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Abstract 

Software piracy is the unauthorized copying or distribution of software. It is a growing problem 

that results in annual losses in the billions of dollars. Prevention is a difficult problem since 

digital documents are easy to copy and distribute. Watermarking is a possible defense against 

software piracy. A software watermark consists of information embedded in the software, which 

allows it to be identified. A watermark can act as a deterrent to unauthorized copying, since it 

can be used to provide evidence for legal action against those responsible for piracy. 

In this project, we present a novel software watermarking scheme that is inspired by the success 

of previous research focused on detecting metamorphic viruses. We use a trained hidden Markov 

model (HMM) to detect a specific copy of software. We give experimental results that show our 

scheme is robust. That is, we can identify the original software even after it has been extensively 

modified, as might occur as part of an attack on the watermarking scheme.  
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1. Introduction 

In recent years the software industry has faced a growing problem of piracy. Software piracy can 

be defined as making illegal copies or using commercial software purchased by someone else. 

Software piracy has many adverse effects. Each pirated copy of software takes away from 

profits, reducing funds for further software development activities. In addition to reducing the 

revenues for local information technology (IT) services and distribution firms, software piracy 

lowers the tax revenue. Use of pirated software also increases the risk of cyber crimes and 

security problems as pirated software can be used to install Trojans and malware. In spite of the 

efforts of the software industry and governments across the world, software piracy has been 

steadily increasing. A recent study of global personal computer software piracy by Business 

Software Alliance (BSA) and IDC, IT industry’s leading global market research and forecasting 

firm, shows that software piracy levels rose globally from 41% in 2008 to 43% in 2009 [1]. The 

impact of software piracy on the software industry just in terms of lost revenue was more than 50 

billion US dollars.  

A variety of ethical, legal, and technical solutions are employed to prevent software piracy [2].  

Ethical and legal techniques like copyright laws focus on making it less desirable for consumers 

to use pirated software. A number of technical solutions also aid in the fight against software 

piracy. Techniques like encryption and obfuscation aim to increase the difficulty and thereby, the 

cost of duplicating software. Another effective technique for piracy prevention is digital 

watermarking, the process of embedding information into a digital object in a way that is 

difficult to remove [3]. A digital watermark enables us to determine whether the software is ours 

and it could also tell us who originally purchased the software. This could reduce software piracy 

since people would be less likely to illegally share software. Digital watermarks can also aid in 
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taking legal action against the pirates. Thus, digital watermarks can act as powerful deterrents to 

software piracy.   

In this project, we developed an approach for watermarking that was inspired by previous studies 

of viruses that change their structure (but not their function) each time they replicate [4]. This 

technique of transforming code into functionally equivalent but structurally different code is 

called as metamorphism. It makes it difficult to detect virus since anti-virus software have fixed 

signatures that do not match the metamorphic copies. Metamorphism can be used in the context 

of software watermarking to embed a unique watermark in each instance of the software.  

The remainder of this report is organized as follows. Background information about digital 

watermarking, metamorphism, and hidden Markov models are discussed in detail in Section 2. 

Section 3 contains an overview of the design of our watermarking technique. In Section 4, we 

discuss our implementation in some detail and experimental results are given in Section 5. 

Section 6 concludes the report. 
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2. Background 

In this section, we describe three concepts that are essential for understanding the work done in 

this project:  

i) Digital Watermarking 

ii) Metamorphism 

iii) Hidden Markov Model 

2.1 Watermarking 

Watermarking is the technique of embedding some special mark in an object to identify the 

object [3]. This project addresses software watermarking, which we accomplish by embedding 

some special pieces of code in software to identify the software. These special pieces of code 

serve as a watermark and enable us to identify the code. 

2.1.1Why Watermark? 

In the past, duplicating copyrighted material generally required a significant effort and there was 

often a loss of quality in the duplication process. However, with digital content, a single click of 

a mouse is often sufficient to make a perfect digital copy [5]. An embedded watermark can be 

used to identify the purchaser of the work and thereby detect such copying. This concept is also 

applicable to all types of digital content, including audio and video. Digital watermarking has 

many applications which require watermarks that have different properties [6]. We discuss a few 

of these applications below. 
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a)  Ownership Assertion  

Watermarks can be used to prove ownership. Alice can embed some information in a digital 

object before giving it to Bob. If Bob makes a copy of the object, then the embedded watermark 

is also copied. Later if Bob distributes this copy of the object, Alice can detect the presence of 

her watermark and know that it is a copy of the object owned by her. It is essential in these 

applications that the watermark can be detected even if the copy is modified. 

b)  Tamper Detection 

In some applications it is important just to know if a digital object has been tampered. 

Watermarks can be used to detect tampering.  For tamper detection, we can use watermarks that   

become undetectable even if small modifications are made to the object. For instance, Alice can 

embed such a watermark in a digital object. If Bob modifies the object, the watermark will 

become undetectable revealing the fact that the object has been tampered.  

c) Fingerprinting 

In some applications where digital content is distributed, the owner of the content may want to 

identify the person making unauthorized copies by embedding unique watermarks in each copy. 

When an unauthorized copy is found, the watermark in the copy can be used to identify the 

person who made the copy. In these applications the watermarking scheme must be such that it is 

difficult to remove or forge a watermark. 

2.1.2 Classification of Digital Watermarking Techniques 

As we can see there are various properties of watermarks that are useful in different applications.  

We can classify digital watermarking techniques in different ways based on these properties. One 
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way of classifying watermarks is based on the visibility [3]. Watermarks can be visible or 

invisible. A visible watermark is intended to be known to the user. An example of a digital 

watermark that is visible is a visible company logo in a classified document. Invisible 

watermarks, on the other hand, are supposed to be imperceptible to the user. Invisible 

watermarks have been proposed for digital music. Ideally, such watermarks, which are designed 

to detect music piracy, must not degrade the quality of the audio and they must be sufficiently 

robust to withstand attacks by the pirates.  

Digital watermarks can also be classified based on their robustness [3]. A robust digital 

watermark can be reliably detected even if an attacker attempts to degrade it. A fragile 

watermark on the other hand is rendered undetectable even if a minor modification is applied to 

the object. A robust digital watermarking scheme would provide an effective means for 

copyright protection (ownership assertion/fingerprinting). In contrast, a fragile watermark could 

be used to detect tampering. 

Other ways of classification are also possible such as based on the embedding method (spread 

spectrum, quantization type) and the capacity (zero-bit watermarking, multi-bit 

watermarking) that are relevant to multimedia content [3]. In the context of software 

watermarking, we can broadly classify the techniques based on the way that the embedding is 

done. Static watermarking techniques embed the watermark inside the program code [7] [8]. 

Dynamic watermarking techniques on the other hand store the watermark in the execution state 

of the program [9][10]. In this project, we focus on developing a static watermarking technique. 
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2.1.3 Challenges in Digital Watermarking 

Previous research in this area has shown that developing a robust watermarking scheme is a 

challenging problem. In September 2000, Secure Digital Music Initiative [11], a consortium of 

parties interested in preventing piracy of digital music, issued a challenge to test the strength of 

four watermarking technologies [12]. For each technique, they released a file (File 1) and its 

watermarked version (File 2). They also provided another watermarked music file (File 3). The 

challenge was to remove the watermark from the third file without distorting the quality of 

sound. No information about the watermarking technique was provided. An online “oracle” was 

the only help that the testers had. Testers could send the file that they created by removing the 

watermark to the oracle and it would inform them if they had succeeded, i.e., the watermark was 

not detectable in their new file and it sounded like File 1. Craver et al. [14] showed that all four 

techniques could be defeated using standard signal processing techniques [13]. Continuing 

research in this area has shown that newer techniques for digital watermarking are still open to 

such removal attacks. 

Over the years, many static techniques have been developed for software watermarking. Various 

kinds of attacks are possible against these techniques. Additive attacks involve inserting 

additional watermark into already watermarked software. The goal of this attack is to make the 

original watermark undetectable. Distortive attacks involve using semantics preserving 

transformations like variable renaming and function in-lining to make the watermarks 

undetectable. Subtractive attacks involve identifying the watermark and removing it without 

changing the functionality of the program. In this project, we develop a watermarking scheme 

based on trained hidden Markov models of executables that provides strong protection against 

many of these attacks. 
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2.2 Metamorphism 

Metamorphism is the process of transforming a piece of code into unique copies that are 

functionally equivalent but structurally different. Metamorphism has been used widely by virus 

writers to defeat signature based anti-virus software.  Virus writers create metamorphic copies of 

virus that can not be matched by the existing signatures. In recent years, metamorphism has also 

been used by security researchers to prevent various attacks. Diversity in software can reduce the 

impact of many implementation-level attacks like buffer overflow and stack smashing [15]. 

Metamorphism has also been used previously for generating watermarking schemes [16]. 

2.2.1 Assembly Language Basics   

In this project, we developed a technique for watermarking based on generating metamorphic 

copies of x86 assembly code. Before we discuss the operations performed by our metamorphic 

generator, we provide some background information about x86 architecture and assembly 

language here [17]. This will help to understand the transformations that we perform on the code. 

2.2.1.1. Central Processing Unit (CPU) Internals 

The term x86 refers to a family of instruction set architectures that are based on Intel 8086 

processor. It is one of the most popular instruction set architectures for personal computers. 

There is almost full binary backward compatibility between the Intel 8086 chip through to the 

current generation of x86 processors like the Pentium series. Here we discuss the 32-bit x86 

architecture. The main components of the CPU are – 

1. Clock 

2. Control Unit 

http://en.wikipedia.org/wiki/Backward_compatibility
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3. Arithmetic and Logic Unit (ALU) 

4. Registers 

For understanding the assembly language, we need to know the different types of registers. We 

describe the types of registers below. 

General Purpose Registers 

The general purpose registers are used for mainly for arithmetic and data movement. These 32-

bit registers are:  

 EAX, EBX, ECX, EDX – The lower 16-bits of these registers can be accessed by 

omitting the “E” from the name such “AX”. Within the AX register, each individual byte 

can be accessed as “AH” (high byte) and “AL” (low byte) as shown in Figure 1.  

 ESP, EBP, ESI, EDI – These can be used as 32-bit registers or 16-bit registers by 

removing the “E” in the name. ESP is the extended stack pointer. EBP is used as base 

pointer to reference local variables in a function. ESI and EDI are used in high-speed 

memory transfer instructions as source index and destination index.  

     

   Figure 1: General Purpose Registers 

Segment Registers 

Segment registers (CS, DS, ES, FS, GS, and SS) are used to hold the base address of pre-

assigned areas in memory called as segments. These are 16-bit registers that are sometimes used 

in conjunction with certain general-purpose registers to access specific memory locations. CS is 
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called the code segment register. It is used to point to the code within the currently executing 

program. DS, called the data segment register, points to the segment containing the data of the 

executing program. ES, called extra segment register, is also used in data operations, usually 

with the DI register. FS and GS are used to hold extra data pointer similar to ES. SS is called 

stack segment register and is used to point to the stack region. 

Special Purpose Registers 

There are two special purpose registers in x86 architecture. EIP, called the extended instruction 

pointer, stores the address of the next instruction to be executed. EFLAG is used to keep track of 

the CPU state. The value of flags in EFLAG is set by CPU whenever a mathematical or logical 

operation is carried out. The value in EFLAG can be used to change the control flow of the 

program. Figure 2 shows all the x86 registers. 

 

    Figure 2: x86 Registers 
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2.2.1.2 x86 Instruction Set 

The full x86 instruction set is large and complex [18]. The instructions consist of an “opcode” 

followed by one or more operands. The operands can be a constant value, a pointer to a value in 

memory, or a register. The instructions can broadly be classified as data transfer instructions, 

arithmetic and logical instructions, and control flow instructions. Table 1 shows some 

instructions of each type. 

Data Transfer Instruction 

 

MOV Move byte or word to register or memory 

IN, OUT Input/output byte or word 

LEA Load Effective Address 

PUSH, POP Push/Pop word on/from stack  

 

Arithmetic and Logical Instructions 

 

NOT Logical NOT of byte or word 

AND Logical AND of byte or word 

OR Logical OR of byte or word 

XOR Logical XOR of byte or word 

ADD, SUB Add, subtract byte or word 

INC, DEC Increment, decrement byte or word 

NEG Negate byte or word (two's complement) 

MUL, DIV Multiply, divide byte or word (unsigned) 

 

 

Control Flow Instructions 

 

JMP Unconditional jump 

JE/JNE Jump if equal/Jump if not equal 

LOOP Loop unconditional, count in CX, short jump 

to target address 

CALL, RET Call, return from procedure 

 

Table 1: x86 Instruction Set 
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2.2.2 Techniques for Generating Metamorphic Code  

An important component of our system is the metamorphic code generator. There are a large 

number of semantics preserving transformations that can be applied to assembly code to get 

metamorphic copies [19]. Here we discuss some of these techniques. 

2.2.2.1 Inserting Data Flow and Control Flow Preserving Instructions 

In this transformation we insert single instruction or sequence of instructions that have a 

combined effect of not changing the data flow and the control flow. We present a few examples 

here. 

1. NOP is a special instruction that has no effect on the execution state. It is simply a “do 

nothing” instruction. Therefore we can insert nops between instructions as shown below. 

 

Original Code Transformed Code 

MOV AL, BL 

ADD AL, 05H 

MOV AL, BL 

NOP 

ADD AL, 05H 

  

2.  We can use groups of arithmetic or logical instructions, the net effect of which does not 

change the value of any registers. Since arithmetic instructions can change the flags, we 

may need to store and restore the EFLAG register when inserting such code. Below are 

some  examples of such instruction groups. 
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ADD AX, 05H 

SUB AX,  05H 

XOR AX, 0H 

AND AX, FFFFH 

  

3. We can add a label to any instruction and put a “jmp” instruction to that label just before 

the instruction. This does not change the program behavior in any way. 

Original Code Transformed Code 

MOV AL, BL 

ADD AL, 05H 

MOV AL, BL 

JMP LOC1 

LOC1: ADD AL, 05H 

 

4. We can push the value of some register on the stack and pop it immediately to preserve the 

program semantics. 

Original Code Transformed Code 

MOV AL, BL 

ADD AL, 05H 

MOV AL, BL 

PUSH AX 

POP AX 

ADD AL, 05H 
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2.2.2.2 Dead Code Insertion 

We can insert code that is never executed. This transformation is very useful as we can use any 

combination of instructions within the dead code block. Below is an example of dead code 

insertion. 

Original Code Transformed Code 

MOV AL, BL 

ADD AL, 05H 

MOV AL, BL 

JMP LOC: 

PUSH AX 

POP AX 

ADD AL, BL 

LOC: ADD AL, 05H 

 

2.2.2.3 Equivalent Code Substitution 

We can transform the code by replacing instruction(s) with equivalent instructions. Below are 

some examples of equivalent code substitution 

Original Code Transformed Code 

ADD AL, 05H ADD AL, 04H 

ADD AL, 01H 

MOV AX, BX PUSH AX 

POP BX 
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2.3 Hidden Markov Model 

Markov model is a statistical model in which there are states and the probabilities of state 

transitions are known [20]. In Markov models, the states are visible to the observer. A hidden 

Markov model differs from a Markov model in this respect. The states in a hidden Markov 

model are not visible to the observer, but the output, which is dependent on the state, is visible 

[22]. Therefore, hidden Markov models have state transition probabilities as well as a probability 

distribution over all possible output symbols in each state. Formally we can describe an HMM 

model λ using the following parameters. 

T: the length of the observation sequence 

N: the number of states in the model 

M: the number of observation symbols 

X = {x0, x1, . . , xN−1}: the states of the Markov process 

O = {O0, O1, . . , OM− 1}: set of possible observations 

A: the state transition probabilities 

B: the observation probability matrix 

π: the initial state distribution 

Figure 3 shows an example of HMM where X0, X1, .., XT-1 are the hidden states and O0, O1, .., 

OT-1 are the observed symbols in each state. A and B represent the state transition probabilities 

and observation probabilities respectively. 
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Figure 3: Hidden Markov Model  

To understand how we can model a system as a hidden Markov model, consider the following 

example [21]. A person has three coins and he is in a room tossing them in some sequence. The 

room is closed and what we are shown is only the outcomes of his tossing, say, 

{T,T,H,T,H,H,T,T,..}. This will be called observation sequence. We do not know the sequence in 

which he is tossing the different coins, and also the bias of the various coins. We can see that the 

output sequence depends on (i) the individual bias, (ii) transition probabilities between various 

states, and (iii) which state is chosen to begin the observations. The above three parameters 

characterize the hidden Markov model for this coin tossing experiment.  

HMMs are used in many applications like speech recognition, alignment of bio sequences, and 

cryptanalysis. HMMs are very useful in these applications as following three problems 

associated with HMMs can be solved very efficiently: 

1. For a hidden Markov model and a sequence of observations, find the likelihood that the 

observed sequence can be generated by the process that is modeled.  

2. For a hidden Markov model and an observation sequence, find an optimal sequence of states 

in the model that can generate the observation sequence. 



24 
 

3. For an observation sequence, known number of states, and known number of observation 

symbols, find the model that maximizes the probability of observing the given sequence.  

In this project, we require the algorithms for problem (1) and (3) above.  The solution for (3) is 

used for training the model and the solution for (1) is used for detecting if a piece of code has 

been watermarked by our system or not. We explain the details in the next two sections. 
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3. Design Overview 

The goal of this project is to design a robust watermarking scheme. The requirements for our 

system can be understood by considering the following scenario. We have some software that we 

want to protect from unauthorized copying. We watermark our software and sell it to some 

person, say Trudy. She makes an illegal copy of this software and tries to destroy the watermark 

in the copy. Our watermarking scheme should be able to detect that the copy made by Trudy was 

made from our software 

3.1 System Overview 

Our system has two phases. In the first phase, we use a metamorphic generator to create morphed 

copies of the software to be protected from piracy. We use the morphed copies for training and 

generating a hidden Markov model.  The learnt model acts as the watermark. The use of 

morphed copies ensures that the watermark is more robust, i.e., more resistant to attacks. 

Another advantage of using morphed software is that it increases the diversity and therefore 

makes it difficult to attack any vulnerability in the software. Figure 4 shows the training phase of 

our system.    

 

   Figure 4: Training Phase 
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The second phase is the detection phase. In this phase we find out the likelihood that given 

software belongs to the hidden Markov model generated in the first phase. A high score indicates 

that the software is a modified copy of the morphed copies used for training. Figure 5 shows the 

detection phase. 

    

Figure 5: Detection Phase 

3.1.1 Design of Metamorphic Generator 

Our metamorphic generator makes morphed copies from given software. For generating these 

morphed copies, various techniques like the dead code insertion and the equivalent code 

substitution transformations (explained in Section 2) can be used. The operation of the 

metamorphic generator is driven by three parameters that a user has to set. The first parameter is 

the name of the file to be morphed. The second parameter is the amount of morphing to be done 

(in percentage). This number indicates by what percentage of the number of lines of code in the 

original software, the number of lines of code in the morphed copy can increase. For example, if 

the number of lines in original .asm file is 1000 and we want to perform 20% of morphing, then 

after morphing, the maximum number of lines of code in a morphed copy will be 1200. The third 

parameter is the number of copies to be generated. Figure 6 illustrates the design of the 

metamorphic generator. 
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Figure 6: Metamorphic Generator 

3.1.2 Robustness of HMM Based Watermarking Scheme 

In our system, the hidden Markov model that is learnt in the training phase is the watermark. The 

files used for training can be considered to be watermarked. This is actually a very unusual way 

to watermark, since the watermark is not anything that we add to the code. To read the 

watermark, an HMM will be used and it will score the software. If it scores high, then the 

watermark was created with our metamorphic generator, and if not, it was not created by the 

generator.  From here on we will use the term “normal file” for any software that has not been 

created by our metamorphic generator and hence is scored low by the HMM. Details of HMM 

training and how HMM scores the software are explained in Section 4. Here we are developing a 

model so that we can detect our software after it has been tampered with by an attacker (who is, 

presumably, trying to remove or damage the “watermark”.). 

 If someone wants to remove the watermark from the software, they have to trick the HMM. So 

for this, the attacker has to tamper the watermarked file such that it will start looking like a 

 

 

Metamorphic 

Generator Amount of morphing to be done 

(20%) 

     File to be morphed (IDAN.asm) 

Number of morphed copies 

(100) 

100 morphed 

copies (with 20% 

of morphing) 
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normal file. One possible attack that can be carried out is to insert some amount of dead code 

from normal file in the morphed (watermarked) copy. If our HMM model scores this modified 

(tampered) file closer to normal file, then the attack can be considered to be successful. Previous 

research has shown that it is very difficult to trick such an HMM and, therefore, this 

watermarking scheme is likely to be robust. We have tested our watermarking scheme to verify 

that this is the case and have presented the results in Section 5.  
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4. Implementation  

In this section we describe how we have implemented each component in our system.  

4.1. Metamorphic Generator 

We have implemented metamorphic generator as a Perl script. We have used dead code insertion 

and insertion of code that does not affect the control flow and data flow of the program to 

transform the input assembly code. The metamorphic generator takes as input the name of the 

file to be morphed, the percentage of morphing, and the number of morphed copies to be 

generated. For example, we can give the file name as “Sample.asm”, percentage of morphing as 

“20%”, and number of copies as “100”. We provide some files containing different number of 

instructions (J1.asm, J2.asm, …, J5.asm) to the metamorphic generator. The code in these files 

can be used as dead code. Following are the steps performed in the metamorphic generator for 

each of the morphed copies to be generated. 

a. Compute the number of lines of code in the original file 

b. Compute the number of lines of code that can be inserted, say icount, based on the 

percentage of morphing and the number computed in (a). 

c. Select 5 random locations where dead code is to be inserted in the morphed copy. 

d. Make a copy of the original “.asm” file.  

e. If icount is less than the number of lines of code in J1.asm then insert icount 

instructions from J1.asm at the first random location selected in (c) and stop. 

f. If icount is more than the number of lines of code in J1.asm then insert all the 

instructions in J1.asm at the first random location selected in (c), decrement icount by 

the number of lines in J1.asm  and repeat steps (e) and  (f) using the next random 

location and the next junk file in the list. 
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We want to make it difficult for the attacker to identify any transformations that we have done. 

So add additional code in each morphed copy that preserves the semantics but makes the file 

structurally even more different. For this purpose, we insert the five code blocks shown in Table 

2 at random locations in the morphed copies. To avoid detection we insert these code blocks in 

very small percentage of locations. We do this by generating a random number between 1 and 

800 for each line of code in the morphed copy. If the number is 1, we insert the first block shown 

in the Table 2 before the current instruction being considered in the morphed copy. If it is 2, then 

we select the second block, and so on.  

NOP 

JMP LOC_100 

LOC_100: 

PUSH EAX 

POP EAX 

ADD EAX, 0H 

SUB EAX, 0H 

   

  Table 2: Instruction Blocks for Increasing Diversity 

4.2 Training HMM 

We collect all morphed files and use them as dataset for training HMM. For training and testing 

we used cross-validation techniques [4]. Cross-validation is a technique for assessing how the 

results of a statistical analysis will generalize to an independent data set. It is used where one 

wants to estimate how accurately a predictive model will perform in future. One round of cross-

validation involves partitioning a sample of data into complementary subsets, performing the 

http://en.wikipedia.org/wiki/Accuracy
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Statistical_sample
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Complement_%28set_theory%29
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analysis on one subset (training set), and validating the analysis on the other subset (testing set) .  

To reduce variability, multiple rounds of cross-validation are performed using different 

partitions, and the validation results are averaged over the rounds. 

We use 5-fold cross-validation. For training a model, each time, we select one of the subsets as 

test data and remaining four subsets as training data for HMM. We train our model using the 

assembly opcode sequences of the morphed files. For this we extract the sequences of opcodes 

from each morphed copy to be used for training. We concatenated the opcode sequences to yield 

one long observation sequence [4]. We used test data along with normal files for scoring 

purpose. This process was repeated five times. Each time, the test data subset was changed. In 

this way we got five HMM models. We see that the scores for the test data files are high while 

those for the normal files are low. We use the highest score amongst normal files as a threshold. 

Figure 7 shows the training phase. 

 

 

 

  

 

         

 

 

Figure 7: HMM Training 
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In the detection phase, we score the file provided to us. If the score is higher than the threshold, it 

means that the file is a watermarked file. If the score is higher than the threshold, but closer to 

the normal files, that means that it is a copy of a watermarked file that has been tampered. 
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5. Evaluation 

We evaluated the robustness of our watermarking using on many experiments. The test data that 

we used for our experiments consisted of 30 executables from Cygwin version 1.5.19 [4]. These 

executables were disassembled using the IDA Pro Disassembler version 4.6.0.  These 30 Cygwin 

utilities files were named N0.EXE to N39.EXE. We added the prefix “IDA” to the respective file 

names and changed the suffix to “.ASM” from “.EXE” to denote that the files were disassembled 

ASM files created by IDA Pro. For example, the file disassembled from N0.EXE was named 

IDAN0.ASM. We used another executable from Cygwin version 1.5.19 as the input code to be 

protected. We named the disassembled version of the file as IDAW.ASM. We named the 100 

morphed copies that we generate in each for experiments as IDAW0.ASM to IDAW100.ASM  

5.1 Tampering Using Dead Code Insertion 

To evaluate the ability of our watermarking scheme to withstand distortion attacks, we developed 

a tampering scheme to modify the morphed (watermarked) copies. The key idea here is to make 

the tampered file look similar to a normal file so that the watermark is rendered undetectable. We 

used our metamorphic generator for tampering the watermarked file. We copied instructions 

from normal files and inserted them as dead code in the watermarked files. We called such 

modified files as “tampered” files and named them as “IDAT0.ASM”, “IDAT1.ASM” and so on.  

As more and more code is inserted from the normal file, the tampered file becomes similar to 

normal file. The score of the tampered file moves closer to normal files within the increase in 

tampering and beyond certain point the score becomes less than the threshold. We fail to detect 

the watermark in such cases. We evaluated the ability of our watermarking scheme to withstand 

such an attack. 



34 
 

In the first experiment, we used 0% morphing. This means that all the morphed files were the 

same. We generated 100 morphed files named IDAW0.ASM to IDAW99.ASM. We used 5-fold 

cross validation technique, i.e., 80 files were used for training the model and 20 for generating 

testing. We used the 30 normal files (IDAN0.ASM - IDAN29.ASM) for obtaining the threshold. 

We generated tampered files using just dead code insertion as explained above. We varied the 

percentage of additional code that is added from 2% to 90%. Figure 8 shows the scores of the 

tampered files for 2%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% additional code. 

We can clearly see in the graph that the normal files have a very low score while the 

watermarked files have a very high score. Since, we are doing 0% morphing, all the morphed 

files have the same score. For 2% tampered file the score is very close to the watermarked files. 

As the tampering is increased, the scores become closer to the normal files. We can still detect 

the files as being tampered versions of the watermarked files as the scores are more than the 

normal file till 60% tampering. After 70% tampering, the files become indistinguishable from the 

normal files.  
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Figure 8: Detecting Tampering (Dead Code Insertion) using 0% Morphing 
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Table  3 shows the scores of some watermarked, tampered and normal files. Table 4 shows the 

maximum, minimum, and the average scores for these files. 

 

Table 3: Sample Scores of Watermarked, Tampered, and Normal Files (0 % Morphing) 
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Table 4: Sample Scores of Watermarked, Tampered, and Normal Files (10% Morphing) 

 

 Maximum Score Minimum Score Average 

Watermarked Files -1.77829 -1.77829 -1.77829 

Tampered Files -2.9506 -14.0354 -16.986 

Normal Files -13.806 -46.081 -59.887 

Table 5: Max, Min, Average Scores 

 Maximum 

Score 

Minimum Score Average 

Watermarked Files -1.86300812 -2.374626063 - 2.1188170915 

Tampered Files -3.325264237 -11.40799065 - 7.3666274435 

Normal Files -13.806 -46.081 -59.887 
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Table 6: Max, Min, Average Scores (10% Morphing) 

 

 

Figure 9 shows the size of the tampered files in term of the lines of code. 

 

 

Figure 9: Sizes of Tampered Files and Original File 

For the second experiment, we used 10% morphing in the metamorphic generator. Figure 10 

shows the results for tampering from 2%-90%. Here we can see that see the scores for the 

morphed copies vary slightly. Using morphing the watermarking scheme becomes more robust 

and is able to detect even 70% tampered files. But the files that are tampered more than 80% can 

not be detected. 
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 Figure 10: Detecting Tampering (Dead Code Insertion) using 10% Morphing 

Table 7 summarizes the results for 0% and 10% morphing. 
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  Table 7: Detection Results for 0% and 10% Morphing   

5.2 Tampering Using Dead Code Insertion and Code Substitution 

We performed another experiment to evaluate the robustness of our watermarking scheme 

against distortion attacks. We used equivalent code substitution along with dead code insertion to 

tamper the files. The equivalent code substitution is as explained in Section 2. Here the 

percentage of tampering indicates both the amount of dead code inserted and the percentage of 

code substituted. Figure 11 shows the results for 0% morphed files and tampered files from 2% - 

90%. Once gain we see that we are able to detect 2% - 60% tampered files. 
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Figure 11: Detecting Tampering (Dead Code Insertion and Code Substitution) using 0% 

Morphing. 
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Figure 12: Detecting Tampering (Dead Code Insertion and Code Substitution) using 10% 

Morphing. 
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6. Conclusion and Future Work 

Developing a robust watermarking scheme is a very challenging problem. No single 

watermarking scheme can prevent all types of attacks [23]. In this project we developed a 

watermarking scheme inspired by the success of previous research in identifying metamorphic 

virus using statistical methods. Our experimental results show that our scheme is robust and can 

withstand certain kinds of attacks very well. 

We believe that this work is just the beginning and a lot more research needs to be done in this 

area. In the future, we plan to investigate using more sophisticated techniques for metamorphic 

generator and evaluate its effect on the robustness of the scheme. Also, we plan to address more 

attacks in the future. And finally, we want to extend the ideas in this work by developing meta-

metamorphic generator. A meta-metamorphic generator would be able to generate new 

metamorphic generators any time that some software needs to be watermarked. Such a scheme 

can potentially be more robust than our current scheme. 
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