San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2011

Metamorphic Detection via Emulation

Sushant Priyadarshi
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

b Part of the Other Computer Sciences Commons

Recommended Citation

Priyadarshi, Sushant, "Metamorphic Detection via Emulation" (2011). Master's Projects. 177.
DOI: https://doi.org/10.31979/etd.3ge6-6nfx
https://scholarworks.sjsu.edu/etd_projects/177

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SUSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/177?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F177&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Metamorphic Detection via Emulation

A Project Report
Presented to
The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Computer Science

by
Sushant Priyadarshi
May 2011

©2011
Sushant Priyadarshi

ALL RIGHTS RESEREVED

SAN JOSE STATE UNIVERSITY
The Undersigned Project Committee Approves the Project Titled

METAMORPHIC DETECTION VIA EMULATION

by
Sushant Priyadarshi

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Mark Stamp Department of Computer Science Date
Dr. Chris Pollett Department of Computer Science Date
Dr. Johnny Martin Department of Computer Science Date

APPROVED FOR THE UNIVERSITY

Associate Dean Office of Graduate Studies and Research Date

ABSTRACT

Metamorphic Detection via Emulation

by Sushant Priyadarshi

In parallel with improvements in anti-virus technologies, computer virus writers have developed
innovative viruses that are challenging to detect. Metamorphic viruses change their appearance
from one generation to another by using various code obfuscation techniques. Today, signature
detection is the most common method used in anti-virus products, but well designed
metamorphic viruses cannot be detected using signatures. Hence, there is a need for a more

robust anti-virus technology.

To counter metamorphic virus, a very successful tool based on hidden Markov models (HMM)
has been previously developed. This tool was able to detect all hacker produced metamorphic
viruses on which it was tested. However, a weakness of this tool was exploited to develop an
advanced metamorphic virus generator. These morphed viruses, which were not detected by the
HMM based technique or standard signature-based detection, rely on carefully selected dead

code insertion for their success.

In this project, we have created a code emulator designed specifically to detect dead code in any
virus file. The output of this code emulator is then used to enhance HMM-based detection of
metamorphic viruses. We test our emulator on the previously mentioned metamorphic generator,

using the existing HMM detector to determine the quality of our results.

ACKNOWLEDGEMENTS

I would like to thank Dr. Mark Stamp for his encouragement and guidance in carrying out this
project. 1 also extend my heartfelt thanks to my family and friends for being a wonderful support.

Table of Contents

LN IO 51 L@ 1 1] 1

AV LU AV @] I I 1 1] SRR 2
2.1 STEALTH VIRUS ...ttt ettt eettt ettt s bt e e ettt e e e ate e e s s st e e e e b bt e e s eaaee e e s sbbeeeeabbeeesaabessessbbeeeeabbeeesaabbesesnbeeesssbaenean 3
2.2 [N[O a7 = = DAY = £ 3
2.3 POLYMORPHIC WVIRUS ..ottt ettt ettt e e e e s e ettt e e e e e e s s eab bbbt e e e e e e s eab bbbt e e e e e e s e bbbbbeesessssasbbbbeaseeesesarres 3
2.4 IMETAMORPHIC VIRUSetitiiiiiii e ittt e e s ettt et e e e e s e eabb bttt s e e e s e e bbb b e e e e e e s s ssab b bbb e e aessseabbbbbeeeesssasbbbbbeeseesssasbbbaneess 4

ANTI-VIRUS METHODS ..ottt ettt e e e e s et b e e e e e s s e bbbt e e e e e s sa bbb b et e e e e sessabbbaaeeeeseias 5
3.1 SIGNATURE BASED DETECTION ..utiiiiiiiiiiittiiiieesssiittetteeessssisbattsssesssssssasssssssssssssssssssessssssstssssssssssssssresesssesis 6
3.2 [1O Y S [0 TSR OR 7
3.3 (Ofa]n] = =1 Y (117 [0 PSR 7

TECHNIQUES USED FOR CODE OBFUSCATIONoooiii ettt ettt 7
41 SUBROUTINE PERMUTATION .. .uutttiiiieeiieiittiet e e e e ssiitbbreteesesssabbaatessssssaabssssesssessassssbssssessssssssbsssssssssssssrasesssesins 8
4.2 TRANSPOSITION ..ettttttteeereresessssssssssssssessrssnn 9
4.3 REGISTER SWAPPINGccoitttttitieeieeiittteie e e e e s setbatteeseessaasbeteeeseeessasabbaetseeessssabbbaseeessssassbbsseasessssasbbbseeseessssssrres 10
4.4 INSTRUCTION SUBSTITUTIONuttttiiiieeiieiittiteieeeessiisssstessessssssssssssesssasssssssssssssssssssssssesssssisssssesssessssssssssses 10
45 INSERTION OF JUNK/DEAD CODEceiiitetieieteieesetteesseteteeseaeeaesstesessasateesasaesessssteessesetsesssseeessbessesasresessrens 11

HIDDEN MARKOV IMODEL ...ttt ettt ettt e e s s bt e e s s sa bt e e s e baae s s sbbeeesssbaneeanes 12
51 TN E2{0]n 10 o 1 (o] N RO 12
5.2 HIMIM EXAMPLE .1vtiiiiiiiiiitteit ettt e e e e sttt e e e e e e s e bbb e et s e e e s e e bbb b et e eeeeeesab b b et eeeeeeseasbbbbeeseesssasbbbbeeseeessasasres 13
5.3 DETECTING METAMORPHIC VIRUS USING HIMIM ...ttt et n e e s 16
5.4 HMM RESULTS OBSERVATIONuutttiiieeeieiittttiieeeessesiestesseessasisssssssesssssisssssssssssssssssssssesesssssssrssesseessssissnes 18

METAMORPHIC ENGINE ...ttt ettt e e e e e et et e e e e s e st e e e e e e e s s sebbbebeeeeesssasbaaaeeess 19

IMPROVED METAMORPHIC ENGINE ...ttt ettt ettt e e e e s s sbaaen e e e s s e sanees 21
7.1 DYNAMIC SCORING ALGORITHM ..uuuuttiiiieiiiiiitittiee e e e s ssiitttets e e st ssiabbtessessssssabbbessassesssssbasssesesssssbbbresssesssssssses 21
7.2 EXPERIMEN T AL RESULTS . ..ttttiiiii ittt e e ettt e e e s s ettt et e e e e s e et bbb et e e e e e e s bbb b et e e e e e e sabb bbb eaeeesssabbbbeeesesssssasres 24

CODE EMULATOR FOR METAMORPHIC CODE DETECTIONoooiiiiiieeeee e 25
8.1 TN 2{0]n 18 ok 1 (o] N TR 25
8.2 [0 TR 25
8.3 EXPERIMENTAL PROCESS. ... uuututututuuussrsrssnsssssssssssnsnns 26
8.4 AR CHITECTUREtttttttttteeteeessesesesssesssssesssssssssssssssssssssssssssssesssnsnsnes 27

L3 A) (o o [§ o1 o] 27

S O 1o To 1= | TP PP UPROPRTR 29

8.5 CODE EMULATION: THE ALGORITHMttiutiiutiaitisiiesteesteesteesteaseassesssesaeasbeesbeassesssessesssesssesssesnsesssssssesssessenns 29
ST R [1 (oo [V Tox 1 [o o IO RRUTOPTOPPR 29
8.5.2 Initializing the DAta SIIUCTUIEccviiiiiiitieeec ettt 30
8.5.3 First Pass - Finding Junk Blocks and Junk SUDFOULINES..........ccouiiiiiiiniiiiccsce s 31
8.5.4 Second Pass: Find Equivalent Instruction SUBSHTULIONc.cceiiiiiiiieiise e 33
8.5.5 Finding Dead Code and Recording Execution Path...........c..ccceieiiiiieiiieceec e 34

8.6 LIST OF REGISTERS SUPPORTED.......utiutetteutestestestesteastaseessestessessesseaseassasensessessesseassassensessessessessesssessensensessens 37
8.7 INSTRUCTIONS SUPPORTEDtttttietietestestestesteateeseaseestessesbesbesseaseassessesseabesbeabeeseasseneeabenbesbe et e aseanrennennenne e 38

9 EXPERIMENTS AND ANALYSIS ...ttt sttt sttt sttt e et sbesbesseeneeneenneneennens 39
9.1 HMM TEST FOR BASE VIRUS FILES......cciitiiiitiiiiieiite sttt sttt sir et sbe e sne e sbneesaneestneennneesnneennneas 39
9.2 HMM TEST WITHOUT CODE EMULATIONciitttitie it sieate ettt steesteesteeieseesseesieestessaeansesnsesssesseesseessesssessesssnns 40
9.2.1 HMM Test With 15% MOFPRING ...c.voviviiiiiitiie bbbt 40
9.2.2 HMM Test With 25% MOFPRING ..ccvveivieicece e e et ae e e sneesraenreens 41
9.2.3 HMM Test With 35% MOFPRING ..ccvveivieiecce et e e esreens 42

9.3 HMM TESTS WITH CODE EMULATIONtttttesteesieesteesteaee ettt esbeebessesssesmessseesneeneannesssesneesneennessnessnesnnes 43
9.3.1 HMM Test With 15% MOFPRING ..cvveivieieicc et ae e e e enreens 43
9.3.2 HMM Test With 25% MOFPRING ...c..ovviiiiiiitiie bbb 44
9.3.3 HMM Test With 35% MOFPRING ...c..ouviiiiiiiiiiie bbb 45

94 PERFORMANCE ANALYSIS OF CODE EMULATORceittetietieeieesieesteesteesteenseaseesseesseesseessesseeasessnesssesssesnsesnes 46
9.4.1 EXECULION TIME ANAIYSISviiuviiiiieiecte ettt sttt te et et sae e st e be e be e teesaesreesaeesteesbeenbeenbeaneesseesreens 46
9.4.2 Instruction CoUNt COMPATISONiiuieiiieiieiesie e seesteesteeste et e et e s teesteesbe e teasaesraesseesteesseenseenseansesseesreens 47

10 ATTACKS ON CODE EMULATORoiiiiie ittt e sb ettt st bt bbb b nne s 49
11 CONCLUSIONS AND FUTURE WORK ...ttt st st nne 49
REFERENGCESottt sttt et et te s te e s e s e e e e steate s Eeese e s e et e eeseeeEeeReemeeseeneessesbenbeaneeneeneenseneenrens 51
APPENDIX A: EQUIVALENT INSTRUCTION SUBSTITUTION [21] ..ooveiiiireeieeeiee e 54
APPENDIX B: DEAD CODE INSTRUCTIONS [21] ..eeveieieiisiesestiseeiesie e see e saesee e sesssesseesaesaenseseessnses 57
APPENDIX C: LIST OF 8086 INSTRUCTIONS [23] ..veveierierieriesteseeieiesieseseesteseeseeseeseesseseessessasssessessesessensens 58
APPENDIX D: HMM MODEL TRAINED NZ2 ...ttt sttt st nne e 61
APPENDIX E: HMM MODEL TRAINED N=Z3.... ettt e 63
APPENDIX F: SCORES OF BASE VIRUS FILES VS NORMAL FILES.......ccootiiiieeee e 65
APPENDIX G: HMM TEST WITH 15% MORPHINGccocoiiiiiiiiiiee e e e 66

vii

APPENDIX H: HMM TEST WITH 25% MORPHINGcccoiiiiiiiicineree s 67

APPENDIX I: HMM TEST WITH 35% MORPHING ..o 68
APPENDIX J: HMM TEST WITH 15% MORPHING AFTER CODE EMULATION........cccociiiviiiiiii 69
APPENDIX K: HMM TEST WITH 25% MORPHING AFTER CODE EMULATION.......cccccovviiiiiiiiin 70
APPENDIX L: HMM TEST WITH 35% MORPHING AFTER CODE EMULATIONcccociiiiiiiiieie 71
APPENDIX M: CODE EMULATOR — EXECUTION TIME ANALYSIS ...t 72
APPENDIX N: INSTRUCTION COUNT COMPARISONocoiiiiiiiiiiiiii s 73
APPENDIX O: HMM TESTS WITH MODELS BUILT WITH X% MORPHED VIRUS FILES................... 74
APPENDIX P : HMM TESTS WITH TRAINING FILES........ccoiiiiiii 80

viii

Figure 2 :
Figure 3 :
Figure 4 :
Figure5:
Figure 6 :
Figure 7 :
Figure 8 :
Figure 9:

Figure 10 :

Figure 11

Figure 12 :
Figure 13 :
Figure 14 :
Figure 15 :
Figure 16 :
Figure 17 :
Figure 18 :
Figure 19 :
Figure 20 :

Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

Figure 27 :
Figure 28 :
Figure 29 :

List of Figures

Figure 1 Polymorphic Virus Generations [15].......cciverieiieiiiie e 4
Metamorphic Virus Generations [15]......cccviveiieieiiieii e 5
Stoned Virus Search Pattern [2]cooovoiiiiiiieee s 6
Subroutine Permutation EXample [21] ... 9
RegSWap EXAMPIE [21]....oeieeiieie ettt 10
Win85 Instruction Reordering [1]c.coveveeieiiieieee e 12
GENEIIC HIMM [20].....ei i 13
Probability Based on Temperature Transition [8]ccocvvvririininiiieiene e 14
Probability Based 0N Tree Size [8]......cccviiiriiiiieieiese s 14

Resulting HMM Model [20]ooviiieeee e 15
D Training Data [21] ...eccve et 17
HMM MOGEI [21]....voeeeeeieeeeeeeeees s 17
HMM OULPUL [21] ..ottt 18
Sample HMM RESUIL [16]veeveivieiiicieceese ettt 19
HMM RESUIES [21] ..vvevieiecieeie ettt 20
HMM Results with 30% Subroutines and 35% Dead Code [16]........cccccerererirnnnns 24
Code EMUIAtor ProCess FIOWccveieiieiiiieiieie et 27
Code EMUIAtOr ArCHIECIUNE.vovieiiiecie et 28
SAMPIE VITUS FIlE ..o e 30
Class Diagram for Data Structure Maintainedccocooeriiiiininienee e 31
2 SAMPIE JUNK BIOCK ... s 32
D FIrst Pass AlGOrithmo 33
: Register Emulation through Database............c.ccoveiiiiiiicie e 36
: Opcode Frequency OF 15 VIrUS FIlES........cccoiiiiiiiiiiie e 38
- HMM Results for 40 Base Virus FIlESccoeiieiiiiiiie et 39
: HMM Test With 15% MOTIPRING......ccooiiiiice e 41
HMM Test With 25% MOIPNING.......coiiiiii e 42
HMM Test with 35% MOIPRING.......coooiiiiiiiiii e 43
HMM Test with 15% MOIPRING.......cooiiiiiiiiiiiee e 44
HMM Test With 25% MOTIPNING......cciiiiiiic e 45

Figure 30 :

Figure 31 :
Figure 32 :
Figure 33:
Figure 34 :
Figure 35 :
Figure 36 :
Figure 37 :
Figure 38 :
Figure 39 :
Figure 40 :
Figure 41 :
Figure 42 :
Figure 43 :
Figure 44 :
Figure 45 :
Figure 46 :
Figure 47 :
Figure 48 :
Figure 49 :
Figure 50 :
Figure 51 :

Figure 52

HMM scores With 35% MOFPRING.......ccviieiieie e 46
EXecution Time ANAIYSISccveiiiieiieie et 47
Instruction CouNt COMPATTSONcviiiiiiiiiiiieieiei et 48
Dead Code INStrUCTIONS [21]......ciueeieeieieieeiie st 57
HMM Test with 15% MOIphing.......cccoviiiiiiie e 74
HMM Test with 35% MOIPhiNg........ccoviiiiieiecc s 75
HMM Test with 55% MOIPRING.......cooiiiiiiii e 75
HMM Test With 75% MOIPRING.......cooiiiiiiie e 76
HMM Test with 15% MOIphing........cooviieiieieic e 76
HMM Test with 35% MOIPhiNg........c.coviiiiiiiicc e 77
HMM Test with 55% MOIPRING.......cooiiiiiiiiiie e 77
HMM Test With 75% MOIPRING.......cooiiiiiiiiii e 78
Virus Detection Rate COMPAIiSON........c.cieeieiiieiie et e esie et enas 79
HMM Test with 15% MOIphing........c.coviieiiiiicc e 80
HMM Test with 35% MOIPRING.......coiiiiiiiii e 80
HMM Test With 55% MOIPRING.......cooiiiiiiii e 81
HMM Test with 75% MOIphing........c.coov i 81
HMM Test with 15% MOIphing........ccoovoiiiiiiiic e 82
HMM Test with 35% MOIPRING.......coooiiiiiiii e 82
HMM Test with 55% MOIPRING.......cooiiiiiiiiii e 83
HMM Test with 75% MOIphing........ccovoieiiiieicc e 83
: Virus Detection Rate COMPAIiSON.........cccveiieiiiiieieciesee e se e sre e sra e 84

file:///C:/Documents%20and%20Settings/User/Desktop/carla/final/review/Sushant_Priyadarshi.docx%23_Toc294341517

List of Tables

Table 1 : Strength and Weakness of Detection Techniques [10].......ccccoveveiieiieeie e 7
Table 2 : Code Obfuscation TEChNIQUES [1]oveveriiieiiiiiieiieee e 8
Table 3 : W32 Example of Instruction Replacement [1]cccoeiiiiiininininieeee e 11
Table 4 : Probabilities of all the State Sequences [20]ccoovvvveieeiiiie e 16
Table 5 : Opcodes in Virus and Normal Files [16]........ccccovveiiiieiieieie e 21
Table 6 : List Maintained by the AIGOrithm [16].........ccocoiiiiiiiiee e 22
Table 7 : Original SUDSEQUENCE SCOTE [16]eeveieiiiiiiesii e 22
Table 8 : Subtraction and Addition of New Count [16]........ccccervererinirinininieieee e 23
Table 9 : New Score Calculation [16]........c.civviieiieie e 23
Table 10 : Updated Master LiStS [16]ccvveiiiieiieie ettt 24
Table 11 : Equivalent SubStItUtION EXAMPIEcooiviiiiiiiiiieee s 34
Table 12 : Equivalent Instruction SUBSEITULION [21].......coooiiiiiiiiieiee s 56
Table 13 : List 0f 8086 INSrUCTIONS [23] ...veeiviiieiieiecie et 60
Table 14 : HMM Model Trained N=2ooiiiiiiieieeseseee e 62
Table 15 : HMM Model Trained N=3cooioieiieeee e 64
Table 16 : Scores of Base Virus Files vsS Normal FIles ... 65
Table 17 : HMM Test With 15% MOIPhiNgcccoeoiiiiiieiicc e 66
Table 18 : HMM Test With 25% MOIPhINgccoveiiiiiiieiece e 67
Table 19 : HMM Test With 35% MOIPhINGccooiiiiiiiiiiieeeee s 68
Table 20: HMM Test with 15% Morphing after Code Emulation............ccccocvvviiiiiiiencnenenn, 69
Table 21 : HMM Test with 25% Morphing after Code Emulation..............cccccoevveveiiciecieeen, 70
Table 22 : HMM Test with 35% Morphing after Code Emulation..............cccccoevvveiiicieeceeen, 71
Table 23: EXeCUtioN TIME ANAIYSIS........oiiiiiiiieieie it 72

Table 24

INStruction CouNt COMPATTSON........cuiiitirieitesti sttt 73

Xi

1 Introduction

A computer virus is a computer program that can copy itself and infect another program [7]. A
virus in an executable code form can spread from one network/system to another [12]. Once a
virus attaches itself to a program, each time the program runs, the virus file is triggered and is

executed on the host machine. This process can result in additional infections.

In general, viruses can be classified based on target and concealment strategies [9]. Viruses
based on target can be Boot-Sector Infectors, File Infectors and Macro Infectors. And different
strategies on which viruses are based upon are encryption, stealth, oligomorphism,
polymorphism and metamorphism. Virus is typically used to describe other type of malwares
such as Trojan horses, worms, etc [31].

Anti-virus techniques include both static and dynamic approaches [9]. These techniques have
relative weaknesses and strengths and the effective combination of these techniques can yield
stronger detection. Scanners, Static Heuristics and Integrity Checkers form the static approach

whereas Behavior Monitors and Emulation form the dynamic approach in anti-virus techniques.

Signature detection is the most common method implemented in anti-virus products [32]. A
signature is essentially a “bit pattern” which is characteristic of a given virus family [33]. Ideally,
the signature is not common in other software. Signature detection is relatively fast and effective,
but it cannot detect new and unknown viruses, since signatures must be available prior to the
detection. Since signature detection is the most popular technique, virus writers have developed
many innovative techniques to evade signature detection. The most advanced such technique is
the use of metamorphic code that has the ability to morph its internal structure (but retain its
function) at each infection. Well designed metamorphic viruses cannot be detected using

signatures, since there is no common signature available.

The aim of this project is to develop an anti-virus mechanism based on code emulation, and
specifically aimed at improved metamorphic detection. The advanced metamorphic virus
generator in [16] injects dead/junk code from non-virus files into its morphed copies, which
makes signature detection fail. This code injection also causes the HMM-based detection in [8]

to fail, which is noteworthy since the technique in [8] was able to successfully detect all hacker

produced metamorphic viruses on which it was tested.

The emulator developed for this project will implement a virtual machine that will be used to
record the execution of a virus file in a simulated environment and thereby remove the dead
code. To test the effectiveness of our emulator, the output of this virtual machine will then be

used as input to the HMM tool developed in [8].
This paper contains the following section:

e Section 2 contains the evolution of computer viruses and their types.

e Section 3 discusses over the various anti-virus technigues.

e Section 4 shows various code obfuscation technigues.

e Section 5 deals with the HMM about its overview, example and how HMM is used as
anti-virus.

e Section 6 and 7 discusses about the metamorphic engines developed in [21] and [16].

e Section 8 gives the details of code emulator like architecture, algorithm and
implementation.

e Section 9 shows all the experiments and their respective analysis.

e Section 10 discusses few weaknesses of our code emulator

e Section 11 draws conclusions and also discusses future enhancements

2 Virus Evolution

The evolution of virus started with an academic project done by Fred Cohen in 1983 after which
Len Andleman came up with the term “virus” [9]. Cohen is also considered as the “father of
computer viruses” though there were viruses before this period. One of the first successful
viruses was the “Creeper Virus” which was written by Bob Thomas in 1971. Creeper was able to
make copy of itself and propagate through ARPANET [12].

As the internet usage increased, more and more viruses started pouring into the network and

infecting computers all over the world at very high rate. According to network security experts,

2003 was the “year of worm” [13]. There has been surge in number of viruses and also in

research of the anti-virus development.

2.1 Stealth Virus

Stealth viruses use a smart approach to defeat anti-virus products. It basically intercepts all the
calls made by the anti-virus programs to the host machine’s operating system and then returns
back the instance of a “clean” file. Frodo, Whale and Brain are some of the more popular stealth

viruses [9].

2.2 Encrypted Virus

One of the advanced methods that the virus writers use to hide their viruses is by encrypting the
virus body with different keys. So, a virus file will have two parts in it — the encrypted body and
the decrypting module [28]. Since the virus is being encrypted with different encrypting keys
each time, a virus scanner based on signature detection cannot detect it. The only way out is to
do an indirect detection by detecting the decrypting module which will always remain constant.
For example, a simple XOR operation of each byte of a virus file with a key will encrypt the
virus file. And again applying XOR operation on the encrypted virus file will decrypt it [8].

2.3 Polymorphic Virus

Polymorphic virus is just like an encrypted virus with the difference being in the decryption
module. The decryption module also gets changed/mutated after each infection and thus there is
no common part between different copies of same virus [30]. Also, polymorphic viruses can
generate many unique decryptors and can use many other encryption methods for encryption [8].

The Figure 1 illustrates various polymorphic virus variants [15].

ODIFFERERT GEMERATIONS DEZRYFTED viIR=s
OF A FOLYMORFHIC YIRS EOCry

b7 ST ﬁ’;,s/;’
;,-"' e St
B ///f
4 Fe" - j=:--‘ .-fFH

% G

;. .

“ “w%w?wt 7

i .
o ww%@:ww o ,r%_,.—-

Figure 1 Polymorphic Virus Generations [15]

o
3
S
\1&\1
i

2.4 Metamorphic Virus

As opposed to a polymorphic virus where virus writers were trying to hide the decrypting
module, more advanced techniques were developed enabling the virus writers to change the code
of one virus file and create multiple morphed copies but preserving its functionalities [6][29].
These are the type of viruses which have the ability to mutate itself with the code changed but
without changing its functionalities. Metamorphic virus can become a serious threat considering
the fact that there can be thousands of variants of one virus file with their signature being totally
different. Metamorphic viruses uses different kind of code obfuscation techniques like inserting
dead code, register swapping, equivalent code instruction insertion, etc to create morphed copies
of any base virus file [15]. These obfuscation techniques helps in changing the virus signature to

avoid signature based detection. Figure 2 shows the generations of metamorphic virus [15].

*‘“’q‘:

_:,:l

'5‘ P
T fh.-tf" "'t"" jﬂ‘_'g'"l-: .
;iv ga s;:a;;wk e

Figure 2 : Metamorphic Virus Generations [15]

3 Anti-Virus Methods

The anti-virus mechanism used today has to fulfill three functionalities so that they can locate
any virus. The three parameters are detection, identification and disinfection. Detection part
mainly deals in checking whether a given code is malicious in nature or not, based on the virus’s
behavior or appearance. The second parameter is identification, which identifies a detected virus
based on the virus family it belongs to. The third and the last parameter is disinfection or
cleaning which is removal of the detected and/or identified virus. This project deals with the

detection phase.

Detection methods can be divided into two sub-parts which are dynamic and static detection.
This categorization is based on the fact whether the virus file is being executed on the infected

machine or not.

3.1 Signature Based Detection

Each virus is represented by a pattern which is a sequence of bytes. Most of the viruses are
uniquely characterized by these bytes of patterns. The anti-virus software scans the part of file or
the whole file or the boot sector in search of this pre-determined signature of any known virus.
Considering the fact that the false alarms in this type of detection will be less, this method is
most commonly used in the anti-virus products available in the industry. The downside of this
method is that it cannot detect a new virus, since its signature will not be saved in the database.

For example, if the signature of an input file is 83EB 0274 EBOE 740A 81EB 0301 0000, then

the scanner will search in the database for this value and will show that it’s a W32/Beast virus

[2]. Similar to this, a Stoned virus can be detected as shown in Figure 3.

seq008:7C4D BE |84 80 nw =i, b + Try it 4 times
seq00g:7C4A :

SE0AG;TLY

caqiig: fCh3 HHH ; CODE XREF: sub JC3IA+2T)]
eqOBd:TCha noy a, | + Fead one seckor
seq0ag: 7E4G push €5

SE0Ag:TLYT fop E5

ceqiag: Ty ASSUNE P ceqiag

ceqOBd:TChe nov bx, 3 to hore
seq0Ag: 7C4E xor Cx, CX

seq0ag; 7LD iy %, Cx

ceniag: TLaF inc o

ceqiag:fC5A pushf

seqOfd:7651 2E FF AC 49 @0 call dword ptr cs:9 ; int 1]

seg0Rd; 705G 73 9E jnb shork Fipe

ceqima:7cs8 33 oo Lor A%, ax

caqiid: 7C5A O pushf

seqObd:7C70 2E FF AE 62 @0 call dword pkr cs:9 ; int 11
seqORd:7Ca0 4E dec s

SeqOAR:TLAT 75 ED ne shork negl

ceqlpd:vCe3 EB 35 jnp short giveup

Figure 3 : Stoned Virus Search Pattern [2]

3.2 Heuristics

This method looks for code having “virus-like” behavior (abnormal activity) and can easily find
known or even unknown viruses [9]. It is a static analysis, which means that the code being
looked for “threat” is not being executed on an infected machine. Heuristics analysis is done in
two steps [9] — Data Gathering in which the data is collected using many heuristics and Analysis
in which the techniques like data mining, expert systems or neural networks can be used to

analyze. Heuristics method may give false alarms but it is effective in finding new viruses.

3.3 Code Emulation

Code emulation is a technique in which a virus is allowed to execute in a simulated environment
without actually impacting the host machine. This is a dynamic analysis method as the code of
the virus is run to see its behavior. A good emulator comprises of five functionalities [9], which
are CPU emulation, Memory emulation, Hardware and Operating System emulation, Emulation
controller and Analyzer. Code emulation is a good method to find new viruses including the
metamorphic virus. Table 1 lists the various weaknesses and strengths of various detection

methods.

Detection tec hnique Strength Wealmess
Signature based Efficient New malirare
Anemaly based New malware Costly 1o anplement, False

Posttrves, wnproven

Ermlation hasad Encrypted vimses Caostly to implement

Table 1 : Strength and Weakness of Detection Techniques [10]

4 Techniques Used for Code Obfuscation

Code obfuscation techniques can be used by programmers to conceal any logic or purpose by
making the code difficult to understand. In the world of viruses, use of these techniques is a boon
for any virus writer to make the viruses hidden from the anti-virus software. Metamorphic

7

engines execute many code obfuscation techniques which allow them to evade signature based
detection. These techniques help metamorphic engines to create many morphed copies of a

single base virus file.

For assembly programs, code obfuscation basically works over the data section and the control
flow [1]. Insertion of jJump statements to change the flow of execution is involved in Control
Flow obfuscation whereas, dealing with register renaming, subroutine permutation, insertion of
dead code constitutes code obfuscation techniques related to the data section. Table 2 shows the

code obfuscation techniques used by the well known metamorphic viruses [1].

Evor [ZLMieT|ZPERM|RECSWAP |METAFPHOR
(L0000 | (2001 | (20007 [(2000) (2001)
Instruction Substitution v
Instruction Permutation v v v
Dead code Tnsertion v v "4
Variable Subsatitntion ¥ v v v
Changing the Control Flow v v v

Table 2 : Code Obfuscation Techniques [1]

4.1 Subroutine Permutation

This is a very basic technique used for code obfuscation wherein, the subroutines are reordered
/shuffled around using instructions such as jump and label without impacting the subroutine’s
functionality (Figure 4 shows one such scenario). So, if any program is having n number of
subroutines, then all the subroutines can be reordered in n! (n factorial) different ways.
W32/Ghost virus [1] had in total 10 subroutines which gave it the capacity to reorder its
subroutine in 3,628,800 ways.

EP —p 1 A - 2

2 r’ \\ /‘ |
\J"/l
k) ,/\ \ 3
\ /\/
\ / \
4 a4 / 1 — EP
.\ ./
\ /
N
5 | / - &)
\‘_ ‘.('" ‘-I‘- d
>
65 / \\\\I. o~ 7
7 -/ \ ¥ 5
/ \
[
/ \
8 / Y 3

Figure 4 : Subroutine Permutation Example [21]

4.2 Transposition

Modifying the order of execution of instructions in any program is called Transposition. This
method can be only applied to a set of instructions which do not have any mutual dependencies.
If the output of first instruction is not taken into account by the second instruction, then these two

instructions can be swapped as their order of execution will not impact the program’s function.

In order to swap two instructions, say instruction one is ADD R1, R2 and instruction two is

MOV R3, R4, one needs to make sure that the following rules are satisfied [3]:

1.R31= R2
2.R31=R1
3.R41=R1

For example, instructions MOV A, B and ADD C, D can be swapped based on the above given

rule as it would not impact the outcome of the program.

4.3 Register Swapping

This method modifies the current registers used in a particular instruction by swapping it with
another equivalent register, which is helpful in evading signature detection as this changes the
opcode pattern. W95/RegSwap virus [4] used this technique extensively. An example of two

generations of RegSwap appears in Figure 5.

a.)

5L pop erlx

EFm4 000000 i laks 2dl, 00040

il i) o e31, b

BanCoonoon wov eaR,000CHh

f1c:agnno0nn F={ali } edx, 00860

8ELL mov e, [edx]

f93CcsS1A110000 i nkTS [Esi+ear 4400001 115] , ehx
b.)

56 pogp B

BEEO4 000000 oV e, 00040

8ED 5 oo edx, ehp

BFOCO00000 wov edl,000ch

flcodsnnonnm il Pax 00860

8530 vy esi, [eax]

f9R4EL18110000 o [Edx+edl v44+00001115] ,esl

Figure 5 : RegSwap Example [21]

4.4 Instruction Substitution

Metamorphic engines use this technique very commonly for generating highly morphed virus
copies. The idea of this method is to replace instruction (even group of instructions) with an
equivalent instruction [6]. In assembly language, instruction “add eax, 1" can be replaced with

“inc eax”. A few examples used by W32/MetaPhor [1] are shown in Table 3.

10

Single Instruction (Instruction block

XOR Reg,Reg MOV Repg,0
FUSH Tmm

FOF EReg

MOV Mem,Reg
OF HReg,Regl OF Hem,Reg2
MOV EReg,Mem

MOV Reg,Imm

Table 3 : W32 Example of Instruction Replacement [1]

4.5 Insertion of Junk/Dead Code

Most of the metamorphic engines insert junk or dead code in the virus file to vary the signatures
of individual virus files morphed from a base virus file. This technique is very effective if used
within a certain limit. Inserting dead code beyond a particular point triggers an abnormality
which can be easily detected by intrusion detection systems. If an instruction or group of
instructions has been inserted, which might be executed but does not alter the functionality of the
program, it can be termed as “do nothing code”. Instructions like “push eax” followed by “pop
eax”, if executed, will not affect the program’s normal functionality. And if an instruction or
block of instructions which has been inserted after a unconditional “jmp” instruction to the next
authentic/actual instruction, then this inserted code is called “dead code” as these instructions

will never be executed.

The Win95/Zperm is one of the virus which has used this technique in order to create

metamorphic copies [1]. Figure 6 illustrates an example of instruction reordering.

11

Instzuction 4 ¢ [netrustion 2 ¢ [nstruation

Instruction § inp — [nstruetion

ap 3AoATS inp :

garbage Tustruction J ¢ ga1bage _]

start Inp [nstruction *

[nstyvetion | ELY b L np

Instzucticn & [ngtrustion § e=t-t— start

np 18p instruction |

TArbage] start inp

Instruction 3 [pstruction | garhags]

Jay — y — Cos b Liun

garbage [notyuction 4 & Inp —-
np . garbage

Figure 6 : Win85 Instruction Reordering [1]

5 Hidden Markov Model

5.1 Introduction

A Markov process in probability and statistics is a random phenomenon dependent upon time for
which the phenomenon holds a specific property [19]. Hidden Markov Model (HMM) is a tool
based on pattern analysis. In this analysis, the system which is being modeled is nothing but a
Markov process. A few areas where HMM is used are bioinformatics, protein modeling, gesture

recognition and speech recognition applications [10].

First, HMM is fed with an input/training data. HMM then tries to extract a list of unique symbols
from the training data. In addition, it also identifies their respective positions in the training data.
The data obtained by these extractions and identifications is treated as a model with which HMM

will determine whether there is similarity of pattern between the model and a new set of input.

The HMM makes use of the following notations [20]:

12

T = Length of the observed sequence

N = Number of states in the model

M = number of distinct observation symbols

O = Observation sequence

A = State transition probability matrix

B = Observation probability distribution matrix

1t = Initial state distribution matrix

Figure 7 depicts the HMM in generic form [20]. The state at time t is represented by X; and O;
represents the observation at time t. The dashed line shows the Markov process which is
calculated based on State transition probability matrix and the initial state X,. For every state, we
have an Observation sequence representing the Markov process’ actual states by the matrices -

Observation probability distribution matrix (B) and State transition probability matrix (A).

A | . /
‘\[-_1['1-;!_-\' process: _\-“ - _\’] - -\'_, e - -Xx'~1

Observations Op o)) (o Ve Or_

Figure 7 : Generic HMM [20]

5.2 HMM Example

The inner working of HMM is illustrated through an example in [8]. Lets assume about the
annual temperature of any given place. It can be either cold (C) or hot (H). One can determine
the annual temperature of any year in the future by observing the various size of the trees (size
can be Large-L, Medium-M or Small-S). To solve this problem, we have the following

information :

13

a. The probability of a hot year occurring before a cold year is 0.4 or the probability of two
consecutive hot years is 0.7. The probability of a cold year occurring before a hot year is
0.3 or the probability of two consecutive cold years is 0.6. Figure 8 shows the

probabilities’ matrix.

H (!
I 0.7 0.3
- 4 0.6

Figure 8 : Probability Based on Temperature Transition [8]

b. This information deals with the temperature and tree size (Large-L, Medium-M or Small-
S). The probability of tree being small in a hot year is 0.1 and small in a cold year is 0.7.
The probability of tree being medium in a hot year is 0.4 and medium in a cold year is
0.2. And the probability of tree being large in a hot year is 0.5 and large in a cold year is
0.1. The matrix representation is shown in Figure 9.

5 M L

d | 01 04 0.5
Lo 0.2 01

Figure 9 : Probability Based on Tree Size [8]

Now correlating the above information with the HMM notations here, its states are represented
by the annual temperatures. The observable symbols are identified as tree sizes. In each state, the
probability of observation symbols are represented by tree sizes at each temperature. Figure 10
shows the resulting HMM model [20].

14

0.3
0.3 o ==
] o4 o ok \ 0.6
0.4 i
—4 Hot 'P—{ Cold |
e ol ol .
/ s -f 0.1
, X CZ
, I ¢ K \
T o~ SR S .
04N,/ 0.6\
Small Medium Large

Figure 10 : Resulting HMM Model [20]

For a given observation like (S,M,S,L) having length T=4, to determine the state transition, the
HMM would perform the following steps :
1. Determine N', which are the state transitions.
2. Now for each state transition (4 in this example), calculate observations sequence’s
probability [8].

P(HHCC) =My 8 bH(S) * dHH * bH(hD * dyc 8 bc(S) * acc * b((L)
= (0.6) * (0.1) * (0.7) * (0.4) * (0.3) * (0.7) * (0.6) * (0.1)

=0.000212

Table 4 shows all the probabilities.

15

stale sequence probability
HHHH 0.000412
HHHC 0.000035
HHGH 0.000706
HHCC 0.000212
HCHH 0.000050
CHG 0.000004
HUGH 0.000302
HCCC 0.0000291
CHHH 0.001098
CHHG 0.000094

L HCH 0.001382
CHOG 0.000564
COGHH 0.000470
CCHC 0.000040
CCCH 0.002822
ZLGG 0.000847

L prooability 0009629
max praobability 0.002822

Table 4 : Probabilities of all the State Sequences [20]

3. From the Table 4, we can see that the maximum probability is 0.002822. This
corresponds to “CCCH” which is the most probable annual temperature sequence.

5.3 Detecting Metamorphic Virus using HMM

To detect a metamorphic virus using HMM, we need training data. This training data is nothing
but virus files generated from same virus generator, and converted to .asm file (assembly files)
using IDA Pro [22]. HMM needs a unique observation sequence and observation symbols to
train a model. Concatenating the opcodes of viruses will give the unique observation sequence
and unique assembly opcodes forms the observation symbols. For example, considering the

training data in Figure 11, HMM model can be constructed as shown in Figure 12.

16

7 B MDA

Bl Edt Toc

QD

54

LR

Fle Edt To

aRR

w
(X}
-

call

[pop
sub

e

nov
ipush
or
jz
lea
neq
inot
dec
add
cmp
jnz
inc
xar
ishr
rer
inb
rol
popa
retn
imp

(a) Unique Symbols

S0 aNFaFaAaFE NS a

(b) Observation sequence

Figure 11 : Training Data [21]

(- A1V At o (= b G S s A oy v

Bl Edt Toolp Syntax Euffers Window Help
o 1=

ARG BRB(SHHE THRO 7R

I:

O-3. W=5u, T-333%

1. BRBRARARAARAEAR

A 75617967996

0. BSaTE27T201

A 1A FALTRANGE D
all a.16029R2 165817 a4
op B 11337 MGZYRTO6 S
ub 0. aEy22611286381
oy A, B3RO 2NSPAALLET
ush 8. 3BRAEDOBLMLAC2RE
[a. panpapanRanaan
z 0. ppnReBDBERDREN

lea B, BIRA3ER1ATREGA
=] H. BEZ2 1R BRI 166
ot a.a17a16583R178

BC

0. B G617 T esTTEY

A. AERRARARAARBAGE A. BABRARARAAAAGE

a.B3ITIR19E9 15412 B 2111588 2116590

Q. 830IBGEZI5RUTE B.BF39n22 6563295

H. A7 TS ABGRA ARG T B R1D7RNE RALEIGY
8. a3258ARG95 1896 B BI716ASHE12302
L LG LR LD B B335 15T TUED
Q. AF267169820262 B B6SY P TALINTES
A, BRPASD20OL Bk B L3BS TR RAGAT AR
4. pARRaRBABAaRRAR B BINLGSIAEARCRD
A. 811387012 494y B.a1198291194381
0. 13995532483 008 B.PapRopeRRRBRED
H. BE1S21808 /LR AR B.BBE7RALADRAID
. mZADEFRADIIAG L RRt e R e N L
a. 1138050 BRLLEY B.DAREaca2as 1981
0. BGEGSBNZ RIS B TS 3ZRISNZRZ

Figure 12 : HMM Model [21]

17

After constructing the model for a particular virus family, now HMM is used to check whether a
particular virus belongs to that family or not. The HMM would produce the result as shown in
Figure 13.

L SOMBAN NP D e or e (AP0 S =G5 20735,
B Edit Tock Syniax Buffers Window Help
AdRas 2@ o ™ S =

Result/168 _TDAN N2 EB.score

Files in the samne fandily:

1DANG
1DANT
1DAN2 ~-2_8560531805089328
IDANT -2 _684675694L49917

TDANK -2.78985333757361

Files not in the family (normnal files):
1DARG -20.3522145949011

IDAR2 ST
IDARY ~-27 6756861283017
TDARK =-22.7756h607 78066

Figure 13 : HMM Output [21]

Considering a threshold value of -4.38, the virus files IDANO, IDAN1, IDAN2, IDAN3 and
IDAN4 belongs to same virus family as their scores are greater than the threshold. The other files
have scores less than the threshold, so they cannot be considered as belonging to the same virus
family.

5.4 HMM Results Observation

200 viruses generated by Next Generation Virus Creation Kit in [8] were tested with HMM. In
total, 25 models were trained and used to differentiate non-virus (normal files) from that of 200
virus files. Out of 25 models, 23 were able to identify normal programs depending upon their
scores, which meant NGVCK viruses were easily detected. Figure 14 shows an example of a

result which shows the difference of scores between the normal files and the virus files [16].

18

2 o o™ rax
-~

Family Virus

-
B ®Normal Files

Figure 14 : Sample HMM Result [16]

6 Metamorphic Engine

A metamorphic engine was developed in [21], which used many code obfuscation techniques to
produce highly morphed copies of any base virus file. These morphed copies were made by
copying codes from normal files which were Cygwin utility files. The metamorphic generator
used code obfuscation techniques such as dead code insertion, NOP sequence insertion,
equivalent instruction substitution and transposition. Special algorithms were developed to
incorporate the above discussed code obfuscation techniques. The morphed virus copies were
then tested against the commercial virus scanners and later with the Hidden Markov Model

developed in [8].

The experiments conducted with the commercial available anti-virus scanners were very
successful. The tests showed that the base virus file was detected by the anti-virus products and
thus quarantined. But when the anti-virus scanners were tested against the morphed copies, it

failed. The scanners were not able to detect the morphed copies of the same base virus file which

19

was detectable and thus showing the high level of metamorphism created by the metamorphic
generator.

Then the morphed copies were tested against the virus detection tool based on HMM. For one of
the test case, 90 virus files were used to make HMM model and then 30 virus files were tested
against this generated model. Even with high degree of metamorphism involved, HMM was

successful in differentiating between the normal files and the virus files as shown in Figure 15
[21].

Figure 15 : HMM Results [21]

20

7 Improved Metamorphic Engine

Even though the metamorphic engine developed in [21] as discussed in previous section was able
to develop highly metamorphic virus files, HMM developed in [8] was able to classify the virus
files into the same virus family. This drawback of the metamorphic engine developed in [21] was
because the engine was randomly applying code obfuscation techniques. Therefore, an improved
version of metamorphic engine was developed in [16] to remove this randomness feature. A
scoring algorithm known as Dynamic Scoring Algorithm was developed [16], which basically
made sure that the code obfuscation techniques are applied only if they make the virus file look

like a normal file/program.

7.1 Dynamic Scoring Algorithm
The Dynamic Scoring Algorithm developed in [16] has been mainly divided into three steps :
1. Algorithm Initialization - After passing a virus file and a normal file as parameters, four
master lists are created. These lists maintains the information which are individual
opcode count and opcode-pair counts of both the normal file and the virus file. Consider

the opcodes as shown in Table 5 as present in the normal and virus files.

Virus opeode Normal file opcode
Mov Mov

Add Mov

Mov Sub

Pop Pop

Fetn Fetn

Table 5 : Opcodes in Virus and Normal Files [16]

Then the four lists generated by the algorithm will have the following contents as shown
in Table 6. The algorithm also computes the difference between each opcode-pair and

opcode count and adds them.

21

Vs opeode | Nommal file difference WVires opcode-pair | Normal file difference
count list cpcode connt count list opcode-pair count
list list

Mov (2) Movw (2) 0 Mov_add (1) Mov_add (0) 1

Add (1) Add (D) 1 Add mov(l) Add mow(0) 1

Pop (1) Pop(l) 0 Mov_pop(l) Mov_pop{0) 1

Retn(1) Retn(l) 0 Pop_retn(1) Pop_retn(1) 0

Sub (0) Sub (1) 1 Mov_mow(0) Mov_mowi(l) 1
Mow_sub{0) Mov_subil) 1
Sub pop(0) Sub pop(1) 1

Table 6 : List Maintained by the Algorithm [16]

2. Score the Changes - Before making any change permanently, a new score is calculated to

see whether the new change will bring the virus file closer to the normal file or not. A

score less than 0 make the virus file closer to the normal file. An exact score of 0 means

there is no change. A score more than 0 mean that the virus file and the normal file is less

similar to each other. For example, if “add mov” is changed to “mov add” after

transposition, the two opcode sequences passed will be “mov add mov pop” (which is

original subsequence) and “mov mov add pop” (which is the new subsequence).

A change in score is computed as following [16]:

a. Calculate and save the to-be-affected-counts. Table 7 shows this calculation.

The to-be-affected score in this case will be 5.

Tobe-affected | Nommal file | Difference | To-be-affected | Normal file Difference

Vims opeode | opeode count | before Virus opeode-pair | opeode-pair count | before

counf list list changes count list list changes

Mov (2) Mov (2) 0 Mov add (1) Mov add (0) 1

Add (1) Add (0) l Add mov(1) Add mov(0) l

Pop (1) Pop(1) 0 Mov pop(1) Mov pop(0) 1
Mov_mow(0) Mov_maov(1) 1

Table 7 : Original Subsequence Score [16]

b. From the master list, subtract the original subsequence’s respective counts.

22

c. Counts of the new subsequence should be added to the master lists. Table 8

shows the steps b and c. Notice that the “Add_Pop” is the new counter in the

table.

Subtract criginal Add new Subtract original Add new subsequence
subsequence subsequence opcode-pair count list | opcode-pair count
Mo (2-2=0) Mov ((H2=2) Mov_add (1-1=0) Mov_add ((H1=1)
Add (1-1=0) Add (0+1=1) Add mow(1-1=0) Add mow((H0=0)
Pop (1-1=0) Pop(l+1=1) Mov_pop(1-1=0) Mov_pop(0=0=0)
Mov_mow(0) Mov_mow{H1=1)
Add_pop(l)

Table 8 : Subtraction and Addition of New Count [16]

d. Now compute the affected counts. Table 9 shows that the new score will be 3

and the original score was 5, which indicates that if the transposition is done,

then the virus file will become closer to the normal file by 2 points.

New Virus Normal file Difference new Vims opcode | Normal file Difference
opcode count | opcode count | affer changes | sequence count opcode sequence | after changes
List List list count list
Mow (2) Mow (2) a Mov_add (1) Mov_add (0) 1
Add (1) Add (D) 1 Add maow(0) Add mow(l) 0
Pop(l) Pop(1) a Mov_pop(0) Mov_pop(0) 0
Mov_mew(1) Mov_mow(1) 0
Add pop(l) Add _popi) 1

Table 9 : New Score Calculation [16]

3. Updating the changes - This step deals with making the changes in the master list

permanently. The master score now will decrease from 8 to 6 as the score was improved

by 2. Table 10 shows the updated master lists .

23

Vius opeode | Nommal file difference WVires opcode-pair | Normal file difference
count list cpcode connt count list opcode-pair count
list list

Mow (2) Mov (2) a Mov add (1) Mov_add (0) 1

Add (1) Add (D) 1 Add mow(0) Add mow(0) 0

Pop (1) Pop(1} 0 Mov_pop(0) Mov_pop(0) 0

Retn(1) Retn(l) 0 Pop_retn(1) Pop_retn(1) 0

Sub (1) Sub (1) 1 Mov_mow(1) Mov_mov(1) 0
Mov_sub{0) Mov_subil) 1
Sub pop() Sub pop(l1) 1
Add pop(1) Add_pop(0) 1

Table 10 : Updated Master Lists [16]

7.2

The improved metamorphic generator was successful in evading HMM detection. It was possible

Experimental Results

only by generating highly morphed viruses and also maintaining the similarity between the virus
file and the normal file, based on the Dynamic Scoring Algorithm. Figure 16 shows one of the
test case result, which depicts the failure of HMM to classify correctly between the virus and

normal files..

35% dead code
block, 30% sub-
1o routine, N=3x% 35

w L ¥ o EEEEEE EEEEEE

- = BN S b Family Virus

b ®Normal Files

w

Figure 16 : HMM Results with 30% Subroutines and 35% Dead Code [16]

24

8 Code Emulator for Metamorphic Code Detection

8.1 Introduction

In general, the code emulator should have the ability to run the virus code being analyzed in an
emulated environment. In this way, there is a very high chance that the virus will expose itself
about its functionalities. Using virtual flags and registers, the code emulator will run the
instruction set of the CPU. Even though code emulation may be a costly solution, but given the

task at hand to detect the metamorphic virus, it can be a very effective solution in the long run.

In order to implement a metamorphic virus detector though code emulation, we had to make sure
that most of the code obfuscation techniques were taken care of. Code obfuscation techniques
such as equivalent code substitution, dead code insertion, junk block insertion and dead
subroutine insertion were the primary targets of our code emulator. The aim of our code emulator
is to bring the morphed copies of virus file as close (statistically) as possible to the base virus
file. By doing this we can make sure that when these un-morphed copies are given as an input to
the HMM, it will detect them with ease.

8.2 Goals
The main goals that we wanted to achieve through the implementation of code emulator are:

1. The code emulator should implement as many assembly level language instructions
as possible.

2. The code emulator should have the capability to emulate all the important CPU
registers.

3. The emulator should be able to filter out or change the instructions/subroutines,
which are because of code obfuscation techniques such as: equivalent code
substitution, dead code insertion, junk block insertion and dead subroutine insertion.

4. The emulator should also preserve the basic functionality of the virus program.

5. The code emulator should try to bring the un-morphed copies closer to the base virus

file “statistically”.

25

8.3 Experimental Process

In an effort to detect the metamorphic virus or to generate the metamorphic virus, significant
background research and work has been done previously. A logical gap was developed in the
continued research between the developments of HMM [8] and the metamorphic code generator
[16]. So where does exactly our code emulator will fit in? To get the complete picture, Figure 17

shows the entire flow of actions that will be taken to test and validate the results.

For our research, we need two types of data which are the virus files and normal files. For virus
files, we used the Next Generation Virus Creation Kit (NGVCK — Version 0.3 stable released on
June 2001) to create 200 virus files [25]. These generated virus files were named from “IDANO0”
to “IDAN199”. For normal files, we chose Cygwin utility files [25] which were randomly
chosen. These utility files have pretty much same low level system functionalities as the virus
files and thus are ideal candidates for comparison and morphing. These normal files were named
from “IDARO” to “IDAR39”.

1. We collected 200 virus files belonging to the same family generated by the NGVCK.
These virus files are the base virus files which will be used in our project.

2. IDA Pro [22] is used to dissemble the files into .asm virus files.

3. Out of those 200, 160 virus files are used to make models for the HMM, which will
be used later for detection.

4. Remaining 40 virus files and 40 normal files are taken as an input to the metamorphic
code generator developed in [16], which are used to create highly morphed copies of
all the virus files with different morphing percentage.

5. Once we have a collection of morphed virus files, we feed those files into our code
emulator.

6. The output of the code emulator will be un-morphed virus files which will be served
as an input to the HMM.

7. The HMM on its behalf will now try to distinguish these virus files based on the
model which we had constructed in step 3.

8. The last step will be to analyze the different scores given by the HMM.

26

Wirus Files of

NGVCE

Same Family

¥

IDA Pro Cygwin utility
files
Diiszemble
¥
LT } :.asmﬁles ,:
a- ¥ ¥
1&0 Virus Files 40 Virus Files 40 Normal
for HMM for test Files
Model

L

Metamorphic Engine

l

..-"f. Morphed Virus \\

Files

Unmorphed
irus Files

Scores

{Results/Analvsis]

8.4 Architecture

8.4.1 Introduction

Figure 17 : Code Emulator Process Flow

One of the main goal for the development of code emulator was to have a robust architecture,

where proper subsystems were identified. We tried to ensure that though implementing the code

27

emulator is complex, each layer or subsystem is built over relatively clean and simple concepts.
Since the code emulator will be having lot of interaction with the files system and database, we
chose to implement the emulator in JAVA because we needed a better hold and greater
flexibility over the program and the data. The code emulator has been basically divided into
seven main components like Execution Path Recorder, Equivalent Instruction Substitution
Finder, etc. Figure 18 shows the overall architecture of our code emulator displaying the various

components involved.

CODE EMULATOR
Execution Path
Recorder D
A
T
F A
I 7N
t Junk Block or Junk ’2
Subroutine Finder c k_/
File System | H E | Database
(Virus Files) A s | " (Registers)
N S
D
L Equivalent Instruction L
E Substitution Finder A v
R Y
E
R
Dead Code Finder
Detector

Figure 18 : Code Emulator Architecture

28

8.4.2 Components

The various components of our code emulator has the following functions:

1.

Database Access Layer — This layer has been implemented based on the Singleton
Pattern [27] to have more efficiency. The data access layer provides a database
connection to all the other requesting components. The singleton pattern makes
sure that the only one instance of the class is created, and thus providing global
point of access to the database’s object.

File Handler — This component deals with the writing and reading of various virus
files. These operations of accessing file system has been given exclusively to this
component.

Detector — This module is the main component where the instructions read from
the file are passed. This component has been designed as per the Code Emulation
Algorithm. The main task of this component is to act as a controller, which
decides over which component will be executed next.

Dead Code Finder — This module is responsible for finding the dead code as per
the Code Emulation Algorithm. This module maintains a list of already known
series of dead code instructions through which it finds the equivalent dead codes
in the virus file.

Equivalent Instruction Substitution Finder — This module is responsible for
finding the equivalent instructions based on pattern matching.

Junk Block/Junk Subroutine Finder — This component finds all the subroutines
which are not called from anywhere and marks them appropriately.

Execution Path Recorder — This module is the last one to be called by the
Detector module. This is where the emulation takes place and along with, it also

marks all the instructions which have been executed.

8.5 Code Emulation: The Algorithm

8.5.1 Introduction

To make sure that our code emulator is following a specific path or process, we came up with an

algorithm known as the Code Emulation Algorithm. This algorithm consists of steps specific for

29

a certain types of code obfuscation techniques. Keeping in mind the various code obfuscation
techniques that needs to be handled, the algorithm is designed to make couple of parsing before

the actual emulation of registers take place. The sections below explain the steps in detail.

8.5.2 Initializing the Data Structure

As a first logical step, virus file will be read into a particular data structure. So it was important
to have a data structure defined for our emulator, which should be easy to handle and maintain.
One observation which was very much evident from the disassembled virus files was the way the
instructions were laid out. Every location/subroutine individually had a different set of

instructions as shown in the Figure 19.

loc_40105F: ; CODE XREF: CODE-004013E2]
mov ebx, 31h
sub ehyx, 10h
mov eax, offset dword_401480
mov ss:dword_4014CE[ebp], ebx

add eax, ebp
call sub_401131
inc £ax
jz short loc_401096
sub_401114 proc near ; CODE XREF: CODE-0040108CH

jmp loc_101%de
lea edi,dword_401402[ebp]
push edi
push 0O
pop edx
add edx, ss:dword_4014BA[ebp]
push edx
call ssodwaord_401460[ebp]
jmp loc_101%fe
sub_401114 endp

Figure 19 : Sample Virus File

So, we maintained a separate JAVA class for each location where it was populated with their
respective instructions and opcodes saved as array lists. We also maintained separate flag for
each location (at class level) and also for each instruction. The respective flags were made true if

a particular location/subroutine is called and/or if a particular instruction is executed. This was

30

the optimal way to keep track of all the instructions being executed. Figure 20 shows a

representation of the class with a few methods included.

LocationSaver

{gVisited: Boolean

-nstructionList<5tring=: ArrayList
-opCodeToPart<String=: Arraylist
-opCodeFromPart<String=: ArrayList
{sInstructionExecuted <Boolean=: Arraylist

+setlsVisited(value: Boolean)
+removelnstruction(position: int)
+removeOpCodeFromPart{position: int)
+removedpCodeToPart{position: int)

Figure 20 : Class Diagram for Data Structure Maintained

8.5.3 First Pass - Finding Junk Blocks and Junk Subroutines

This is a helper pass which is basically run to ensure that less strain is put over the execution
recorder phase (where the emulation of registers take place). In this pass, the emulator will try to
find any junk block or junk subroutine which has been embedded into the morphed virus file.
This pass does not deal with the emulation of the registers, but it scans all the instructions

looking for specific property related to junk block or junk subroutine code.

To improve efficiency, we are maintaining a list known as “CalledSubroutine”. While reading
the data from the file into the data structure, this list was being populated with the names of any
subroutine which has been called. So, whenever we encountered with the instruction “call”, the
subroutine name or the location name was fed into the CalledSubroutine list. This step provided
us with the information about the subroutines which “might” never be called for any given
scenario. Once the “CalledSubroutine” list is populated, we will delete the subroutines from the

data structure whose names are not included in our list.

The second part of this pass is to find the probable junk blocks of code. This part deals with the

searching of unconditional “jmp” instructions. If there are any unconditional jump instructions,

31

then we can mark the remaining instructions in any subroutine/location as “probables” for being

never executed. Note that at this stage, we do not delete these instructions from the data

structure, but we just mark them so that later in execution recorder stage, we can cross check

whether these instructions are executed or not through register emulation. The Figure 21 shows

a similar condition.

sub_411696 proc near ; CODE XREF: CODE:DD411AECD
jmp loc_100b6e
push ebp Mark As “probable”
mov ebp, esp junk code
sub esp, 8
loc_100b6e:
or eax, 20BC294h
sub edy, edx
push edx
mov edyehx
wor edyebx

Figure 21 : Sample Junk Block

To sum up, the algorithm to be followed for this round is shown in Figure 22.

32

Note : From previous phase, we have the list of called subroutines in the list
“CalledSubroutine”
Step 1: For every subroutine in the data structure
Step 2: If this subroutine exists in the list “CalledSubroutine”
then goto Step 3 else Step 6
Step 3: For every instruction in the subroutine or location, if
it is unconditional “jmp” then goto step 4.
Step 4 : Mark the REMAINING instructions in that subroutine as
“unvisited” in the data structure
Step 5: Repeat step 3 and 4 until end of instructions
Step 6: Delete all the instructions and opcodes of this subroutine,
Step 7: Repeat steps 2 to 6 until all subroutines/locations are covered

Figure 22: First Pass Algorithm

8.5.4 Second Pass: Find Equivalent Instruction Substitution

One of the steps to make morphed copies of the base virus file was to substitute an equivalent
instruction [16]. The equivalent instruction substitution does make a lot of difference for
scanners, which are based on signature detection and HMM, too. Since substitution of an
equivalent instruction will not make any difference to the existing functionality, catching it
through the emulation process solely will be very tough as we cannot impose any general logic
behind it. To overcome this problem, we used the list of instructions and their equivalent
instructions listed in [21] and used them in our implementation (See Appendix A for a complete
list of instructions and their equivalent instructions). There are close to 50 instructions and their

substitute instructions in this list.

In order to implement this scenario, we did pattern matching of various instructions and their
operands to reverse it back to the original instruction. For example, consider the following

instruction substitution for instruction “dec R’ in the Table 11.

33

Instruction Substitution

dec R 1. negR
not R

dec mam 1. neg mem
not mem

Table 11 : Equivalent Substitution Example

Now in this pass, as the emulator goes through all the instructions, it will try to match all the new
patterns with the patterns of the equivalent instructions already saved in the emulator. Referring
from the Table 11, it can be seen that a simple instruction of “dec R” or “dec mem” can be
replaced with “neg R” followed by “not R” or “neg mem” followed by “not mem”. So the job of
emulator at this stage will be to find the matching patterns and replacing those instructions with
their original counterparts. In this case, wherever the emulator finds “neg R not R” as the two
consecutive instructions for a particular location or subroutine, these instructions will be replaced
with “dec R”.

8.5.,5 Finding Dead Code and Recording Execution Path

This is the last and the most important step in the execution of a virus file. Till this step, the virus
file which has been put into the data structure, has been cleaned up of “most” of the instructions
which was result of various code obfuscation techniques. But there will be still many more
instructions left to be found, whether they are actually impacting over the functionality of the

virus program or not.

As a first part of this step, while the code emulator goes instruction by instruction, it tries to find
out the dead code (instruction which executes but will not impact over the functionality). We
took the list of possible dead codes [21] (See Appendix B for a complete list) and the code
emulator will keep looking for them during the execution of the virus file. If any of the sequence
of instructions were found in the file, the code emulator will simply block them from being

executed and mark them as unvisited.

The next phase of this step was the actual emulation of a virus file. In order to run this step, we

emulated the various registers present in the 8086 architecture in our database. All the registers
34

were created as a new column inside a table of our database. For example, if we have 2 registers
EAX and EBX to be emulated, then we will have 2 columns named EAX and EBX in our
database’s table. So whenever the emulator will encounter instructions handling these two
registers, database table will be updated appropriately. Our emulator is supporting most of the

registers (See Section 8.6 for list of Supported Registers).

Other emulation that our code emulator is dealing with is the emulation of different kind of
instructions. We implemented the functionality of many instructions (See Section 8.7 for list of
Supported Instructions). For example, if the emulator encounters “mov eax,ebx”, then the
emulator will use database query to remove the value of ebx (from the database table’s column
ebx) and then insert it into the column eax. Each instruction was implemented separately based
on their functionality in our emulator, so that they perform the same operation with our emulated

registers as it would have done with the real CPU registers.

To get a complete picture of emulation, consider an example where the emulator encounters two
instructions as “mov ebp, esp” and then “dec ebx”. We have a separate implementation of these
instructions in our emulator. So in this case, the emulator will pick up the value from column
“esp” in the database and insert it into the column “ebp”. Then the code emulator will decrement

the value present in the column “ebx” . Figure 23 depicts this scenario.

35

Database Representation of Registers

mov ebp, esp - EBP | ESP | EBX

1) 2
1 4

Database Repre/gentation of Registers

dec ebx - EBP ESP { EBX
:

1 1

Figure 23 : Register Emulation through Database

The code emulator while executing these instructions, also keeps updating in the data structure
whether or not any particular instruction has been visited/executed. In this way, when the
emulation stops, the code emulator would have marked all the possible instructions which were
executed for a particular path. Basically the code emulator tries to follow a particular path and

record all subroutines/locations/instructions that have been executed.

At the end of this step, the code emulator will produce a .asm file which will have the

instructions that were marked as visited/executed in our data structure.

36

8.6 List of Registers Supported

For performing an effective code emulation, the code emulator will attempt to capture as many

registers as possible so that most of the .asm file of Intel 8086 could be executed. Registers are

fast memory, almost always connected to circuitry that allows various arithmetic, logical,

control, and other manipulations, as well as possibly setting internal flags [24]. Implementation

of various registers will be based over the functionalities of individual register set. Below are the

register sets which have been identified for implementation:

1.

Accumulators : All the operations such as rotate, logical, arithmetic shift or similar
operations are done by the registers known as Accumulators. In 8086, AX is the one
word accumulator of size 16 bits. Variation is that higher order byte of AX is called
AH, whereas lower order byte is called AL.

General Purpose Registers : General Purpose Registers in 8086 are BP, BX, AX, CX,
SP and DI. To cover these, we needed to have both the lower order and the higher
order bytes variations. Higher order for general purpose registers are called BH, AH,
DH, and CH and the lower order bytes are named as BL, AL, DL, and CL.

Index Registers : In 8086, index registers are nothing but use of general purpose
registers. So we have used the general purpose registers as index registers itself. A
more complicated version can be made by combining the index register and the
address register.

Base Registers : These are used to segment memory. In 8086, there are six of them :
GS- data segment, SS- stack segment, , ES- extra segment, FS- data segment register,
CS- code segment and DS- data segment.

Program Counter : We did not emulate the program counter as we had other
mechanism to follow the execution path. Program Counter basically stores the next
executable instruction’s address.

Stack Pointer : In 8086, SP- stack pointer combined with SS - stack segment pointer
is used to create address of the stack.

37

8.7 Instructions Supported

For the implementation of our code emulator, target was to include most of the 8086/8088

instructions sets. Refer to Appendix C for a complete list of instructions [23] supported by the

8086/8088 architecture. There are close to 100 individual instructions with many instructions
having different variations (which meant different approach for each variation). So to avoid

unnecessary implementation of less used instructions, we wrote a utility java program, which

took input as 15 of the virus files and created a list of most frequently used instructions in these

virus files. So we implemented close to 30 instructions in total based on the figures thus

collected. Figure 24 shows the list of those instructions and their average frequency of
occurrence in those 15 virus files.

60

Instructions

@©
=
7]
>
(X

E
£

m Count

Figure 24 : Opcode Frequency of 15 Virus Files

38

9 Experiments and Analysis

9.1 HMM Test for Base Virus Files

To make sure that HMM is detecting our 40 base virus files; we ran a test for HMM detection. If
the scores obtained by HMM for the virus files are lower than the scores obtained for the normal
files, then the HMM will be able to distinguish between them. This is because, HMM maintains
a threshold value. Score of any file lower than the threshold is considered as a normal file and

score of file higher than the threshold is considered as a virus file.

Figure 25 shows the HMM result for our 40 base virus files. The HMM was successfully able to

differentiate between the normal files from the virus files.

Virus File

¥ Normal File

Figure 25 : HMM Results for 40 Base Virus Files

39

It can be observed from the above figure that the minimum score of virus family is -4.38473 and
the maximum score of normal file is -8.90711, so the HMM was able to make a clear distinction

of both type of files (Refer to Appendix F for the complete list of HMM scores).

9.2 HMM Test without Code Emulation

To conduct this step in the experiment process, we took the 40 base virus files and morphed them
using Metamorphic Virus Generator Engine [16]. The engine will take one normal file and one
virus file as input and apply various code obfuscation techniques in an effort to make the base
virus file closer to the normal file. For our experiment, we have 40 base virus files and 40 normal
files. So, we took the 1% virus file with 1% normal file, 2" virus file with 2" normal file and so
on. At this stage we expect that there will be many morphed virus files which would not be
detected by the HMM. We morphed the base virus files with different settings (different

percentage of morphing).

9.21 HMM Test with 15% Morphing

We started our experiments by morphing the base virus files by 15%, which was having 5%
subroutine copied into from the normal file. Then we ran the HMM test again for these set of
morphed virus files. The HMM was not able to detect all the morphed virus files as it did before
the morphing had happened. Figure 26 shows the result of our HMM test. With the maximum
score of normal files being -8.90711, we found that there were 20 virus files whose score was
less than the maximum score of the normal file (Refer to Appendix G for a complete list of
HMM scores).

40

Morphed Virus File

¥ Normal File

Figure 26: HMM Test with 15% Morphing

9.2.2 HMM Test with 25% Morphing

For this round, we started our experiments by morphing the base virus files by 25%, which was
having 15% subroutine copied into from the normal file. Then we ran the HMM test again for
these set of morphed virus files. The HMM was not able to detect the entire morphed viruses.
Figure 27 shows the result of our HMM test. With the maximum score of normal files being -
8.90711, we found that there were 20 virus files whose score was less than the maximum score

of the normal file (Refer to Appendix H for a complete list of HMM scores).

41

Morphed Virus File

¥ Normal File

Figure 27 : HMM Test with 25% Morphing

9.2.3 HMM Test with 35% Morphing

We started our experiments by morphing the base virus files by 35%, which was having 25%
subroutine copied into from the normal file. Then we ran the HMM test again for these set of
morphed virus files. The HMM was not able to detect all the virus files as it did before the
morphing had happened. Figure 28 shows the result of our HMM test. With the maximum score
of Normal Files being -8.90711, we found that there were 16 virus files whose score was less
than the maximum score of the normal file (Refer to Appendix | for a complete list of HMM

scores).

42

Morphed Virus File

™ Normal File

Figure 28 : HMM Test with 35% Morphing

9.3 HMM Tests with Code Emulation

From the tests conducted in the previous section, we got sure that HMM was not able to detect
all the virus files after morphing. Now we took the 40 morphed virus files generated from the
above tests (for various morphing percentage) to run with our Code Emulator. The code emulator
will try to remove as much as code obfuscation techniques applied to the virus files and create
“Un-Morphed” virus copies. We will test these un-morphed virus copies with the HMM tool.
The expectation was that as the HMM was able to detect base virus files, it will also detect the

corresponding un-morphed virus files.

9.3.1 HMM Test with 15% Morphing

We took the 40 morphed virus files (having 15% morphing and 5% subroutine copying) and run
them in our code emulator, whose output was un-morphed virus files. We then tested the 40 un-
morphed virus files to see whether HMM can now detect these or not. Figure 29 shows that the

HMM was able to distinguish between the un-morphed virus files and the normal files. The

43

minimum score of un-morphed virus files is -6.39854 and the maximum score for the normal file
was -8.90711. Thus from the HMM scores generated, we can show that the code emulator was
successful in detecting the code obfuscation techniques (Refer to Appendix J for a complete list
of HMM scores).

* Un-Morphed Virus File

¥ Normal File

Figure 29 : HMM Test with 15% Morphing

9.3.2 HMM Test with 25% Morphing

In this step, we took the 40 morphed virus files (having 25% morphing and 15% subroutine
copying) and run them in our code emulator, whose output was un-morphed virus files. We now
tested these 40 un-morphed virus files to see whether HMM can now detect these or not. Figure
30 shows that the HMM was able to distinguish between the un-morphed virus files and the
normal files. The minimum score of un-morphed virus files is -6.26291 and the maximum score

for the normal file was -8.90711 (Refer to Appendix K for a complete list of HMM scores).

44

* Un-Morphed Virus File

¥ Normal File

Figure 30 : HMM Test with 25% Morphing

9.3.3 HMM Test with 35% Morphing

The Figure 31 shows that the HMM was able to distinguish between the un-morphed virus files
and the normal files. This test was aimed to see whether the code emulator can remove code
obfuscation techniques from virus files, which have been morphed as high as 35% with 25%
subroutine copying. The minimum score of un-morphed virus files is -6.73408 and the maximum
score for the normal file was -8.90711 (Refer to Appendix L for a complete list of HMM scores).
Thus from the HMM scores generated, we can show that the code emulator was successful in

detecting the code obfuscation techniques.

45

Un-Morphed Virus File

¥ Normal File

Figure 31 : HMM scores with 35% Morphing

9.4 Performance Analysis of Code Emulator

To analyze the performance of our code emulator, we conducted two tests which have been
discussed in this section. The first analysis deals with the execution time of the virus file by our
code emulator. In the second analysis, we tried to ascertain the percentage of actual code

(undead), which our code emulator missed during emulation of a virus file.

9.4.1 Execution Time Analysis

We wanted to get an idea about the performance of our code emulator. Figure 32 shows the time
analysis graph where the x-axis represents the virus file size in KB and the y-axis represents their
execution time in milliseconds (Refer to Appendix M to see the time as per virus file name and
their size). As the virus file size increased, the code emulator took more time to finish its

operation.

46

Execution Time Analysis

Millseconds
200
180
160
140
120
100

80
60
40
20

0]

45 71 73 73 75 75 77 77 79 79 79 81 83 87 90 94 98 101103103
File Size in KB

® Time (in Milliseconds)

Figure 32 : Execution Time Analysis

9.4.2 Instruction Count Comparison

The code emulator tries to remove those instructions from the virus file which can be present due
to various morphing techniques. While performing emulation, there can be instructions which are
legitimate (undead), but are still removed by the code emulator. So, we compared the number of
instructions in the base virus file to the number of instructions left in the virus files after
emulation. According to Figure 33, we lost an average of 25 instructions per virus file after
emulation (Refer to Appendix N for the exact values) i.e. around average 3.35% of original
instructions. There were cases where no difference in the instruction count was found (like the
virus files IDAN127 and IDAN139), but at the same time there were cases where the number of

instructions lost due to emulation was 116 like the virus file IDAN125.

47

':;gf'nstfuctims Instruction Count Comparison

® No. of Instructions
in base Virus File

® No. of Instructions
after Emulation

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

File Number

Figure 33 : Instruction Count Comparison

48

10 Attacks on Code Emulator

The implemented code emulator does have certain limitations which a virus writer can exploit to
make the virus more complicated for any code emulator. The NGVCK generated viruses had one
entry point from where our code emulator starts its process. Virus writers can introduce multiple
entry points for any virus for which an advanced emulator will have to perform its operations
from all the respective entry points. In our code emulator, we took the exception of Dummy
Loops Detection. Based on some conditions, these loops are inserted to make the emulator run
thousands of instruction unnecessarily thus preventing it from rebuilding the original base virus
file.

In the Code Execution Recording phase, we followed the path of the instructions being executed.
But there can be viruses where the instructions are based over the CPU properties. The overhead
will be that the emulator will have to run over different kind of CPU to detect the virus’s actual

behaviors.

11 Conclusions and Future Work

The emulator we developed was able to emulate the execution of virus files and remove the
unexecuted instructions/subroutines successfully. The code emulator was also able to remove or
change the instructions which were result of various code obfuscation techniques such as
equivalent instruction substitution, junk code/block insertion and dead code insertion. Once the
virus files were un-morphed by our code emulator, the HMM tool which was not able to classify
the virus files from the normal files (after the virus files were morphed by the metamorphic

engine) are now able to classify them.

The virus files which were morphed up to as high as 35% (with 15% to 25% subroutine copying)
also exposed themselves in our code emulator. We also showed that though code emulator is
complex to implement, but with a good design and algorithm it can be a very powerful tool to

detect not only metamorphic viruses but also any kind of virus.

49

The code emulator can be made a real powerful tool once many new techniques have been
incorporated to the existing one. We listed few of our weaknesses with which our code emulator
can be attacked. Handling these issues could be the next logical step in an attempt to improve the
code emulator. One very challenging task what we anticipate is to make the code emulator very
efficient. Our code emulator had a few steps which was a kind of “add on” to help the actual

emulation. To remove these steps will be a beneficial step towards increasing its efficiency.

Other very interesting work which can be done is to combine the HMM and the code emulator in
one package. The automation of processes like disassembling .exe files and making HMM
models would be very beneficial. This will be full of new challenges, but end product, if
achieved, can be a wonderful tool to find metamorphic viruses. The present code emulator did
not take care of 1/0O devices emulation. Even though special treatments are required for each 1/0
device, which will be very comprehensive to implement, few common features like managing

interrupts (both hardware and software) and physical memory access can be implemented.

50

References

[1]J. Borello and L. Me, “Code Obfuscation Techniques for Metamorphic Viruses”, Feb 2008,
http://www.springerlink.com/content/233883w3r2652537

[2] P. Szor, “The Art of Computer Virus Defense and Research,” Symantec Press 2005.

[3] HowStuffWorks, “Computer & Internet Security,” May 2008,
http://computer.howstuffworks.com/virus.htm

[4] Orr, “The Molecular Virology of Lexotan32: Metamorphism Illustrated,” 2007.
http://lwww.antilife.org/files/Lexo32.pdf

[5] A. Venkatesan, “Code Obfuscation and Metamorphic Virus Detection,” Master’s thesis, San
Jose State University, 2008.

[6] Walenstein, R. Mathur, M. Chouchane, R. Chouchane, and A. Lakhotia, “The Design Space
of Metamorphic Malware,” In Proceedings of the 2nd International Conference on Information
Warfare, March 2007.

[7] Dr. Solomon's Virus Encyclopedia, 1995, ISBN 1897661002

[8] W. Wong, “Analysis and Detection of Metamorphic Computer Viruses,” Master’s

thesis, San Jose State University, 2006.
http://www.cs.sjsu.edu/faculty/stamp/students/Report.pdf

[9] John Aycock, “Computer Viruses and Malware”, Springer Publications 2006

[10] S. Attaluri, “Profile hidden Markov models for metamorphic virus analysis,” Master’s
thesis, San Jose State University, 2007.
http://www.cs.sjsu.edu/faculty/stamp/students/Srilatha_cs298Report.pdf

[11] Von Neumann, John (1966). "Theory of Self-Reproducing Automata". Essays on Cellular
Automata (University of Illinois Press): 66-87. Retrieved June 10., 2010

[12] http://en.wikipedia.org/wiki/Computer_virus

[13] PCWorld. (2008). “Security Worries for 2004, Retrieved August 10,
2010,from http://www.pcworld.com/article/114058/security_worries_for_2004.html 32

[14] VX Heavens, http://vx.netlux.org/

[15] P. Szor, P. Ferrie, “Hunting for Metamorphic”, Symantec Security Response.
http://www.symantec.com/avcenter/reference/hunting.for.metamorphic.pdf

51

[16] Da Lin, “Hunting for Undetectable Metamorphic Viruses”, Master’s thesis, San Jose State
University, 2010

[17] The Ollydbg Debugger, http://webster.cs.ucr.edu/AsmTools/OllyDbg/

[18] ProgrammersHeaven, “Inject Code To Portable Executable File,” 2010,
http://www.programmersheaven.com/2/Inject-code-to-Portable-Executable-file

[19] http://en.wikipedia.org/wiki/Markov_process

[20] M. Stamp, “A Revealing Introduction to Hidden Markov Models,” January 2004.
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf

[21] P Desai, “Towards an Undetectable Computer Virus”, Master’s thesis, San Jose State
University, 2008

[22] IDA Pro, http://www.hex-rays.com/idapro/

[23] Wikipedia, “8086 Instructions,” April 2010,
http://en.wikipedia.org/wiki/X86 _instruction_listings#Original_8086.2F8088 _instructions

[24] http://www.osdata.com/topic/language/asm/register.htm

[25] VX Heavens, “Next Generation Virus Construction Kit,” June 2001,
http://vx.netlux.org/vx.php?id=tn02

[26] Cygwin, “Cygwin Utility Files,”
http://www.cygwin.com/

[27] Oodesign, “Singleton Pattern,”
http://www.oodesign.com/singleton-pattern.html

[28] Wikipedia, “Encryption with a Variable Key,” April 2010,
http://en.wikipedia.org/wiki/Computer_virus#Encryption_with_a_variable_key

[29] “Benny/29A,” Theme: metamorphism,
http://lwww.vx.netlux.org/lib/static/vdat/epmetam2.htm

[30] Wikipedia, “Polymorphic Code,” April 2010,
http://en.wikipedia.org/wiki/Computer_virus#Polymorphic_code

[31] Wisegeek, “What is Malware,” May 2010,
http://lwww.wisegeek.com/what-is-malware.htm

52

[32] Wikipedia, “Signature Based Detection,” April 2011,
http://en.wikipedia.org/wiki/Antivirus_software#Signature-based detection

[33] About, “What is a Virus Signature,” May 2010,

http://antivirus.about.com/od/whatisavirus/a/virussignature.htm

53

Appendix A: Equivalent instruction substitution [21]

Notations:

R — Register (eax, ax, ah, al)

RR — Random register

mem, [mem] — Memory address ([esi])

imm — Immediate value (12h)

opl — To-operand with length more than 1 including R and mem

op2 — From-operand with length more than 1 including R, mem, and imm
loc —any location or label

add R, imm 3. sub R new mmm where new imm = imm % (- 1)
4. lea R [R +1imm]
addFR. 1 3. motR
neg K
mov K. imm 1. mov R, random imm
add E_ new_imm where new_imm = imm — random_imm
2. mov R, random imm
sub R, new_imm where new_imm = (random_imm - imm)
mov R, random_imm
xorf B new imm
mov R1, B2 1. pushR2
(no 8 bit K) pop R1
mov E_ mem 1. push mem
(no § bit K) popR
mov B, mmm 1. pushimm
(no 8§ bit K) popR
2. lea R [imm)]
mov men. B 1. pushR
(no 8 bit R) pop mem
MoV Mem. imm 1. pushimm
pop mem
cp B, 0 1. oo LR
2. andR R
3. testBLR
cmp R1. R2 1. subRl R2
cmp B mem 1. sub B mem
cmp R imm 1. sub R imm
cmp mem, R 1. submem R
CIIp mem, imm 1. sub mem. imm
and R1, B2 1. pushRR
mov R Rl

54

| -

or B, B2
xor 1, R2
xorRLR
pop RR
not RL1

not B2
orR1,R2
not Bl

dec R

. negR

not B

dec mem

. Deg mem

0ot mem

mcR

| -

add R, 1
not B
neg B

InC mem

1. add mem, |

| -

not mem
IEg mem

mvoke opl, op?

. stdcall [opl], op2

Jmp loc

. cmp RE, RR.

jzloc

jump R

. push R

Iet

leaR, [R1+R2]

. movE Rl

add R R2

leaR, [R+R1+mm]

. add R, mm

addR_R1

leaR, [R1+R2 + imm]

. leaR, [R1I + imm]

add R R2

lodsh

. mov al, [esi]

addess 1

lodsd

. mov eax, [es]

add es, 4

movsh

. push eax

mov al, [es1]
add es1, 1
mov [edi], al
add edi, 1
pop eax

movsd

. push eax

mov [eax], es1
addes, 4
mov [edi], eax

55

add edi, 4
Dop £4X

neg B

1. notR
add B 1

neg mem

. notmem
add e, 1

not B

1. negh
sub R, 1
2 negh
dec B
3. megR
add R, -1
4 xorR -1

not mem

1. negmem
sub mem, 1

1. neg mem
dec mem

3. neg mem
add mem -1

orR1, B2

1. pushRR
mov RE_ Rl
xor BR,R2
andR1, R2
xor B1, RR
pop BR

or B.1, mem

1. pushRR
mov RE_ Rl
xor RE, mem
and F1, mem
xor B1, RR
pop RR.

or B1, imm

1. pushRR
mov RE_ Rl
xor RE, imm
and R1, imm
xor B1, RR
pop RR.

or mem, B

1. pushRR
mov RE., mem
xorREL R
and mem F.
xor mem, RE.
pop RR.

Table 12 : Equivalent Instruction Substitution [21]

56

Appendix B: Dead Code Instructions [21]

Appendix A: Dead code mstructions

Transfer Dead Code
l. movE E
2. push R followed by pop R

Anthmetic Dead Code

add B 0

sub B0

ade bx, 0

shb bx, 0

mc B followed by dec B

LA e Lad bd =

Logical Dead Code
1. shiR. 0
2. shrR. 0
3. and R 1
4 testE. 1
3. orR 0
6. xor B, D

Floating Point Dead Code

fadd st2_ st
frmnl 5t2, 50
fld st2
faub 512, sth
fdiv st2. st
fst st3

O LA s 3 b

Miscellaneous Dead Code
1. nop
2. negP notE decR

Figure 34 : Dead Code Instructions [21]

57

Appendix C: List of 8086 Instructions [23]

Instruction Meaning Hotes

AAR ASCI adjust AL after addition used with unpackad binary coded decimal

AAD ASCI adjust AX before division 8086/2088 datasheet documents only base 10
version of the AAD instruction (opcode 0xDE OwdA),
but any other base will work. Later Intel’s
documentation has the generic form too. NEC W20
and W30 (and possibly other NEC VW-series CPUs)
always use base 10, and ignore the argument,
causing a number of incompatibilities

AAN ASCI adjust AX COnly base 10 version is documented, see notes for

aftermultiplication AAD

AAS ASCI adjust AL after subtraction

ADC Add with carmy destination = destination + source + carry_flag

ADD Add

AMND Logical AMD

CALL Call procedure

CBW Convert byte to word

CLC Clear camy flag

CLD Clear direction flag

CL Clear interrupt flag

CMC Complement carry flag

CMP Compars operands

CMPSB Compare bytes in memory

CMPSW Compars words

CWD Caonvert word to doubleword

Cias, Decimal adjust AL after addition {used with packed binary coded decimal}

DAS Decimal adjust AL

aftersubtraction

DEC Decrement by 1

Dy Unsigned divide

ESC Usad with floating-point umit

HLT Enter halt state

1o Signed divide

IMUL Signed multiply

I Input from port

IMC Increment by 1

INT Call to intermupt

INTO Call to intermupt if overflow

IRET Return from interrupt

Jux Jump if condition (M, JAE, JB, JBE, JC, JCXZ, JE, JG, JGE, JL,
JLE, JNA, JNAE, JNB, JNBE, JNGC, JNE, JNG,
JNGE, JNL, JNLE, JNO, JNP, JNS, JNZ, JO, JP,
JPE, JPQ, J5, JZ)

JMF Jump

58

LAHF

Load flags imbo AH register

LDS Load pointer using D5
LEA Load Effective Address
LES Load ES with pointer
LOCK Assert BUS LOCKE# signal {for muliprocessing)
LODSHE Load signed byte
LODSW Load signed word
LOOP/LOOPx Loop control (LOOPE, LOOPNE, LOOPNZ, LOOFPT)
MO Maowe
MOWSB Maove byte from siring to siring
MOV SW Mawe word from siring to string
MUL Unsigned muliply
ME Two's complement negation
MOP Mo cperation opcode (Ix80) equivalent to XCHG EAX, EAX
MOT Megate the operand, logical HOT
OR Logical OR
ouT Output to port
POP Pop data from stack POP C5 (opcode OxlF) works only on B086/20858.
Later CPUs use 0x0F as a prefic for newsr
instnucticns.
POPF Pop data into flags register
PUSH Push data onto stack
PUSHF Push flags onto stack
RCL Rotate |eft (with camy)
RCR Rotate right (with camy)
REP:xx Repeat |REF, REFPE, REFNE, REPNZ, REFT)
MOVSISTOS/CMPS/ILODS/SCAS
RET Retumn from procedurs
RETH Retum from near procedurs
RETF Retumn from far procedure
ROL Rotate left
ROR Rotate right
SAHF Store AH into flags
SAL Shift Arithmetically left (signed
shift left)
SAR Shift Arithmetically right (signed
shift right)
SBB Subtraction with bormow
SCASH Compare byte string
SCASW Compare word string
SHL Shift left (unsigned shift left)
SHR Shift right {unsigned shift right)

59

STC Set camy flag

STD Set direction flag

STl Set interrupt flag

STOSB Store byte in string

STOSW Store word in string

SuB Subtraction

TEST Logical compare [(AND)

WAIT Wait until not busy Waits untl BUSY# pin is inactive (used withfloating-
point unit)

XCHG Exchange data

XLAT Table look-up translation

XOR Exclusive OR

Table 13 : List of 8086 Instructions [23]

60

Appendix D: HMM Model Trained N=2

Model

N=2, M=76, T=67032

l..OOOOOOOOOOOOOO 0.00000000000000

A

0.31213745192201 0.68786254807796
0.99999374304194 0.00000625695803

B:

call 0.08218503496863 0.03371900087267
sub 0.06417040292496 0.02231340405298
pop 0.02997515656273 0.09260052958416
mov 0.19554566095211 0.25090974189873
or 0.01377346911843 0.00000000000000
jz 0.00000000000000 0.08610033301483
push 0.14347589399134 0.07921793237216
lea 0.01597360820614 0.01796039785637
xor 0.02014892699289 0.01342772980439
rol 0.00158144088397 0.00472946366722
add 0.16496314877007 0.10651431749596
cmp 0.06473782285829 0.00000000000000
jnz 0.00000000000000 0.06058505575661
test 0.00982020650126 0.00000000000000
jmp 0.03524565445683 0.00074140491387
sar 0.00130327978519 0.00077759378900
dec 0.03017438600252 0.00159803441059
pusha 0.01946415288583 0.00000000000000
popa 0.02102429536802 0.00406488936664
jb 0.00000000000000 0.01797417666253
movzx 0.00633346740711 0.00602089047992
imul 0.00000000000000 0.00585716551121
shl 0.00468050134375 0.01245081165768
movsb 0.00000000000000 0.00391697943562
lodsw 0.00056746394289 0.00104197944089
ror 0.00406322284121 0.00170710881670
stosw 0.00000000000000 0.00175714965336
clc 0.01198568793487 0.00000000000000
retn 0.00017857316316 0.07980051733038
stc 0.00808278535104 0.00000000000000
ja 0.00000000000000 0.00285536818672
and 0.00982310629799 0.01811639000946
jnb 0.00000000000000 0.00483216154675
inc 0.01471252036211 0.02030629820452
stosd 0.00000000000000 0.00248929534227
div 0.00000000000000 0.00582055822677

61

rcl 0.00111653269881 0.00716250747895
adc 0.00453676494134 0.00251956113741
cld 0.00449021197316 0.00152562965895
shr ~ 0.00183230442523 0.00440135979471
rer 0.00151080100019 0.00000000000000
not 0.00397610573962 0.00366412587481
neg 0.00337886115374 0.00233597665418
loop 0.00023144348474 0.00035906057008
start 0.00237618465993 0.00145082448129
jbe 0.00000000000000 0.00545448538232
xchg 0.00000000000000 0.00424644499563
lodsb 0.00059653230453 0.00045060992486
stosb 0.00000000000000 0.00135446952447
rep 0.00000000000000 0.00219643706670
sbb 0.00129044575376 0.00083285948202
lodsd 0.00021804863447 0.00122050185215
popf 0.00000000000000 0.00003660728445
bound 0.00000000000000 0.00003660728445
in 0.00000000000000 0.00010982185334
jnp 0.00005036003334 0.00000000000000
ins 0.00002397489038 0.00007496660907
fnstenv0.00002518001667 0.00000000000000
scasb 0.00000000000000 0.00003660728445
retf 0.00004811051560 0.00003987768482
cmc 0.00000000000000 0.00003660728445
aad 0.00002518001667 0.00000000000000
enter 0.00002518001667 0.00000000000000
movsd 0.00005036003334 0.00000000000000
ip 0.00000000000000 0.00003660728445
repe 0.00000000000000 0.00010982185334
jns 0.00002518001667 0.00000000000000
fild 0.00002518001667 0.00000000000000
icebp 0.00002518001667 0.00000000000000
jecxz 0.00002518001667 0.00000000000000
std 0.00003128771775 0.00002772776885
jle 0.00002518001667 0.00000000000000
out 0.00002518001667 0.00000000000000
hit 0.00002518001667 0.00000000000000
cmpsb 0.00000000000000 0.00003660728445
fidiv. 0.00000000000000 0.00003660728445

Table 14 : HMM Model Trained N=2

62

Appendix E: HMM Model Trained N=3

N=3, M=76, T=67032

I:
1.00000000000000

0.00000000000000 0.00000000000000
A:
0.05276957768954 0.32624506516877 0.62098535714169
0.99351380535297 0.00648619464703 0.00000000000000
0.00000000000000 0.19527911680493 0.80472088319506
B:
call 0.10758113770840 0.08648240197820 0.04102623878677
sub 0.00000000000000 0.03581588477658 0.06531482231911
pop 0.18166133767637 0.00000000000000 0.03246089973430
mov 0.00000000000000 0.00214018531199 0.35144683990257
or 0.00012871267202 0.02145703596697 0.00669954940899
jz 0.18012165403566 0.00000000000000 0.00000000000000
push 0.12363627514111 0.38829768090538 0.03403992656142
lea 0.00587430282473 0.00000000000000 0.02524571594103
xor 0.00000000000000 0.00758730122965 0.02582966139870
rol 0.00015627484036 0.00000000000000 0.00457472755101
add 0.00012882190291 0.01315385159534 0.22386179377281
cmp 0.00000000000000 0.20651418412296 0.00000000000000
jnz 0.12674376591370 0.00000000000000 0.00000000000000
test 0.00008500730552 0.03123737790837 0.00000000000000
jmp 0.01849599396451 0.00227467727887 0.02769900085102
sar 0.00012832115939 0.00055517619690 0.00155122999419
dec 0.00000000000000 0.04816595322001 0.01546967979789
pusha 0.00000000000000 0.00000000000000 0.01861589698618
popa 0.00994806263832 0.06471620675649 0.00025081700451
jb 0.03760192692666 0.00000000000000 0.00000000000000
movzx 0.00000000000000 0.00000000000000 0.01001838699385
imul 0.00000000000000 0.00000000000000 0.00385322576687
shl 0.00082072400712 0.00000000000000 0.01240938862476
movsb 0.00000000000000 0.00000000000000 0.00257684473159
lodsw 0.00000000000000 0.00000000000000 0.00122821571319
ror 0.00063405649312 0.00000000000000 0.00480980329256
stosw 0.00000000000000 0.00000000000000 0.00115596773006
clc 0.00000000000000 0.03823444249029 0.00000000000000
retn 0.15195076882412 0.00000000057476 0.00488519056093
stc 0.00000000000000 0.02578415134324 0.00000000000000
ja 0.00597342220016 0.00000000000000 0.00000000000000
and 0.00000000000078 0.00257744170986 0.02054039345274
jnb 0.01010886833874 0.00000000000000 0.00000000000000
inc 0.00016599922965 0.01407682673458 0.02315747361172
stosd 0.00000000000000 0.00000000000000 0.00163762095092
div 0.00558348927739 0.00000000000000 0.00207331680300

63

rcl

0.01434107987383

adc 0.00219209464094
cld 0.00306595152299
shr 0.00035094525423
rcr 0.00000000000000
not 0.00000000000000
neg 0.00000000000000
loop 0.00000000000000
start 0.00000000000000
joe 0.01141076804903
xchg 0.00000000000000
lodsb 0.00000000000000
stosb 0.00000000000000
rep 0.00000000000000
sbb 0.00057683585006
lodsd 0.00000000000000
popf 0.00000000000000
bound 0.00007658233590
in 0.00000000000000
jnp 0.00015250381015
ins 0.00000000000000
fnstenv0.00000000000000
scasb 0.00000000000000
retf 0.00007456857443
cmc 0.00000000000000
aad 0.00000000000000
enter 0.00000000000000
movsd 0.00000000000000
jp 0.00007658233590
repe 0.00000000000000
jns 0.00000000000000
fild 0.00000000000000
icebp 0.00000000000000
jecxz 0.00000000000000
std 0.00000000000000
jle 0.00000000000000
out 0.00000000000000
hit 0.00000000000000

cmpsb 0.00007658233590

fidiv

0.00007658233590

0.00017317118835
0.00181431389863
0.00000000000000
0.00010394120584
0.00481946754079
0.00000000000000
0.00000000000000
0.00000000000000
0.00349429548412
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000069315403
0.00000000000000
0.00000000000000
0.00000000000000
0.00005653792738
0.00000000000000
0.00008032445901
0.00000000000000
0.00006517720536
0.00000000000000
0.00000000000000
0.00000000000000
0.00008032445901
0.00000000000000
0.00008032445901
0.00000000000000
0.00000000000000
0.00008032445901
0.00008032445901
0.00000000000000
0.00000000000000

0.00121811440210
0.00476327726245
0.00433404310556
0.00450642931023
0.00000000000000
0.00621332654907
0.00476836688650
0.00045757055982
0.00217942640244
0.00000000000000
0.00279358868098
0.00086697579755
0.00089105845859
0.00144495966258
0.00160072074936
0.00101147176380
0.00002408266104
0.00000000000000
0.00007224798313
0.00000000000000
0.00007224798313
0.00002408266104
0.00002408266104
0.00003184753700
0.00002408266104
0.00000000000000
0.00002408266104
0.00002862406947
0.00000000000000
0.00007224798313
0.00002408266104
0.00000000000000
0.00002408266104
0.00000000000000
0.00004816532209
0.00002408266104
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000

64

Table 15 : HMM Model Trained N=3

Appendix F: Scores of Base Virus Files vs Normal Files

Virus Normal Virus Normal
File Score File Score File Score File Score
IDAN120 -4.35317 | IDARO -24.47949 | IDAN140 -2.6305 | IDAR20 -33.87
IDAN121 -2.72685 | IDAR1 -24.31159 | IDAN141 -2.775077 | IDAR21 -21.767
IDAN122 -4.38473 | IDAR2 -16.59831 | IDAN142 -4.2499 | IDAR22 -13.866
IDAN123 -2.71454 | IDAR3 -31.06836 | IDAN143 -4.33749 | IDAR23 -21.388
IDAN124 -2.70386 | IDAR4 -25.87769 | IDAN144 -4.19953 | IDAR24 -32.738
IDAN125 -2.71754 | IDARS -16.272108 | IDAN145 -2.63856 | IDAR25 -10.778
IDAN126 -2.59433 | IDARG -14.742251 | IDAN146 -2.54809 | IDAR26 -28.223
IDAN127 -2.68013 | IDAR7Y -15.2443731 | IDAN147 -2.655287 | IDAR27 -26.911
IDAN128 -4.26291 | IDARS -16.95945 | IDAN148 -2.58213 | IDAR28 -15.533
IDAN129 -4.26499 | IDAR9 -37.84378 | IDAN149 -4.37208 | IDAR29 -25.32
IDAN130 -2.71394 | IDAR10 -17.687719 | IDAN150 -4.33251 | IDAR30 -20.19
IDAN131 -4.35447 | IDAR11 -30.93656 | IDAN151 -2.69571 | IDAR31 -24.848
IDAN132 -2.62 | IDAR12 -10.403818 | IDAN152 -4.219643 | IDAR32 -43.644
IDAN133 -4.1517 | IDAR13 -33.739803 | IDAN153 -2.62501 | IDAR33 -13.854
IDAN134 -2.671508 | IDAR14 -14.742432 | IDAN154 | -2.59279022 | IDAR34 -43.583
IDAN135 -2.69673 | IDAR15 -28.68644 | IDAN155 -2.680101 | IDAR35 -54.447
IDAN136 -2.70727 | IDAR16 -8.907111 | IDAN156 -2.74872 | IDAR36 -21.556
IDAN137 -2.64067 | IDAR17 -16.035186 | IDAN157 -2.61201 | IDAR37 -21.467
IDAN138 -4.19188 | IDAR18 -16.483198 | IDAN158 -2.772162 | IDAR38 -169.93
IDAN139 -2.66747 | IDAR19 -46.165916 | IDAN159 -2.594808 | IDAR39 -49,299

Table 16 : Scores of Base Virus Files vs Normal Files

65

Appendix G: HMM Test with 15% Morphing

Virus File Score Virus File Score

IDAN120 -13.67460344 | IDAN140 -2.61428
IDAN121 -16.930178 | IDAN141 -5.0936136
IDAN122 -0.6491296 | IDAN142 -5.328729
IDAN123 -3.803387 | IDAN143 -4.1712801
IDAN124 -20.9437299 | IDAN144 -20.622002
IDAN125 -6.8493165 | IDAN145 -7.338346
IDAN126 -6.178747 | IDAN146 -2.52195
IDAN127 -2.64337732 | IDAN147 -17.528855
IDAN128 -5.27169 | IDAN148 -4.392361
IDAN129 -20.120129 | IDAN149 -4.264325
IDAN130 -9.75918045 | IDAN150 -10.757379
IDAN131 -18.5724536 | IDAN151 -4.3097744
IDAN132 -4.5055146 | IDAN152 -3.957129
IDAN133 -19.83854 | IDAN153 -10.37725
IDAN134 -14.925978 | IDAN154 -33.456365
IDAN135 -16.4969121 | IDAN155 -36.4617486
IDAN136 -3.633918 | IDAN156 -8.557395
IDAN137 -2.684068 | IDAN157 -12.0109775
IDAN138 -8.3367156 | IDAN158 -13.6011
IDAN139 -13.95565 | IDAN159 -38.3416859

66

Table 17 : HMM Test with 15% Morphing

Appendix H: HMM Test with 25% Morphing

Virus File Score Virus File Score
IDAN120 -13.4838 | IDAN140 -6.97814
IDAN121 -17.6592 | IDAN141 -5.09419
IDAN122 -9.40807 | IDAN142 -7.77197
IDAN123 -2.69738 | IDAN143 -3.8671
IDAN124 -19.0013 | IDAN144 -20.2359
IDAN125 -7.115 | IDAN145 -11.298
IDAN126 -2.53906 | IDAN146 -4.01597
IDAN127 -2.66287 | IDAN147 -8.00268
IDAN128 -4.99566 | IDAN148 -4,.2418
IDAN129 -15.7902 | IDAN149 -6.56102
IDAN130 -2.68677 | IDAN150 -10.7584
IDAN131 -18.5724 | IDAN151 -2.68392
IDAN132 -4.5047 | IDAN152 -6.01988
IDAN133 -11.4683 | IDAN153 -17.5171
IDAN134 -21.9264 | IDAN154 -33.0852
IDAN135 -16.2617 | IDAN155 -36.4615
IDAN136 -3.6265 | IDAN156 -8.34347
IDAN137 -2.68939 | IDAN157 -12.0109
IDAN138 -10.2884 | IDAN158 -12.6013
IDAN139 -9.79208 | IDAN159 -39.2773

67

Table 18 : HMM Test with 25% Morphing

Appendix I: HMM Test with 35% Morphing

Virus File Score Virus File Score

IDAN120 -13.4835799 | IDAN140 -6.9784975
IDAN121 -18.1200181 | IDAN141 -5.052987
IDAN122 -3.836687 | IDAN142 -7.7716808
IDAN123 -2.67901446 | IDAN143 -4,171118355
IDAN124 -18.396751 | IDAN144 -20.8734075
IDAN125 -6.848575 | IDAN145 -2.6385652
IDAN126 -2.5380398 | IDAN146 -3.9888902
IDAN127 -2.63963077 | IDAN147 -8.00298211
IDAN128 -5.270669 | IDAN148 -4.0379121
IDAN129 -25.396235 | IDAN149 -6.5617813
IDAN130 -0.75924171 | IDAN150 -10.757389
IDAN131 -18.36376 | IDAN151 -2.717030095
IDAN132 -5.006305 | IDAN152 -4.032057
IDAN133 -20.185832 | IDAN153 -2.946882
IDAN134 -15.9534406 | IDAN154 -31.68627444
IDAN135 -16.496435 | IDAN155 -38.59124105
IDAN136 -3.7544547 | IDAN156 -8.6172232
IDAN137 -2.682355886 | IDAN157 -12.01148972
IDAN138 -8.5888858 | IDAN158 -3.600851
IDAN139 -9.7920761 | IDAN159 -39.27768023

Table 19 : HMM Test with 35% Morphing

68

Appendix J: HMM Test with 15% Morphing after Code Emulation

Un-Morphed Virus File Score Un-Morphed Virus File Score
IDAN120 -5.35317 IDAN140 -2.6305
IDAN121 -2.2342 IDAN141 -2.775077
IDAN122 -6.39854 IDAN142 -4.2499
IDAN123 -3.3542 IDAN143 -4.33749
IDAN124 -2.70386 IDAN144 -4.19953
IDAN125 -2.71754 IDAN145 -2.63856
IDAN126 -2.59433 IDAN146 -2.54809
IDAN127 -4.62352 IDAN147 -2.655287
IDAN128 -5.12531 IDAN148 -2.58213
IDAN129 -4.22352 IDAN149 -4.37208
IDAN130 -2.2345 IDAN150 -4.33251
IDAN131 -4.35447 IDAN151 -2.69571
IDAN132 -2.62432 IDAN152 -1.3425
IDAN133 -1.83747 IDAN153 -2.23521
IDAN134 -2.672345 IDAN154 -5.23543
IDAN13S -2.65454 IDAN155 -2.680101
IDAN136 -5.72727 IDAN156 -2. 74872
IDAN13Y -2.64067 IDAN157 -2.873245
IDAN138 -4.19188 IDAN158 -2.772162
IDAN139 -2.66747 IDAN159 -2.594808

Table 20: HMM Test with 15% Morphing after Code Emulation

69

Appendix K: HMM Test with 25% Morphing after Code Emulation

Un-Morphed Virus File Score Un-Morphed Virus File Score
IDAN120 -5.35317 IDAN140 -2.6305
IDAN121 -2.72685 IDAN141 -2.775077
IDAN122 -4.38473 IDAN142 -3.432599
IDAN123 -2.91657 IDAN143 -4.33749
IDAN124 -2.345226 IDAN144 -4.19953
IDAN125 -2.66654 IDAN145 -2.63856
IDAN126 -4.59433 IDAN146 -3.474509
IDAN127 -3.23484 IDAN147 -2.99987
IDAN128 -6.26291 IDAN148 -4.24513
IDAN129 -4.24523 IDAN149 -4.37208
IDAN130 -1.71394 IDAN150 -4.33251
IDAN131 -1.3234447 IDAN151 -2.69571
IDAN132 -2.62434 IDAN152 -4.219643
IDAN133 -4 48754 IDAN153 -2.62501
IDAN134 -3.252348 IDAN154 -2.59279
IDAN135 -2.45213 IDAN155 -2.680101
IDAN136 -1.90747 IDAN156 -2.74872
IDAN13Y -2.64067 IDAN157 -2.61201
IDAN13E -4.19188 IDAN158 -2.772162
IDAN139 -2.66747 IDAN159 -2.594808

Table 21 : HMM Test with 25% Morphing after Code Emulation

70

Appendix L: HMM Test with 35% Morphing after Code Emulation

Un-Morphed Virus File Score Un-Morphed Virus File Score
IDAN120 -4.3532 IDAN140 -2.6305
IDAN121 -2.7269 IDAN141 -6.7341
IDAN122 -4.3847 IDAN142 -4.2499
IDAN123 -2.7145 IDAN143 -6.3375
IDAN124 -2.5383 IDAN144 -5.2133
IDAN125 -2.1238 IDAN145 -2.6386
IDAN126 -4.7645 IDAN146 -2.5481
IDAN127 -5.6541 IDAN14T -2.4857
IDAN12E -5.2629 IDAN148 -1.5821
IDAN129 -6.2388 IDAN149 -2.3237
IDAN130 -2.7139 IDAN150 -4.7356
IDAN131 -5.3545 IDAN151 -3.954
IDAN132 -2.62 IDAN152 -4.2196
IDAN133 -4.1517 IDAN153 -2.625
IDAN134 -3.5539 IDAN154 -2.5928
IDAN135 -2.6967 IDAN155 -2.6801
IDAN136 -2.7073 IDAN156 -2.7487
IDAN137 -4.9234 IDAN157 -2.612
IDAN138 -4.1919 IDAN158 -2.7722
IDAN139 -2.9985 IDAN159 -5.8754

Table 22 : HMM Test with 35% Morphing after Code Emulation

71

Appendix M: Code Emulator — Execution Time Analysis

Virus File | File Size (in KB) | Time (in Milliseconds) | Virus File | File Size (in KB) | Time (in Milliseconds)
IDAN158 45 63 IDAN127 79 112
IDAN148 71 93 IDAN128 a0 111
IDAN151 71 93 IDAN129 81 110
IDAN142 72 78 IDAN132 a2 109
IDAN137 73 94 IDAN126 83 109
IDAN138 73 94 IDAN140 84 109
IDAN130 73 96 IDAN121 87 109
IDAN146 74 a9 IDAN120 89 109
IDAN135 73 101 IDAN150 a0 104
IDAN149 75 110 IDAN157 a3 105
IDAN141 75 110 IDAN124 94 110
IDAN123 76 109 IDAN144 a5 109
IDAN152 77 94 IDAN156 98 110
IDAN139 77 110 IDAN136 99 125
IDAN147 77 110 IDAN131 101 109
IDAN125 79 110 IDAN155 102 109
IDAN133 79 113 IDAN154 103 110
IDAN143 79 109 IDAN153 103 109
IDAN122 79 94 IDAN134 103 124
IDAN145 79 109 IDAN159 107 172

Table 23: Execution Time Analysis

72

Appendix N: Instruction Count Comparison

Mo, of
Wirus File Mo, of Instructions in Instructions after Percentage
MName base Wirus File Emulation Difference | Lost
IDAN 120 594 L85 14 2337228715
IDAM121 &08E CE8 20 3.289473634
IDANLZZ L6 =11 20 3412596592383
IDAM123 E75 344 31 3.542857143
IDAMN124 &30 585 31 4 920634521
IDAMN125 &35 519 116 18 26771654
IDAMNI12E 6543 601 42 6.531831804
IDAMNL12T 611 611 o 0
IDAMN12E 02 388 14 155210643
IDANLZS E94 463 30 3.337041157
IDAMN 13D 745 732 13 17445266443
IDAN13]1 Gl4 601 23 3685897436
IDAMN132 S54 943 21 2178423237
IDAN133 785 735 S0 6.3609426752
IDAMN134 G623 601 22 3.53130:{0161
IDAMI135 Ec3 341 22 2 549246813
IDAN13G E38 301 37 4 415274463
IDAMN13T SE9 953 36 3640040445
IDAN13E &3z 631 11 1.713395639
IDAMN139 725 725 o 0
IDAMNL1AD E31 az3 a2 0962635548
IDAMN141 D24 903 21 2. 272727273
IDAMN142 E52 785 63 7.394366197
IDAMN143 E35 328 7 0.838323353
IDAMN144 T24 721 3 0.414364641
IDAMN 145 977 902 75 7676560501
IDAM 146 E78 358 20 2. 277904328
IDANL1AT E21 401 20 24360535593
IDAMN148 E26 789 37 4 4759418886
IDAN14S Taz 708 34 4 582210243
IDAMN 15D 753 748 5 0664010624
IDAMI1S]1 791 788 3 0.379266751
IDAMN152 745 730 15 2013422819
IDAMI153 G644 637 27 4 06626506
IDAMN15S E24 810 14 1699029126
IDAM1SS 72 945 23 2 366255144
IDAN1SE TTZ 743 25 3756476684
IDAMNL1ST 778 751 28 3.594351733
IDANL1SE Ea7 348 15 2191464821
IDAMN159 295 963 26 2.613065327

Table 24: Instruction Count Comparison

73

Appendix O: HMM Tests with Models Built with x% Morphed Virus Files

Considering the fact that the base virus files may not be always available, we performed few
additional tests to see whether the code emulator and HMM can distinguish between the
morphed virus and normal files. Idea was to make HMM models based on the morphed virus
copies rather than using base virus files. We collected 200 morphed viruses having 15%
morphing. HMM model was made using 160 of these morphed copies and the remaining 40 were
used for HMM scoring. We repeated this process for 35%, 55% and 75% morphing too. We then
also analyzed the detection rate before and after the emulation.

HMM Tests without Code Emulation

Morphed Virus Files

¥ Normal Files

Figure 35 : HMM Test with 15% Morphing

74

Morphed Virus Files

™ Normal Files

Figure 36 : HMM Test with 35% Morphing

Morphed Virus Files

™ Normal Files

Figure 37 : HMM Test with 55% Morphing

75

Morphed Virus Files

¥ Normal Files

Figure 38 : HMM Test with 75% Morphing

HMM Tests with Code Emulation

Un-Morphed Virus Files

¥ Normal Files

Figure 39 : HMM Test with 15% Morphing

76

Un-Morphed Virus Files

¥ Normal Files

Figure 40 : HMM Test with 35% Morphing

Un-Morphed Virus

Files

™ Normal Files

Figure 41 : HMM Test with 55% Morphing

77

Un-Morphed Virus

Files

¥ Normal Files

Figure 42 : HMM Test with 75% Morphing

78

Virus Detection Rate Comparison

Detection)
Percentage ® Without Code

Emulation

* With Code
Emulation

35 55
Morphing Percentage

Figure 43 : Virus Detection Rate Comparison

79

Appendix P: HMM Tests with Training Files

HMM Tests without Code Emulation

* Morphed Training Virus
Files

¥ Normal Files

Figure 44 : HMM Test with 15% Morphing

* Morphed Training
Virus Files

™ Normal Files

Figure 45 : HMM Test with 35% Morphing

80

Morphed Training
Virus Files

™ Normal Files

Figure 46 : HMM Test with 55% Morphing

Morphed Training
Virus Files

¥ Normal Files

Figure 47 : HMM Test with 75% Morphing

81

HMM Tests with Code Emulation

Un-Morphed Training
Virus Files

¥ Normal Files

Figure 48 : HMM Test with 15% Morphing

Un-Morphed Training
Virus Files

¥ Normal Files

Figure 49 : HMM Test with 35% Morphing

82

Un-Morphed Training
Virus Files

¥ Normal Files

Figure 50 : HMM Test with 55% Morphing

Un-Morphed Training Virus
Files

¥ Normal Files

Figure 51 : HMM Test with 75% Morphing

83

Virus Detection Rate Comparison

Detection

Percentage
» Without Code

Emulation

¥ With Code
Emulation

35 55

Morphing Percentage

Figure 52 : Virus Detection Rate Comparison

84

	Metamorphic Detection via Emulation
	Recommended Citation

	tmp.1306704346.pdf.bad9K

