41043923456

D-72.481952725820

-2.7166835288635

5-115.37095689292

2-47.088931873110

-2.6041856698992

#-143.69596907383

r-52.687822851376

-2.6031260292340

5-122.58778519655

1-61.066406794309

-2.6367145388631

3-126.64184122316

D-106.90059212375

-2.6249587111951

65-144.24340159686

7-110.47646746527

-2.6082452395079

7-150.51048023240

1 -68.111454708461

-5.2773903827674

r-125.56758826012

65-78.997111142734

-2.6007530753006

5-122.64485663897

3-70.363589306917

-7.7382444438676

-122.49834394644

-121.34288683027

32

Scoresfor N=2, E=2

VCL 32 Files Other Viruses Clean Files
-4.1162788731 -19.502997645 -48.772653031
-4.0175265289 -22.903897592 -55.90254853(
-2.6718335612 -13.67975687(-55.010666852
-4.0307656472 -15.231064754 -55.546251322

-3.967270353(

-14.060639809

-4.158216964(

-8.7586332574

-2.672033025¢

)

-8.1451491072

-52.674444498

-2.9287837414

-8.4114654383

-55.28642967(

-2.833668001§

-9.366063491§

-55.38848176§

-2.8099083304

-31.608940127

-2.7015367881

-12.78700118(

-2.6970031402

-22.138698721

-45.98501288¢

-2.6929261971

4

-5.681849698¢

-51.35303865§

-4.011321995(

-24.531140414

-2.8414693261

-136.6974800(

-45.774960653

-4.0203959733

-24.813590014

] -37.463445144

-3.9193982077

4

-6.1474440361

-2.731338228]

4

-10.34287689¢

-4.002888173

4

-13.370665761

-28.829339625

-2.8473225094

-28.78597237(

-20.70977545§

-3.9728352294

-13.33466886¢

) -30.190934634

-2.8338993514

-16.668048301

-38.325225231

-2.7079095463

-13.59282747¢

) -31.185974714

-2.8368426054

-6.993203503(

-30.258308404

-2.7919918355

-25.66051681(

-29.812347974

33

-51.651700252
-55.164027849

-51.962286419
-39.128085227

] -28.752621669

-33.555714719
-32.014717622

Table7: HMM Scoresfor VCL 32 Viruseswith 2 hidden states

]

]

Scoresfor N=3, E=2

NGVCK Files

Other Viruses

Clean Files

-2.5938059773

-42.111747613

-19.2240234064

-2.7487193121

-45.812091511

-22.551070159

-3.8978454345

-48.382720132

-13.378005975

-2.6828385775

-48.830503255

-22.135848931

-2.5970854097

-45.040852114

-18.653927844

-2.5920816226

-48.484005015

-9.5675136651

-2.634186621§

-48.997107204

]

-9.3021469562

-2.5935327091

-51.693663341

-10.107856622

-2.5828247462

-48.607347221

-10.762110354

-2.594042608¢

-45.2358106971

4

-29.932178343

-2.707091231(

-38.58473785§

-13.43296224§

-3.9092215344

-42.324778822

-29.680686705

-3.9005588072

-47.348863022

-6.115795820(

-2.6264436357

-28.13984969¢

-24.361091642

Table8 HMM Scoresfor NGVCK Viruseswith 3 hidden states

-2.572459438¢

-42.149674862

-142.20417996

-2.5886148009

-35.23039991§

-24.551830026

-2.6118651992

-30.923391401

4

-7.331296750(

-2.5817540054

-27.907348624

]

-10.022793812

-2.6290215015

-24.17851995§

-13.114092089

-2.5920166114

-17.61825288(

-43.150421721

-2.6221344733

-26.52425884§

-12.111914355

-2.5587086996

-36.166836989

-16.513617074

-2.5868409797

-29.096822543

-14.578562992

-3.906921400(

-28.110741912

-11.636799344

-3.9459464585

-27.67436044S

-26.768453122

34

Table9: HMM Scoresfor G2 Viruseswith 3 hidden states

Scoresfor N=3, E=2

G2 Files Other Viruses Clean Files
-2.52184485(-9.031541185¢4 -70.53248125
-2.539329293 -12.336743061 -84.34477031

-2.539620458

-9.0339657871

4

-46.09604099

-2.560674651

-9.090854016¢

-95.64308908

-2.533625571

-9.0281052133

D

-69.48808074

-5.235913553

-9.0542863222

-53.61526851

-2.53545365(

-12.33982812¢

-50.03673783

-2.550721665

-12.26074318¢

-57.23544111

-2.547813507

-12.274105877

4

-51.75387924

-2.548059971

-9.038130710¢

)

-82.45604016

-2.516284487

-30.206718334

:

-47.1522202¢

-2.548689623

-41.19976614(

-101.3738618

-2.539588016

-28.097114204

:

-72.44001527

-2.51274810¢

-45.809802167

4

-86.28219741

-5.216968093

-41.044651643

-208.8949451

-2.522537069

-137.42779013

-71.31213083

-2.511034608

-110.18986124

:

-47.75647831

-5.225479206

-130.70579353

-50.2157589C

-2.524738831 -113.47012747 -58.11210863
-2.507610660 -106.15910082 -94.01584709
-2.543425779 -132.5971623¢ -112.08425671
-2.528832979 -140.72759942 -67.23492483
-2.523484644 -119.4645294¢ -77.44992697

-2.549455456

-118.38014241

-64.15727682

-2.524322434

-114.31042862

-112.7658265

35

Table 10: HMM Scoresfor VCL 32 Family with 3 hidden states

Scoresfor N=3, E=2

VCL 32 Files Other Viruses Clean Files
-2.4505796246 -18.5074314470 -71.774981951
-5.1346394281 -15.4651412631 -74.160822211
-5.1798024193 -12.0938250457 -42.018605632
-5.0901421107 -15.4105235928 -97.497172276

-7.7144216044

]

-27.9761474186

D

-69.10395733¢

)

-5.0373129583

-21.714823359%

D

-76.5903196064

4

]

-2.4562123917 -12.2503494857 -75.540041961
-2.4188462886 -15.2978819038 -80.06350390(
-2.4203878681 -21.8123140650 -74.93266349¢
-2.4335440110 -15.3117210899 -97.188939719
-2.4380260251 -44.2342997034 -46.222516254
-2.4536110216 -50.9008694756 -107.2601935§
-2.4461638872 -39.103448262% -63.125749204

]

-5.0176314001

-55.512437795(

)

-92.400695342

-5.045270392(

-53.886882639%

D

-212.4891533§

-2.456651097¢

-141.57622648(

)

-68.450851322

-5.1607640361

-115.43954416]

|

-45.498376604

]

-2.4159925105 -139.878408178 -51.654185612
-5.1374100666 -124.102824933 -60.413640532
-2.4307716445 -115.086911528 -113.25886743

-5.0314336171

-140.828825106

D

-108.26150071

-5.03621693643

-142.83661658¢

3

-65.860880381

-2.4311948001

-123.627192792

D

-78.37953703(

-2.4373640352

-122.727992078

3

-82.862764026

-2.439200348(

-120.59427843¢

)

-118.89145742

36

Appendix B : Scatter plot of HMM Scores of M etamor phic viruses

=—4=—NGVCK Files
-80
~B-0ther Viruses
-100
—i—Normal Files
-120
-140
-160 ﬂ
-180

Figure 14: NGVCK Family Viruseswith 2 hidden states

0 _
Q 15 20 25 30

-50

-100 H u ——(2
=B-0ther Viruses

-150 —4—Normal Files
-200
-250

Figure 15: G2 Family Viruseswith 2 hidden states

37

30

——VC(CL32
-20 —8-0ther Viruses
100 —4—Normal Files
-120
-140
-160

Figure 16: VCL 32 Family Viruseswith 2 hidden states

——NGVCK Files
-80 -m-Other Viruses
-100 —+—Normal Files
-120
-140 ﬂ
-160

Figure 17: NGVCK Family Viruseswith 3 hidden states

38

{0 15 20 25 30
-50
-100 [\ ——G2
=l=0ther Viruses
-150 ——Normal Files
-200
-250
Figure 18: G2 Family Viruseswith 3 hidden states
0 -
(0 15 20 25 30
-50
-100 : \ ——\/CL32
=B-0Other Viruses
-150 ——MNormal Files
-200
-250

Figure 19: VCL 32 Family Viruseswith 3 hidden states

39

Appendix C : Garbage I nstructions used

Shift Instructions
» Perform Shift Right by O
* Perform Shift Left by O
« ANDwith 1
e TESTwith1
e ORwithO
e XORwith 0

Floating Point Instructions
* Perform FADD,FSUB with 0
e Perform FMUL, FDIV with 1
* FLD and FST

Null Operation Instructions

» Swap register contents

 PUSH followed by POP

* Perform INC followed by DEC

* Perform ADD/SUB 0 on Registers

NOP Instructions

* NOP

* NEGCX
* NOTCX
« DECCX

40

	DETECTING UNDETECTABLE COMPUTER VIRUSES
	Recommended Citation

	tmp.1295901364.pdf.566aX

