San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2011

Similarity Tests for Metamorphic Virus Detection

Mahim Patel
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

b Part of the Other Computer Sciences Commons

Recommended Citation

Patel, Mahim, "Similarity Tests for Metamorphic Virus Detection" (2011). Master's Projects. 175.
DOI: https://doi.org/10.31979/etd.6j9f-9drn

https://scholarworks.sjsu.edu/etd_projects/175

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/175?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Similarity Tests for Metamorphic Virus Detection

A Project Report

Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Computer Science

by
Mahim Patel

May 2011

© 2011
Mahim Patel
ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

Similarity Tests for Metamorphic Virus Detection

by
Mahim Patel

Approved for the Department of Computer Science

Dr. Mark Stamp, Department of Computer Science Date
Dr. Chris Pollett, Department of Computer Science Date
Dr. Soon Tee Teoh, Department of Computer Science Date

Approved for the University

Associate Dean Office of Graduate Studies and Research Date

Similarity Tests for Metamorphic Virus Detection
by Mahim Patel

A metamorphic computer virus generates copies of itself using code morphing techniques. A
new virus has the same functionality as the parent but it has a different internal structure. The
goal of the metamorphic virus writer is to produce viral copies that have no common signature. If
the viral copies are sufficiently different, they can evade signature detection, which is the most

widely-used anti-virus technique.

In previous research, hidden Markov models (HMMs) have been used to detect some
metamorphic viruses. However, recent research has shown that it is possible for carefully
designed metamorphic viruses to evade HMM-based detection.

In this project, we analyze similarity-based techniques for detecting metamorphic viruses. We
first consider a similarity index technique that was previously studied. We then consider new
similarity techniques based on edit distance and pairwise sequence alignment. We test these
similarity measures on the challenging problem of metamorphic virus detection. We compare our

detection results with those obtained using an HMM-based detection method.

ACKNOWLEDGEMENTS

I would like to express my deep and sincere gratitude to my project advisor, Dr. Mark Stamp for
his guidance, encouragement, and support throughout the project.

1.
2.
3.

4

TABLE OF CONTENTS

INTRODUGCTION ...ttt e et et e st e e teeateeanbeentaeanteeanaeenree s 1
COMPUTER VIRUSottt aa et e et e e e naaennee s 2
VIRUS PREVENTION TECHNIQUES. ...ttt 3
3.1 SIGNATURE DETECTIONuitiiiieiitieie e e sttt e ettt ettt e e sttt a e e ettt e e e s nsb et e e e nnbbe e e e s nnbbe e e e e nnees 3
3.2 HEURISTIC ANALYSIS .. etteiitttiteeeaitteeaeaastteeeeeaeitteaeaasteeaeaasteeaeaaastbe e e e s anbbeaeeaasbbeeeeanntaeaeesnnees 4
VIRUS EVOLUTION L.ttt ettt ettt et e naeenne e nnaeenns 4
4.1 ENCRYPTED VIRUSESuuttiitittiieeeaaaaititeetetee e e e s s aiittsse e e e e e e s s s asibbbs et e eeeeeaaasbbbbneeaaeeeasannnnnnnes 4
4.2 POLYMORPHIC VIRUSES......uttttietititieeaaaitteteeaastteaaeaatteeaeaastseesaastseasessntseaaesansaeaeesansneaaesas 5
4.3 METAMORPHIC VIRUSES......uutitiieitiiiieeaiiteeeeesastteeeessstteeasaasttseasaastseeeessntbeaeesantaeaeesansneneesas 6
4.3.1 Register Swap (Register Usage EXChange)cccooveiiieiiiiiieiiienieenie e 6
4.3.2 JUNK INSTrUCLION TNSEITION ...vvveiiiie ettt e e e et e e snteeeeneeas 7
4.3.3 Equivalent InStruction SUBSTITULIONc.eoiiiiiiiiie e 8
4.3.4 INSIrUCtioN TranSPOSITIONeiuieiiiiiiie ittt 8
4.3.5 SUBroutine TranSPOSITIONuueiiiiiiie ettt 9
SIMILARITY-BASED TECHNIQUESoooiiiiiiieee e 10
5.1 SIMILARITY INDEX TEST METHODcooiuiiiiiiiiiieniieeiee sttt ettt 10
5.2 EDIT DISTANCE ...utiitiiittie ittt ettt ettt ettt ettt e st e kbt ekt e e st e e b bt e bt e e bt e st e e nbeeenbeeannes 13
5.2.1 Computing Edit DISTANCEccciiieiiiie ittt e e aneae e 13
5.2.2 Edit Distance for Op-Code SEQUENCES.........ccureiiireeiiieeiiieeeireessiereeseeesseeeesneee e 15
5.3 PAIRWISE SEQUENCE ALIGNMENT METHODcoitiiiiiiiiieniiiesieesiee e sieesieessnaessnesniee s 16
5.3.2 OP-COUE CONVEISIONuvvieeiiie et e eiee e site e e see e e eae e ssta e e st e e staeeasnaeeessaeeesnneeeanseeeanes 17
5.3.3 Pairwise AHGNMENt SCOMNQc.uieiiiiieiiieeeiieeeciee e see e stee e re e sree e siae e sae e e srae e 18
5.3.4 Substitution Matrices and Gap Penalties............ccccocvvreiiieeiiiie e 18
5.3.5 Scoring Pairwise Op-code Sequence AlIgNMeNtccoeeviiveiiineciiee e 22
EXPERIMENTS AND RESULTS ...ttt 22
6.1 SIMILARITY INDEX .uttiiutieitiieiieastee sttt estteastesssteesseeasteeasteessee e beeasteeasbeesbeeanbeeasbeenseeesreennnes 22
B.1.1 BASE VITUS ..eeeeiieieiie ettt ettt sttt ettt et e et e s e et et e e be e b 22
6.1.2 MOFPNEA VITUScciiiie ettt et e et et e e e ente e e naae e 26
6.1.3 Similarity Among Same Family VIrUSES...........cccvvieiiieeiiiieiiie e 28
6.1.4 Morphed Virus Detection using a Default Window Size.............cccceevvieiiie e, 29
6.1.5 Morphed Virus Detection by Varying Window Size.............cccoveeviiveiiee v, 31
T = o T B 1153 1 N o =SSP PURTR 37
6.3 PAIRWISE SEQUENCE ALIGNMENTiiitiiiteeittiestieaieeateessseessesasesasseessessssessssessseesssessnnes 40

6.3.1 Base Virus and Non-Virus Op-code Sequence AGNMENTcccocvervienieiiiennnnn, 40

6.3.2 Morphed Virus and Non Virus Op-code Sequence Alignment..........c.cccevvveeiiernnene 41
CONCLUSIONt a e e e e e s s eaa e e e e e s s e tbbaeeeeeeeaaans 45
FUTURE WORK oottt e e e e et a e e e e e e s st aaeeeeeeaaan 46
REFERENGCES ...t e e e s e e e e e e e e s s aeaeaeeaaan 47

vii

LIST OF FIGURES

Figure 1 Pseudo Code of Virus and Infect Module [8]..........cooveiiiiiiiiiiii e 3
Figure 2 Polymorphic Virus Generations [18]cocieiiiiiiiiiieiieiiiesie e 5
Figure 3 Metamorphic Virus Generations [18]cccueiiiiiiiiiiieiie et 6
Figure 4 Two different generations of RegSWap [9]ccvviiiiiiiiiiiiie e 7
Figure 5 Dead Code Insertion in EVOl Virus [14].......c.ooiiiiiiiieieiieesie e 8
Figure 6 SUDrouting TranSPOSITION.ciuiiiiieiie ittt 9
Figure 7 Similarity between two ASSembBlY Programs..........ccccovvoiieiiieieeeiieeee e 12
Figure 8 Pseudo code for Levenshtein Distance [23]cooveiiiiiieiiieiiiesee e 14
Figure 9 Edit Distance between String S1 and S2coovviiiiiiiiiiie e 15
Figure 10 Op-code to Symbol Lookup Mapping [26]ccoouvereeiieeiiieiieeiie e 17
Figure 11 Alignment of two Op-code Sequences from NGVCK Virus [26]cccccveevivvreiinnnnn, 18
Figure 12 The Table for AGGTTGC and AGGTC [28]uvveiieieiiiieiiiee e see e see e 19
Figure 13 Substitution Matrix for Op-codes with Values for Relative Scores...........c.cccccvvevvnnnn 19
Figure 14 Similarity Scores between Normal Files and between Virus and Normal files............ 24
Figure 15 Graph of File Size and different Percentage of Junk Code Insertion..............ccccccveee. 28
Figure 16 Similarity Graph of Scores for Base Viruses, and Morphed Viruses............cccceeeeveeen. 29
Figure 17 Similarity Graph for Morphed Viruses and Normal Files............cc.cccooveeviveiiiiiciinnnnn, 30
Figure 18 Similarity Graph of Scores for different Window Size..........ccccocoveiviie e, 34
Figure 19 Graph of Error Rate for different Window Sizecccooveiiiieiiiic e, 37
Figure 20 Similarity Graph for Morphed Viruses and Normal Files............cc.cccooveeviviiiiieciinnenn, 38
Figure 21 Graph of Error Rates for Various Morphed Virus COpi€s.........cccoveevvveeiiiveeiiieeiinnenn, 40
Figure 22 Alignment Scores for Non-Virus and Virus Op-code SEqUENCES..........cccvvveevvreerrnnnn 41

Figure 23 Alignment Scores for Non-Virus, and Various Morphed Virus Op-code Sequences...43
viii

Figure 24 Graph of Error Rates for Various Morphed Virus Copies.....................

Figure 25 Graph of Error Rates produced by different Similarity-Based Methods

LIST OF TABLES

Table 1 W32.MetaPhor Instruction SubStitution [15].........cccooiiiiiiiiiiiieieee e 8
Table 2 File Op-COUE SEUUENCESooiiiiiiieiieeiie sttt et 11
Table 3 Op-code to SYMBOI CONVEISIONooiuiiiiieiiieeie et 16
Table 4 Similarity Scores between Virus and Normal Files, and between Normal Files. 24
Table 5 Similarity Graphs for Two Chosen Virus Pair and One Normal File Pair 26
Table 6 Similarity Graphs between the Morphed Virus and the Normal File...............cccccovene. 27
Table 7 Error Rate for Morphed Viruses having Window Size of 5cccoooeiiiiiiiiiiiicci, 31
Table 8 Similarity Scores between Normal Files for different Window Size..............ccccoevveenne. 32
Table 9 Similarity Score of Files having different Window Size..........c.ccoociviiiiiniiiiciccn 36
Table 10 Similarity Scores for Various Programs using Edit Distance Technique...................... 39
Table 11 Sequence Alignment Scores between Various Programscccceevvvveeiiveeiiveeesinneenn, 41

1. INTRODUCTION
A computer virus is a program that, when executed, replicates itself without the user’s

permission or knowledge [13]. A virus spreads its infection by attaching itself to other
executable code. The infected program, when launched, can then replicate itself to infect other
executables and change their behavior [8]. Note that a virus relies in some way on other
executable code to spread its infection.

A virus might perform malicious activities such as corrupting the file system by infecting batch
files, macros, shell script, system sectors, companion and binary executable. Modern viruses also
called worms take advantage of the Internet to propagate over the network and spread their

infection globally.

Virus construction Kits are available, which makes virus creation extremely simple [19].
Consequently, users who have minimal knowledge can create potential viruses. There are several
antivirus programs available that can be used to detect malware [16]. The most commonly used
antivirus detection technique is signature detection, which consists of searching the content of
the files in file for “signatures” stored in antivirus database. A signature consists of a string of
bits found in a particular virus. Another detection approach is code emulation, where code is
executed in a virtual environment and its actions are recorded in log file. Based on logged action,

the antivirus determines whether the program is a virus or not [16].

To evade signature-based detection, virus writers sometimes use code obfuscation techniques
which alter the structure of the code. The techniques used to obfuscate code include reordering
assembly instructions, dead code insertion, and equivalent instruction substitution [3]. The result
is a morphed virus that has the same functionality as the original. However, if the morphing is
sufficient, no common signature will exist. These metamorphic viruses generate different copies

of it using code morphing techniques.

To contend with metamorphic viruses, a detection tool based on hidden Markov models (HMMs)
was developed [2]. This virus detection tool is initially trained on metamorphic variants
belonging to the same family. Then the trained model can be used to detect new metamorphic
variants from the same family. This technique was successful at detecting all hacker-generated

metamorphic viruses tested [2]. Several of the metamorphic viruses studied in [2] were not

1

detected by commercial virus scanners. Subsequent work has shown that it is possible to produce
a metamorphic generator that can evade signature detection and HMM-based detection [3].

The goal of the research presented here is to test similarity-based approaches to see if we can
detect the metamorphic viruses in [3]. Similarity index techniques classify a program as belong
to virus family provided that it is sufficiently similar to a given member of the family.

This paper is organized as follows. Section 2 contains background information on computer
viruses. In Section 3, we discuss antivirus techniques. Then in Section 4, we detail various code
obfuscation techniques that can be used to generate highly morphed viruses. Section 5 presents
the design and implementation of our several similarity-based techniques. Section 6 covers
experimental results obtained from our similarity-based method experiments involving
metamorphic viruses. Section 7 presents our conclusions. Finally, Section 8 presents possible

future work.

2. COMPUTER VIRUS
Computer virus is self-replicating program that performs malicious activities by infecting other

host files. The host files, when executed, can infect other files in turn. For example, the file
infector virus, which embeds itself in the code of other host programs. The infected file can be
any executable application. On execution of the infected program, virus loads itself into the
computer’s memory and continues to run even after the host files shut down its execution.
“Before the initiation of the internet, file infector viruses accounted for probably 85% of all virus

infections [11].”

A typical virus comprises of three modules [8] which are infect, trigger and payload. The method
infect defines the process of spreading viruses by changing the host to contain a copy of the virus
code. Trigger is a test condition, which decides to load payload or not. Payload defines the

damage by the virus. Figure 2 shows the pseudo code which will infect the target.

def virus() :
infect ()
if trigger () is true then
payload ()

def infect() :
repeat k times:
target = select target()
if no target then
return
infect code (target)

Figure 1 Pseudo Code of Virus and Infect Module [8]

3. VIRUS PREVENTION TECHNIQUES
This section outlines some of the most commonly used techniques to detect computer viruses.

3.1 Signature Detection
Signature detection technique is widely used to detect viruses. Signature is a pattern of bits found

in a virus [1]. These string of bits, which are found in a virus file are stored in the antivirus
databases. The virus scanner searches the entire file system for known signatures. If the known
signature is found then the file is marked as infected. For example, executable file infected by

“W32.Sample.A” virus comprises of the following pattern of bits as signature [12].

Virus Name : W32.5ample.A

Byte Signature: 0A 8E 9182 86 4C D2

The virus scanner searches the entire file system for this signature and if found, it declares the

file to be the Beast virus.

Some virus scanners support wildcard search strings, such as “??02 34C9 8CD1 429C” where ‘?’
indicates the wildcard. These wildcard strings permit skipped bytes and regular expressions,

which also helps in detecting encrypted viruses in some cases [17].

3.2 Heuristic Analysis

Heuristic analysis is a method used by the antivirus software’s to detect new or unknown
computer viruses. There are two types of heuristic scanning techniques. The difference between
the two approaches is whether the heuristic scanner makes use of CPU emulation to scan for
virus like behavior or not. A heuristic scanner has two phases of operation when scanning files
for viruses. In the first phase of the operation, the scanner observes the behavior of the program
and looks for a specific area in the file where the virus would attach itself. In the second phase, it
determines the program logic which can be executed by computer instructions in the specific
areas identified in the first phase [10]. The program is flagged as a virus, if it contains a certain

percentage of the computer instructions similar to the viral instructions.

The Heuristic analysis results in many false positives as it mostly operates on the basis of past
experience [20]. This might not detect new viruses that contain code different from a previously
known virus program. The heuristic scanner creates many false positives which can lose users’

trust and interest.

4 VIRUS EVOLUTION
The following techniques are different strategies used by virus writers to make their viruses more
difficult to detect.

4.1 Encrypted Viruses
Encryption is the simplest way to conceal a virus from the antivirus program. The encrypted

virus contains an encrypted body and a decryptor module. Most of the antivirus programs
attempt to find the virus by looking for a specific string of bits in a program. To avoid detection,
viruses encrypt the body using the encryption key to conceal the pattern of code. Different
encryption key generates a different encrypted virus body. The logic of encryption is kept

simple, such as XOR, the key for encrypting the virus body [3]. The encrypted virus body is

4

different in all infections, but the decryptor module is similar in all infected copies. The antivirus
program can detect the decryptor by its code pattern even if it cannot decrypt the virus body.

4.2 Polymorphic Viruses
Polymorphic viruses are one of the more complex techniques implemented by virus coders to

overcome the disadvantage of the encrypted viruses [19]. To make it more effective than the
encrypted viruses, polymorphic viruses have different methods of decryption by mutating the
decryptor logic. More advanced versions of the polymorphic virus substitutes the mutually
independent instructions, such as moving “0” to B or adding “0” to A, resulting in inexact
values. This evades the antivirus program looking for a specific code of pattern in the virus [16].
To detect polymorphic viruses, virus scanners based on signature detection method have to
search different string of bits for each likely decryption methods.

Anti-virus software even uses code emulation to detect the polymorphic virus. The code
emulator lets the virus execute and observe its behavior. It emulates the decryption process and

detects the decrypted virus body.

Yy 000
N 7777

. N\ .
AN Y
My 0
0

Figure 2 Polymorphic Virus Generations [18]
5

4.3 Metamorphic Viruses
Virus writers have developed metamorphic viruses which do not carry any decryptor or constant

virus body like polymorphic viruses. A metamorphic virus changes its code at each infection by
using various code obfuscation techniques. Code obfuscation techniques are performed on both
the data section and the control flow of an assembly program [15]. Control flow obfuscation
technique involves unconditional jump instructions and instruction reordering. Data flow
obfuscation is achieved by transposition, junk code insertion, equivalent instruction substitution,
register renaming, and subroutine permutation. This makes it more resistant to code emulation
detection technique. Unlike polymorphic viruses, encryption is not used in metamorphic viruses.
The virus body has different structures with same functional behavior. Figure 3 shows a
metamorphic virus with different body structures.

GENERATIONS CF & COMPLEN
METAMORFPHIC VIRUS

« ()

.. S

R
N G,
s

A

L
s

i
R
.

Figure 3 Metamorphic Virus Generations [18]

4.3.1 Register Swap (Register Usage Exchange)
Register swapping is one of the simplest metamorphic techniques. This technique changes

register operands in the virus body with different equivalent registers. Instructions remains

6

constant for all virus generation, only register changes. For example, instruction “mov edi,
0004h” can be substituted with “mov ebx, 0004h.” The W95/RegSwap virus [7] is an example of
metamorphic virus that uses the register swap technique. Figure 4 shows a sample code snippet
from RegSwap, which follows register swapping technique. Wildcard string can usually detect
such metamorphic viruses [17].

a.)

SA pop edx

EF04000000 mov edi,0004h

8BFS mov esi,ebp

ES0C000000 mov eax,000Ch

81CZ868000000 add edx,0088n

8B1A mov ebx, [edx)

895C56186110000 mov [esi+eax*4+00001118] ,ebx
b.)

58 pop eax

BEE04000000 mov ebx,0004h

8BD5S mov edx,ebp

EFOC000000 mov edi,000Ch

81C0O88000000 add eax,0088h

8B20 mov esi, [eax]

89B4BA18110000 mov [e#dx+edi*4+00001118] ,esi

Figure 4 Two Different Generations of RegSwap [9]

4.3.2 Junk Instruction Insertion
Junk code insertion is an effective technique employed by metamorphic viruses to change the

appearance of the virus body. Junk instructions do not have an effect on the program outcome
and it may not even execute [13]. Examples of do-nothing instructions are “mov edx, edx”, “add
R1, 07, “sub R1, 0” or “nop.”

Dead code insertion can be done as a single instruction or a block of instructions between the
core instructions. Figure 5 shows the example of the Evol virus which implemented the junk

code insertion technigue by adding a block of dead code.

CTOB80F0O0006E mov [esi], 5600000Fh
CT48048BEC5151 mov [esi+0004], 5151ECSEh

BFOF00055 mov edi, 5500000Fh

893E mov [esi], edi

5F pop edi ; garbage
52 push edx ; garbage
B640 mov dh, 40 ; garbage
BASBEC5151 mov edx, 5151EC8Bh

53 push ebx ; garbage
8BDA mov ebx, edx

895E04 mov [esi+00043}, ebx

Figure 5 Dead Code Insertion in Evol Virus [14]

4.3.3 Equivalent Instruction Substitution

Equivalent instruction substitution is another useful technique used to substitute an instruction or
a block of instructions with an equivalent instruction or an equivalent block of instructions. For
example, “push edx,” “pop eax” can be substituted by “add eax,1” followed by “mov eax,edx.”
Table 1 shows the W32/MetaPhor virus [15] implementing instruction substitution. The “mov
reg,imm” operation is equivalent to “mov mem,reg” followed by “op mem,reg2” and “mov

reg,mem.”

|Singlc Inﬁtruct.ii_m|Inh‘tru{:t.iu11 block

X0R Reg,Reg MOV Reg,O
PUSH Lmm
HOV Reg,I
6 Ipgp Reg
MOV Mem,Reg
OFP Reg,Reg2 0P Mem,Reg2
MOV Reg,Mem

Table 1 W32.MetaPhor Instruction Substitution [15]

4.3.4 Instruction Transposition

Transposition is a method to change the order of execution of the instructions. Instruction
permutation between the instructions does not affect the program outcome and it can be applied
only if there is no mutual dependency between the instructions. Consider the following
instruction set:

(oplrl, r2)
(op2r3, r4) // r1 and/or r3 register are to be modified

8

The instructions can be reordered only if following conditions are satisfied:

i) rlis notequal to r4,
i) r2is not equal to r3,
iii) rlis not equal to r3,

For example, instructions “mov edx,eax” and “add ecx,3” can be swapped as they satisfy the

transpose criteria.

movV edx,eax _ add ecx,3
add ecx,3 mov edx,eax

4.3.5 Subroutine Transposition

Subroutine transposition is an effective technique that changes the appearance of a virus by
reordering the subroutines. There can be n! different generation of subroutines for n different
subroutines. The W32/Ghost virus [15] implements the subroutine transposition technique. This
virus contains 10 subroutines generating 10! distinct copies. Detection of such virus can be

accomplished by the string driven pattern detection technique.

EF —f 1 p

Figure 6 Subroutine Transposition

5 SIMILARITY-BASED TECHNIQUES
To evade the signature based detection and HMM-based detection, the metamorphic generator

produces highly morphed copies of itself [3]. Each generation of viruses is different in structure.
We consider different similarity-based approaches to see if we can detect the highly morphed
viruses [3]. The similarity-based methods measure the similarity between the dissimilar virus
copies. It classifies a program as belonging to a virus family or non-virus family based on the
similarity results obtained by comparisons between several virus and non-virus programs;
between virus programs; and between non-virus programs. We first considered a similarity index
technique that was previously studied [4]. We then considered new similarity techniques based
on edit distance and pairwise sequence alignment methods.

5.1 Similarity Index Test Method
To measure the similarity between the virus copies, two assembly files are compared based on

the op-code sequence presented in them. The following steps are followed to compute the
similarity between two files and are graphically illustrated in Figure 7.

1. Given two assembly files, filel.asm and file2.asm, we extract the sequence of op-codes
from both the files, excluding labels, comments, blank lines and other directives. Let’s
call these resulting op-code sequences F1 and F2 for filel.asm and file2.asm,
respectively. Let m and n represent the number of op-codes in F1 and F2, respectively. A
number is assigned to each of the op-code in the resulting op-code sequence: 1 for the

first op-code, 2 for the second, and so on.

2. Op-code sequence is divided into subsequences of three consecutive op-codes as shown
in Figure 8. We compare the op-code sequences, F1 and F2, considering all the
subsequences of three consecutive op-codes from each sequence. We considered a match,
if three op-codes are the same in any order. For example F1 is (add, call, test, sub, mov)
and F2 is (mov, add, call, sub, test). The sequence (call, test, sub) in F1 matches with

(call, sub, test) of F2. The process is repeated for all the op-codes in F1 and F2.

For example:

Opcode | Op-code sequence

10

Index F1 F2

0 add mov
1 call add
2 test call
3 sub sub
4 mov test

Table 2 File Op-code Sequences

3. Asshown in Figure 7, m and n represents total number of op-code in F1 and F2
respectively. To find the total number of matches in F1, all matches are computed and
added together. The total number of match is divided by m to get the similarity score of
F1. Similarly, similarity score for F2 is computed.

Similarity score for F1: S1= (total number of matches in F1) / m

Similarity score for F2: S2= (total number of matches in F2) / n
4. The similarity score between the files, filel.asm and file2.asm is obtained by taking the

average of F1 and F2.
Total Similarity Score: (S1+S2)/2

11

Assembly programs — Opcode sequences —» Graph of matches

Program X

Program Y

W o= O

m-1 | retn

L = O

n-1]mp|

call

pop

mov

sub

push

mov

sub

and

(matching 3 opcodes)

Program ¥ 3

(=]

T,

n-1

Program X

3

Program Y

%

’

[==)

Pragram X

n-1

— Graph of real matches — Score
(lines with length > 5)

score =
average
% match

Figure 7 Similarity between Two Assembly Programs

A graph is generated to show the similarity of the assembly files. The following steps are
followed to generate the graph:

1 We mark the match on the graph coordinate(X,Y) where X represents the op-code number of

the first op-code of the three op-code subsequence in file F1, and Y represents the op-code
number of the op-code subsequence in file F2.

2 A graph can plot a grid of dimension n x m to visualize the similarity of both files by
marking all the matched coordinates. The x-axis represents the op-code numbers of file F1
and the y-axis represents the op-code numbers of file F2.

3 The graph in Figure 7 is very populated with the matches. This makes it difficult to
understand the similarity. So to remove noise and to make similarity index technique more
efficient, we determine a window size (i.e. threshold). The similarity score match below the

window size is dropped. In Figure 7, the window size forms the line segments having the
length greater than 5.

12

5.2 Edit Distance

Levenshtein distance (i.e. an edit distance) is an algorithm to measure the number of edit
operations needed to transform one string into another [23]. For given string s1 and s2, the edit
distance is calculated based on the amount of difference between the two sequences of the
strings. The difference in the strings is based on the sequence of characters each string contains.
Allowable edit operation to transform one into another are insertion, deletion and substitution.

For example, the edit distance between “meeting” and “readings” is 4, as the following four edits
are required to change one string into the other, and there is no alternate way to get the same
result in fewer than four edits [23]:

1. meeting — reeting (substitution of ‘r’ for ‘m’)
2. reeting —reating (substitution of ‘a’ for ‘e’)
3. reating — reading (substitution of ‘d’ for ‘t’)

4. reading — readings (insertion of ‘s’ at the end)

5.2.1 Computing Edit Distance
For a given two sequence s1 and s2 and three edit operations, the edit distance for the sequences

is valued to transform sequence sl to sequence s2. We use dynamic programming to find the edit

distance from sl to s2.

If s1 has n characters and s2 has m characters, D(i,j) is the least distance between the first i
characters of s1 and the first j characters of s2. So the edit distance between s1 and s2 is given by
D(n,m) .

D(i,0) =i, as i deletions are required to transform a string with i characters to the empty string
D(0,j) =, as j insertions are required to transform an empty string into a j character string

In general

D(i,j) = min {[D(i-1,j)+1], [D(i,j-1)+1], [D(i-1,j-1)+ (O, if s1[i])=s2[j] or 1, if s1[i] '=s2[j])] }
The psuedocode is pointed directly ahead as shown in Figure 8.

13

int LevenshteinDistance (char =[1l..m], char t[l..n])
{
A4 for all 1 and j, d[i,7j] will heold the Levenshtein distance between
A4 the first 1 characters of 5 and the first j characters of t:
4/ note that d has (m+l)x({n+l) values
declare int d[0..m, 0..n]

for i from 0 to m

dl[i, 0] := i // the distance of any first string to an empty second string
for j from 0 to n

d[0, j] := 3 F/F the distance of any second string to an empty first string

for j from 1 to n

{
for i from 1 to m
{
if =[i] = t[]j] then
dfi, j] == d[i-1, j-1] /4 no operaticn reguired
else
dfi, j] := minimum
|
d[i-1, j1 + 1, // a deleticon
d[i, j-11 + 1, // an insertion
d[i-1, j-11 + 1 // a substitution
)
}
}

retuorn dm,n]

}

Figure 8 Pseudo code for Levenshtein Distance [23]

We can draw an (n+1)*(m+1) matrix, following the pseudocode by filling it, top to bottom, left
to right. The initial row and column can be filled as mentioned above, proceeding row by row to
fill the remaning entries in the matrix. The matrix shown in Figure 9, gives the edit distance
between MEETING and READINGS. The total entries in the matrix is O(mn) and each

computation takes O(1) constant time. The total running time is O(mn).

14

Ll Jmfieflellefltn]lo]
L Jodrfizfslafse]l7]
KN KN Y 2 EY kA
[el2]2][1][2][2][4][5][e]
lal2s]2]2]a]4]5]6]
HEEHBEHERR D
Lils)s]alallaflaa]s]
[nlcle]s]sls][4]z]4]
ol 7)7]elelels4]z2]
Lsllelefizlizll7[e]s]l4]

meeting-

I 11
readings
d(sl,s2)=4

Figure 9 Edit Distance between String s1 and s2

5.2.2 Edit Distance for Op-code Sequences

appear in the Table 3.

To find similarity between two virus files, all the op-codes from each assembly file were
extracted and the comparison between the op-codes present in both the virus files were done. The
edit distance technique deals with the sequence of the characters and finds the edit score. To use
the edit distance technique for finding the similarity between virus copies, we assigned unique

symbols to each op-code. For scoring edit distance, we have only considered the op-codes that

xchg a lea %
jmp b popad w
mov c pushad X
adc d pop y
add e push z
and f jnz A
cmp g jz B
sbb h nop C
sub i rep D
Xor j retn E
div Kk ret F

15

mul | movzx 1
neg m movsd 2
not n movsb 3
shl 0 stosb 4
shr p stosd 5
test q Lodsb 6
inc r Lodsd 7
call S invoke 8
dec t stdcall 9
or u

Table 3 Op-code to Symbol Conversion

The following steps are followed to compute the similarity between two files:

1. Given two assembly files, filel.asm and file2.asm, op-code sequence are extracted from
both the files as described in Section 5.1. Let’s give names to the resulting op-code

sequence from filel.asm and file2.asm as F1 and F2.

2. Replace each op-code with their respective symbol as shown in Table 3. As a result, the

sequence of symbols F1 and F2 is formed from sequence of op-codes F1 and F2.

3. The above steps allow the edit distance technique to calculate the number of edit
operations required to convert the sequence of symbols from F1 to F2. The length, x and
y is number of symbols in F1 and F2 respectively. ed(x,y) is the edit distance score for F1
and F2.

4. Similarity between two programs of length x and y respectively is:

[1-ed(X,y)/ max(x, y)]

5.3 Pairwise Sequence Alignment Method
The sequence alignment is a method which arranges different sequences of DNA, or protein to

determine the region of similarity due to structural, or functional relationships between the

16

sequences. Aligned sequences of nucleotide or amino acid are represented as rows in matrix, and

symbols as individual columns [25].

5.3.2 Op-code Conversion
A disassembled virus program is sequence of op-codes. Previous studies in [26] have showed

that instead of considering all the instructions, only 36 high level op-code instructions are taken
into account while aligning pairs of op-code sequences. The most frequently used op-codes will
be considered and each of them is assigned with a single character as a symbol. The symbols are
the letters from the English alphabet and single numerical digits. The rest of the op-codes are
assigned with an asterisk ‘*’ [26].

By this approach, less number of unique op-codes are aligned in an op-code sequence. The top
14 op-codes account for approximately 90% of all the instructions used in any typical program
[27]. In this research, the 36 most frequently used op-codes accounted for approximately 99.3%

of all op-codes found in sequences [26].

| Op-Code Rep B Op-Code Rep B Op-Code Rep Op-Code | Rep |
— - b Q 7 -

xchg Bound
(B[u[u]u} | or R ja 8 is 2
mov A shi S sbb 9 Ip *
add B clc T sar * fild *
push C test U stosd * fid *
pop D stc \' rcr ¥ scasb *
call E not w rep * aad *
sub F adc X lodsw " enter *
cmp G rcl Y stosw * cmc *
[Fd H cld Z lodsd * ns *
retn | neg 0 stosb * jno *
jnz J ror 1 lodsb * jecxz *
jmp K shr 2 loop * hit *
dec L rol 3 in * icebp *
Xor M imul 4 retf * e *
inc N div 5 sid * fnstenv *
lea 0 jnb (3] jnp * out *
and P

Figure 10 Op-code to Symbol Lookup Mapping [26]

17

The representation of unique op-codes and their symbols is shown in Figure 10. The op-codes
are shown by the frequency, where op-code ‘mov’ assigned with symbol ‘A’ is most frequent
and least frequent op-code ‘sbb’ with symbol ‘9’ [26]. The op-codes with the asterisk “*’ symbol

rarely appears.

5.3.3 Pairwise Alignment Scoring
The op-code conversion is done as described in Section 5.3.1. To detect the metamorphic

viruses, a proper alignment approach needs to be defined. For the same pair of sequences, no
alignment is required. In pairwise alignment, sequences are represented as rows in matrix, and
symbols as individual columns. All the symbols in sequence 1 are aligned with the symbols in
sequence 2 to get related symbols aligned in the same column [26]. A special character dash °-’
is inserted into either sequence to achieve the expected result.

In Figure 11, an alignment of two op-code sequences from NGVCK virus is shown. There are
several matched sequences of small lengths from 3 to 10.

(a) Unaligned Sequences:
| AABNBAFCDBAAEAABCEDAEQCDABABBAF4ANEBMETYBAAAAABBCD
| AABBAFCDBAAEADACEDAEQAABCDBAL FABBASBAAAAFBABCCD
(c) Alignment With Gaps:

| AAENBAFCDBAAEA-ABCEDAEQCD-ABAEBA-FANEBMETY —- BAAAA - -ABE-CD
| AAE-BAFCDBAAEADA-CEDAEQ--AABCDBAL F4-BB----ASEAAAAFBAB-CCD

Figure 11 Alignment of two Op-code Sequences from NGVCK Virus [26]

5.3.4 Substitution Matrices and Gap Penalties
The decision of scoring the alignment is very important. The score indicates the similarity of the

sequences. In the substitution matrices, the scoring matrix for sequence having 50 symbols will
be 50*50 in size. The alignment function rewards matches and penalizes mismatches and spaces
[24].

18

a fi-1j1) fijnyl 0 b A GG TTG C
A1 0 -1 -2-3 4 -5

AN
s(ri,)\ G O R1 0 -1 -2 -3
G -1 1 3\2 1 0 -1
f(i—T,j)T»f(i,j) T-2 0 2 4\3 2 1
C-3-1 1 3 4«32

A G GTTGC
A GGT- - C

Figure 12 Substitution Matrix for AGGTTGC and AGGTC [28]

As shown in Figure 12, substituting ‘G’ with ‘A’ will be penalized by the alignment function

with score -1, whereas for a match of symbol ‘A’ with ‘A’ will have score of +1.

We need to find a similar scoring model which can be applied to the op-codes. After careful

research for scoring values, the scoring matrix used in this paper is shown in Figure 13 [26].

;|
1 1 -20-20-20 .. -20 -20
1

| 1 -20 -20 -20 .. -20 -20
e -20 -20 2 -1 -1 .. -1 -1
- -20 -20 -1 2 -1 .. -1 -1
o -20 -20 -1 -1 2 .. -1 -1
20 -20 -1 -1 -1 2 -1
20 -20 -1 -1 -1 1 1

Figure 13 Substitution Matrix for Op-codes with Values for Relative Scores

In Figure 13, the high positive score(+2) is given for two exact same symbols, a medium
positive score(+1) for two rare symbols, low negative score for two different symbols(-1), low
positive score(+1) for aligning two “markers” and high negative score(-20) for a marker

matching with non marker.

The gap penalties are defined in two ways:

19

1. Linear gap penalty — The penalty is defined as a product of gap determined by the size of

gap : f(g) = c.g where c represents gap cost and g represents gap size.

2. Affine gap penalty — The initial gap cost is taken for the first gap and the varying cost for
every subsequent gap. f(g) = ¢ + e.(g-1), where c represents the initial gap cost, and e

represents the gap extension cost [26].

In this paper, affine gap penalty values from [26] is taken into consideration. The algorithmn

description shown below is taken from [26][29].

20

Pairwise Alignment Algorithm Specification

Definitions
x = first sequence
y = second sequence
a| = length of sequence a
a; = indicates the ith symbol of sequence a
aj..j=subsequence of @ with indices i to j, where a = ay_j
s(a, b) = score assigned to substituting symbols a with b
g(n) = cost of adding one gap to a sequence with n-1 gaps

F and G = matrix of size [x|+1 = y+1 (indices will be 0 based)
F{i. j) = optimal score for aligning x1__; with y1__;

G{i. i) = mumber of subsequent gaps used to generate F{i. f)

Recursive definition of F and G for i, j =0
Gi. y=Fi 0)=0
GO D=7
A
O, = E gin) (the cost of aligning j gaps)

(Fi—1 j—1y+s(x,.3). (casel)
F{1, j)=maxs F(i -1, /) — g(G{7 -1,). (case 2)
]_F(f'-_f 1) —g(G{E j-1)). (case 3)
if (casel) G{i. /)=0
if (case 2) G{7,) =G({i—1, j)+1
if (case3) G{i. [)=G{i. j—1)+1

Psendo code:

Imtialize the first row in F and G - G(0_j) =7 and F{0_j)= Eg(ﬁ}

syl
Foreachrow i, 1. [x
Initialize Fi(i. 0} =0 and G{i. 0} =0
For each columm j, 1.. |
(i-1.7-1). (i-1_jyand (i j- 1) for F and G are all known

Calculate F{i. j) and &(7. /) using the recursive definition

21

5.3.5 Scoring Pairwise Op-code Sequence Alignment
The following steps were performed to test the similarity between op-code sequences from

NGVCK generated viruses and various normal files [2]:

1. Several base viruses (NGVCK) and non virus files from [2] were taken to test this
technique. Op-codes from each program were extracted and assigned with their
respective symbols as described in Section 5.3.1.

2. The conversion of op-code to symbols was done based on Figure 10. The Scoring
substitution matrix used for aligning the sequences was based on Figure 13. The affine
gap scoring mechanism is used to penalize spaces in the sequences. After several trials,
the gap open cost taken is 10 and gap extension cost is 1.

3. Tests were conducted based on different set of programs. To get the similarity score
between two sequences, the alignment score S is computed as described in Section 5.3.2.
Let X be the resultant length of one of the sequences after being aligned.

4. After that, the similarity between the two sequences was computed using an alignment
score S and the resultant length X of one of the sequences. The similarity score between
the sequences is equal to alignment score divided by the total length of the either of the

sequences i.e. Score = (S / X).

6 EXPERIMENTS AND RESULTS

6.1 Similarity Index
Analyses of different programs are made to determine the results of the similarity score by the

similarity index technique. Comparison is done between 40 randomly selected utility files from

the Cygwin DLL [22] and 40 viruses generated from NGVCK metamorphic engine [2].

Virus executables and random cygwin executables were disassembled using IDA Pro generating
disassembled virus ASM files and disassembled random ASM files. Analyzing the similarity

score of these assembly files is required.

6.1.1 Base Virus
The straightforward way to detect virus file would work as follows. To distinguish whether a file

belongs to the base viruses generated by NGVCK engine [2] or the morphed copies of base
22

viruses generated by the improved metamorphic engine [3], we compute the similarity score
between the virus file and the normal file. If the score falls below the “threshold value” then the
program is classified as a family virus (i.e. belonging to the NGVCK virus family). A threshold
value is the least similar score determined between normal files. We compare similarity scores
between normal files, between normal and base virus files, and between normal and morphed
copies of base virus with different percentages of subroutine and dead code insertion. If the
similarity of an unknown file with non-virus file is lower than the threshold value, then the
unknown file is classified as family virus. If the similarity score of any file with non-virus file is

greater than the threshold value, then it belongs to the non-virus family.

We compared each of the normal files with all the other normal files; and in the same way each
of the virus files with all other virus files. The similarity score was computed for each pair of
virus variants and normal files using the similarity method described above in Section 5.1. The
similarity score of all comparisons is listed in Table A-1 and Table A-2 in Appendix A. Figure
14 shows the similarity score of 120 pair-wise comparisons between 16 normal files and the 120
pair wise comparisons among 16 Normal files and 16 NGVCK base virus files. Apparently, the
similarities between normal files are higher than those between normal files and virus files. At no
point, does the similarity score between the normal files falls in region of similarity score of
normal and virus files. Therefore, any file, when compared to a normal file, which has a
similarity score less than 3%, belongs to a virus family; and furthermore identifies that the

program belongs to normal file family or virus family.

23

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Similarity Score

" : !!lﬂ! » uu
2 ? Wohrpin AN el oA M

0.1 0 20 40 60 80 100

Comparion Number

==Normal vs Normal

=t=\/irus vs Normal

Figure 14 Similarity Scores between Normal Files and between Virus and Normal files.

The minimum, maximum and average similarity scores from Figure 14 are summarized in Table

4. The minimum similarity score between normal file is taken as a threshold value, which is

13.6%. The viruses generated by NGVCK engine in [2] have the maximum similarity score of

5% with non-virus files, which is less then the threshold value of 13.06%. As discussed above,

using the threshold value of 13.06%, all the base viruses(NGVCK) are completely detected using

similarity index technique with no false positives and no false negatives.

Base Virus vs. Normal vs. Normal
Normal

Min 0 0.1306

Max 0.05 0.8936

Average 0.02 0.3865

Table 4 Similarity Scores between Virus and Normal Files, and between Normal Files.

Table 5 shows the similarity graphs of NGV CK virus pair, other family viruses and one normal

file pair. To show how different the virus pairs are, the first column represents the type of virus

24

and its similarity score. The second column shows the graph representing the similarity scores
for all the matches as described in Section 5.1. The third column represents the graph after
removing noise by considering a match only when the line length is greater then 5. NGVCK
virus pairs are denoted by IDAN. Comparing IDAN1 with IDAN2 gives a similarity score of
13.9%.

IDAV1 is the other family virus file than NGVCK which has a similarity score of 67.7% when
compared to IDAV2. The IDAR denotes the normal file having a similarity score of 39.2%.
Clearly, NGVCK has less similarity then the other virus pairs and they are dissimilar from the
other viruses. Normal file pairs have more similarity than the NGVCK virus pair but has a lower

similarity than other family virus pair.

All the matches in the IDAV virus pair forms the diagonal line in the graph which indicates that
both the virus variants have identical op-codes at an identical position. This kind of similarity
match represents poor metamorphism. On the other hand, NGV CK virus pair has a better
metamorphism power, as all the similarity matches are scattered in the graph and falls far away

from the diagonal line.

Virus Pair Graph (all matches) Optimized Graph (removing noise by
(Similarity match of length > 5)
score)
450 450
V| RS A T UL A S 400 &
BRI LT eepnaae 00 ‘.
IDAN1_IDAN2 350 ont g T 350
300 4Lt L 300
13.9% - AT .
() 750 | : 250 PP
200 200 :
L 150
150
. 100
100 3 50
50 0 T T T 1
0 0 100 200 300 400 500
0 100 200 300 400

25

IDAV1_IDAV2

(67.7%)

200

180

160 0

140

120

100

80

60

40

20

200
180
160
140
120
100
&0
60
40
20

50 100 150 200

IDAR1_IDAR2

(39.2%)

500
450
400
350
300
250
200
150
100

50

-

L4 L4

50
It .“0&“00 7
0 P T A S

0 50

100 150 200 250 300 350 400 450 500

Table 5 Similarity Graphs for Two Chosen Virus Pair and One Normal File Pair

6.1.2 Morphed Virus
We repeated our test for morphed viruses generated with different engine settings in [3] (i.e.,

morphed copies of viruses were generated by varying the number of subroutines and junk codes
copied from the normal file to the base NGVCK generated virus file). Several morphed virus
comparisons were made with the normal file to find the threshold at which the similarity index
classified the morphed virus file from the normal file. We started with insertion of 5% junk code,
which included the subroutine insertion and junk instruction insertions. With an increase in the
percentage of dead code insertion from normal file to virus file, the similarity score increases as

we expected. This also results in increase in size of the morphed virus file. The 5% junk code

26

insertion was followed by 10%, 15%, 25%, and 30% junk code insertion from normal file to the

virus file. Table 6 shows the similarity between the non-virus files and the morphed virus files

with an increase in the percentage of dead code insertion.

Morphed virus file with 5% of junk code
insertion (Window size 5)

Morphed virus file with 30% of junk code
insertion (Window size 5)

1200

800

L]

7

* *
¢ *

L 4
4 L]
NI « Y. SRR

400

0 500 1000

« IDAN vs IDAR

1500

1200
1000 .
‘00
800 P
* *
600
Py *
400 0’ * ¢ / « °
0", *
200 e o .
R IR YRRE PO LIS
0 500 1000 1500
+ IDAN vs IDAR

Table 6 Similarity Graphs between the Morphed Virus and the Normal File

Large amount of junk code insertion, results in a greater similarity score. That in turn, destroys

the feature of the IDAN virus files as it has less similarity than the other virus pairs (like IDAV)

as shown in Table 5. Since the junk code blocks copied from a normal file were of different

sizes, we will use the increase in file size percentages as y-axis for our graph. Figure 15 shows an

increase in percentage of file size with an increase in the percentage of dead code insertions from

normal file to virus file.

27

N101 (KB)

40

30

20

10

Increase in File Size{KB) %

0 10 20 30

Junk Insertion %

Figure 15 Graph of File Size and different Percentage of Junk Code Insertion

6.1.3 Similarity Among Same Family Viruses

We performed several tests to score the similarities between base virus pairs, and between
morphed virus pairs. NGVCK (Next Generation Virus Creation Kit) base viruses were compared
with each other using the similarity index. Initially, base viruses were compared with each other,
followed by comparisons between morphed viruses with different percentages of dead code
insertion. The results were gathered and all the matches were plotted on graph. The base viruses
were about 10.86% similar among themselves. These viruses gave a lower similarity when
compared with normal files (0 to 3%). The morphed viruses with 5% of junk code insertion have
about 17% of similarity among themselves. The similarity score increases to 40% with 15% of

junk code insertion. All the similarity score matches are plotted on graph as shown in Figure 16
and listed in Table B-1 in Appendix B.

28

0.6
0.5
@ 0.4
§ Morhped Virus vs Morphed
Z 03 Virus 15%
.'—é * + Morhped Virus vs Morphed
& 02 et Virus 5%
: A . * .
. ¢ 0"’ .3 2 ‘e 3* + Virus vs Virus
0.1 [*ee®®* Ta s TeTe e e, 0,
. * - - . ‘0 - _*
- . * *
0
0 10 20 30
Number of comparison

Figure 16 Similarity Graph of Scores for Base Viruses, and Morphed Viruses

6.1.4 Morphed Virus Detection using a Default Window Size
We carried out several similarity tests for a default window size of 5 (i.e. only matches having

line of length greater than 5 were consider as described in Section 5.1) for morphed viruses
generated by metamorphic engine in [3]. The amount of dead code insertion was varied every
time and similarity score results were plotted on graph. Figure 17 shows the similarity between
various morphed virus files (i.e., formed by different percentage of dead code insertion from

normal file) and normal files, between normal files, and between base viruses and normal files.

The increase in percentage of dead code blocks and subroutine blocks to a virus file from normal
files results in a higher similarity between generated morphed files by metamorphic engine in [3]
and normal files. We inserted junk code of various percentages starting from 5%, 15%, 25%, and
30% into the virus file, which resulted with the generated morphed virus file looking more

similar to normal file.

29

Similarity score with window size of 5

70%
60%
50%
40%
30%
20%
10%

0%

Ml Base Virus vs Normal File B Morphed Virus 5% vs Normal File

B Morphed Virus 15%vs Normal File B Morphed Virus 25%vs Normal File
B Morphed Virus 30% vs Normal File @ Normalvs Normal
B Threshold

Figure 17 Similarity Graph for Morphed Viruses and Normal Files

Using the approach as discussed in Section 6.1.1, we determined the threshold value as 24.39%
from the results obtained from Figure 17. A threshold is the minimum similarity score for
various pair wise comparisons between normal files. The window size of 5 was only able to
detect the morphed viruses with 5% of junk code insertion. The morphed viruses with 15%, and
25% remain undetected as the similarity between normal and morphed viruses with 15% and
25% were higher than virus threshold value (i.e. 24.39%). The undetected viruses are referred as
false positives, as some higher similarity scores of morphed viruses crossed the threshold value.
Error rates produced while detecting morphed viruses is shown in Table 7. The similarity score

for different file comparisons with various window sizes is listed in Table C-1 to Table C-3 in
Appendix C.

Window Size =5

Morphed virus with X% dead

Error rate %

30

code and subroutine insertion

Base Virus 0%
Morphed Virus 5% 0%
Morphed Virus 15% 13.33%
Morphed Virus 25% 66.67%
Morphed Virus 30% 80%

Table 7 Error Rate for Morphed Viruses having Window Size of 5

6.1.5 Morphed Virus Detection by Varying Window size

Window is the size limit where all the matches below that size is not considered as a match for

computing the similarity score between the files. We assumed window size to be 5 until now.

Variation in window size results in different similarity scores. We varied the window size to 10,

15, 20, 25, and 30 calculated the score. In Table 8, a different window is applied while

computing the similarity between IDAR1 and IDAR2 normal files. We started with window size

of 5 and went up to 30. It showed that the similarity score decreases with the increase in the

window size.
Window Size =5 Window Size = 10
Similarity Score = 54.16% Similarity Score = 44.44%

1800 1800

‘0
1600 /:’ 1600 /.I
1400 el 1400 . L.
*
1200 d . 1200
* * * “» -
1000 .
PR 1000

800 - 800 s

600 ; - 600

400 = ¢

e * 2 °* o 90 +® . 400 -|-e= r
200 . . e .o .
., * o T 200 rs
forsse] “ & VDD T 0G0 » * * L4 e,
0 f f f f f 0 o o0 'aveom *e
T T T T T 1
0 200 400 600 800 1000
0 200 400 600 800 1000 1200

Window Size = 15
Similarity Score = 38.53%

Window Size = 20

Similarity Score = 34.71%

31

1800
1600
1400
1200
1000
800
600
400
200

r]
P el aﬂ""
*
s
P
* * *
an o *
g) P L4
@ aw @
T T T T T 1
200 400 600 800 1000 1200

1800
1600
1400
1200
1000
800
600
400
200

”~ “
. *
&
»
s P
e o0 o L4
I' ‘\ " T T 1
200 400 600 800 1000 1200

Table 8 Similarity Scores between Normal Files for different Window Size

Varying window size changes the similarity score between the files. However, this does not help

in determining whether detection of morphed viruses is possible or not. To determine the results

of how the variation in window size helps in detecting the morphed virus, we applied similarity

tests with varying window size between morphed virus and normal files; between normal and

normal files; and between base virus and normal files. We generated graphs, as shown in Figure

18, for the results.

32

60%
50%
40%
30%
20%
10%

0%

Similarity score with window size of 10

W Base Virus vs Normal File

W Morphed Virus 5% vs Normal File
B Morphed Virus 15% vs Normal File B Morphed Virus 25% vs Normal File

W Morphed Virus 30% vs Normal File @ Normal vs Normal
O Threshold

50%
40%
30%
20%
10%

0%

Similarity score with window size of 20

mal

7= Threshold
5.51%

10
11 12 13

14 15
W Base Virus vs Normal File

B Morphed Virus 5% vs Normal File
H Morphed Virus 15%vs Normal File B Morphed Virus 25%vs Normal File

B Morphed Virus 30% vs Normal File B Normalvs Normal
OThreshold

33

Similarity score with window size of 25

40%
5
30%

20%

10%

0%

10
o124,

W Base Virus vs Normal File B Morphed Virus 5% vs Normal File
B Morphed Virus 15%vs Normal File B Morphed Virus 25%vs Normal File

B Morphed Virus 30% vs Normal File B Normal vs Normal
DO Threshold

15

hreshold
12.11%

35%
30%
25%
20%
15%
10%

5%

0%

Similarity score with window size of 30

W Base Virus vs Normal File B Morphed Virus 5% vs Normal File

B Morphed Virus 15% vs Normal File B Morphed Virus 25% vs Normal File

B Morphed Virus 30% vs Normal File @ Normal vs Normal
O Threshold

Figure 18 Similarity Graph of Scores for different Window Size

34

It is possible to distinguish the NGVCK base virus and its morphed copies from normal files

using the similarity index with a proper window size.

To overcome the problem of detecting morphed copies with 15%, 25%, and 30% subroutine and
junk instruction insertions, we varied the window size from 5 to 10, 20, 25 and 30. The increase
in the window size resulted in reducing the false positives. As shown in Figure 18, the graph
with the window size of 10, decreases the similarity score of every computation that we had in
the graph with window size of 5. But still, there were some false positives. The graph with
window size of 20 and 25 does the job of eliminating almost all the false positives. All of the
morphed virus similarity scores, other than the morphed virus with 30% of dead code insertion,
were below the threshold value. 1t completely removed all the false positives for the morphed
viruses up to 25% junk instruction insertion, which were not detected by the similarity method
with the window size of 5 and 10.

The similarity score with a different threshold value of Figure 17 and 19 is summarized in Table
9. The minimum similarity score of normal files represents the threshold value. Keeping window
size of 5 gives a threshold value 24.39%. The only virus whose similarity score falls below the
threshold is the morphed virus with a 5% dead code insertion having a maximum similarity score
of 17.97%, which is less then threshold value (i.e. 24.39%). The other morphed virus copies
greater than 5% junk insertion, as shown in Figure 17, were undetected as their similarity scores

were higher than the threshold value.

We increased the window size and computed the similarity again. With the window size of 20,
we found that the threshold value 15.61% detected all the morphed copies upto 25% junk code
insertion. As shown in Table 9, the maximum similarity score of morphed virus 25% is 15.32%
which is less than the threshold value. As a result, any file whose similarity with a normal file is
less than the threshold value belongs to the virus family. The increase of the window size to 25;

morphed copies up to 25% were completely detected as with the window size of 20.

35

Maximum,minimum, and average similarity score for different threshold values

Comparing normal file to:

Windo | Normal - Morphed 5% - | Morphed 15% - | Morphed 25% - | Morphed 30%

w Size | Min. Max. Max. Similarity | Max. Similarity | - Max.
Similarity Similarity Score Score Similarity
Score Score Score

5 0.2439 0.1797 0.2930 0.3553 0.3929

10 0.1771 0.1165 0.2158 0.2447 0.2501

20 0.1561 0.1026 0.1542 0.1532 0.1628

25 0.1211 0.0485 0.1156 0.1131 0.1281

30 0.0818 0.0613 0.0979 0.1112 0.1173

Table 9 Similarity Score of Files having different Window Size

Increase in window size helps in determining threshold properly, but at one stage it stops
detecting the morphed viruses and results again with some false positives. This is shown in
Figure 19, graph with window size of 30. The threshold value with window size 30 is 8.18% as
shown in Table 9. Although the window size is high, it just detects morphed virus until 5% of
junk instruction insertion. Therefore, too much increase in window size deteriorates the
similarity index method performance and the decision for window size is typical for detecting
morphed viruses.By performing several test cases and their results shown in Table 9, we
concluded an optimal window size to be between 20 to 25 for detecting a morphed virus with up
to 25% of dead code and subroutine insertion. The error rate for various morphed viruses

keeping a different window size is shown in form of graph in Figure 19.

36

Error rate for various morphed viruses keeping different window size

85%
75% s
65% //
cf 55% / —4—Error rate % (Window Size 5)
) 0
g ;1::: / / ——Error rate % (Window Size 10)
[=] (]
5 25% l/// Error rate % (Window Size 20)
15% / Error rate % (Window Size 25)
5%

* . it —f=Error rate % (Window Size 30}
-5%

0% 5% 10% 15% 20% 25% 30% 35%

Junk Insertion %

Figure 19 Graph of Error Rate for different Window Size

6.2 Edit Distance

We started comparing programs from the 40 base viruses (NGVCK), and 40 normal files using
the approach described in Section 5.2.2. We computed the edit distance score between various
normal files; between normal files and base virus files; and between normal files and morphed
viruses which are produced by different percentage of dead code insertion from normal files. The
similarity between files was obtained by using the edit score from the above comparison and
putting it into the formula mentioned in Section 5.2.2. The similarity scores were plotted on the

graph as shown in Figure 20.

37

Edit Distance

0.7

B normal vs virus B Normalvs. Morphed 5% B Normalvs. Morphed 15%

B Normalvs. Morphed 25% B normal vs normal OThreshold

Figure 20 Similarity Graph for Morphed Viruses and Normal Files

In Figure 20, x-axis represents the number of comparisons made between files and y-axis
represents the similarity between those files. It is clear from the graph that similarity score
between normal files is higher than between normal files and base viruses/morphed viruses. The

percentage of minimum, maximum and average similarity scores for various programs is shown

38

in Table 10. The raw similarity scores for the first 40 comparisons between various files in

Figure 20 is listed in Table D-1 in Appendix D.

Base Virus | Morphed 5% | Morphed 15% | Morphed 25% | Normal vs.

vs. Normal | vs. Normal vs. Normal vs. Normal Normal
Min | 0.0535 0.0617 0.0739 0.0748 0.1591
Max | 0.1818 0.1934 0.2024 0.2816 0.7893

Table 10 Similarity Scores for Various Programs using Edit Distance Technique

To determine whether the file belongs to virus family or non-virus family, we kept the minimum
similarity score between normal files as a threshold value (15.91%). The threshold value is

smaller than the maximum similarity score between normal and base virus files; between normal
and viruses morphed with 5% dead code insertion; between normal and morphed virus with 15%

dead code insertion; and between normal and morphed virus with 25% dead code insertion.

The scores obtained using edit distance techniques generated a false positive rate. We defined the
false positive as an error rate. The error rate obtained using the edit distance method for various
base viruses and morphed viruses is shown in form of graph in Figure 21. Figure 21 shows that
the edit distance method detects a base virus with a 1.16% error rate; viruses morphed with 5%,
15% and 25% with 14.84%, 40.31%, and 45.70% error rate. This technique gives a high error

rate with low percentage of morphing.

39

50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

Error rate %

—4—edit distance

0%

5%

10% 15% 20% 25% 30%

Junk Insertion %

Figure 21 Graph of Error Rates for Various Morphed Virus Copies

6.3 Pairwise Sequence Alignment

6.3.1 Base Virus and Non-Virus Op-code Sequence Alignment

The test sets were made up of 20 base viruses (NGVCK) and 20 non-virus files. The number of

alignments possible for 20 base viruses = 190 alignments. Similarly, non-virus files have 190

alignments between them.

In Figure 22, scores between normal op-code sequences; between virus op-code sequences; and
between virus and normal file op-code sequences are plotted on the graph. We classify a program
from the virus family by determining a threshold value. This means that if the score between the

unknown file op-code sequence when aligned with normal file op-code sequence is lower than

the threshold, then that unknown file belongs to the virus family.

40

2.5

1.5

0.5

05—t

0] 50 100 150 200 250

—+=—non-virus vs. non-virus op-code sequence alignment

base virus vs. non-virus op-code sequence alignment

Figure 22 Alignment Scores for Non-Virus and Virus Op-code Sequences

The results displayed in Figure 22, detects virus from normal files with a zero error rate having
0% false positive rate, and 0% false negative rate. Table 11 shows the minimum, maximum and
average score for the various program comparisons displayed in Figure 22. All of the similarity

alignment scores are listed in Table E-1 in Appendix E.

Normal vs. Base Virus vs.
Normal Normal

Min. | -0.3445 -0.7459

Max. | 2.0496 -0.2063

Avg. | 0.2566 -0.5721

Table 11 Sequence Alignment Scores between Various Programs

6.3.2 Morphed Virus and Non Virus Op-code Sequence Alignment
Morphed viruses were generated by inserting dead code instructions and subroutines from

normal file. The sets of 10 morphed virus files were generated using [3] with 30% of junk block

41

insertions from normal files. The morphed file op-code sequence is aligned with normal file op-

code sequence and the scores were computed as described in Section 5.3.4.

The total alignments possible for 10 morphed viruses = 45 alignments. Figure 23 shows the

graph with different similarity scores for various morphed virus and normal file alignments.

42

37 39 44 43 4s

B morphed virus 5% vs. non-virus op-code sequence alignment
B morphed virus 15% vs. non-virus op-code sequence alignment
B morphed virus 25% vs. non-virus op-code sequence alignment
B morphed virus 30% vs. non-virus op-code sequence alignment
W non-virus vs. virus op-code sequence alignment

E non-virus vs. non-virus op-code sequence alignment

O Threshold

Figure 23 Alignment Scores for Non-Virus, and Various Morphed Virus Op-code Sequences

43

The results from Figure 23 indicates that for morphed viruses, the alignment score between
normal files and between normal and morphed virus with 30% dead code insertion are
overlapping a lot. Using the approach to find the threshold described in Section 6.3.1, the
alignment score results in false postive rate greater than 0%. All of the similarity scores plotted
in Figure 23 is listed in Table E-2 in Appendix E.

The results from the Figure 23 show that the threshold -0.17, gives 21% false positive rate. We
defined the false positive as an error rate. These results shows that viruses morphed with 30%
subroutine and dead code insertions are not completely detected using the sequence alignment
technique as it an give error rate of 21%. This technique gives 100% detection for base viruses,
but morphed viruses remain undetected. Some alteration for the sequence alignment algorithm is

required to detect the morphed viruses, which can reduce false positive rate.

The error rate obtained using a pairwise sequence alignment for various base viruses and
morphed viruses is shown in form of graph in Figure 24. This method detects base viruses with a
0% error rate; viruses morphed with 5%, 15%, 25% and 30% with 4%, 8%, 15%, and 21% error

rates respectively. This technique gives a high error rate with high percentage morphing.

25%

20% 4

15%

10% ¥ pairwise sequence
// alignment
5%
0% /

0% 10% 20% 30% 40%

Errorrate %

Junk Insertion %

Figure 24 Graph of Error Rates for Various Morphed Virus Copies

44

7 CONCLUSION

The results from the edit distance and pairwise sequence alignment methods used in this paper
shows that the morphed viruses having random percentages of dead code and subroutine
insertions (i.e., 5%, 15%, 25% and 30%) are still detectable within a certain error rate. The
similarity index method detects the morphed viruses up to 25% of dead code and subroutine
insertion with 0% error rate- unlike edit distance and pairwise alignment method. We analyzed
the results of different similarity-based techniques. Figure 25 shows the error rate produced by
different similarity-based techniques for various morphed viruses having random percentages of
dead code and subroutine insertion from normal files. From Figure 25, we conclude that the
similarity index technique mentioned in this paper gives the best results for the morphed viruses.
The similarity index technique detects all the viruses morphed with different percentages of dead
code and subroutine insertion (i.e., 5%, 15%, and 25%) with 0% error rate by keeping an
optimum window size from 20 to 25. It gives 6%, and 13.33% error rate for 30% morphed

viruses with a window size of 20, and 25 respectively.

60.00%
50.00%
40.00%
R dit di
% 30.00% / —&—edit distance
5] g
.E 20.00% =—ll—pairwise sequence
10.00% alignment
M similarity index(optimal
Q
0.00% K% window size=20)
-10.00%
0% 10% 20% 30% 40%
Junk Insertion %

Figure 25 Graph of Error Rates produced by different Similarity-Based Methods

The edit distance method distinguished the base viruses with an error rate of 1.16%. It gives a

higher error rate while detecting morphed viruses with a different percentage of subroutine and

45

dead code insertions. The pairwise sequence alignment technique does give the results better
than the edit distance. It detects the base viruses with 0% error rate. For morphed virus copies of
5% and 15% it gives a low error rate of 4% and 8%, respectively. This error rate increases with
the increase in morphing viruses with higher percentage of dead code and subroutine insertions.
As shown in previous studies [3], by making viruses closer to normal files, the HMM-based
detector began to fail to detect the morphed viruses with 5% of subroutine and dead code
insertion from normal files. When we compared it with the similarity-index technique for
detecting morphed viruses, similarity index technique detects the morphed virus copies up to
25% of subroutine and dead code insertions.

8 FUTURE WORK

For future work, we are interested in exploring enhancements to the proposed algorithms
presented in this report to improve the accuracy of similarity index technique. Furthermore,
research is required to expand on the findings to decide if the similarity index can be used to
detect more advanced metamorphic viruses with 30% of dead code and subroutine insertions by
creating more intelligent threshold.. The next step for the sequence alignment technique would
be to analyze the viruses and their subroutines to remove the dead code inserted and giving same

scores for exchangeable instructions before computing the virus’ similarity score.

The similarity-index method which gave the best results so far might be more efficient compared
to the other similarity-based techniques used in this paper, if we preprocess all the morphed
viruses by removing dead code and subroutine insertions. We can then analyze the similarity
score for resultant viruses and define some optimum threshold to classify these viruses from

normal files.

46

9

[1]

[2]

[3]

[4]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

M. Stamp, Information Security: Principles and Practice, August 2005.

W. Wong, “Analysis and Detection of Metamorphic Computer Viruses,” Master’s
thesis, San Jose State University, 2006.
<http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf>

Da Lin, “Hunting for Undetectable Metamorphic Viruses,” Master’s thesis, San Jose
State University, 2009.

P. Mishra, “A Taxonomy of Software Uniqueness Transformations,” December 2003.
<http://www.cs.sjsu.edu/faculty/stamp/students/FinalReport.doc>

Orr, The Molecular Virology of Lexotan32: Metamorphism Illustrated, 2007.
<http://www.antilife.org/files/Lexo32.pdf >

J. Aycock, Computer Viruses and Malware, Springer Science Business Media,
2006.

A. Venkatesan, “Code Obfuscation and Metamorphic Virus Detection,” Master’s
thesis, San Jose State University, 2008.

Symantec, “Understanding Heuristics: Symantec’s Bloodhound Technology”
<http://www.symantec.com/avcenter/reference/heuristc.pdf>

“Understanding Computer Viruses,”
<media.wiley.com/product_data/excerpt/77/.../0782141277-2.pdf>

Hossein Bidgoli, Handbook of Information Security

E. Daoud and L. Jebril, “Computer Virus Strategies and Detection Methods,” Int. J.
Open Problems Compt. Math., Vol. 1, No. 2, September 2008.

E. Konstantinou, “Metamorphic Virus: Analysis and Detection,” January 2008.

J. Borello and L. Me, “Code Obfuscation Techniques for Metamorphic Viruses,”
Feb 2008, http://www.springerlink.com/content/233883w3r2652537

Wikipedia, “Antivirus software,” Nov 2010,
<http://en.wikipedia.org/wiki/Antivirus_software#Signature_based_detection>

P. Szor, “The Art of Computer Virus Research and Defense,” Addison-Wesley, 2005.
47

http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

P. Szor, P. Ferrie, “Hunting for Metamorphic,” Symantec Security Response.
VX Heavens. <http://vx.netlux.org/>

Wikipedia, “Heuristic analysis,” March 2009,
<http://en.wikipedia.org/wiki/Heuristic_analysis>

HowStuffWorks, “Computer & Internet Security,” May 2008,
<http://computer.howstuffworks.com/virus.htm>

Cygwin <http://cygwin.com/>

Wikipedia, “Levenstein Distance,” Mar 2011,
< http://en.wikipedia.org/wiki/Levenshtein_distance>

Cormen, Leiserson, Rivest, Stein. Introduction to algorithms (2ed, MIT, 2001)

Wikipedia, “Sequence Alignment,” “March 2011,
<http://en.wikipedia.org/wiki/Sequence_alignment>

Scott McGhee, “Pairwise Alignment of Metamorphic Computer Viruses,” Master’s
Thesis, San Jose State University, 2007

D. Bilar, Statistical Structures: Fingerprinting Malware for Classification and
Analysis, Proceedings of the Black Hat Convention, Las Vegas 2006,
<http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Bilar.pdf>

Liu, J., and T. Longvinenko. 2003. Bayesian methods in biological sequence analysis,
Handbook of Statistical Genetics, 2nd ed, vol. 1. John Wiley & Sons, Ltd., West Sussex.

R. Durbin et al, 1998, Biological Sequence Analysis: Probabilistic Models of
Proteins and Nucleic Acids, pp 12-45, 135-160

48

http://computer.howstuffworks.com/virus.htm
http://cygwin.com/
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/wiki/Sequence_alignment

Appendix A: Similarity test results for base virus variants (IDAN) and normal
files (IDAR)

Table A- 1 Scores for various NGVCK virus variants and normal files

Similarity scores between various NGVCK virus variants and normal files

IDAN101 vs. IDARO | O IDAN141 vs. IDARO 0 IDAN191 vs. IDARO 0
IDAN101 vs. IDAR1 | 0.0227 IDAN141 vs. IDAR1 0.0204 IDAN191 vs. IDAR1 0
IDAN101 vs. IDAR2 | O IDAN141 vs. IDAR2 0.0102 IDAN191 vs. IDAR2 0.0112
IDAN101 vs. IDAR3 | 0.0227 IDAN141 vs. IDAR3 0 IDAN191 vs. IDAR3 0.022

IDAN101 vs. IDAR4 | 0.0113 IDAN141 vs. IDAR4 0.0102 IDAN191 vs. IDARS 0.022
IDAN101 vs. IDAR5 | 0.0340 IDAN141 vs. IDARS 0.0408 IDAN191 vs. IDARG 0.0337
IDAN101 vs. IDAR6 | 0.0227 IDAN141 vs. IDARG 0.0408 IDAN191 vs. IDAR7 0.0337
IDAN101 vs. IDAR7 | 0.0227 IDAN141 vs. IDAR7 0.0510 IDAN191 vs. IDAR8 0.067
IDAN101 vs. IDAR8 | 0.0454 IDAN141 vs. IDAR8 0.0510 IDAN191 vs. IDAR9 0.0112
IDAN101 vs. IDAR9 | 0.0454 IDAN141 vs. IDAR9Y 0.0102 IDAN191 vs. IDAR10 | 0.022
IDAN101 vs. IDAR10 | 0.0113 IDAN141 vs. IDAR10 0.0408 IDAN191 vs. IDAR11 | 0.0337
IDAN101 vs. IDAR11 | 0.0340 IDAN141 vs. IDAR11 0.0204 IDAN191 vs. IDAR12 | 0.0337
IDAN101 vs. IDAR12 | 0.0340 IDAN141 vs. IDAR12 0.0204 IDAN191 vs. IDAR13 | 0.022
IDAN101 vs. IDAR13 | 0.0340 IDAN141 vs. IDAR13 0.061 IDAN191 vs. IDAR14 | 0.0112
IDAN101 vs. IDAR14 | 0.0454 IDAN141 vs. IDAR14 0.0102 IDAN191 vs. IDAR15 | 0.067
IDAN101 vs. IDAR15 | 0.0568 IDAN141 vs. IDAR15 0.0714 IDAN191 vs. IDAR16 | 0.0112
IDAN101 vs. IDAR16 | 0.0568 IDAN141 vs. IDAR16 0.0510 IDAN191 vs. IDAR17 | O
IDAN101 vs. IDAR17 | 0.0227 IDAN141 vs. IDAR17 0.0306 IDAN191 vs. IDAR18 | 0.022
IDAN101 vs. IDAR18 | 0.0568 IDAN141 vs. IDAR18 0.0204 IDAN191 vs. IDAR19 | 0.044
IDAN101 vs. IDAR19 | 0.0454 IDAN141 vs. IDAR19 0.061 IDAN191 vs. IDAR20 | 0.0337
IDAN101 vs. IDAR20 | 0.0681 IDAN141 vs. IDAR20 0.0306 IDAN191 vs. IDAR21 | 0.0337
IDAN101 vs. IDAR21 | 0.0227 IDAN141 vs. IDAR21 0.0306 IDAN191 vs. IDAR22 | 0.0561
IDAN101 vs. IDAR22 | 0.0340 IDAN141 vs. IDAR22 0.061 IDAN191 vs. IDAR23 | 0.044
IDAN101 vs. IDAR23 | 0.0340 IDAN141 vs. IDAR23 0.0714 IDAN191 vs. IDAR24 | 0.0337
IDAN101 vs. IDAR24 | 0.0568 IDAN141 vs. IDAR24 0.0306 IDAN191 vs. IDAR25 | 0.0337
IDAN101 vs. IDAR25 | 0.0340 IDAN141 vs. IDAR25 0.0306 IDAN191 vs. IDAR26 | 0.0337
IDAN101 vs. IDAR26 | 0.0340 IDAN141 vs. IDAR26 0.0306 IDAN191 vs. IDAR27 | 0.0337
IDAN101 vs. IDAR27 | 0.0340 IDAN141 vs. IDAR27 0.0306 IDAN191 vs. IDAR28 | 0.0337
IDAN101 vs. IDAR28 | 0.0340 IDAN141 vs. IDAR28 0.0306 IDAN191 vs. IDAR29 | 0.0337
IDAN101 vs. IDAR29 | 0.0340 IDAN141 vs. IDAR29 0.0306 IDAN191 vs. IDAR30 | 0.0337
IDAN101 vs. IDAR30 | 0.0454 IDAN141 vs. IDAR30 0.0306 IDAN191 vs. IDAR31 | 0.0337
IDAN101 vs. IDAR31 | 0.0340 IDAN141 vs. IDAR31 0.0306 IDAN191 vs. IDAR32 | 0.0337
IDAN101 vs. IDAR32 | 0.0340 IDAN141 vs. IDAR32 0.0306 IDAN191 vs. IDAR33 | 0.0337
IDAN101 vs. IDAR33 | 0.0227 IDAN141 vs. IDAR33 0.0306 IDAN191 vs. IDAR34 | 0.0337
IDAN101 vs. IDAR34 | 0.0340 IDAN141 vs. IDAR34 0.0306 IDAN191 vs. IDAR35 | 0.0337
IDAN101 vs. IDAR35 | 0.0340 IDAN141 vs. IDAR35 0.0306 IDAN191 vs. IDAR36 | 0.0337
IDAN101 vs. IDAR36 | 0.0340 IDAN141 vs. IDAR36 0.0306 IDAN191 vs. IDAR37 | 0.0337
IDAN101 vs. IDAR37 | 0.0454 IDAN141 vs. IDAR37 0.0306 IDAN191 vs. IDAR38 | 0.0337
IDAN101 vs. IDAR38 | 0.0340 IDAN141 vs. IDAR38 0.0306 IDAN191 vs. IDAR39 | 0.0337
IDAN101 vs. IDAR39 | 0.0454 IDAN141 vs. IDAR39 0.061 IDAN191 vs. IDAR40 | 0.0337
IDAN101 vs. IDAR40 | 0.0340 IDAN141 vs. IDAR40 0.0306

Min score: 0.00
Max score: 0.05
Average: 0.02

49

Table A- 2 Similarity scores between normal files

IDARO vs. IDAR1 0.6150 IDAR4 vs. IDAR10 0.2692 IDAR12 vs. IDAR19 0.1940
IDARO vs. IDAR2 0.5440 IDAR5 vs. IDAR6 0.8223 IDAR12 vs. IDAR20 0.1898
IDARO vs. IDAR3 0.5103 IDAR5 vs. IDAR7Y 0.8209 IDAR13 vs. IDAR14 0.1447
IDARO vs. IDAR4 0.6090 IDAR5 vs. IDAR8 0.8223 IDAR13 vs. IDAR15 0.7890
IDARO vs. IDAR5S 0.2285 IDAR5 vs. IDAR9 0.1449 IDAR13 vs. IDAR18 0.1660
IDARO vs. IDAR6 0.2142 IDAR5 vs. IDAR10 0.8267 IDAR13 vs. IDAR19 0.7926
IDARO vs. IDAR7 0.2190 IDARG vs. IDAR7 0.8059 IDAR13 vs. IDAR20 0.7877
IDARO vs. IDARS 0.2 IDARG6 vs. IDAR8 0.8004 IDAR14 vs. IDAR15 0.2285
IDARO vs. IDAR9 0.4904 IDARG6 vs. IDARY 0.1401 IDAR14 vs. IDAR16 0.4179
IDARO vs. IDAR10 0.2142 IDARG6 vs. IDAR10 0.8147 IDAR14 vs. IDAR17 0.628
IDARL1 vs. IDAR2 0.6183 IDAR7 vs. IDAR8 0.8001 IDAR14 vs. IDAR18 0.4344
IDARL1 vs. IDAR3 0.5416 IDAR7 vs. IDAR9 0.1306 IDAR14 vs. IDAR19 0.2247
IDARL1 vs. IDAR4 0.6991 IDAR7 vs. IDAR10 0.8422 IDAR14 vs. IDAR20 0.2196
IDARL1 vs. IDAR5 0.2166 IDARS8 vs. IDAR9 0.1481 IDAR15 vs. IDAR18 0.1953
IDARL1 vs. IDAR6 0.1962 IDARS8 vs. IDAR10 0.7765 IDAR15 vs. IDAR19 0.8189
IDARL1 vs. IDAR7 0.2085 IDAR9 vs. IDAR10 0.1799 IDAR15 vs. IDAR20 0.7992
IDARL1 vs. IDARS 0.2085 IDAR10 vs. IDAR11 0.1423 IDAR16 vs. IDAR17 0.457
IDARL1 vs. IDAR9 0.5355 IDAR10 vs. IDAR12 0.1424 IDAR16 vs. IDAR18 0.8184
IDAR1 vs. IDAR10 0.2085 IDAR10 vs. IDAR13 0.7657 IDAR16 vs. IDAR19 0.2237
IDAR2 vs. IDAR3 0.4312 IDAR10 vs. IDAR14 0.1523 IDAR16 vs. IDAR20 0.2263
IDAR2 vs. IDAR4 0.4521 IDAR10 vs. IDAR15 0.7682 IDAR17 vs. IDAR18 0.473
IDAR2 vs. IDAR5 0.1662 IDAR10 vs. IDAR18 0.1634 IDAR17 vs. IDAR19 0.2439
IDAR2 vs. IDAR6 0.1787 IDAR10 vs. IDAR19 0.8389 IDAR17 vs. IDAR20 0.2237
IDAR2 vs. IDAR7 0.1953 IDAR10 vs. IDAR20 0.7583 IDAR18 vs. IDAR19 0.2019
IDAR2 vs. IDARS 0.1371 IDAR11 vs. IDAR12 0.8936 IDAR18 vs. IDAR20 0.1846
IDAR2 vs. IDAR9 0.4571 IDAR11 vs. IDAR13 0.1911 IDAR19 vs. IDAR20 0.6831
IDAR2 vs. IDAR10 0.1620 IDAR11 vs. IDAR14 0.4493 IDARO vs. IDAR21 0.4714
IDAR3 vs. IDAR4 0.4448 IDAR11 vs. IDAR15 0.185 IDAR1 vs. IDAR21 0.511
IDAR3 vs. IDARS 0.1856 IDAR11 vs. IDAR16 0.4179 IDAR2 vs. IDAR21 0.4405
IDAR3 vs. IDAR6 0.1627 IDAR11 vs. IDAR17 0.3698 IDAR3 vs. IDAR21 0.3797
IDAR3 vs. IDAR7 0.1599 IDAR11 vs. IDAR18 0.6293 IDARA4 vs. IDAR21 0.5385
IDAR3 vs. IDARS 0.1656 IDAR11 vs. IDAR19 0.1939 IDAR5 vs. IDAR21 0.1691
IDAR3 vs. IDAR9 0.3769 IDAR11 vs. IDAR20 0.1897 IDARG6 vs. IDAR21 0.1560
IDAR3 vs. IDAR10 0.1856 IDAR12 vs. IDAR13 0.191 IDAR7 vs. IDAR21 0.1524
IDAR4 vs. IDARS 0.2474 IDAR12 vs. IDAR14 0.4495 IDARS8 vs. IDAR21 0.1451
IDAR4 vs. IDARG 0.2510 IDAR12 vs. IDAR15 0.1857 IDAR9 vs. IDAR21 0.6753
IDAR4 vs. IDAR7 0.2328 IDAR12 vs. IDAR16 0.6185 IDAR10 vs. IDAR21 0.1486
IDAR4 vs. IDARS 0.2401 IDAR12 vs. IDAR17 0.3700

IDAR4 vs. IDAR9 0.5604 IDAR12 vs. IDAR18 0.6283

Min score: 0.1306

Max score: 0.8936

Average: 0.3865

50

Appendix B: Similarity between morphed viruses

Table B- 1 Scores for morphed viruses and normal files

51

Similarity scores between morphed viruses (IDAN) with different percentage of subroutine and
dead code insertion from non-virus files Window Size 5:
IDAN vs. IDAN Base viruses : | Morphed IDAN vs. IDAN Morphed
scores Virus 5% : Virus 15% :

scores scores
IDANS vs. IDAN6G 0.1044 0.3159 IDAN2 vs. IDAN17 0.398
IDANS vs. IDAN7 0.1091 0.2567 IDAN2 vs. IDAN18 0.3825
IDANS vs. IDAN8 0.1584 0.3025 IDAN3 vs. IDAN8 0.4309
IDANS vs. IDAN9 0.1115 0.3240 IDAN3 vs. IDAN11 0.4875
IDANS vs. IDAN13 0.0626 0.1169 IDAN3 vs. IDAN13 0.4558
IDANS vs. IDAN14 0.0954 0.115 IDAN3 vs. IDAN14 0.4510
IDANS vs. IDAN17 0.1098 0.1339 IDAN3 vs. IDAN15 0.4668
IDAN7 vs. IDAN8 0.1269 0.2575 IDAN3 vs. IDAN16 0.4089
IDAN7 vs. IDAN9 0.1289 0.1723 IDAN3 vs. IDAN17 0.3320
IDAN7 vs. IDAN10 0.1241 0.2056 IDAN3 vs. IDAN18 0.3261
IDAN7 vs. IDAN11 0.0794 0.1876 IDAN4 vs. IDAN5S 0.3704
IDAN7 vs. IDAN12 0.1331 0.2210 IDAN4 vs. IDANG 0.3397
IDAN7 vs. IDAN13 0.1173 0.1528 IDAN4 vs. IDAN7 0.3596
IDANS vs. IDAN9 0.1036 0.1735 IDAN4 vs. IDAN8 0.4527
IDANS vs. IDAN10 0.1372 0.2153 IDAN4 vs. IDAN9 0.3624
IDANS vs. IDAN11 0.0665 0.1696 IDAN4 vs. IDAN10 0.3488
IDANS vs. IDAN12 0.0729 0.1777 IDAN4 vs. IDAN11 0.4080
IDAN10 vs. IDAN13 0.0769 0.1291 IDAN4 vs. IDAN12 0.380
IDAN10 vs. IDAN14 0.1465 0.1779 IDAN4 vs. IDAN13 0.4348
IDAN10 vs. IDAN17 0.1374 0.1519 IDAN4 vs. IDAN14 0.4143
IDAN11 vs. IDAN13 0.1228 0.1243 IDAN4 vs. IDAN15 0.4295
IDAN11 vs. IDAN15 0.1582 0.1370 IDAN4 vs. IDAN16 0.440
IDAN11 vs. IDAN17 0.0665 0.1261 IDAN4 vs. IDAN17 0.3087
IDAN12 vs. IDAN13 0.0750 0.1085 IDAN4 vs. IDAN18 0.3349
IDAN12 vs. IDAN17 0.1339 0.1338 IDAN4 vs. IDAN19 0.4022
IDAN13 vs. IDAN14 0.1283 0.1625 IDAN4 vs. IDAN20 0.3792
IDAN13 vs. IDAN15 0.0779 0.1499 IDANS vs. IDAN15 0.4868
IDAN13 vs. IDAN16 0.0922 0.1294 IDANS vs. IDAN17 0.3662
IDAN13 vs. IDAN17 0.1442 0.1658 IDANS vs. IDAN18 0.4378
IDAN14 vs. IDAN15 0.1237 0.1656 IDANG vs. IDAN8 0.4421
IDAN14 vs. IDAN16 0.113 0.1767 IDANG vs. IDAN13 0.466
IDAN14 vs. IDAN17 0.0875 0.1797 IDANG vs. IDAN14 0.4674
IDAN15 vs. IDAN17 0.0759 0.1334 IDANG vs. IDAN15 0.4616
IDAN16 vs. IDAN17 0.0899 0.1043 IDANG vs. IDAN16 0.4538

Base Virus Morphed Morphed Virus

Virus 5% 15%
Min. 0.0626 0.1043 0.3087
Max. 0.1584 0.3241 0.4875
Avg. 0.1086 0.1751 0.4085

Appendix C: Detection using similarity index test

Similarity scores between morphed viruses and normal file (IDAN vs. IDAR), between base

viruses and normal files, and between normal files

Table C- 1 Similarity scores for Window size =5

Similarity scores between various normal (IDAR) and morphed viruses (IDAN):
Base NGVCK Morphed Morphed Morphed Morphed
viruses : scores | Virus5% : | Virus 15%: Virus 25% : | Virus 30% :

scores scores scores scores
IDAN101 vs. IDAR1 0.0154 0.1473 0.1850 0.3448 0.3601
IDAN101 vs. IDAR2 0 0.1381 0.1546 0.2732 0.2937
IDAN101 vs. IDAR3 0.0142 0.1428 0.1871 0.2937 0.2658
IDAN101 vs. IDAR4 0.0075 0.179 0.2144 0.3553 0.3651
IDAN101 vs. IDAR5 0.0192 0.0791 0.0927 0.1244 0.1486
IDAN141 vs. IDAR1 0.0204 0.1336 0.1835 0.2496 0.3405
IDAN141 vs. IDAR2 0.0102 0.0931 0.1340 0.2131 0.270
IDAN141 vs. IDAR3 0 0.1176 0.1827 0.2289 0.2705
IDAN141 vs. IDAR4 0.0102 0.1524 0.2095 0.2640 0.3533
IDAN141 vs. IDAR5 0.0408 0.0765 0.085 0.1162 0.1315
IDAN191 vs. IDAR1 0 0.107 0.2815 0.3395 0.3929
IDAN191 vs. IDAR2 0.0112 0.086 0.1974 0.2474 0.2874
IDAN191 vs. IDAR3 0.022 0.0995 0.2147 0.2651 0.2868
IDAN191 vs. IDAR4 0 0.1333 0.2930 0.3441 0.3785
IDAN191 vs. IDAR5 0.022 0.084 0.1161 0.1179 0.146
Similarity scores between various normal files

IDARO vs. IDAR1 0.6150
IDARO vs. IDAR2 0.5440
IDARO vs. IDAR3 0.5103
IDARO vs. IDAR4 0.6090
IDAR11 vs. IDAR17 0.3698
IDAR1 vs. IDAR2 0.6183
IDAR1 vs. IDAR3 0.5416

IDAR17 vs. IDAR19 0.2439
IDAR12 vs. IDAR17 0.3700

IDAR2 vs. IDAR3 0.4312
IDAR2 vs. IDAR4 0.4521
IDAR11 vs. IDAR14 0.4493
IDAR3 vs. IDAR4 0.4448

IDAR14 vs. IDAR16 0.4179
IDAR14 vs. IDAR18 0.4344

Threshold determination:

Min score between normal file: 0.2439 (threshold)

Max score between normal file and morphed virus 5%: 0.1797 (< threshold)
Max score between normal file and morphed virus 15%: 0.2930 (> threshold)
Max score between normal file and morphed virus 25%: 0.3553 (> threshold)
Max score between normal file and morphed virus 30%: 0.3929 (> threshold)

52

Table C- 2 Similarity scores for Window size = 10

Window Size 10:

Similarity scores between various normal (IDAR) and morphed viruses (IDAN):

Base NGVCK Morphed Morphed Morphed Morphed
viruses : scores | Virus5% : | Virus 15%: Virus 25% : Virus 30% :
scores scores scores scores
IDAN101 vs. IDAR1 0 0.0914 0.1173 0.2447 0.2490
IDAN101 vs. IDAR2 0 0.0818 0.0909 0.1571 0.1695
IDAN101 vs. IDAR3 0 0.0982 0.1247 0.1731 0.1950
IDAN101 vs. IDAR4 0 0.1165 0.1458 0.236 0.2420
IDAN101 vs. IDAR5 0 0.0301 0.0575 0.081 0.0950
IDAN141 vs. IDAR1 0 0.0411 0.0826 0.1536 0.2173
IDAN141 vs. IDAR2 0.0143 0.0310 0.0462 0.1317 0.1462
IDAN141 vs. IDAR3 0.0130 0.0543 0.1033 0.1419 0.1563
IDAN141 vs. IDAR4 0 0.0688 0.1134 0.1519 0.2242
IDAN141 vs. IDAR5 0 0.0153 0.0523 0.0707 0.0899
IDAN191 vs. IDAR1 0 0.053 0.187 0.1961 0.2234
IDAN191 vs. IDAR2 0 0.043 0.1151 0.1294 0.1309
IDAN191 vs. IDAR3 0 0.0663 0.1316 0.1641 0.1972
IDAN191 vs. IDAR4 0 0.0820 0.21 0.234 0.2501
IDAN191 vs. IDAR5S 0 0.0242 0.0608 0.0884 0.0978

Similarity scores between

various normal files

IDARO vs. IDAR1
IDARO vs. IDAR2
IDARO vs. IDAR3
IDARO vs. IDAR4
IDAR11 vs. IDAR17
IDAR1 vs. IDAR2
IDAR1 vs. IDAR3
IDAR17 vs. IDAR19
IDAR12 vs. IDAR17
IDAR2 vs. IDAR3
IDAR2 vs. IDAR4
IDAR11 vs. IDAR14
IDAR3 vs. IDAR4
IDAR14 vs. IDAR16
IDAR14 vs. IDAR18

0.5398
0.4191
0.4113
0.5292
0.2068
0.4699
0.4444
0.1771
0.2069
0.3295
0.3507
0.3011
0.3312
0.3501
0.3767

Threshold determination:

Min score between normal file:
Max score between normal file and morphed virus 5%:

Max score between normal file and morphed virus 15%:
Max score between normal file and morphed virus 25%:
Max score between normal file and morphed virus 30%:

0.1771 (threshold)

0.1165 (< threshold)
0.2158 (> threshold)
0.2447 (> threshold)
0.2501 (> threshold)

53

Table C- 3 Similarity scores for Window size = 20

Similarity scores between various normal (IDAR) and morphed viruses (IDAN):
Base NGVCK Morphed Morphed Morphed Morphed
viruses : scores | Virus 5% : Virus 15% : Virus 25% : Virus 30%

scores scores scores : scores
IDAN101 vs. IDAR1 0 0.1016 0.1083 0.133 0.1464
IDAN101 vs. IDAR2 0 0.0613 0.0545 0.0898 0.0987
IDAN101 vs. IDAR3 0 0.0714 0.0623 0.0742 0.0825
IDAN101 vs. IDAR4 0 0.1165 0.1201 0.153 0.1628
IDAN101 vs. IDAR5 0 0 0 0.0095 0.0278
IDAN141 vs. IDAR1 0 0.0617 0.0917 0.12 0.1304
IDAN141 vs. IDAR2 0 0.0207 0.0554 0.0775 0.0877
IDAN141 vs. IDAR3 0 0.0181 0.0476 0.0774 0.0721
IDAN141 vs. IDAR4 0 0.0786 0.1047 0.144 0.1495
IDAN141 vs. IDAR5 0 0.0153 0 0.0202 0.0276
IDAN191 vs. IDAR1 0 0.0856 0.1305 0.1358 0.1441
IDAN191 vs. IDAR2 0 0.043 0.0658 0.0761 0.0873
IDAN191 vs. IDAR3 0 0.0379 0.0692 0.075 0.0956
IDAN191 vs. IDAR4 0 0.1026 0.1542 0.1419 0.1487
IDAN191 vs. IDAR5 0 0 0.0110 0.0393 0.0383
Similarity scores between various normal files

IDARO vs. IDAR1 0.4248
IDARO vs. IDAR2 0.3210
IDARO vs. IDAR3 0.3046
IDARO vs. IDAR4 0.4200
IDAR11 vs. IDAR17 0.1551
IDAR1 vs. IDAR2 0.4452
IDAR1 vs. IDAR3 0.3471

IDAR17 vs. IDAR19 0.1561
IDAR12 vs. IDAR17 0.1651

IDAR2 vs. IDAR3 0.2384
IDAR2 vs. IDAR4 0.3118
IDAR11 vs. IDAR14 0.2185
IDAR3 vs. IDAR4 0.2727

IDAR14 vs. IDAR16 0.2197
IDAR14 vs. IDAR18 0.2494

Threshold determination:

Min score between normal file: 0.1551 (threshold)

Max score between normal file and morphed virus 5%.: 0.1026 (< threshold)
Max score between normal file and morphed virus 15%: 0.1542 (< threshold)
Max score between normal file and morphed virus 25%: 0.1532 (< threshold)
Max score between normal file and morphed virus 30%: 0.1628 (> threshold)

54

Appendix D: Detection using Edit Distance technique

Table D- 1 Scores for base viruses, morphed viruses and normal files using edit distance
technique

Similarity scores between normal files (IDAR), and between morphed viruses and normal files
(IDAN vs. IDAR):
Base NGVCK Morphed Morphed Morphed
viruses : scores | Virus5% | Virus 15% : Virus 25% :

. scores scores scores
IDARO vs. IDAR1 0.1818 0.097 0.1162 0.1610
IDARO vs. IDAR2 0.1687 0.0931 0.1195 0.1705
IDARO vs. IDAR3 0.174 0.08 0.1099 0.1586
IDARO vs. IDAR4 0.1426 0.100 0.126 0.1775
IDARO vs. IDAR5 0.1455 0.0843 0.102 0.1407
IDARO vs. IDARG6 0.0988 0.0868 0.1053 0.1451
IDARO vs. IDAR7 0.0976 0.0858 0.1069 0.1512
IDARO vs. IDARS 0.0984 0.0848 0.105 0.1425
IDARO vs. IDAR9 0.0932 0.0802 0.0975 0.1347
IDARO vs. IDAR10 0.094 0.084 0.1061 0.1465
IDARO vs. IDAR11 0.0864 0.0841 0.1040 0.1481
IDARO vs. IDAR12 0.0882 0.0840 0.1060 0.1468
IDARO vs. IDAR13 0.0882 0.0837 0.1036 0.1473
IDARO vs. IDAR14 0.0862 0.0838 0.1060 0.1464
IDARO vs. IDAR15 0.0772 0.0838 0.1034 0.1460
IDARO vs. IDAR16 0.0829 0.0705 0.0877 0.1238
IDARO vs. IDAR17 0.0768 0.0831 0.104 0.1460
IDARO vs. IDAR18 0.0712 0.0837 0.1034 0.146
IDARO vs. IDAR19 0.0816 0.0829 0.1050 0.1450
IDARO vs. IDAR20 0.0713 0.0827 0.1028 0.146
IDARO vs. IDAR21 0.0737 0.0825 0.1040 0.1443
IDARO vs. IDAR22 0.0719 0.0827 0.1026 0.1445
IDARO vs. IDAR23 0.0726 0.0695 0.0863 0.1223
IDARO vs. IDAR24 0.067 0.0817 0.1011 0.1435
IDARO vs. IDAR25 0.0705 0.075 0.0969 0.1387
IDARO vs. IDAR26 0.0706 0.0808 0.1019 0.1415
IDARO vs. IDAR27 0.0706 0.1134 0.1503 0.2078
IDARO vs. IDAR28 0.0701 0.1025 0.1465 0.2057
IDARO vs. IDAR29 0.0704 0.1080 0.1445 0.2017
IDARO vs. IDAR30 0.0694 0.1024 0.1425 0.2098
IDARO vs. IDAR31 0.0581 0.0957 0.1373 0.195
IDARO vs. IDAR32 0.0703 0.112 0.1564 0.2202
IDARO vs. IDAR33 0.0693 0.0926 0.1231 0.1757
IDARO vs. IDAR34 0.0699 0.0989 0.1295 0.1807
IDARO vs. IDAR35 0.0693 0.0949 0.1323 0.1927
IDARO vs. IDAR36 0.0691 0.0945 0.1256 0.1772
IDARO vs. IDAR37 0.0685 0.0873 0.1177 0.1672
IDARO vs. IDAR38 0.0579 0.0926 0.1297 0.1878
IDARO vs. IDAR39 0.0683 0.0930 0.1293 0.1891
IDARO vs. IDAR40 0.0624 0.0926 0.1281 0.1873

55

Similarity scores between various normal files

IDARS vs. IDAR10 0.6726
IDARS vs. IDAR11 0.6253
IDARS vs. IDAR12 0.5148
IDARS vs. IDAR13 0.6485
IDARS vs. IDAR14 0.2291
IDARS vs. IDAR15 0.2238
IDARS vs. IDAR16 0.2274
IDARS vs. IDAR17 0.211
IDARS vs. IDAR18 0.2726
IDARS vs. IDAR19 0.1999
IDARS vs. IDAR20 0.2382
IDARS vs. IDAR21 0.2382
IDARS vs. IDAR22 0.2000
IDARS vs. IDAR23 0.2470
IDARS vs. IDAR24 0.1931
IDARS vs. IDAR25 0.222
IDARS vs. IDAR26 0.2289
IDARS vs. IDAR27 0.2347
IDARS vs. IDAR28 0.1660
IDARS vs. IDAR29 0.172
IDARS vs. IDAR30 0.1932
IDARS vs. IDAR31 0.1681
IDARS vs. IDAR32 0.1591
IDARS vs. IDAR33 0.1876
IDARS vs. IDAR34 0.1902
IDARS vs. IDAR35 0.187
IDARS vs. IDAR36 0.1887
IDARS vs. IDAR37 0.1874
IDARS vs. IDAR38 0.1888
IDARS vs. IDAR39 0.1631
IDARS vs. IDAR40 0.186
IDARG vs. IDAR7 0.1887
IDARG vs. IDAR8 0.1857
IDARG vs. IDAR9 0.1861
IDARG vs. IDAR10 0.1848
IDARG vs. IDAR11 0.1866
IDARG vs. IDAR12 0.1611
IDARG vs. IDAR13 0.1841
IDARG vs. IDAR14 0.1945
IDARG vs. IDAR15 0.1809
Threshold determination:

Min score between normal file: 0.1591 (threshold)
Max score between normal file and morphed virus 5%: 0.1934 (> threshold)
Max score between normal file and morphed virus 15%: 0.2024 (> threshold)
Max score between normal file and morphed virus 25%: 0.2816 (> threshold)

56

Appendix E: Detection using Sequence Alignment technique

Table E- 1 Scores for base viruses, and normal files using pairwise sequence alignment

technique

Alignment scores between base viruses and normal files (IDAR vs. IDAN), between
normal files (IDAR), between base viruses (IDAN)

Base Virus vs. Normal File
:Scores
(IDAN,IDAR) : Scores

Normal vs. Normal File :

Scores

(IDAR,IDAR) : Scores

Base Virus vs. Base Virus :

Scores
(IDAN,IDAN) : Scores

(0,20) Score =-456.0
(0,21) Score =-506.0
(0,22) Score = -750.0
(0,23) Score =-725.0
(0,24) Score = -758.0
(0,25) Score =-931.0
(0,26) Score =-905.0
(0,27) Score =-774.0
(0,28) Score =-435.0
(0,29) Score =-275.0
(0,30) Score =-574.0
(0,31) Score =-429.0
(0,32) Score =-379.0
(0,33) Score =-604.0
(0,34) Score =-263.0
(0,35) Score =-530.0
(0,36) Score =-145.0
(0,37) Score =-667.0
(0,38) Score =-871.0
(0,39) Score =-416.0
(1,20) Score =-481.0
(1,21) Score =-501.0
(1,22) Score =-842.0
(1,23) Score =-784.0
(1,24) Score =-771.0
(1,25) Score =-919.0
(1,26) Score =-847.0
(1,27) Score =-750.0
(1,28) Score =-442.0
(1,29) Score =-335.0
(1,30) Score =-580.0
(1,31) Score =-349.0
(1,32) Score =-406.0
(1,33) Score =-652.0
(1,34) Score =-339.0
(1,35) Score = -536.0
(1,36) Score = -226.0
(1,37) Score =-691.0
(1,38) Score =-974.0
(1,39) Score =-428.0

(0,1) Score =513.0
(0,2) Score = 263.0
(0,3) Score = 382.0
(0,4) Score =44.0
(0,5) Score =-74.0
(0,6) Score = -25.0
(0,7) Score =62.0
(0,8) Score = 349.0
(0,9) Score = 430.0
(0,10) Score = 446.0
(0,11) Score = 1038.0
(0,12) Score = 391.0
(0,13) Score =371.0
(0,14) Score =412.0
(0,15) Score =587.0
(0,16) Score =243.0
(0,17) Score =504.0
(0,18) Score = 285.0
(0,19) Score = 966.0
(1,2) Score = 484.0
(1,3) Score =589.0
(1,4) Score =59.0
(1,5) Score = -86.0
(1,6) Score = -52.0
(1,7) Score =78.0
(1,8) Score = 474.0
(1,9) Score =810.0
(1,10) Score =530.0
(1,11) Score = 482.0
(1,12) Score = 460.0
(1,13) Score = 391.0
(1,14) Score = 495.0
(1,15) Score = 872.0
(1,16) Score = 361.0
(1,17) Score = 604.0
(1,18) Score = 334.0
(1,19) Score = 377.0
(2,3) Score = 978.0
(2,4) Score = 208.0
(2,5) Score =187.0

(0,1) Score =-1.0
(0,2) Score =-99.0
(0,3) Score =-43.0
(0,4) Score =50.0
(0,5) Score =8.0
(0,6) Score = 15.0
(0,7) Score = 47.0
(0,8) Score =27.0
(0,9) Score = 154.0
(0,10) Score =-26.0
(0,11) Score = 44.0
(0,12) Score = 30.0
(0,13) Score =-14.0
(0,14) Score =83.0
(0,15) Score =-30.0
(0,16) Score =41.0
(0,17) Score = 4.0
(0,18) Score =63.0
(0,19) Score =-25.0
(0,20) Score =-74.0
(1,2) Score =-73.0
(1,3) Score = 15.0
(1,4) Score =-16.0
(1,5) Score =-71.0
(1,6) Score = 149.0
(1,7) Score =-33.0
(1,8) Score = 4.0
(1,9) Score =17.0
(1,10) Score =-47.0
(1,11) Score = 82.0
(1,12) Score =-14.0
(1,13) Score =-122.0
(1,14) Score =-50.0
(1,15) Score = -62.0
(1,16) Score = -15.0
(1,17) Score =50.0
(1,18) Score =-63.0
(1,19) Score = 123.0
(1,20) Score =-44.0
(2,3) Score = 61.0

57

Table E- 2 Scores for morphed viruses, and normal files using pairwise sequence alignment

technique

Alignment scores between morphed viruses 30% and normal files (IDAR vs. IDAN),
between normal files (IDAR), between morphed viruses 30% (IDAN)

Morphed Virus 30% vs.
Normal File : Scores
(IDAN,IDAR) : Scores

Normal vs. Normal File :
Scores
(IDAR,IDAR) : Scores

Morphed Virus 30% vs.
Morphed Virus 30% :Scores
(IDAN,IDAN) : Scores

(0,20) Score = 103.0
(0,11) Score = 147.0
(0,12) Score =-49.0
(0,13) Score =50.0
(0,14) Score =-24.0
(0,15) Score =-171.0
(0,16) Score =-156.0
(0,17) Score =-22.0
(0,18) Score =-60.0
(0,19) Score =-9.0
(1,10) Score = 164.0
(1,11) Score = 183.0
(1,12) Score = 123.0
(1,13) Score = 135.0
(1,14) Score =-3.0
(1,15) Score =-99.0
(1,16) Score =-46.0
(1,17) Score = 10.0
(1,18) Score = 44.0
(1,19) Score = 89.0
(2,10) Score =-3.0
(2,11) Score =49.0
(2,12) Score =-336.0
(2,13) Score =-145.0
(2,14) Score =-434.0
(2,15) Score =-612.0
(2,16) Score =-581.0
(2,17) Score =-409.0
(2,18) Score =7.0
(2,19) Score = 119.0
(3,10) Score =-288.0
(3,11) Score =-324.0
(3,12) Score =-715.0
(3,13) Score =-558.0
(3,14) Score = -666.0
(3,15) Score =-890.0
(3,16) Score =-800.0
(3,17) Score =-652.0
(3,18) Score =-285.0
(3,19) Score =-135.0
(4,10) Score =-46.0
(4,11) Score = 6.0
(4,12) Score = -444.0
(4,13) Score =-321.0
(4,14) Score = -475.0

(0,1) Score =513.0
(0,2) Score = 263.0
(0,3) Score =382.0
(0,4) Score =44.0
(0,5) Score =-74.0
(0,6) Score = -25.0
(0,7) Score =62.0
(0,8) Score = 349.0
(0,9) Score = 430.0
(0,10) Score = 446.0
(0,11) Score = 1038.0
(0,12) Score = 391.0
(0,13) Score =371.0
(0,14) Score =412.0
(0,15) Score =587.0
(0,16) Score =243.0
(0,17) Score =504.0
(0,18) Score = 285.0
(0,19) Score = 966.0
(1,2) Score = 484.0
(1,3) Score =589.0
(1,4) Score =59.0
(1,5) Score = -86.0
(1,6) Score =-52.0
(1,7) Score =78.0
(1,8) Score = 474.0
(1,9) Score =810.0
(1,10) Score =530.0
(1,11) Score = 482.0
(1,12) Score = 460.0
(1,13) Score = 391.0
(1,14) Score = 495.0
(1,15) Score = 872.0
(1,16) Score = 361.0
(1,17) Score = 604.0
(1,18) Score = 334.0
(1,19) Score = 377.0
(2,3) Score =978.0
(2,4) Score =208.0
(2,5) Score =187.0
(2,6) Score = 218.0
(2,7) Score = 206.0
(2,8) Score =434.0
(2,9) Score = 251.0
(2,10) Score = 587.0

(1,2) Score =-73.0
(1,3) Score = 15.0
(1,4) Score =-16.0
(1,5) Score =-71.0
(1,6) Score =149.0
(1,7) Score =-33.0
(1,8) Score =4.0
(1,9) Score =17.0
(1,10) Score =-47.0
(2,3) Score =61.0
(2,4) Score =-80.0
(2,5) Score =83.0
(2,6) Score =60.0
(2,7) Score =-7.0
(2,8) Score =96.0
(2,9) Score =-73.0
(2,10) Score = 55.0
(3,4) Score =3.0
(3,5) Score =-8.0
(3,6) Score =55.0
(3,7) Score =-73.0
(3,8) Score =-51.0
(3,9) Score =82.0
(3,10) Score =55.0
(4,5) Score =-105.0
(4,6) Score =55.0
(4,7) Score = -60.0
(4,8) Score = -85.0
(4,9) Score =41.0
(4,10) Score =-72.0
(5,6) Score = -62.0
(5,7) Score = 155.0
(5,8) Score = 60.0
(5,9) Score = -76.0
(5,10) Score = 20.0
(6,7) Score = -58.0
(6,8) Score = 30.0
(6,9) Score =-4.0
(6,10) Score =41.0
(7,8) Score = 22.0
(7,9) Score = -106.0
(7,10) Score =-9.0
(8,9) Score =-19.0
(8,10) Score =-72.0
(9,10) Score =-53.0

58

	Similarity Tests for Metamorphic Virus Detection
	Recommended Citation

	tmp.1529535603.pdf.gqsBf

