
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2011

Similarity Tests for Metamorphic Virus Detection Similarity Tests for Metamorphic Virus Detection

Mahim Patel
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Patel, Mahim, "Similarity Tests for Metamorphic Virus Detection" (2011). Master's Projects. 175.
DOI: https://doi.org/10.31979/etd.6j9f-9drn
https://scholarworks.sjsu.edu/etd_projects/175

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/175?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

i

Similarity Tests for Metamorphic Virus Detection

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Computer Science

by

Mahim Patel

May 2011

ii

© 2011

Mahim Patel

ALL RIGHTS RESERVED

iii

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

Similarity Tests for Metamorphic Virus Detection

by

Mahim Patel

Approved for the Department of Computer Science

Dr. Mark Stamp, Department of Computer Science Date

Dr. Chris Pollett, Department of Computer Science Date

Dr. Soon Tee Teoh, Department of Computer Science Date

Approved for the University

 Associate Dean Office of Graduate Studies and Research Date

ABSTRACT

iv

Similarity Tests for Metamorphic Virus Detection

by Mahim Patel

A metamorphic computer virus generates copies of itself using code morphing techniques. A

new virus has the same functionality as the parent but it has a different internal structure. The

goal of the metamorphic virus writer is to produce viral copies that have no common signature. If

the viral copies are sufficiently different, they can evade signature detection, which is the most

widely-used anti-virus technique.

In previous research, hidden Markov models (HMMs) have been used to detect some

metamorphic viruses. However, recent research has shown that it is possible for carefully

designed metamorphic viruses to evade HMM-based detection.

In this project, we analyze similarity-based techniques for detecting metamorphic viruses. We

first consider a similarity index technique that was previously studied. We then consider new

similarity techniques based on edit distance and pairwise sequence alignment. We test these

similarity measures on the challenging problem of metamorphic virus detection. We compare our

detection results with those obtained using an HMM-based detection method.

v

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my project advisor, Dr. Mark Stamp for

his guidance, encouragement, and support throughout the project.

vi

TABLE OF CONTENTS

1. INTRODUCTION ...1

2. COMPUTER VIRUS ..2

3. VIRUS PREVENTION TECHNIQUES ...3

3.1 SIGNATURE DETECTION ..3

3.2 HEURISTIC ANALYSIS ...4

4 VIRUS EVOLUTION ...4

4.1 ENCRYPTED VIRUSES ...4

4.2 POLYMORPHIC VIRUSES ..5

4.3 METAMORPHIC VIRUSES ...6

4.3.1 Register Swap (Register Usage Exchange) ...6

4.3.2 Junk Instruction Insertion ..7

4.3.3 Equivalent Instruction Substitution ..8

4.3.4 Instruction Transposition ...8

4.3.5 Subroutine Transposition ...9

5 SIMILARITY-BASED TECHNIQUES ... 10

5.1 SIMILARITY INDEX TEST METHOD .. 10

5.2 EDIT DISTANCE .. 13

5.2.1 Computing Edit Distance ... 13

5.2.2 Edit Distance for Op-code Sequences... 15

5.3 PAIRWISE SEQUENCE ALIGNMENT METHOD .. 16

5.3.2 Op-code Conversion .. 17

5.3.3 Pairwise Alignment Scoring ... 18

5.3.4 Substitution Matrices and Gap Penalties .. 18

5.3.5 Scoring Pairwise Op-code Sequence Alignment ... 22

6 EXPERIMENTS AND RESULTS .. 22

6.1 SIMILARITY INDEX ... 22

6.1.1 Base Virus ... 22

6.1.2 Morphed Virus ... 26

6.1.3 Similarity Among Same Family Viruses.. 28

6.1.4 Morphed Virus Detection using a Default Window Size.. 29

6.1.5 Morphed Virus Detection by Varying Window size ... 31

6.2 EDIT DISTANCE .. 37

6.3 PAIRWISE SEQUENCE ALIGNMENT... 40

vii

6.3.1 Base Virus and Non-Virus Op-code Sequence Alignment 40

6.3.2 Morphed Virus and Non Virus Op-code Sequence Alignment 41

7 CONCLUSION .. 45

8 FUTURE WORK .. 46

9 REFERENCES .. 47

viii

LIST OF FIGURES

Figure 1 Pseudo Code of Virus and Infect Module [8] ...3

Figure 2 Polymorphic Virus Generations [18] ...5

Figure 3 Metamorphic Virus Generations [18] ..6

Figure 4 Two different generations of RegSwap [9] ..7

Figure 5 Dead Code Insertion in Evol Virus [14] ...8

Figure 6 Subroutine Transposition ...9

Figure 7 Similarity between two Assembly Programs .. 12

Figure 8 Pseudo code for Levenshtein Distance [23] ... 14

Figure 9 Edit Distance between String s1 and s2 ... 15

Figure 10 Op-code to Symbol Lookup Mapping [26] .. 17

Figure 11 Alignment of two Op-code Sequences from NGVCK Virus [26] 18

Figure 12 The Table for AGGTTGC and AGGTC [28] ... 19

Figure 13 Substitution Matrix for Op-codes with Values for Relative Scores 19

Figure 14 Similarity Scores between Normal Files and between Virus and Normal files............ 24

Figure 15 Graph of File Size and different Percentage of Junk Code Insertion 28

Figure 16 Similarity Graph of Scores for Base Viruses, and Morphed Viruses........................... 29

Figure 17 Similarity Graph for Morphed Viruses and Normal Files ... 30

Figure 18 Similarity Graph of Scores for different Window Size ... 34

Figure 19 Graph of Error Rate for different Window Size ... 37

Figure 20 Similarity Graph for Morphed Viruses and Normal Files ... 38

Figure 21 Graph of Error Rates for Various Morphed Virus Copies... 40

Figure 22 Alignment Scores for Non-Virus and Virus Op-code Sequences 41

Figure 23 Alignment Scores for Non-Virus, and Various Morphed Virus Op-code Sequences... 43

ix

Figure 24 Graph of Error Rates for Various Morphed Virus Copies... 44

Figure 25 Graph of Error Rates produced by different Similarity-Based Methods...................... 45

x

LIST OF TABLES

Table 1 W32.MetaPhor Instruction Substitution [15] ...8

Table 2 File Op-code Sequences ... 11

Table 3 Op-code to Symbol Conversion .. 16

Table 4 Similarity Scores between Virus and Normal Files, and between Normal Files. 24

Table 5 Similarity Graphs for Two Chosen Virus Pair and One Normal File Pair 26

Table 6 Similarity Graphs between the Morphed Virus and the Normal File.............................. 27

Table 7 Error Rate for Morphed Viruses having Window Size of 5 ... 31

Table 8 Similarity Scores between Normal Files for different Window Size 32

Table 9 Similarity Score of Files having different Window Size .. 36

Table 10 Similarity Scores for Various Programs using Edit Distance Technique 39

Table 11 Sequence Alignment Scores between Various Programs ... 41

1

1. INTRODUCTION

A computer virus is a program that, when executed, replicates itself without the user‟s

permission or knowledge [13]. A virus spreads its infection by attaching itself to other

executable code. The infected program, when launched, can then replicate itself to infect other

executables and change their behavior [8]. Note that a virus relies in some way on other

executable code to spread its infection.

A virus might perform malicious activities such as corrupting the file system by infecting batch

files, macros, shell script, system sectors, companion and binary executable. Modern viruses also

called worms take advantage of the Internet to propagate over the network and spread their

infection globally.

Virus construction kits are available, which makes virus creation extremely simple [19].

Consequently, users who have minimal knowledge can create potential viruses. There are several

antivirus programs available that can be used to detect malware [16]. The most commonly used

antivirus detection technique is signature detection, which consists of searching the content of

the files in file for “signatures” stored in antivirus database. A signature consists of a string of

bits found in a particular virus. Another detection approach is code emulation, where code is

executed in a virtual environment and its actions are recorded in log file. Based on logged action,

the antivirus determines whether the program is a virus or not [16].

To evade signature-based detection, virus writers sometimes use code obfuscation techniques

which alter the structure of the code. The techniques used to obfuscate code include reordering

assembly instructions, dead code insertion, and equivalent instruction substitution [3]. The result

is a morphed virus that has the same functionality as the original. However, if the morphing is

sufficient, no common signature will exist. These metamorphic viruses generate different copies

of it using code morphing techniques.

To contend with metamorphic viruses, a detection tool based on hidden Markov models (HMMs)

was developed [2]. This virus detection tool is initially trained on metamorphic variants

belonging to the same family. Then the trained model can be used to detect new metamorphic

variants from the same family. This technique was successful at detecting all hacker-generated

metamorphic viruses tested [2]. Several of the metamorphic viruses studied in [2] were not

2

detected by commercial virus scanners. Subsequent work has shown that it is possible to produce

a metamorphic generator that can evade signature detection and HMM-based detection [3].

The goal of the research presented here is to test similarity-based approaches to see if we can

detect the metamorphic viruses in [3]. Similarity index techniques classify a program as belong

to virus family provided that it is sufficiently similar to a given member of the family.

This paper is organized as follows. Section 2 contains background information on computer

viruses. In Section 3, we discuss antivirus techniques. Then in Section 4, we detail various code

obfuscation techniques that can be used to generate highly morphed viruses. Section 5 presents

the design and implementation of our several similarity-based techniques. Section 6 covers

experimental results obtained from our similarity-based method experiments involving

metamorphic viruses. Section 7 presents our conclusions. Finally, Section 8 presents possible

future work.

2. COMPUTER VIRUS

Computer virus is self-replicating program that performs malicious activities by infecting other

host files. The host files, when executed, can infect other files in turn. For example, the file

infector virus, which embeds itself in the code of other host programs. The infected file can be

any executable application. On execution of the infected program, virus loads itself into the

computer‟s memory and continues to run even after the host files shut down its execution.

“Before the initiation of the internet, file infector viruses accounted for probably 85% of all virus

infections [11].”

A typical virus comprises of three modules [8] which are infect, trigger and payload. The method

infect defines the process of spreading viruses by changing the host to contain a copy of the virus

code. Trigger is a test condition, which decides to load payload or not. Payload defines the

damage by the virus. Figure 2 shows the pseudo code which will infect the target.

3

Figure 1 Pseudo Code of Virus and Infect Module [8]

3. VIRUS PREVENTION TECHNIQUES

This section outlines some of the most commonly used techniques to detect computer viruses.

3.1 Signature Detection

Signature detection technique is widely used to detect viruses. Signature is a pattern of bits found

in a virus [1]. These string of bits, which are found in a virus file are stored in the antivirus

databases. The virus scanner searches the entire file system for known signatures. If the known

signature is found then the file is marked as infected. For example, executable file infected by

“W32.Sample.A” virus comprises of the following pattern of bits as signature [12].

The virus scanner searches the entire file system for this signature and if found, it declares the

file to be the Beast virus.

4

Some virus scanners support wildcard search strings, such as “??02 34C9 8CD1 429C” where „?‟

indicates the wildcard. These wildcard strings permit skipped bytes and regular expressions,

which also helps in detecting encrypted viruses in some cases [17].

3.2 Heuristic Analysis

Heuristic analysis is a method used by the antivirus software‟s to detect new or unknown

computer viruses. There are two types of heuristic scanning techniques. The difference between

the two approaches is whether the heuristic scanner makes use of CPU emulation to scan for

virus like behavior or not. A heuristic scanner has two phases of operation when scanning files

for viruses. In the first phase of the operation, the scanner observes the behavior of the program

and looks for a specific area in the file where the virus would attach itself. In the second phase, it

determines the program logic which can be executed by computer instructions in the specific

areas identified in the first phase [10]. The program is flagged as a virus, if it contains a certain

percentage of the computer instructions similar to the viral instructions.

The Heuristic analysis results in many false positives as it mostly operates on the basis of past

experience [20]. This might not detect new viruses that contain code different from a previously

known virus program. The heuristic scanner creates many false positives which can lose users‟

trust and interest.

4 VIRUS EVOLUTION

The following techniques are different strategies used by virus writers to make their viruses more

difficult to detect.

4.1 Encrypted Viruses

Encryption is the simplest way to conceal a virus from the antivirus program. The encrypted

virus contains an encrypted body and a decryptor module. Most of the antivirus programs

attempt to find the virus by looking for a specific string of bits in a program. To avoid detection,

viruses encrypt the body using the encryption key to conceal the pattern of code. Different

encryption key generates a different encrypted virus body. The logic of encryption is kept

simple, such as XOR, the key for encrypting the virus body [3]. The encrypted virus body is

5

different in all infections, but the decryptor module is similar in all infected copies. The antivirus

program can detect the decryptor by its code pattern even if it cannot decrypt the virus body.

4.2 Polymorphic Viruses

Polymorphic viruses are one of the more complex techniques implemented by virus coders to

overcome the disadvantage of the encrypted viruses [19]. To make it more effective than the

encrypted viruses, polymorphic viruses have different methods of decryption by mutating the

decryptor logic. More advanced versions of the polymorphic virus substitutes the mutually

independent instructions, such as moving “0” to B or adding “0” to A, resulting in inexact

values. This evades the antivirus program looking for a specific code of pattern in the virus [16].

To detect polymorphic viruses, virus scanners based on signature detection method have to

search different string of bits for each likely decryption methods.

Anti-virus software even uses code emulation to detect the polymorphic virus. The code

emulator lets the virus execute and observe its behavior. It emulates the decryption process and

detects the decrypted virus body.

Figure 2 Polymorphic Virus Generations [18]

6

4.3 Metamorphic Viruses

Virus writers have developed metamorphic viruses which do not carry any decryptor or constant

virus body like polymorphic viruses. A metamorphic virus changes its code at each infection by

using various code obfuscation techniques. Code obfuscation techniques are performed on both

the data section and the control flow of an assembly program [15]. Control flow obfuscation

technique involves unconditional jump instructions and instruction reordering. Data flow

obfuscation is achieved by transposition, junk code insertion, equivalent instruction substitution,

register renaming, and subroutine permutation. This makes it more resistant to code emulation

detection technique. Unlike polymorphic viruses, encryption is not used in metamorphic viruses.

The virus body has different structures with same functional behavior. Figure 3 shows a

metamorphic virus with different body structures.

Figure 3 Metamorphic Virus Generations [18]

4.3.1 Register Swap (Register Usage Exchange)

Register swapping is one of the simplest metamorphic techniques. This technique changes

register operands in the virus body with different equivalent registers. Instructions remains

7

constant for all virus generation, only register changes. For example, instruction “mov edi,

0004h” can be substituted with “mov ebx, 0004h.” The W95/RegSwap virus [7] is an example of

metamorphic virus that uses the register swap technique. Figure 4 shows a sample code snippet

from RegSwap, which follows register swapping technique. Wildcard string can usually detect

such metamorphic viruses [17].

Figure 4 Two Different Generations of RegSwap [9]

4.3.2 Junk Instruction Insertion

Junk code insertion is an effective technique employed by metamorphic viruses to change the

appearance of the virus body. Junk instructions do not have an effect on the program outcome

and it may not even execute [13]. Examples of do-nothing instructions are “mov edx, edx”, “add

R1, 0”, “sub R1, 0” or “nop.”

Dead code insertion can be done as a single instruction or a block of instructions between the

core instructions. Figure 5 shows the example of the Evol virus which implemented the junk

code insertion technique by adding a block of dead code.

8

Figure 5 Dead Code Insertion in Evol Virus [14]

4.3.3 Equivalent Instruction Substitution

Equivalent instruction substitution is another useful technique used to substitute an instruction or

a block of instructions with an equivalent instruction or an equivalent block of instructions. For

example, “push edx,” “pop eax” can be substituted by “add eax,1” followed by “mov eax,edx.”

Table 1 shows the W32/MetaPhor virus [15] implementing instruction substitution. The “mov

reg,imm” operation is equivalent to “mov mem,reg” followed by “op mem,reg2” and “mov

reg,mem.”

Table 1 W32.MetaPhor Instruction Substitution [15]

4.3.4 Instruction Transposition

Transposition is a method to change the order of execution of the instructions. Instruction

permutation between the instructions does not affect the program outcome and it can be applied

only if there is no mutual dependency between the instructions. Consider the following

instruction set:

(op1 r1, r2)

(op2 r3, r4) // r1 and/or r3 register are to be modified

9

The instructions can be reordered only if following conditions are satisfied:

i) r1 is not equal to r4,

ii) r2 is not equal to r3,

iii) r1 is not equal to r3,

For example, instructions “mov edx,eax” and “add ecx,3” can be swapped as they satisfy the

transpose criteria.

 … …

 mov edx,eax add ecx,3

 add ecx,3 mov edx,eax

4.3.5 Subroutine Transposition

Subroutine transposition is an effective technique that changes the appearance of a virus by

reordering the subroutines. There can be n! different generation of subroutines for n different

subroutines. The W32/Ghost virus [15] implements the subroutine transposition technique. This

virus contains 10 subroutines generating 10! distinct copies. Detection of such virus can be

accomplished by the string driven pattern detection technique.

Figure 6 Subroutine Transposition

10

5 SIMILARITY-BASED TECHNIQUES

To evade the signature based detection and HMM-based detection, the metamorphic generator

produces highly morphed copies of itself [3]. Each generation of viruses is different in structure.

We consider different similarity-based approaches to see if we can detect the highly morphed

viruses [3]. The similarity-based methods measure the similarity between the dissimilar virus

copies. It classifies a program as belonging to a virus family or non-virus family based on the

similarity results obtained by comparisons between several virus and non-virus programs;

between virus programs; and between non-virus programs. We first considered a similarity index

technique that was previously studied [4]. We then considered new similarity techniques based

on edit distance and pairwise sequence alignment methods.

5.1 Similarity Index Test Method

To measure the similarity between the virus copies, two assembly files are compared based on

the op-code sequence presented in them. The following steps are followed to compute the

similarity between two files and are graphically illustrated in Figure 7.

1. Given two assembly files, file1.asm and file2.asm, we extract the sequence of op-codes

from both the files, excluding labels, comments, blank lines and other directives. Let‟s

call these resulting op-code sequences F1 and F2 for file1.asm and file2.asm,

respectively. Let m and n represent the number of op-codes in F1 and F2, respectively. A

number is assigned to each of the op-code in the resulting op-code sequence: 1 for the

first op-code, 2 for the second, and so on.

2. Op-code sequence is divided into subsequences of three consecutive op-codes as shown

in Figure 8. We compare the op-code sequences, F1 and F2, considering all the

subsequences of three consecutive op-codes from each sequence. We considered a match,

if three op-codes are the same in any order. For example F1 is (add, call, test, sub, mov)

and F2 is (mov, add, call, sub, test). The sequence (call, test, sub) in F1 matches with

(call, sub, test) of F2. The process is repeated for all the op-codes in F1 and F2.

For example:

Opcode Op-code sequence

11

Index F1 F2

0

1

2

3

4

add

call

test

sub

mov

mov

add

call

sub

test

Table 2 File Op-code Sequences

3. As shown in Figure 7, m and n represents total number of op-code in F1 and F2

respectively. To find the total number of matches in F1, all matches are computed and

added together. The total number of match is divided by m to get the similarity score of

F1. Similarly, similarity score for F2 is computed.

Similarity score for F1: S1= (total number of matches in F1) / m

Similarity score for F2: S2= (total number of matches in F2) / n

4. The similarity score between the files, file1.asm and file2.asm is obtained by taking the

average of F1 and F2.

Total Similarity Score: (S1+S2)/2

12

Figure 7 Similarity between Two Assembly Programs

A graph is generated to show the similarity of the assembly files. The following steps are

followed to generate the graph:

1 We mark the match on the graph coordinate(X,Y) where X represents the op-code number of

the first op-code of the three op-code subsequence in file F1, and Y represents the op-code

number of the op-code subsequence in file F2.

2 A graph can plot a grid of dimension n × m to visualize the similarity of both files by

marking all the matched coordinates. The x-axis represents the op-code numbers of file F1

and the y-axis represents the op-code numbers of file F2.

3 The graph in Figure 7 is very populated with the matches. This makes it difficult to

understand the similarity. So to remove noise and to make similarity index technique more

efficient, we determine a window size (i.e. threshold). The similarity score match below the

window size is dropped. In Figure 7, the window size forms the line segments having the

length greater than 5.

13

5.2 Edit Distance

Levenshtein distance (i.e. an edit distance) is an algorithm to measure the number of edit

operations needed to transform one string into another [23]. For given string s1 and s2, the edit

distance is calculated based on the amount of difference between the two sequences of the

strings. The difference in the strings is based on the sequence of characters each string contains.

Allowable edit operation to transform one into another are insertion, deletion and substitution.

For example, the edit distance between “meeting” and “readings” is 4, as the following four edits

are required to change one string into the other, and there is no alternate way to get the same

result in fewer than four edits [23]:

1. meeting → reeting (substitution of „r‟ for „m‟)

2. reeting →reating (substitution of „a‟ for „e‟)

3. reating → reading (substitution of „d‟ for „t‟)

4. reading → readings (insertion of „s‟ at the end)

5.2.1 Computing Edit Distance

For a given two sequence s1 and s2 and three edit operations, the edit distance for the sequences

is valued to transform sequence s1 to sequence s2. We use dynamic programming to find the edit

distance from s1 to s2.

If s1 has n characters and s2 has m characters, D(i,j) is the least distance between the first i

characters of s1 and the first j characters of s2. So the edit distance between s1 and s2 is given by

D(n,m) .

D(i,0) = i , as i deletions are required to transform a string with i characters to the empty string

D(0,j) = j, as j insertions are required to transform an empty string into a j character string

In general

D(i,j) = min {[D(i-1,j)+1], [D(i,j-1)+1], [D(i-1,j-1)+ (0, if s1[i])=s2[j] or 1, if s1[i] != s2[j])] }

The psuedocode is pointed directly ahead as shown in Figure 8.

14

Figure 8 Pseudo code for Levenshtein Distance [23]

We can draw an (n+1)*(m+1) matrix, following the pseudocode by filling it, top to bottom, left

to right. The initial row and column can be filled as mentioned above, proceeding row by row to

fill the remaning entries in the matrix. The matrix shown in Figure 9, gives the edit distance

between MEETING and READINGS. The total entries in the matrix is O(mn) and each

computation takes O(1) constant time. The total running time is O(mn).

15

Figure 9 Edit Distance between String s1 and s2

5.2.2 Edit Distance for Op-code Sequences

To find similarity between two virus files, all the op-codes from each assembly file were

extracted and the comparison between the op-codes present in both the virus files were done. The

edit distance technique deals with the sequence of the characters and finds the edit score. To use

the edit distance technique for finding the similarity between virus copies, we assigned unique

symbols to each op-code. For scoring edit distance, we have only considered the op-codes that

appear in the Table 3.

OP-

CODE

SYMBOL OP-

CODE

SYMBOL

xchg a lea v

jmp b popad w

mov c pushad x

adc d pop y

add e push z

and f jnz A

cmp g jz B

sbb h nop C

sub i rep D

xor j retn E

div k ret F

16

Table 3 Op-code to Symbol Conversion

The following steps are followed to compute the similarity between two files:

1. Given two assembly files, file1.asm and file2.asm, op-code sequence are extracted from

both the files as described in Section 5.1. Let‟s give names to the resulting op-code

sequence from file1.asm and file2.asm as F1 and F2.

2. Replace each op-code with their respective symbol as shown in Table 3. As a result, the

sequence of symbols F1 and F2 is formed from sequence of op-codes F1 and F2.

3. The above steps allow the edit distance technique to calculate the number of edit

operations required to convert the sequence of symbols from F1 to F2. The length, x and

y is number of symbols in F1 and F2 respectively. ed(x,y) is the edit distance score for F1

and F2.

4. Similarity between two programs of length x and y respectively is:

[1 - ed(x, y) / max(x, y)]

5.3 Pairwise Sequence Alignment Method

The sequence alignment is a method which arranges different sequences of DNA, or protein to

determine the region of similarity due to structural, or functional relationships between the

mul l movzx 1

neg m movsd 2

not n movsb 3

shl o stosb 4

shr p stosd 5

test q Lodsb 6

inc r Lodsd 7

call s invoke 8

dec t stdcall 9

or u

17

sequences. Aligned sequences of nucleotide or amino acid are represented as rows in matrix, and

symbols as individual columns [25].

5.3.2 Op-code Conversion

 A disassembled virus program is sequence of op-codes. Previous studies in [26] have showed

that instead of considering all the instructions, only 36 high level op-code instructions are taken

into account while aligning pairs of op-code sequences. The most frequently used op-codes will

be considered and each of them is assigned with a single character as a symbol. The symbols are

the letters from the English alphabet and single numerical digits. The rest of the op-codes are

assigned with an asterisk „*‟ [26].

By this approach, less number of unique op-codes are aligned in an op-code sequence. The top

14 op-codes account for approximately 90% of all the instructions used in any typical program

[27]. In this research, the 36 most frequently used op-codes accounted for approximately 99.3%

of all op-codes found in sequences [26].

Figure 10 Op-code to Symbol Lookup Mapping [26]

18

The representation of unique op-codes and their symbols is shown in Figure 10. The op-codes

are shown by the frequency, where op-code „mov‟ assigned with symbol „A‟ is most frequent

and least frequent op-code „sbb‟ with symbol „9‟ [26]. The op-codes with the asterisk „*‟ symbol

rarely appears.

5.3.3 Pairwise Alignment Scoring

The op-code conversion is done as described in Section 5.3.1. To detect the metamorphic

viruses, a proper alignment approach needs to be defined. For the same pair of sequences, no

alignment is required. In pairwise alignment, sequences are represented as rows in matrix, and

symbols as individual columns. All the symbols in sequence 1 are aligned with the symbols in

sequence 2 to get related symbols aligned in the same column [26]. A special character dash „-‟

is inserted into either sequence to achieve the expected result.

In Figure 11, an alignment of two op-code sequences from NGVCK virus is shown. There are

several matched sequences of small lengths from 3 to 10.

Figure 11 Alignment of two Op-code Sequences from NGVCK Virus [26]

5.3.4 Substitution Matrices and Gap Penalties

The decision of scoring the alignment is very important. The score indicates the similarity of the

sequences. In the substitution matrices, the scoring matrix for sequence having 50 symbols will

be 50*50 in size. The alignment function rewards matches and penalizes mismatches and spaces

[24].

19

Figure 12 Substitution Matrix for AGGTTGC and AGGTC [28]

As shown in Figure 12, substituting „G‟ with „A‟ will be penalized by the alignment function

with score -1, whereas for a match of symbol „A‟ with „A‟ will have score of +1.

We need to find a similar scoring model which can be applied to the op-codes. After careful

research for scoring values, the scoring matrix used in this paper is shown in Figure 13 [26].

Figure 13 Substitution Matrix for Op-codes with Values for Relative Scores

In Figure 13, the high positive score(+2) is given for two exact same symbols, a medium

positive score(+1) for two rare symbols, low negative score for two different symbols(-1), low

positive score(+1) for aligning two “markers” and high negative score(-20) for a marker

matching with non marker.

The gap penalties are defined in two ways:

20

1. Linear gap penalty – The penalty is defined as a product of gap determined by the size of

gap : f(g) = c.g where c represents gap cost and g represents gap size.

2. Affine gap penalty – The initial gap cost is taken for the first gap and the varying cost for

every subsequent gap. f(g) = c + e.(g-1), where c represents the initial gap cost, and e

represents the gap extension cost [26].

In this paper, affine gap penalty values from [26] is taken into consideration. The algorithmn

description shown below is taken from [26][29].

21

22

5.3.5 Scoring Pairwise Op-code Sequence Alignment

The following steps were performed to test the similarity between op-code sequences from

NGVCK generated viruses and various normal files [2]:

1. Several base viruses (NGVCK) and non virus files from [2] were taken to test this

technique. Op-codes from each program were extracted and assigned with their

respective symbols as described in Section 5.3.1.

2. The conversion of op-code to symbols was done based on Figure 10. The Scoring

substitution matrix used for aligning the sequences was based on Figure 13. The affine

gap scoring mechanism is used to penalize spaces in the sequences. After several trials,

the gap open cost taken is 10 and gap extension cost is 1.

3. Tests were conducted based on different set of programs. To get the similarity score

between two sequences, the alignment score S is computed as described in Section 5.3.2.

Let X be the resultant length of one of the sequences after being aligned.

4. After that, the similarity between the two sequences was computed using an alignment

score S and the resultant length X of one of the sequences. The similarity score between

the sequences is equal to alignment score divided by the total length of the either of the

sequences i.e. Score = (S / X).

6 EXPERIMENTS AND RESULTS

6.1 Similarity Index

Analyses of different programs are made to determine the results of the similarity score by the

similarity index technique. Comparison is done between 40 randomly selected utility files from

the Cygwin DLL [22] and 40 viruses generated from NGVCK metamorphic engine [2].

Virus executables and random cygwin executables were disassembled using IDA Pro generating

disassembled virus ASM files and disassembled random ASM files. Analyzing the similarity

score of these assembly files is required.

6.1.1 Base Virus

The straightforward way to detect virus file would work as follows. To distinguish whether a file

belongs to the base viruses generated by NGVCK engine [2] or the morphed copies of base

23

viruses generated by the improved metamorphic engine [3], we compute the similarity score

between the virus file and the normal file. If the score falls below the “threshold value” then the

program is classified as a family virus (i.e. belonging to the NGVCK virus family). A threshold

value is the least similar score determined between normal files. We compare similarity scores

between normal files, between normal and base virus files, and between normal and morphed

copies of base virus with different percentages of subroutine and dead code insertion. If the

similarity of an unknown file with non-virus file is lower than the threshold value, then the

unknown file is classified as family virus. If the similarity score of any file with non-virus file is

greater than the threshold value, then it belongs to the non-virus family.

We compared each of the normal files with all the other normal files; and in the same way each

of the virus files with all other virus files. The similarity score was computed for each pair of

virus variants and normal files using the similarity method described above in Section 5.1. The

similarity score of all comparisons is listed in Table A-1 and Table A-2 in Appendix A. Figure

14 shows the similarity score of 120 pair-wise comparisons between 16 normal files and the 120

pair wise comparisons among 16 Normal files and 16 NGVCK base virus files. Apparently, the

similarities between normal files are higher than those between normal files and virus files. At no

point, does the similarity score between the normal files falls in region of similarity score of

normal and virus files. Therefore, any file, when compared to a normal file, which has a

similarity score less than 3%, belongs to a virus family; and furthermore identifies that the

program belongs to normal file family or virus family.

24

Figure 14 Similarity Scores between Normal Files and between Virus and Normal files.

The minimum, maximum and average similarity scores from Figure 14 are summarized in Table

4. The minimum similarity score between normal file is taken as a threshold value, which is

13.6%. The viruses generated by NGVCK engine in [2] have the maximum similarity score of

5% with non-virus files, which is less then the threshold value of 13.06%. As discussed above,

using the threshold value of 13.06%, all the base viruses(NGVCK) are completely detected using

similarity index technique with no false positives and no false negatives.

 Base Virus vs.

Normal

Normal vs. Normal

Min 0 0.1306

Max 0.05 0.8936

Average 0.02 0.3865

Table 4 Similarity Scores between Virus and Normal Files, and between Normal Files.

Table 5 shows the similarity graphs of NGVCK virus pair, other family viruses and one normal

file pair. To show how different the virus pairs are, the first column represents the type of virus

25

and its similarity score. The second column shows the graph representing the similarity scores

for all the matches as described in Section 5.1. The third column represents the graph after

removing noise by considering a match only when the line length is greater then 5. NGVCK

virus pairs are denoted by IDAN. Comparing IDAN1 with IDAN2 gives a similarity score of

13.9%.

IDAV1 is the other family virus file than NGVCK which has a similarity score of 67.7% when

compared to IDAV2. The IDAR denotes the normal file having a similarity score of 39.2%.

Clearly, NGVCK has less similarity then the other virus pairs and they are dissimilar from the

other viruses. Normal file pairs have more similarity than the NGVCK virus pair but has a lower

similarity than other family virus pair.

All the matches in the IDAV virus pair forms the diagonal line in the graph which indicates that

both the virus variants have identical op-codes at an identical position. This kind of similarity

match represents poor metamorphism. On the other hand, NGVCK virus pair has a better

metamorphism power, as all the similarity matches are scattered in the graph and falls far away

from the diagonal line.

Virus Pair

(Similarity

score)

Graph (all matches) Optimized Graph (removing noise by

match of length > 5)

IDAN1_IDAN2

(13.9%)

26

IDAV1_IDAV2

(67.7%)

IDAR1_IDAR2

(39.2%)

Table 5 Similarity Graphs for Two Chosen Virus Pair and One Normal File Pair

6.1.2 Morphed Virus

We repeated our test for morphed viruses generated with different engine settings in [3] (i.e.,

morphed copies of viruses were generated by varying the number of subroutines and junk codes

copied from the normal file to the base NGVCK generated virus file). Several morphed virus

comparisons were made with the normal file to find the threshold at which the similarity index

classified the morphed virus file from the normal file. We started with insertion of 5% junk code,

which included the subroutine insertion and junk instruction insertions. With an increase in the

percentage of dead code insertion from normal file to virus file, the similarity score increases as

we expected. This also results in increase in size of the morphed virus file. The 5% junk code

27

insertion was followed by 10%, 15%, 25%, and 30% junk code insertion from normal file to the

virus file. Table 6 shows the similarity between the non-virus files and the morphed virus files

with an increase in the percentage of dead code insertion.

Morphed virus file with 5% of junk code

insertion (Window size 5)

Morphed virus file with 30% of junk code

insertion (Window size 5)

Table 6 Similarity Graphs between the Morphed Virus and the Normal File

Large amount of junk code insertion, results in a greater similarity score. That in turn, destroys

the feature of the IDAN virus files as it has less similarity than the other virus pairs (like IDAV)

as shown in Table 5. Since the junk code blocks copied from a normal file were of different

sizes, we will use the increase in file size percentages as y-axis for our graph. Figure 15 shows an

increase in percentage of file size with an increase in the percentage of dead code insertions from

normal file to virus file.

28

Figure 15 Graph of File Size and different Percentage of Junk Code Insertion

6.1.3 Similarity Among Same Family Viruses

We performed several tests to score the similarities between base virus pairs, and between

morphed virus pairs. NGVCK (Next Generation Virus Creation Kit) base viruses were compared

with each other using the similarity index. Initially, base viruses were compared with each other,

followed by comparisons between morphed viruses with different percentages of dead code

insertion. The results were gathered and all the matches were plotted on graph. The base viruses

were about 10.86% similar among themselves. These viruses gave a lower similarity when

compared with normal files (0 to 3%). The morphed viruses with 5% of junk code insertion have

about 17% of similarity among themselves. The similarity score increases to 40% with 15% of

junk code insertion. All the similarity score matches are plotted on graph as shown in Figure 16

and listed in Table B-1 in Appendix B.

29

Figure 16 Similarity Graph of Scores for Base Viruses, and Morphed Viruses

6.1.4 Morphed Virus Detection using a Default Window Size

We carried out several similarity tests for a default window size of 5 (i.e. only matches having

line of length greater than 5 were consider as described in Section 5.1) for morphed viruses

generated by metamorphic engine in [3]. The amount of dead code insertion was varied every

time and similarity score results were plotted on graph. Figure 17 shows the similarity between

various morphed virus files (i.e., formed by different percentage of dead code insertion from

normal file) and normal files, between normal files, and between base viruses and normal files.

The increase in percentage of dead code blocks and subroutine blocks to a virus file from normal

files results in a higher similarity between generated morphed files by metamorphic engine in [3]

and normal files. We inserted junk code of various percentages starting from 5%, 15%, 25%, and

30% into the virus file, which resulted with the generated morphed virus file looking more

similar to normal file.

30

Figure 17 Similarity Graph for Morphed Viruses and Normal Files

Using the approach as discussed in Section 6.1.1, we determined the threshold value as 24.39%

from the results obtained from Figure 17. A threshold is the minimum similarity score for

various pair wise comparisons between normal files. The window size of 5 was only able to

detect the morphed viruses with 5% of junk code insertion. The morphed viruses with 15%, and

25% remain undetected as the similarity between normal and morphed viruses with 15% and

25% were higher than virus threshold value (i.e. 24.39%). The undetected viruses are referred as

false positives, as some higher similarity scores of morphed viruses crossed the threshold value.

Error rates produced while detecting morphed viruses is shown in Table 7. The similarity score

for different file comparisons with various window sizes is listed in Table C-1 to Table C-3 in

Appendix C.

Window Size = 5

Morphed virus with X% dead Error rate %

31

code and subroutine insertion

Base Virus 0%

Morphed Virus 5% 0%

Morphed Virus 15% 13.33%

Morphed Virus 25% 66.67%

Morphed Virus 30% 80%

Table 7 Error Rate for Morphed Viruses having Window Size of 5

6.1.5 Morphed Virus Detection by Varying Window size

Window is the size limit where all the matches below that size is not considered as a match for

computing the similarity score between the files. We assumed window size to be 5 until now.

Variation in window size results in different similarity scores. We varied the window size to 10,

15, 20, 25, and 30 calculated the score. In Table 8, a different window is applied while

computing the similarity between IDAR1 and IDAR2 normal files. We started with window size

of 5 and went up to 30. It showed that the similarity score decreases with the increase in the

window size.

Window Size = 5

Similarity Score = 54.16%

Window Size = 10

Similarity Score = 44.44%

Window Size = 15

Similarity Score = 38.53%

Window Size = 20

Similarity Score = 34.71%

32

Table 8 Similarity Scores between Normal Files for different Window Size

Varying window size changes the similarity score between the files. However, this does not help

in determining whether detection of morphed viruses is possible or not. To determine the results

of how the variation in window size helps in detecting the morphed virus, we applied similarity

tests with varying window size between morphed virus and normal files; between normal and

normal files; and between base virus and normal files. We generated graphs, as shown in Figure

18, for the results.

33

34

Figure 18 Similarity Graph of Scores for different Window Size

35

It is possible to distinguish the NGVCK base virus and its morphed copies from normal files

using the similarity index with a proper window size.

To overcome the problem of detecting morphed copies with 15%, 25%, and 30% subroutine and

junk instruction insertions, we varied the window size from 5 to 10, 20, 25 and 30. The increase

in the window size resulted in reducing the false positives. As shown in Figure 18, the graph

with the window size of 10, decreases the similarity score of every computation that we had in

the graph with window size of 5. But still, there were some false positives. The graph with

window size of 20 and 25 does the job of eliminating almost all the false positives. All of the

morphed virus similarity scores, other than the morphed virus with 30% of dead code insertion,

were below the threshold value. It completely removed all the false positives for the morphed

viruses up to 25% junk instruction insertion, which were not detected by the similarity method

with the window size of 5 and 10.

The similarity score with a different threshold value of Figure 17 and 19 is summarized in Table

9. The minimum similarity score of normal files represents the threshold value. Keeping window

size of 5 gives a threshold value 24.39%. The only virus whose similarity score falls below the

threshold is the morphed virus with a 5% dead code insertion having a maximum similarity score

of 17.97%, which is less then threshold value (i.e. 24.39%). The other morphed virus copies

greater than 5% junk insertion, as shown in Figure 17, were undetected as their similarity scores

were higher than the threshold value.

We increased the window size and computed the similarity again. With the window size of 20,

we found that the threshold value 15.61% detected all the morphed copies upto 25% junk code

insertion. As shown in Table 9, the maximum similarity score of morphed virus 25% is 15.32%

which is less than the threshold value. As a result, any file whose similarity with a normal file is

less than the threshold value belongs to the virus family. The increase of the window size to 25;

morphed copies up to 25% were completely detected as with the window size of 20.

36

Maximum,minimum, and average similarity score for different threshold values

Comparing normal file to:

Windo

w Size

Normal -

Min.

Similarity

Score

Morphed 5% -

Max.

Similarity

Score

Morphed 15% -

Max. Similarity

Score

Morphed 25% -

Max. Similarity

Score

Morphed 30%

- Max.

Similarity

Score

5 0.2439 0.1797 0.2930 0.3553 0.3929

10 0.1771 0.1165 0.2158 0.2447 0.2501

20 0.1561 0.1026 0.1542 0.1532 0.1628

25 0.1211 0.0485 0.1156 0.1131 0.1281

30 0.0818 0.0613 0.0979 0.1112 0.1173

Table 9 Similarity Score of Files having different Window Size

Increase in window size helps in determining threshold properly, but at one stage it stops

detecting the morphed viruses and results again with some false positives. This is shown in

Figure 19, graph with window size of 30. The threshold value with window size 30 is 8.18% as

shown in Table 9. Although the window size is high, it just detects morphed virus until 5% of

junk instruction insertion. Therefore, too much increase in window size deteriorates the

similarity index method performance and the decision for window size is typical for detecting

morphed viruses.By performing several test cases and their results shown in Table 9, we

concluded an optimal window size to be between 20 to 25 for detecting a morphed virus with up

to 25% of dead code and subroutine insertion. The error rate for various morphed viruses

keeping a different window size is shown in form of graph in Figure 19.

37

Figure 19 Graph of Error Rate for different Window Size

6.2 Edit Distance

We started comparing programs from the 40 base viruses (NGVCK), and 40 normal files using

the approach described in Section 5.2.2. We computed the edit distance score between various

normal files; between normal files and base virus files; and between normal files and morphed

viruses which are produced by different percentage of dead code insertion from normal files. The

similarity between files was obtained by using the edit score from the above comparison and

putting it into the formula mentioned in Section 5.2.2. The similarity scores were plotted on the

graph as shown in Figure 20.

38

Figure 20 Similarity Graph for Morphed Viruses and Normal Files

In Figure 20, x-axis represents the number of comparisons made between files and y-axis

represents the similarity between those files. It is clear from the graph that similarity score

between normal files is higher than between normal files and base viruses/morphed viruses. The

percentage of minimum, maximum and average similarity scores for various programs is shown

39

in Table 10. The raw similarity scores for the first 40 comparisons between various files in

Figure 20 is listed in Table D-1 in Appendix D.

 Base Virus

vs. Normal

Morphed 5%

vs. Normal

Morphed 15%

vs. Normal

Morphed 25%

vs. Normal

Normal vs.

Normal

Min 0.0535 0.0617 0.0739 0.0748 0.1591

Max 0.1818 0.1934 0.2024 0.2816 0.7893

Table 10 Similarity Scores for Various Programs using Edit Distance Technique

To determine whether the file belongs to virus family or non-virus family, we kept the minimum

similarity score between normal files as a threshold value (15.91%). The threshold value is

smaller than the maximum similarity score between normal and base virus files; between normal

and viruses morphed with 5% dead code insertion; between normal and morphed virus with 15%

dead code insertion; and between normal and morphed virus with 25% dead code insertion.

The scores obtained using edit distance techniques generated a false positive rate. We defined the

false positive as an error rate. The error rate obtained using the edit distance method for various

base viruses and morphed viruses is shown in form of graph in Figure 21. Figure 21 shows that

the edit distance method detects a base virus with a 1.16% error rate; viruses morphed with 5%,

15% and 25% with 14.84%, 40.31%, and 45.70% error rate. This technique gives a high error

rate with low percentage of morphing.

40

Figure 21 Graph of Error Rates for Various Morphed Virus Copies

6.3 Pairwise Sequence Alignment

6.3.1 Base Virus and Non-Virus Op-code Sequence Alignment

The test sets were made up of 20 base viruses (NGVCK) and 20 non-virus files. The number of

alignments possible for 20 base viruses = 190 alignments. Similarly, non-virus files have 190

alignments between them.

In Figure 22, scores between normal op-code sequences; between virus op-code sequences; and

between virus and normal file op-code sequences are plotted on the graph. We classify a program

from the virus family by determining a threshold value. This means that if the score between the

unknown file op-code sequence when aligned with normal file op-code sequence is lower than

the threshold, then that unknown file belongs to the virus family.

41

Figure 22 Alignment Scores for Non-Virus and Virus Op-code Sequences

The results displayed in Figure 22, detects virus from normal files with a zero error rate having

0% false positive rate, and 0% false negative rate. Table 11 shows the minimum, maximum and

average score for the various program comparisons displayed in Figure 22. All of the similarity

alignment scores are listed in Table E-1 in Appendix E.

 Normal vs.

Normal

Base Virus vs.

Normal

Min. -0.3445 -0.7459

Max. 2.0496 -0.2063

Avg. 0.2566 -0.5721

Table 11 Sequence Alignment Scores between Various Programs

6.3.2 Morphed Virus and Non Virus Op-code Sequence Alignment

Morphed viruses were generated by inserting dead code instructions and subroutines from

normal file. The sets of 10 morphed virus files were generated using [3] with 30% of junk block

42

insertions from normal files. The morphed file op-code sequence is aligned with normal file op-

code sequence and the scores were computed as described in Section 5.3.4.

The total alignments possible for 10 morphed viruses = 45 alignments. Figure 23 shows the

graph with different similarity scores for various morphed virus and normal file alignments.

43

Figure 23 Alignment Scores for Non-Virus, and Various Morphed Virus Op-code Sequences

44

The results from Figure 23 indicates that for morphed viruses, the alignment score between

normal files and between normal and morphed virus with 30% dead code insertion are

overlapping a lot. Using the approach to find the threshold described in Section 6.3.1, the

alignment score results in false postive rate greater than 0%. All of the similarity scores plotted

in Figure 23 is listed in Table E-2 in Appendix E.

The results from the Figure 23 show that the threshold -0.17, gives 21% false positive rate. We

defined the false positive as an error rate. These results shows that viruses morphed with 30%

subroutine and dead code insertions are not completely detected using the sequence alignment

technique as it an give error rate of 21%. This technique gives 100% detection for base viruses,

but morphed viruses remain undetected. Some alteration for the sequence alignment algorithm is

required to detect the morphed viruses, which can reduce false positive rate.

The error rate obtained using a pairwise sequence alignment for various base viruses and

morphed viruses is shown in form of graph in Figure 24. This method detects base viruses with a

0% error rate; viruses morphed with 5%, 15%, 25% and 30% with 4%, 8%, 15%, and 21% error

rates respectively. This technique gives a high error rate with high percentage morphing.

Figure 24 Graph of Error Rates for Various Morphed Virus Copies

45

7 CONCLUSION

The results from the edit distance and pairwise sequence alignment methods used in this paper

shows that the morphed viruses having random percentages of dead code and subroutine

insertions (i.e., 5%, 15%, 25% and 30%) are still detectable within a certain error rate. The

similarity index method detects the morphed viruses up to 25% of dead code and subroutine

insertion with 0% error rate- unlike edit distance and pairwise alignment method. We analyzed

the results of different similarity-based techniques. Figure 25 shows the error rate produced by

different similarity-based techniques for various morphed viruses having random percentages of

dead code and subroutine insertion from normal files. From Figure 25, we conclude that the

similarity index technique mentioned in this paper gives the best results for the morphed viruses.

The similarity index technique detects all the viruses morphed with different percentages of dead

code and subroutine insertion (i.e., 5%, 15%, and 25%) with 0% error rate by keeping an

optimum window size from 20 to 25. It gives 6%, and 13.33% error rate for 30% morphed

viruses with a window size of 20, and 25 respectively.

Figure 25 Graph of Error Rates produced by different Similarity-Based Methods

The edit distance method distinguished the base viruses with an error rate of 1.16%. It gives a

higher error rate while detecting morphed viruses with a different percentage of subroutine and

46

dead code insertions. The pairwise sequence alignment technique does give the results better

than the edit distance. It detects the base viruses with 0% error rate. For morphed virus copies of

5% and 15% it gives a low error rate of 4% and 8%, respectively. This error rate increases with

the increase in morphing viruses with higher percentage of dead code and subroutine insertions.

As shown in previous studies [3], by making viruses closer to normal files, the HMM-based

detector began to fail to detect the morphed viruses with 5% of subroutine and dead code

insertion from normal files. When we compared it with the similarity-index technique for

detecting morphed viruses, similarity index technique detects the morphed virus copies up to

25% of subroutine and dead code insertions.

8 FUTURE WORK

For future work, we are interested in exploring enhancements to the proposed algorithms

presented in this report to improve the accuracy of similarity index technique. Furthermore,

research is required to expand on the findings to decide if the similarity index can be used to

detect more advanced metamorphic viruses with 30% of dead code and subroutine insertions by

creating more intelligent threshold.. The next step for the sequence alignment technique would

be to analyze the viruses and their subroutines to remove the dead code inserted and giving same

scores for exchangeable instructions before computing the virus‟ similarity score.

The similarity-index method which gave the best results so far might be more efficient compared

to the other similarity-based techniques used in this paper, if we preprocess all the morphed

viruses by removing dead code and subroutine insertions. We can then analyze the similarity

score for resultant viruses and define some optimum threshold to classify these viruses from

normal files.

47

9 REFERENCES

[1] M. Stamp, Information Security: Principles and Practice, August 2005.

[2] W. Wong, “Analysis and Detection of Metamorphic Computer Viruses,” Master‟s

thesis, San Jose State University, 2006.

<http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf>

[3] Da Lin, “Hunting for Undetectable Metamorphic Viruses,” Master‟s thesis, San Jose

State University, 2009.

[4] P. Mishra, “A Taxonomy of Software Uniqueness Transformations,” December 2003.

<http://www.cs.sjsu.edu/faculty/stamp/students/FinalReport.doc>

[7] Orr, The Molecular Virology of Lexotan32: Metamorphism Illustrated, 2007.

<http://www.antilife.org/files/Lexo32.pdf >

[8] J. Aycock, Computer Viruses and Malware, Springer Science Business Media,

2006.

[9] A. Venkatesan, “Code Obfuscation and Metamorphic Virus Detection,” Master‟s

thesis, San Jose State University, 2008.

[10] Symantec, “Understanding Heuristics: Symantec‟s Bloodhound Technology”

<http://www.symantec.com/avcenter/reference/heuristc.pdf>

[11] “Understanding Computer Viruses,”

<media.wiley.com/product_data/excerpt/77/.../0782141277-2.pdf>

[12] Hossein Bidgoli, Handbook of Information Security

[13] E. Daoud and I. Jebril, “Computer Virus Strategies and Detection Methods,” Int. J.

Open Problems Compt. Math., Vol. 1, No. 2, September 2008.

[14] E. Konstantinou, “Metamorphic Virus: Analysis and Detection,” January 2008.

[15] J. Borello and L. Me, “Code Obfuscation Techniques for Metamorphic Viruses,”

Feb 2008, http://www.springerlink.com/content/233883w3r2652537

[16] Wikipedia, “Antivirus software,” Nov 2010,

<http://en.wikipedia.org/wiki/Antivirus_software#Signature_based_detection>

[17] P. Szor, “The Art of Computer Virus Research and Defense,” Addison-Wesley, 2005.

http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

48

[18] P. Szor, P. Ferrie, “Hunting for Metamorphic,” Symantec Security Response.

[19] VX Heavens. <http://vx.netlux.org/>

[20] Wikipedia, “Heuristic analysis,” March 2009,

<http://en.wikipedia.org/wiki/Heuristic_analysis>

[21] HowStuffWorks, “Computer & Internet Security,” May 2008,

<http://computer.howstuffworks.com/virus.htm>

[22] Cygwin <http://cygwin.com/>

[23] Wikipedia, “Levenstein Distance,” Mar 2011,

< http://en.wikipedia.org/wiki/Levenshtein_distance>

[24] Cormen, Leiserson, Rivest, Stein. Introduction to algorithms (2ed, MIT, 2001)

[25] Wikipedia, “Sequence Alignment,” “March 2011,

<http://en.wikipedia.org/wiki/Sequence_alignment>

[26] Scott McGhee, “Pairwise Alignment of Metamorphic Computer Viruses,” Master‟s

Thesis, San Jose State University, 2007

[27] D. Bilar, Statistical Structures: Fingerprinting Malware for Classification and

Analysis, Proceedings of the Black Hat Convention, Las Vegas 2006,

<http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Bilar.pdf>

[28] Liu, J., and T. Longvinenko. 2003. Bayesian methods in biological sequence analysis,

Handbook of Statistical Genetics, 2nd ed, vol. 1. John Wiley & Sons, Ltd., West Sussex.

[29] R. Durbin et al, 1998, Biological Sequence Analysis: Probabilistic Models of

Proteins and Nucleic Acids, pp 12-45, 135-160

http://computer.howstuffworks.com/virus.htm
http://cygwin.com/
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Sequence_alignment

49

Appendix A: Similarity test results for base virus variants (IDAN) and normal

files (IDAR)

Table A- 1 Scores for various NGVCK virus variants and normal files

Similarity scores between various NGVCK virus variants and normal files

IDAN101 vs. IDAR0

IDAN101 vs. IDAR1
IDAN101 vs. IDAR2

IDAN101 vs. IDAR3
IDAN101 vs. IDAR4

IDAN101 vs. IDAR5
IDAN101 vs. IDAR6

IDAN101 vs. IDAR7
IDAN101 vs. IDAR8

IDAN101 vs. IDAR9
IDAN101 vs. IDAR10

IDAN101 vs. IDAR11
IDAN101 vs. IDAR12

IDAN101 vs. IDAR13
IDAN101 vs. IDAR14

IDAN101 vs. IDAR15
IDAN101 vs. IDAR16

IDAN101 vs. IDAR17
IDAN101 vs. IDAR18

IDAN101 vs. IDAR19
IDAN101 vs. IDAR20

IDAN101 vs. IDAR21
IDAN101 vs. IDAR22

IDAN101 vs. IDAR23
IDAN101 vs. IDAR24

IDAN101 vs. IDAR25
IDAN101 vs. IDAR26

IDAN101 vs. IDAR27
IDAN101 vs. IDAR28

IDAN101 vs. IDAR29

IDAN101 vs. IDAR30
IDAN101 vs. IDAR31

IDAN101 vs. IDAR32
IDAN101 vs. IDAR33

IDAN101 vs. IDAR34
IDAN101 vs. IDAR35

IDAN101 vs. IDAR36
IDAN101 vs. IDAR37

IDAN101 vs. IDAR38
IDAN101 vs. IDAR39

IDAN101 vs. IDAR40

0

0.0227
0

0.0227
0.0113

0.0340
0.0227

0.0227
0.0454

0.0454
0.0113

0.0340
0.0340

0.0340
0.0454

0.0568
0.0568

0.0227
0.0568

0.0454
0.0681

0.0227
0.0340

0.0340
0.0568

0.0340
0.0340

0.0340
0.0340

0.0340

0.0454
0.0340

0.0340
0.0227

0.0340
0.0340

0.0340
0.0454

0.0340
0.0454

0.0340

IDAN141 vs. IDAR0

IDAN141 vs. IDAR1
IDAN141 vs. IDAR2

IDAN141 vs. IDAR3
IDAN141 vs. IDAR4

IDAN141 vs. IDAR5
IDAN141 vs. IDAR6

IDAN141 vs. IDAR7
IDAN141 vs. IDAR8

IDAN141 vs. IDAR9
IDAN141 vs. IDAR10

IDAN141 vs. IDAR11
IDAN141 vs. IDAR12

IDAN141 vs. IDAR13
IDAN141 vs. IDAR14

IDAN141 vs. IDAR15
IDAN141 vs. IDAR16

IDAN141 vs. IDAR17
IDAN141 vs. IDAR18

IDAN141 vs. IDAR19
IDAN141 vs. IDAR20

IDAN141 vs. IDAR21
IDAN141 vs. IDAR22

IDAN141 vs. IDAR23
IDAN141 vs. IDAR24

IDAN141 vs. IDAR25
IDAN141 vs. IDAR26

IDAN141 vs. IDAR27
IDAN141 vs. IDAR28

IDAN141 vs. IDAR29

IDAN141 vs. IDAR30
IDAN141 vs. IDAR31

IDAN141 vs. IDAR32
IDAN141 vs. IDAR33

IDAN141 vs. IDAR34
IDAN141 vs. IDAR35

IDAN141 vs. IDAR36
IDAN141 vs. IDAR37

IDAN141 vs. IDAR38
IDAN141 vs. IDAR39

IDAN141 vs. IDAR40

0

0.0204
0.0102

0
0.0102

0.0408
0.0408

0.0510
0.0510

0.0102
0.0408

0.0204
0.0204

0.061
0.0102

0.0714
0.0510

0.0306
0.0204

0.061
0.0306

0.0306
0.061

0.0714
0.0306

0.0306
0.0306

0.0306
0.0306

0.0306

0.0306
0.0306

0.0306
0.0306

0.0306
0.0306

0.0306
0.0306

0.0306
0.061

0.0306

IDAN191 vs. IDAR0

IDAN191 vs. IDAR1
IDAN191 vs. IDAR2

IDAN191 vs. IDAR3
IDAN191 vs. IDAR5

IDAN191 vs. IDAR6
IDAN191 vs. IDAR7

IDAN191 vs. IDAR8
IDAN191 vs. IDAR9

IDAN191 vs. IDAR10
IDAN191 vs. IDAR11

IDAN191 vs. IDAR12
IDAN191 vs. IDAR13

IDAN191 vs. IDAR14
IDAN191 vs. IDAR15

IDAN191 vs. IDAR16
IDAN191 vs. IDAR17

IDAN191 vs. IDAR18
IDAN191 vs. IDAR19

IDAN191 vs. IDAR20
IDAN191 vs. IDAR21

IDAN191 vs. IDAR22
IDAN191 vs. IDAR23

IDAN191 vs. IDAR24
IDAN191 vs. IDAR25

IDAN191 vs. IDAR26
IDAN191 vs. IDAR27

IDAN191 vs. IDAR28
IDAN191 vs. IDAR29

IDAN191 vs. IDAR30

IDAN191 vs. IDAR31
IDAN191 vs. IDAR32

IDAN191 vs. IDAR33
IDAN191 vs. IDAR34

IDAN191 vs. IDAR35
IDAN191 vs. IDAR36

IDAN191 vs. IDAR37
IDAN191 vs. IDAR38

IDAN191 vs. IDAR39
IDAN191 vs. IDAR40

0

0
0.0112

0.022
0.022

0.0337
0.0337

0.067
0.0112

0.022
0.0337

0.0337
0.022

0.0112
0.067

0.0112
0

0.022
0.044

0.0337
0.0337

0.0561
0.044

0.0337
0.0337

0.0337
0.0337

0.0337
0.0337

0.0337

0.0337
0.0337

0.0337
0.0337

0.0337
0.0337

0.0337
0.0337

0.0337
0.0337

Min score: 0.00

Max score: 0.05
Average: 0. 02

50

Table A- 2 Similarity scores between normal files

IDAR0 vs. IDAR1

IDAR0 vs. IDAR2
IDAR0 vs. IDAR3

IDAR0 vs. IDAR4
IDAR0 vs. IDAR5

IDAR0 vs. IDAR6
IDAR0 vs. IDAR7

IDAR0 vs. IDAR8
IDAR0 vs. IDAR9

IDAR0 vs. IDAR10
IDAR1 vs. IDAR2

IDAR1 vs. IDAR3
IDAR1 vs. IDAR4

IDAR1 vs. IDAR5
IDAR1 vs. IDAR6

IDAR1 vs. IDAR7
IDAR1 vs. IDAR8

IDAR1 vs. IDAR9
IDAR1 vs. IDAR10

IDAR2 vs. IDAR3
IDAR2 vs. IDAR4

IDAR2 vs. IDAR5
IDAR2 vs. IDAR6

IDAR2 vs. IDAR7

IDAR2 vs. IDAR8
IDAR2 vs. IDAR9

IDAR2 vs. IDAR10
IDAR3 vs. IDAR4

IDAR3 vs. IDAR5
IDAR3 vs. IDAR6

IDAR3 vs. IDAR7
IDAR3 vs. IDAR8

IDAR3 vs. IDAR9
IDAR3 vs. IDAR10

IDAR4 vs. IDAR5
IDAR4 vs. IDAR6

IDAR4 vs. IDAR7
IDAR4 vs. IDAR8

IDAR4 vs. IDAR9

0.6150

0.5440
0.5103

0.6090
0.2285

0.2142
0.2190

0.2
0.4904

0.2142
0.6183

0.5416
0.6991

0.2166
0.1962

0.2085
0.2085

0.5355
0.2085

0.4312
0.4521

0.1662
0.1787

0.1953

0.1371
0.4571

0.1620
0.4448

0.1856
0.1627

0.1599
0.1656

0.3769
0.1856

0.2474
0.2510

0.2328
0.2401

0.5604

IDAR4 vs. IDAR10

IDAR5 vs. IDAR6
IDAR5 vs. IDAR7

IDAR5 vs. IDAR8
IDAR5 vs. IDAR9

IDAR5 vs. IDAR10
IDAR6 vs. IDAR7

IDAR6 vs. IDAR8
IDAR6 vs. IDAR9

IDAR6 vs. IDAR10
IDAR7 vs. IDAR8

IDAR7 vs. IDAR9
IDAR7 vs. IDAR10

IDAR8 vs. IDAR9
IDAR8 vs. IDAR10

IDAR9 vs. IDAR10
IDAR10 vs. IDAR11

IDAR10 vs. IDAR12
IDAR10 vs. IDAR13

IDAR10 vs. IDAR14
IDAR10 vs. IDAR15

IDAR10 vs. IDAR18
IDAR10 vs. IDAR19

IDAR10 vs. IDAR20

IDAR11 vs. IDAR12
IDAR11 vs. IDAR13

IDAR11 vs. IDAR14
IDAR11 vs. IDAR15

IDAR11 vs. IDAR16
IDAR11 vs. IDAR17

IDAR11 vs. IDAR18
IDAR11 vs. IDAR19

IDAR11 vs. IDAR20
IDAR12 vs. IDAR13

IDAR12 vs. IDAR14
IDAR12 vs. IDAR15

IDAR12 vs. IDAR16
IDAR12 vs. IDAR17

IDAR12 vs. IDAR18

0.2692

0.8223
0.8209

0.8223
0.1449

0.8267
0.8059

0.8004
0.1401

0.8147
0.8001

0.1306
0.8422

0.1481
0.7765

0.1799
0.1423

0.1424
0.7657

0.1523
0.7682

0.1634
0.8389

0.7583

0.8936
0.1911

0.4493
0.185

0.4179
0.3698

0.6293
0.1939

0.1897
0.191

0.4495
0.1857

0.6185
0.3700

0.6283

IDAR12 vs. IDAR19

IDAR12 vs. IDAR20
IDAR13 vs. IDAR14

IDAR13 vs. IDAR15
IDAR13 vs. IDAR18

IDAR13 vs. IDAR19
IDAR13 vs. IDAR20

IDAR14 vs. IDAR15
IDAR14 vs. IDAR16

IDAR14 vs. IDAR17
IDAR14 vs. IDAR18

IDAR14 vs. IDAR19
IDAR14 vs. IDAR20

IDAR15 vs. IDAR18
IDAR15 vs. IDAR19

IDAR15 vs. IDAR20
IDAR16 vs. IDAR17

IDAR16 vs. IDAR18
IDAR16 vs. IDAR19

IDAR16 vs. IDAR20
IDAR17 vs. IDAR18

IDAR17 vs. IDAR19
IDAR17 vs. IDAR20

IDAR18 vs. IDAR19

IDAR18 vs. IDAR20
IDAR19 vs. IDAR20

IDAR0 vs. IDAR21
IDAR1 vs. IDAR21

IDAR2 vs. IDAR21
IDAR3 vs. IDAR21

IDAR4 vs. IDAR21
IDAR5 vs. IDAR21

IDAR6 vs. IDAR21
IDAR7 vs. IDAR21

IDAR8 vs. IDAR21
IDAR9 vs. IDAR21

IDAR10 vs. IDAR21

0.1940

0.1898
0.1447

0.7890
0.1660

0.7926
0.7877

0.2285
0.4179

0.628
0.4344

0.2247
0.2196

0.1953
0.8189

0.7992
0.457

0.8184
0.2237

0.2263
0.473

0.2439
0.2237

0.2019

0.1846
0.6831

0.4714
0.511

0.4405
0.3797

0.5385
0.1691

0.1560
0.1524

0.1451
0.6753

0.1486

Min score: 0.1306
Max score: 0.8936

Average: 0.3865

51

Appendix B: Similarity between morphed viruses

Table B- 1 Scores for morphed viruses and normal files

Similarity scores between morphed viruses (IDAN) with different percentage of subroutine and

dead code insertion from non-virus files Window Size 5:

IDAN vs. IDAN Base viruses :

scores

Morphed

Virus 5% :
scores

IDAN vs. IDAN Morphed

Virus 15% :
scores

IDAN5 vs. IDAN6

IDAN5 vs. IDAN7

IDAN5 vs. IDAN8

IDAN5 vs. IDAN9

IDAN5 vs. IDAN13

IDAN5 vs. IDAN14

IDAN5 vs. IDAN17

IDAN7 vs. IDAN8

IDAN7 vs. IDAN9

IDAN7 vs. IDAN10

IDAN7 vs. IDAN11

IDAN7 vs. IDAN12
IDAN7 vs. IDAN13

IDAN8 vs. IDAN9

IDAN8 vs. IDAN10

IDAN8 vs. IDAN11

IDAN8 vs. IDAN12

IDAN10 vs. IDAN13

IDAN10 vs. IDAN14

IDAN10 vs. IDAN17

IDAN11 vs. IDAN13

IDAN11 vs. IDAN15

IDAN11 vs. IDAN17
IDAN12 vs. IDAN13

IDAN12 vs. IDAN17

IDAN13 vs. IDAN14

IDAN13 vs. IDAN15

IDAN13 vs. IDAN16

IDAN13 vs. IDAN17

IDAN14 vs. IDAN15

IDAN14 vs. IDAN16

IDAN14 vs. IDAN17

IDAN15 vs. IDAN17

IDAN16 vs. IDAN17

0.1044

0.1091

0.1584

0.1115

0.0626

0.0954

0.1098

0.1269

0.1289

0.1241

0.0794

0.1331
0.1173

0.1036

0.1372

0.0665

0.0729

0.0769

0.1465

0.1374

0.1228

0.1582

0.0665
0.0750

0.1339

0.1283

0.0779

0.0922

0.1442

0.1237

0.113

0.0875

0.0759

0.0899

0.3159

0.2567

0.3025

0.3240

0.1169

0.115

0.1339

0.2575

0.1723

0.2056

0.1876

0.2210
0.1528

0.1735

0.2153

0.1696

0.1777

0.1291

0.1779

0.1519

0.1243

0.1370

0.1261
0.1085

0.1338

0.1625

0.1499

0.1294

0.1658

0.1656

0.1767

0.1797

0.1334

0.1043

IDAN2 vs. IDAN17

IDAN2 vs. IDAN18

IDAN3 vs. IDAN8

IDAN3 vs. IDAN11

IDAN3 vs. IDAN13

IDAN3 vs. IDAN14

IDAN3 vs. IDAN15

IDAN3 vs. IDAN16

IDAN3 vs. IDAN17

IDAN3 vs. IDAN18

IDAN4 vs. IDAN5

IDAN4 vs. IDAN6
IDAN4 vs. IDAN7

IDAN4 vs. IDAN8

IDAN4 vs. IDAN9

IDAN4 vs. IDAN10

IDAN4 vs. IDAN11

IDAN4 vs. IDAN12

IDAN4 vs. IDAN13

IDAN4 vs. IDAN14

IDAN4 vs. IDAN15

IDAN4 vs. IDAN16

IDAN4 vs. IDAN17
IDAN4 vs. IDAN18

IDAN4 vs. IDAN19

IDAN4 vs. IDAN20

IDAN5 vs. IDAN15

IDAN5 vs. IDAN17

IDAN5 vs. IDAN18

IDAN6 vs. IDAN8

IDAN6 vs. IDAN13

IDAN6 vs. IDAN14

IDAN6 vs. IDAN15

IDAN6 vs. IDAN16

0.398

0.3825

0.4309

0.4875

0.4558

0.4510

0.4668

0.4089

0.3320

0.3261

0.3704

0.3397
0.3596

0.4527

0.3624

0.3488

0.4080

0.380

0.4348

0.4143

0.4295

0.440

0.3087
0.3349

0.4022

0.3792

0.4868

0.3662

0.4378

0.4421

0.466

0.4674

0.4616

0.4538

 Base Virus Morphed

Virus 5%

Morphed Virus

15%

Min.

Max.

Avg.

0.0626

0.1584

0.1086

0.1043

0.3241

0.1751

0.3087

0.4875

0.4085

52

Appendix C: Detection using similarity index test

Similarity scores between morphed viruses and normal file (IDAN vs. IDAR), between base

viruses and normal files, and between normal files

Table C- 1 Similarity scores for Window size = 5

Similarity scores between various normal (IDAR) and morphed viruses (IDAN):

 Base NGVCK

viruses : scores

Morphed

Virus 5% :

scores

Morphed

Virus 15% :

scores

Morphed

Virus 25% :

scores

Morphed

Virus 30% :

scores

IDAN101 vs. IDAR1

IDAN101 vs. IDAR2

IDAN101 vs. IDAR3
IDAN101 vs. IDAR4

IDAN101 vs. IDAR5

IDAN141 vs. IDAR1

IDAN141 vs. IDAR2

IDAN141 vs. IDAR3

IDAN141 vs. IDAR4

IDAN141 vs. IDAR5

IDAN191 vs. IDAR1

IDAN191 vs. IDAR2

IDAN191 vs. IDAR3

IDAN191 vs. IDAR4
IDAN191 vs. IDAR5

0.0154

0

0.0142
0.0075

0.0192

0.0204

0.0102

0

0.0102

0.0408

0

0.0112

0.022

0
0.022

0.1473

0.1381

0.1428
0.179

0.0791

0.1336

0.0931

0.1176

0.1524

0.0765

0.107

0.086

0.0995

0.1333
0.084

0.1850

0.1546

0.1871
0.2144

0.0927

0.1835

0.1340

0.1827

0.2095

0.085

0.2815

0.1974

0.2147

0.2930
0.1161

0.3448

0.2732

0.2937
0.3553

0.1244

0.2496

0.2131

0.2289

0.2640

0.1162

0.3395

0.2474

0.2651

0.3441
0.1179

0.3601

0.2937

0.2658
0.3651

0.1486

0.3405

0.270

0.2705

0.3533

0.1315

0.3929

0.2874

0.2868

0.3785
0.146

Similarity scores between various normal files

IDAR0 vs. IDAR1

IDAR0 vs. IDAR2
IDAR0 vs. IDAR3

IDAR0 vs. IDAR4

IDAR11 vs. IDAR17

IDAR1 vs. IDAR2

IDAR1 vs. IDAR3

IDAR17 vs. IDAR19

IDAR12 vs. IDAR17

IDAR2 vs. IDAR3

IDAR2 vs. IDAR4

IDAR11 vs. IDAR14

IDAR3 vs. IDAR4

IDAR14 vs. IDAR16
IDAR14 vs. IDAR18

0.6150

0.5440
0.5103

0.6090

0.3698

0.6183

0.5416

0.2439

0.3700

0.4312

0.4521

0.4493

0.4448

0.4179
0.4344

Threshold determination:

Min score between normal file: 0.2439 (threshold)

Max score between normal file and morphed virus 5%: 0.1797 (< threshold)

Max score between normal file and morphed virus 15%: 0.2930 (> threshold)

Max score between normal file and morphed virus 25%: 0.3553 (> threshold)

Max score between normal file and morphed virus 30%: 0.3929 (> threshold)

53

Table C- 2 Similarity scores for Window size = 10

Window Size 10:

Similarity scores between various normal (IDAR) and morphed viruses (IDAN):

 Base NGVCK

viruses : scores

Morphed

Virus 5% :

scores

Morphed

Virus 15% :

scores

Morphed

Virus 25% :

scores

Morphed

Virus 30% :

scores

IDAN101 vs. IDAR1

IDAN101 vs. IDAR2
IDAN101 vs. IDAR3

IDAN101 vs. IDAR4

IDAN101 vs. IDAR5

IDAN141 vs. IDAR1

IDAN141 vs. IDAR2

IDAN141 vs. IDAR3

IDAN141 vs. IDAR4

IDAN141 vs. IDAR5

IDAN191 vs. IDAR1

IDAN191 vs. IDAR2

IDAN191 vs. IDAR3
IDAN191 vs. IDAR4

IDAN191 vs. IDAR5

0

0
0

0

0

0

0.0143

0.0130

0

0

0

0

0
0

0

0.0914

0.0818
0.0982

0.1165

0.0301

0.0411

0.0310

0.0543

0.0688

0.0153

0.053

0.043

0.0663
0.0820

0.0242

0.1173

0.0909
0.1247

0.1458

0.0575

0.0826

0.0462

0.1033

0.1134

0.0523

0.187

0.1151

0.1316
0.21

0.0608

0.2447

0.1571
0.1731

0.236

0.081

0.1536

0.1317

0.1419

0.1519

0.0707

0.1961

0.1294

0.1641
0.234

0.0884

0.2490

0.1695
0.1950

0.2420

0.0950

0.2173

0.1462

0.1563

0.2242

0.0899

0.2234

0.1309

0.1972
0.2501

0.0978

Similarity scores between various normal files

IDAR0 vs. IDAR1
IDAR0 vs. IDAR2

IDAR0 vs. IDAR3

IDAR0 vs. IDAR4

IDAR11 vs. IDAR17

IDAR1 vs. IDAR2

IDAR1 vs. IDAR3

IDAR17 vs. IDAR19

IDAR12 vs. IDAR17

IDAR2 vs. IDAR3

IDAR2 vs. IDAR4

IDAR11 vs. IDAR14
IDAR3 vs. IDAR4

IDAR14 vs. IDAR16

IDAR14 vs. IDAR18

0.5398
0.4191

0.4113

0.5292

0.2068

0.4699

0.4444

0.1771

0.2069

0.3295

0.3507

0.3011
0.3312

0.3501

0.3767

Threshold determination:

Min score between normal file: 0.1771 (threshold)

Max score between normal file and morphed virus 5%: 0.1165 (< threshold)

Max score between normal file and morphed virus 15%: 0.2158 (> threshold)

Max score between normal file and morphed virus 25%: 0.2447 (> threshold)

Max score between normal file and morphed virus 30%: 0.2501 (> threshold)

54

Table C- 3 Similarity scores for Window size = 20

Similarity scores between various normal (IDAR) and morphed viruses (IDAN):

 Base NGVCK

viruses : scores

Morphed

Virus 5% :
scores

Morphed

Virus 15% :
scores

Morphed

Virus 25% :
scores

Morphed

Virus 30%
: scores

IDAN101 vs. IDAR1

IDAN101 vs. IDAR2

IDAN101 vs. IDAR3

IDAN101 vs. IDAR4

IDAN101 vs. IDAR5

IDAN141 vs. IDAR1

IDAN141 vs. IDAR2

IDAN141 vs. IDAR3

IDAN141 vs. IDAR4

IDAN141 vs. IDAR5

IDAN191 vs. IDAR1

IDAN191 vs. IDAR2
IDAN191 vs. IDAR3

IDAN191 vs. IDAR4

IDAN191 vs. IDAR5

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0.1016

0.0613

0.0714

0.1165

0

0.0617

0.0207

0.0181

0.0786

0.0153

0.0856

0.043
0.0379

0.1026

0

0.1083

0.0545

0.0623

0.1201

0

0.0917

0.0554

0.0476

0.1047

0

0.1305

0.0658
0.0692

0.1542

0.0110

0.133

0.0898

0.0742

0.153

0.0095

0.12

0.0775

0.0774

0.144

0.0202

0.1358

0.0761
0.075

0.1419

0.0393

0.1464

0.0987

0.0825

0.1628

0.0278

0.1304

0.0877

0.0721

0.1495

0.0276

0.1441

0.0873
0.0956

0.1487

0.0383

Similarity scores between various normal files

IDAR0 vs. IDAR1

IDAR0 vs. IDAR2

IDAR0 vs. IDAR3

IDAR0 vs. IDAR4

IDAR11 vs. IDAR17

IDAR1 vs. IDAR2

IDAR1 vs. IDAR3

IDAR17 vs. IDAR19

IDAR12 vs. IDAR17

IDAR2 vs. IDAR3

IDAR2 vs. IDAR4
IDAR11 vs. IDAR14

IDAR3 vs. IDAR4

IDAR14 vs. IDAR16

IDAR14 vs. IDAR18

0.4248

0.3210

0.3046

0.4200

0.1551

0.4452

0.3471

0.1561

0.1651

0.2384

0.3118
0.2185

0.2727

0.2197

0.2494

Threshold determination:

Min score between normal file: 0.1551 (threshold)

Max score between normal file and morphed virus 5%: 0.1026 (< threshold)

Max score between normal file and morphed virus 15%: 0.1542 (< threshold)

Max score between normal file and morphed virus 25%: 0.1532 (< threshold)

Max score between normal file and morphed virus 30%: 0.1628 (> threshold)

55

Appendix D: Detection using Edit Distance technique

Table D- 1 Scores for base viruses, morphed viruses and normal files using edit distance

technique

Similarity scores between normal files (IDAR), and between morphed viruses and normal files

(IDAN vs. IDAR):

 Base NGVCK

viruses : scores

Morphed

Virus 5%

: scores

Morphed

Virus 15% :

scores

Morphed

Virus 25% :

scores

IDAR0 vs. IDAR1

IDAR0 vs. IDAR2
IDAR0 vs. IDAR3

IDAR0 vs. IDAR4

IDAR0 vs. IDAR5

IDAR0 vs. IDAR6

IDAR0 vs. IDAR7

IDAR0 vs. IDAR8

IDAR0 vs. IDAR9

IDAR0 vs. IDAR10

IDAR0 vs. IDAR11

IDAR0 vs. IDAR12

IDAR0 vs. IDAR13
IDAR0 vs. IDAR14

IDAR0 vs. IDAR15

IDAR0 vs. IDAR16

IDAR0 vs. IDAR17

IDAR0 vs. IDAR18

IDAR0 vs. IDAR19

IDAR0 vs. IDAR20

IDAR0 vs. IDAR21

IDAR0 vs. IDAR22

IDAR0 vs. IDAR23

IDAR0 vs. IDAR24

IDAR0 vs. IDAR25
IDAR0 vs. IDAR26

IDAR0 vs. IDAR27

IDAR0 vs. IDAR28

IDAR0 vs. IDAR29

IDAR0 vs. IDAR30

IDAR0 vs. IDAR31

IDAR0 vs. IDAR32

IDAR0 vs. IDAR33

IDAR0 vs. IDAR34

IDAR0 vs. IDAR35

IDAR0 vs. IDAR36
IDAR0 vs. IDAR37

IDAR0 vs. IDAR38

IDAR0 vs. IDAR39

IDAR0 vs. IDAR40

0.1818

0.1687
0.174

0.1426

0.1455

0.0988

0.0976

0.0984

0.0932

0.094

0.0864

0.0882

0.0882
0.0862

0.0772

0.0829

0.0768

0.0712

0.0816

0.0713

0.0737

0.0719

0.0726

0.067

0.0705
0.0706

0.0706

0.0701

0.0704

0.0694

0.0581

0.0703

0.0693

0.0699

0.0693

0.0691
0.0685

0.0579

0.0683

0.0624

0.097

0.0931
0.08

0.100

0.0843

0.0868

0.0858

0.0848

0.0802

0.084

0.0841

0.0840

0.0837
0.0838

0.0838

0.0705

0.0831

0.0837

0.0829

0.0827

0.0825

0.0827

0.0695

0.0817

0.075
0.0808

0.1134

0.1025

0.1080

0.1024

0.0957

0.112

0.0926

0.0989

0.0949

0.0945
0.0873

0.0926

0.0930

0.0926

0.1162

0.1195
0.1099

0.126

0.102

0.1053

0.1069

0.105

0.0975

0.1061

0.1040

0.1060

0.1036
0.1060

0.1034

0.0877

0.104

0.1034

0.1050

0.1028

0.1040

0.1026

0.0863

0.1011

0.0969
0.1019

0.1503

0.1465

0.1445

0.1425

0.1373

0.1564

0.1231

0.1295

0.1323

0.1256
0.1177

0.1297

0.1293

0.1281

0.1610

0.1705
0.1586

0.1775

0.1407

0.1451

0.1512

0.1425

0.1347

0.1465

0.1481

0.1468

0.1473
0.1464

0.1460

0.1238

0.1460

0.146

0.1450

0.146

0.1443

0.1445

0.1223

0.1435

0.1387
0.1415

0.2078

0.2057

0.2017

0.2098

0.195

0.2202

0.1757

0.1807

0.1927

0.1772
0.1672

0.1878

0.1891

0.1873

56

Similarity scores between various normal files

IDAR5 vs. IDAR10

IDAR5 vs. IDAR11

IDAR5 vs. IDAR12

IDAR5 vs. IDAR13

IDAR5 vs. IDAR14

IDAR5 vs. IDAR15

IDAR5 vs. IDAR16

IDAR5 vs. IDAR17

IDAR5 vs. IDAR18

IDAR5 vs. IDAR19
IDAR5 vs. IDAR20

IDAR5 vs. IDAR21

IDAR5 vs. IDAR22

IDAR5 vs. IDAR23

IDAR5 vs. IDAR24

IDAR5 vs. IDAR25

IDAR5 vs. IDAR26

IDAR5 vs. IDAR27

IDAR5 vs. IDAR28

IDAR5 vs. IDAR29

IDAR5 vs. IDAR30
IDAR5 vs. IDAR31

IDAR5 vs. IDAR32

IDAR5 vs. IDAR33

IDAR5 vs. IDAR34

IDAR5 vs. IDAR35

IDAR5 vs. IDAR36

IDAR5 vs. IDAR37

IDAR5 vs. IDAR38

IDAR5 vs. IDAR39

IDAR5 vs. IDAR40

IDAR6 vs. IDAR7

IDAR6 vs. IDAR8
IDAR6 vs. IDAR9

IDAR6 vs. IDAR10

IDAR6 vs. IDAR11

IDAR6 vs. IDAR12

IDAR6 vs. IDAR13

IDAR6 vs. IDAR14

IDAR6 vs. IDAR15

0.6726

0.6253

0.5148

0.6485

0.2291

0.2238

0.2274

0.211

0.2726

0.1999
0.2382

0.2382

0.2000

0.2470

0.1931

0.222

0.2289

0.2347

0.1660

0.172

0.1932
0.1681

0.1591

0.1876

0.1902

0.187

0.1887

0.1874

0.1888

0.1631

0.186

0.1887

0.1857
0.1861

0.1848

0.1866

0.1611

0.1841

0.1945

0.1809

Threshold determination:

Min score between normal file: 0.1591 (threshold)

Max score between normal file and morphed virus 5%: 0.1934 (> threshold)

Max score between normal file and morphed virus 15%: 0.2024 (> threshold)

Max score between normal file and morphed virus 25%: 0.2816 (> threshold)

57

Appendix E: Detection using Sequence Alignment technique

Table E- 1 Scores for base viruses, and normal files using pairwise sequence alignment

technique

Alignment scores between base viruses and normal files (IDAR vs. IDAN), between
normal files (IDAR), between base viruses (IDAN)

Base Virus vs. Normal File

:Scores

(IDAN,IDAR) : Scores

Normal vs. Normal File :

Scores

(IDAR,IDAR) : Scores

Base Virus vs. Base Virus :

Scores

(IDAN,IDAN) : Scores

(0,20) Score = -456.0

(0,21) Score = -506.0

(0,22) Score = -750.0

(0,23) Score = -725.0

(0,24) Score = -758.0

(0,25) Score = -931.0

(0,26) Score = -905.0

(0,27) Score = -774.0

(0,28) Score = -435.0

(0,29) Score = -275.0
(0,30) Score = -574.0

(0,31) Score = -429.0

(0,32) Score = -379.0

(0,33) Score = -604.0

(0,34) Score = -263.0

(0,35) Score = -530.0

(0,36) Score = -145.0

(0,37) Score = -667.0

(0,38) Score = -871.0

(0,39) Score = -416.0

(1,20) Score = -481.0
(1,21) Score = -501.0

(1,22) Score = -842.0

(1,23) Score = -784.0

(1,24) Score = -771.0

(1,25) Score = -919.0

(1,26) Score = -847.0

(1,27) Score = -750.0

(1,28) Score = -442.0

(1,29) Score = -335.0

(1,30) Score = -580.0

(1,31) Score = -349.0

(1,32) Score = -406.0
(1,33) Score = -652.0

(1,34) Score = -339.0

(1,35) Score = -536.0

(1,36) Score = -226.0

(1,37) Score = -691.0

(1,38) Score = -974.0

(1,39) Score = -428.0

(0,1) Score = 513.0

(0,2) Score = 263.0

(0,3) Score = 382.0

(0,4) Score = 44.0

(0,5) Score = -74.0

(0,6) Score = -25.0

(0,7) Score = 62.0

(0,8) Score = 349.0

(0,9) Score = 430.0

(0,10) Score = 446.0
(0,11) Score = 1038.0

(0,12) Score = 391.0

(0,13) Score = 371.0

(0,14) Score = 412.0

(0,15) Score = 587.0

(0,16) Score = 243.0

(0,17) Score = 504.0

(0,18) Score = 285.0

(0,19) Score = 966.0

(1,2) Score = 484.0

(1,3) Score = 589.0
(1,4) Score = 59.0

(1,5) Score = -86.0

(1,6) Score = -52.0

(1,7) Score = 78.0

(1,8) Score = 474.0

(1,9) Score = 810.0

(1,10) Score = 530.0

(1,11) Score = 482.0

(1,12) Score = 460.0

(1,13) Score = 391.0

(1,14) Score = 495.0

(1,15) Score = 872.0
(1,16) Score = 361.0

(1,17) Score = 604.0

(1,18) Score = 334.0

(1,19) Score = 377.0

(2,3) Score = 978.0

(2,4) Score = 208.0

(2,5) Score = 187.0

(0,1) Score = -1.0

(0,2) Score = -99.0

(0,3) Score = -43.0

(0,4) Score = 50.0

(0,5) Score = 8.0

(0,6) Score = 15.0

(0,7) Score = 47.0

(0,8) Score = 27.0

(0,9) Score = 154.0

(0,10) Score = -26.0
(0,11) Score = 44.0

(0,12) Score = 30.0

(0,13) Score = -14.0

(0,14) Score = 83.0

(0,15) Score = -30.0

(0,16) Score = 41.0

(0,17) Score = 4.0

(0,18) Score = 63.0

(0,19) Score = -25.0

(0,20) Score = -74.0

(1,2) Score = -73.0
(1,3) Score = 15.0

(1,4) Score = -16.0

(1,5) Score = -71.0

(1,6) Score = 149.0

(1,7) Score = -33.0

(1,8) Score = 4.0

(1,9) Score = 17.0

(1,10) Score = -47.0

(1,11) Score = 82.0

(1,12) Score = -14.0

(1,13) Score = -122.0

(1,14) Score = -50.0
(1,15) Score = -62.0

(1,16) Score = -15.0

(1,17) Score = 50.0

(1,18) Score = -63.0

(1,19) Score = 123.0

(1,20) Score = -44.0

(2,3) Score = 61.0

58

Table E- 2 Scores for morphed viruses, and normal files using pairwise sequence alignment

technique

Alignment scores between morphed viruses 30% and normal files (IDAR vs. IDAN),

between normal files (IDAR), between morphed viruses 30% (IDAN)

Morphed Virus 30% vs.

Normal File : Scores

(IDAN,IDAR) : Scores

Normal vs. Normal File :

Scores

(IDAR,IDAR) : Scores

Morphed Virus 30% vs.

Morphed Virus 30% :Scores

(IDAN,IDAN) : Scores

(0,10) Score = 103.0

(0,11) Score = 147.0

(0,12) Score = -49.0
(0,13) Score = 50.0

(0,14) Score = -24.0

(0,15) Score = -171.0

(0,16) Score = -156.0

(0,17) Score = -22.0

(0,18) Score = -60.0

(0,19) Score = -9.0

(1,10) Score = 164.0

(1,11) Score = 183.0

(1,12) Score = 123.0

(1,13) Score = 135.0
(1,14) Score = -3.0

(1,15) Score = -99.0

(1,16) Score = -46.0

(1,17) Score = 10.0

(1,18) Score = 44.0

(1,19) Score = 89.0

(2,10) Score = -3.0

(2,11) Score = 49.0

(2,12) Score = -336.0

(2,13) Score = -145.0

(2,14) Score = -434.0

(2,15) Score = -612.0
(2,16) Score = -581.0

(2,17) Score = -409.0

(2,18) Score = 7.0

(2,19) Score = 119.0

(3,10) Score = -288.0

(3,11) Score = -324.0

(3,12) Score = -715.0

(3,13) Score = -558.0

(3,14) Score = -666.0

(3,15) Score = -890.0

(3,16) Score = -800.0
(3,17) Score = -652.0

(3,18) Score = -285.0

(3,19) Score = -135.0

(4,10) Score = -46.0

(4,11) Score = 6.0

(4,12) Score = -444.0

(4,13) Score = -321.0

(4,14) Score = -475.0

(0,1) Score = 513.0

(0,2) Score = 263.0

(0,3) Score = 382.0
(0,4) Score = 44.0

(0,5) Score = -74.0

(0,6) Score = -25.0

(0,7) Score = 62.0

(0,8) Score = 349.0

(0,9) Score = 430.0

(0,10) Score = 446.0

(0,11) Score = 1038.0

(0,12) Score = 391.0

(0,13) Score = 371.0

(0,14) Score = 412.0
(0,15) Score = 587.0

(0,16) Score = 243.0

(0,17) Score = 504.0

(0,18) Score = 285.0

(0,19) Score = 966.0

(1,2) Score = 484.0

(1,3) Score = 589.0

(1,4) Score = 59.0

(1,5) Score = -86.0

(1,6) Score = -52.0

(1,7) Score = 78.0

(1,8) Score = 474.0
(1,9) Score = 810.0

(1,10) Score = 530.0

(1,11) Score = 482.0

(1,12) Score = 460.0

(1,13) Score = 391.0

(1,14) Score = 495.0

(1,15) Score = 872.0

(1,16) Score = 361.0

(1,17) Score = 604.0

(1,18) Score = 334.0

(1,19) Score = 377.0
(2,3) Score = 978.0

(2,4) Score = 208.0

(2,5) Score = 187.0

(2,6) Score = 218.0

(2,7) Score = 206.0

(2,8) Score = 434.0

(2,9) Score = 251.0

(2,10) Score = 587.0

(1,2) Score = -73.0

(1,3) Score = 15.0

(1,4) Score = -16.0
(1,5) Score = -71.0

(1,6) Score = 149.0

(1,7) Score = -33.0

(1,8) Score = 4.0

(1,9) Score = 17.0

(1,10) Score = -47.0

(2,3) Score = 61.0

(2,4) Score = -80.0

(2,5) Score = 83.0

(2,6) Score = 60.0

(2,7) Score = -7.0
(2,8) Score = 96.0

(2,9) Score = -73.0

(2,10) Score = 55.0

(3,4) Score = 3.0

(3,5) Score = -8.0

(3,6) Score = 55.0

(3,7) Score = -73.0

(3,8) Score = -51.0

(3,9) Score = 82.0

(3,10) Score = 55.0

(4,5) Score = -105.0

(4,6) Score = 55.0
(4,7) Score = -60.0

(4,8) Score = -85.0

(4,9) Score = 41.0

(4,10) Score = -72.0

(5,6) Score = -62.0

(5,7) Score = 155.0

(5,8) Score = 60.0

(5,9) Score = -76.0

(5,10) Score = 20.0

(6,7) Score = -58.0

(6,8) Score = 30.0
(6,9) Score = -4.0

(6,10) Score = 41.0

(7,8) Score = 22.0

(7,9) Score = -106.0

(7,10) Score = -9.0

(8,9) Score = -19.0

(8,10) Score = -72.0

(9,10) Score = -53.0

	Similarity Tests for Metamorphic Virus Detection
	Recommended Citation

	tmp.1529535603.pdf.gqsBf

