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Machine Learning Phases of Strongly Correlated Fermions
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Machine learning offers an unprecedented perspective for the problem of classifying phases in
condensed matter physics. We employ neural-network machine learning techniques to distinguish
finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-
dimensional convolutional network trained on auxiliary field configurations produced by quantum
Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of
the model at the average density of one (half filling). We then use the network, trained at half filling, to
explore the trend in the transition temperature as the system is doped away from half filling. This transfer
learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this
region. Our results pave the way for other machine learning applications in correlated quantum many-body
systems.

DOI: 10.1103/PhysRevX.7.031038 Subject Areas: Computational Physics,
Condensed Matter Physics,
Strongly Correlated Materials

I. INTRODUCTION

The various modern architectures of neural networks
consisting of multiple layers and neuron types (see Fig. 1
for an example) can be trained to classify, with a high
degree of accuracy, intricate sets of labeled data [1]. The
data, e.g., a series of handwritten digits, are fed to the
network input layer, and the outcome, read at the output
layer, are neuron activations corresponding to the different
digits. Common to most algorithms involving neural net-
works is the training procedure, which is an optimization
problem where the free parameters associated with con-
nections between neurons in adjacent layers and their
biases (additive constants) are slowly adjusted until a high
classification accuracy is attained. Embodied in the study of
quantum and classical statistical mechanics are the many-
body states, which can be understood as immense data sets
associated with the equilibrium state of the system, and
over which machine learning techniques can be naturally
applied. Early applications of machine learning ideas in
condensed matter physics focused on their connection to
renormalization group methods [2], obtaining the Green’s
function of the Anderson impurity model [3], categorizing
real materials [4–7], or learning ground states and thermo-
dynamics of many-body systems [8,9]. Tensor-network

representations of quantum states have also been proposed
recently as a powerful tool for supervised learning [10].
Recently, neural-network machine learning algorithms

have been successfully adopted to distinguish phases of

FIG. 1. Architecture of the 3D convolutional neural network
used to obtain TN for the 3D Hubbard model. For input, we use
the auxiliary field configurations in a four-dimensional grid, three
spatial dimensions of size 4 (total of N ¼ 43 sites), and one
imaginary time dimension of size L ¼ 200. Numbers of volu-
metric feature maps in the hidden-feature extraction layers are
nð2Þ ¼ 32, nð3Þ ¼ 16, and nð4Þ ¼ 8. Here, nð5Þ ¼ 8 in the fully
connected layer. During training, dropout regularization with a
rate of 0.5 was used to mitigate overtraining. To classify the input
system as ordered or unordered, each of the eight fully connected
neurons is connected to each of the two readout neurons using
the softmax function as a neural activation function. The output
neuron with the highest probability represents the activated
neuron.
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matter in classical Ising-type models, effectively locating
critical temperatures at which transitions between phases
take place [11,12]. Two of the authors found that by using a
simple network consisting of only one hidden layer, one
can predict the transition temperature with up to 99%
accuracy for two-dimensional (2D) Ising models, solely
based on spin configurations generated by Monte Carlo
simulations and in the absence of any information about the
underlying lattice or the order parameter [11].
The extension of the technique to quantum mechanical

systems is less straightforward, as the quantumMonte Carlo
simulations of interacting particles involve an additional
dimension associatedwith imaginary time in the path integral
formalism at finite temperatures, or the projection parameter
for ground-state calculations; quantum fluctuations can
distort the easily recognizable picture of spin configurations
in the ordered phase of the classical system and therefore
significantly affect the training process of the neural network.
Here, using quantum Monte Carlo simulations of the
Hubbard model of strongly correlated fermions on cubic
lattices and convolutional neural networks (CNNs), we show
that one can successfully classify finite-temperature phases
of quantum systems and estimate transition temperatures
with a reasonable degree of accuracy on relatively small
lattice sizes.

II. MODEL

The Fermi-Hubbard Hamiltonian [13,14] in the particle-
hole invariant form is expressed as

H ¼ −t
X

hijiσ
c†iσcjσ þU

X

i

�
ni↑ −

1

2

��
ni↓ −

1

2

�
− μ

X

iσ

niσ;

ð1Þ

where ciσ (c†iσ) annihilates (creates) a fermion with spin σ
on site i, niσ ¼ c†iσciσ is the number operator,U is the onsite
Coulomb interaction, h  i denotes nearest neighbors, t is the
corresponding hopping integral, and μ is the chemical
potential. Here, μ ¼ 0 corresponds to the half-filled model
(average density of one fermion per site, n ¼ 1). We set
t ¼ 1 as the unit of energy and consider the model on three-
dimensional (3D) cubic lattices.
The 3D model at half filling realizes a finite-temperature

transition to the antiferromagnetic Néel phase for anyU > 0,
analogous to the magnetic ordering in the 2D classical Ising
model. The transition temperature TN , which is relatively
well known from the analysis of the staggered spin structure
factor, or the staggered susceptibility [15–21], is a non-
monotonic function of the interaction strength; it increases
rapidly with increasing U in the weak-coupling regime
(U ≲ 8), a result that can be captured using the random
phase approximation [15], and decreases at large U. In the
strong-coupling regime (U ≳ 12), the half-filled model can
be effectively described by the antiferromagnetic (AFM)

Heisenberg model, whose exchange constant, and hence,
Néel temperature, is proportional to 1=U [22].

III. METHOD

Our goal here is to train a CNN to identify finite-
temperature phase boundaries of the Hubbard model. We
utilize the determinantal quantum Monte Carlo (DQMC)
[23], which reduces the numerical evaluation of the
observables of the Fermi-Hubbard model to a stochastic
averaging over a set of discrete auxiliary fields extending in
space and along an imaginary time dimension. The spin
correlations of the model can be written directly in terms of
the correlations in our particularly chosen auxiliary field
(see Appendix A), rendering it an obvious choice to be used
in the identification of magnetic phases through machine
learning, although a previous attempt by including two of
the authors has not been successful [24]. The training is
performed using the field configurations generated during
DQMC simulations in a range of temperatures around one
or two critical points. The objective is to use the trained
network to map out the entire phase boundary associated
with the same critical phenomenon by varying the param-
eters driving the transition and generating test data sets of
the field configurations. In this work, we focus on the
magnetic properties of the Hubbard model.
We use a 3D CNN, originally developed for human action

recognition in videos [25], implemented in Tensorflow [26].
Convolutions are designed to return information about
spatial dimension and locality to the simpler idea of a fully
connected feed-forward neural network. In our case, the three
spatial dimensions of the cubic lattice are treated with the
convolution,while slices in the fourth imaginary time axis are
used as different filter channels [1]. The network architecture
for N ¼ 43 is shown in Fig. 1. We use three or four hidden
layers, depending on the spatial size of the system, for feature
extraction, followed by a fully connected layer before the
output layer. The optimal number of neurons in each layer
(resulting in the largest accuracy) forN ¼ 83 is found using a
Monte Carlo optimization procedure (see Appendix B).

IV. RESULTS

To benchmark our results and validate our approach, we
start with the 3D Hubbard model at half filling and explore
the accuracy with which we can predict the Néel phase
boundary in the temperature-interaction space. We train the
network to distinguish (by activating the corresponding
output neuron) spin configurations belonging to the ordered
phase (T < TN) from those of the unordered high-temper-
ature phase (see Appendix C). The approximately 80 000
labeled configurations at various temperatures around TN
are generated through DQMC simulations for two inter-
action strengths, U ¼ 5 and 16, one in the weak-coupling
and one in the strong-coupling regime, and shuffled before
they are used in the training. The trained network is then
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used to classify other configurations as the temperature is
varied across the estimated critical values for other values
of U between 4 and 16.

The results for two system sizes N ¼ 43 and N ¼ 83 are
shown in Fig. 2 as full squares and diamonds. Figure 2 also
summarizes TN in the thermodynamic limit from recent
unbiased studies [18,19,21].One can see that, despite notable
disagreements at intermediate values of U, remarkably,
the network can predict the nontrivial shape of the phase
boundary with a reasonable degree of accuracy even with a
system size ofN ¼ 43. The results forN ¼ 83 show the same
trend. However, we find that in the strong-coupling regime,
the latter are smaller than TN obtained with N ¼ 43. This
counterintuitive behavior is likely rooted in the lack of
precise knowledge of the critical temperature at U ¼ 16,
and the sensitivity of CNNs’ predictions to our choice of TN
during training as explained below. For each system size, we
train six different CNNs with the same architecture but with
different initial random weights and biases (see Appendix C
for training details), and we show the average TN over
different CNNs to make sure results are not biased towards
any particular training. The error bars are slightly larger for
N ¼ 83 as the neural network contains a significantly larger
number of parameters in this case.
We note that TN is not well defined for finite clusters,

which can lead to uncertainties in the labeling of the

configurations in the training process. However, the exact
value of TN is, in principle, not required for the training.
One can omit configurations from the training data for an
arbitrary temperature range in the proximity of the esti-
mated critical value, e.g., the temperature at which the
correlations reach the linear size of the cluster, at the
expense of losing some predicting accuracy by the network
after the training. Here, we take advantage of the fact that
finite-size errors are small in the strong-coupling regime
and use TN ¼ 0.23 for U ¼ 16, obtained for the thermo-
dynamic limit [21], for both cluster sizes. For U ¼ 5,
however, we use the approximate critical temperatures
TN ¼ 0.24 and 0.25 for N ¼ 43 and 83, respectively, from
the analysis of the Binder ratio for the order parameter [19].
The predicted critical temperatures for other values of U

during the classification are taken as temperatures at which
the network is maximally “confused,” i.e., when the average
output crosses 0.5. Figure 3 shows the average output of
the neuron, in the classification, that is trained to be activated,
i.e., to return 1, in the ordered. Results are shown for the two
system sizes and for U ¼ 6 and 12. We perform the
classifications on 90 000 (10 000) configurations per temper-
ature for N ¼ 43 (N ¼ 83). The data become noisier with a
smaller number of configurations for the larger systemandby
increasingU, and sowe use fits to a third-degree polynomial
using data near the 0.5 crossing to better estimate TN .
The simultaneous use of configurations for U ¼ 5 and

16 is crucial in obtaining the results in Fig. 2. We find that a
network that is trained to distinguish phases only in the
weak-coupling regime, e.g., for U ¼ 5, correctly predicts
the trend in TN vs U for systems in the weak-coupling
regime but grossly overestimates it for systems in the
intermediate- and strong-coupling regimes. Similarly, a
network that is trained with configurations only for U ¼
16 underestimates TN for any U < 16 (see the open
symbols in Fig. 2). Physically, this can be understood as

FIG. 2. Prediction of the Néel transition temperature by the
neural network. Using the auxiliary spin configurations, the
network is trained separately at U ¼ 5 and U ¼ 16 for
N ¼ 43, and simultaneously at U ¼ 5 and 16 for N ¼ 43 and
N ¼ 83. The error bars are the standard error of the mean of six
different classifications using CNNs that were trained starting
from different random weights and biases. The critical temper-
atures used for the training of the network with N ¼ 43 are shown
as stars (see text). Grey filled symbols are the estimates for TN in
the thermodynamic limit from DQMC and NLCE simulations.
Grey pentagons, hexagons, and circles for weak-, intermediate-,
and strong-coupling regimes are taken from Refs. [18,19,21],
respectively. The solid line is a guide to the eye.

FIG. 3. Average output of the neuron that is trained to be
activated (return 1) in the ordered phase as a function of
temperature at half filling. The network is maximally confused
(average is 0.5) at the transition temperatures. We use 90 000
configurations for N ¼ 43 and 10 000 configurations for N ¼ 83.
The grey solid lines are fits to data in the ranges shown. The
vertical dashed lines indicate the estimates for TN in the
thermodynamic limit (about 0.30 for both U values) from other
studies (see caption of Fig. 2).
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follows: The transition to the AFM ordered phase is less
sharp in the weak-coupling regime, with substantial double
occupancy still present in the system above the transition.
As a result, the network that is trained only in this regime
tracks the onset of Mott physics, which moves to higher
temperatures as the interaction strength increases, not the
Néel transition. On the other hand, the network that is
trained only in the strong-coupling regime tracks the onset
of the region with significantly reduced double occupancy
and stronger AFM correlations, which takes place at lower
temperatures for smaller values of U. The competition
between these two scenarios when training with both
U ¼ 5 and U ¼ 16 data is encoded in our CNN and is
key in obtaining reasonable TN for other U.
Does the magnetically ordered phase survive if we dope

the system away from half filling, and if so, what is the
dependence of TN on doping? We try to answer these
questions for U ¼ 9, where the transition temperature is
highest at half filling. We train the network using spin
configurations obtained for U ¼ 9 at half filling and then
classify other configurations generated at fixed temperatures
less than the half-filled value of TN , but across the chemical
potential axis. As soon as μ deviates from zero (the value
corresponding to half filling), the weight of configurations in
theDQMCcanbecomenegative, leading to the so-called“sign
problem” [27,28]. We treat the neuron output as a (binary)
physical observable, which, like spin correlations, can be
written as a nonlinear function of the auxiliary spins (see
Appendix A). Therefore, the expectation value is calculated
in the conventional way by including the sign in the averaging
and dividing by the average sign, typical for DQMC
(see Appendix A). This procedure is valid as long as the
average sign does not vanish. For completeness, in the
following, we also show results in cases where we have
ignored the sign problem and performed neuron output
averages simply by using the absolute value of weights of
the configurations.

The results are summarized in Fig. 4(a), where we show
the location of the critical μ, the onset of dominant AFM
correlations, at T ¼ 0.32 (red triangle). Similarly to TN at
half filling, the critical μ is estimated as the chemical
potential where the expectation value of the neuron output
crosses 0.5. To note the effect of the negative sign problem
on our results, the grey filled points show the results if the
sign is ignored during the calculation of the expectation
value. The transition temperature remains nonzero at n ≠ 1
but is expected to rapidly decrease by decreasing the
density. The flat region at μ > −1.0 is a direct consequence
of the Mott physics setting in near half filling. At the
temperatures we have access to, the Mott gap is not fully
developed yet, and the density starts deviating from unity
around μ ¼ −1.0. This is more clearly seen in the equations
of state shown in the inset of Fig. 4(a) at T ¼ 0.24, 0.28,
and 0.32.
In Figs. 4(b) and 4(c), we show the average neuron output

taking and without taking the sign problem into account vs μ
at T ¼ 0.32, 0.30, and 0.28. In Fig. 4(b), we also show the
average sign in the DQMC at T ¼ 0.32. As the latter
approaches zero around μ ¼ −2, the accuracy in the expect-
ation value of the neuron output is largely compromised.
Although it appears that the sign problem does not have a
considerable effect on the value of our observable for this
particular magnetic phase transition, we find significant
differences between the results obtained taking and without
taking the sign into account atT ¼ 0.32 starting atμ ¼ −1.4.
The latter can call into question a recent suggestion that the
sign problem can be circumvented using neural networks by
essentially ignoring the sign in training or classifications
[24]. We fit the data with error bars to a third-degree
polynomial for μ ≥ −2.2 and deduce a critical μ of −2.0
for the 0.5 crossing, which is larger than −2.6 obtained by
ignoring the sign problem. Note that here we are “transfer
learning” by employing a network that has been trained in the
sign-problem-free parameter region and using it in the sign

FIG. 4. Phase transitions away from half filling. (a) Magnetic phase diagram of the 3D Hubbard model away from half filling for
U ¼ 9. Empty red (filled grey) symbol(s) are estimates for the Néel temperatures, taking (not taking) the minus sign problem into
account, obtained from a neural network that is trained to identify the phase at half filling. Lines are guides to the eye. Inset: Equations of
state (density vs μ) for U ¼ 9 at T ¼ 0.24, 0.28, and 0.32 (solid lines from top to bottom, respectively). The grey dashed line is
calculated without taking the sign problem into account at T ¼ 0.32. (b) Average neuron outputO calculated taking (without taking) the
sign into account at T ¼ 0.32 (⟪SO⟫=⟪S⟫ and ⟪O⟫, respectively). See Appendix A for details. The grey dotted line is a fit to the data
near the 0.5 crossing point. (c) Same as in panel (b) but for T ¼ 0.30 and 0.28.

CH’NG, CARRASQUILLA, MELKO, and KHATAMI PHYS. REV. X 7, 031038 (2017)

031038-4



problematic region, an approach that can be used in other
machine learning applications where training in the sign-
problematic region cannot be justified. At T < 0.32, the sign
problem becomes more severe and prevents us from
obtaining estimates for TN [see Fig. 4(c)].
The inset of Fig. 4(a) shows that ignoring the sign

problem also leads to a smaller average density at a given μ
(see the grey dashed line in the inset corresponding to
T ¼ 0.32). This leads to a magnetic phase diagram in the
more physical temperature-density space that very much
depends on whether or not the sign has been properly taken
into account. Our results suggest that, at T ¼ 0.32 and the
critical μ ¼ −2, the density is less than 0.95, consistent
with recent results from a more conventional method [21].

V. CONCLUSION

We have utilized neural-network machine learning tech-
niques to predict the onset of the finite-temperature mag-
netically ordered phases of the 3D Fermi-Hubbard model.
We train a 3D CNN using auxiliary spin configurations for a
range of temperatures around the transition temperature,
sampled over during DQMC simulations of two systems in
the weak- and strong-coupling regimes. We show that the
trend in the Néel temperature of the half-filled model as a
function of the interaction strength can be captured by using
the trained network to classify configurations generated for
other interaction strengths. We then train a network at half
filling for U ¼ 9 and use it to predict the fate of the ordered
phase as the system is doped away from half filling. We find
that the instability persists in the latter region in close
proximity to the commensurate filling and that not including
the sign in the expectation value of the neuron outputs leads
to different results.
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APPENDIX A: DETERMINANT QUANTUM
MONTE CARLO

In the DQMC, the partition function Z ¼ Tre−βH is
expressed as a path integral by discretizing the inverse
temperature β into L slices of length Δτ. The one-body
(kinetic) and two-body (interaction) terms of the Hubbard

Hamiltonian are then separated in each time slice, leading
to a product of two exponentials: Z ¼ Trðe−ΔτKe−ΔτVÞL þ
OðΔτ2Þ, whereK and V are the kinetic and interaction parts
of the Hamiltonian, respectively. Since the two terms do not
commute, this process introduces a small controlled error
of the order of Δτ2. The interaction terms at different times
can then be written in terms of one-body (quadratic)
fermion operators using the Hubbard-Stratonovich (HS)
transformation

e−UΔτn↑n↓ ¼ 1

2
e−UΔτðn↑þn↓Þ=2

X

s¼�1

e−sλðn↑−n↓Þ; ðA1Þ

where cosh λ ¼ eUΔτ=2, at the expense of introducing a
sum over the field of auxiliary (spin) variables like s in a
Dþ 1-dimensional space (D spatial and 1 imaginary time).
The fermionic degrees of freedom in the quadratic form can
be integrated out analytically, resulting in the product of
two determinants, one for each fermion species, and leaving
behind the sum over the 2NL configurations of the auxiliary
spins, where N is the spatial size of the system. Hence, the
partition function can be expressed as

Z ∝
X

fsi;lg
detM↑ðfsi;lgÞ detM↓ðfsi;lgÞ; ðA2Þ

where Mσ is an N × N matrix that depends on the spin
configuration fsi;lg, and i and l represent the spatial and
time indices.
Observables are estimated by important sampling over

the configurations, which is performed, e.g., using the
Metropolis algorithm, with the product of determinants as
the probability, to accept or reject proposed local changes to
the field. However, the determinants are costly to update
and, other than in a few special cases, can take different
signs at low temperatures, leading to the infamous “sign
problem” [27,28]. At half filling, the two determinants have
the same sign by symmetry, and thus, there is no sign
problem. Away from half filling, one can take the absolute
value of the product of determinants as the new probability
in the Metropolis algorithm, but we have to treat the sign
with the observable explicitly. The expectation value of a
physical observable, O, can be calculated using

hOi ¼ ⟪SO⟫

⟪S⟫
; ðA3Þ

where S denotes the sign of the product of determinants
and ⟪  ⟫ represents the Monte Carlo average using the
absolute value of the product of determinants as the prob-
ability. Here, we take the neuron outputs as observables.
We use jackknife resampling to estimate the error bars.
The particular decoupling scheme we have chosen is

especially useful for inferring magnetic ordering by the
machine purely based on the auxiliary fields. This is
because the correlations between fermionic spins S can
be written in terms of auxiliary spins [29,30]:
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hSiðτÞSjð0Þi ¼ ð1 − e−ΔτUÞ−1hsiðτÞsjð0Þi; ðA4Þ
(not valid when τ ¼ 0 and i ¼ j). Therefore, the auxiliary
field variables are effectively representing the fermion spins
with the same correlations in space and time. The decou-
pling can be done using other variables that couple to
density or pairing operators, which can be more helpful in
detecting other phases, including charge density wave or
superconductivity. We do not explore those possibil-
ities here.
We use the quantum electron simulation toolbox

(QUEST) [31] for our DQMC simulations. The toolbox,
with minimal modifications, allows for outputting of the
HS field configurations at arbitrary intervals during the
simulations. We use 1000 (500) warmup sweeps and
between 10 000 and 100 000 (1000 and 10 000) measure-
ment sweeps for N ¼ 43 (N ¼ 83) in each run. We repeat
runs with different random number seeds to obtain the
desired number of configurations. In most cases, the HS
field configuration is written into a file after every 10
sweeps, the same frequency typically used to perform
physical measurements. For training, we choose the tem-
perature grid for every value of U so that we have the
same number of temperature points above and below the
expected TN . The temperatures are chosen in a nonuniform
grid that can extend from 0.03 to about 3.0 depending onU.
The discretization of the imaginary time interval ½0 − β�

(β ¼ 1=T) in the DQMC introduces a systematic Trotter
error, which scales like Δτ2, where Δτ ¼ β=L and L is the
number of time slices. Thus, in principle, one has to choose
a variable L at different temperatures so that the error in
physical observables is of the same order. However, such
configurations, with variable size of the fourth dimension,
are not useful in the training of a network whose size of
the input layer has to be kept fixed. Hence, we choose a
large fixed L ¼ 200 for all β such that Δτ remains below
the threshold value of ð8UÞ−1=2, where the Trotter error can
be neglected, for the largest U values and the lowest
temperatures considered here. Moreover, we are not inter-
ested in calculating physical observables; rather, we are
interested in locating the critical points at which the
correlations of the system, both in the spatial and in the
imaginary time dimensions, diverge; thus, the discretization
errors can essentially be ignored.

APPENDIX B: CONVOLUTIONAL NEURAL
NETWORK

1. Case of N = 43

Each auxiliary field configuration is fed into a 3D CNN,
with each imaginary time slice encoded as a different filter
channel (input block with 43 neurons—see the input layer
in Fig. 1). Each block from the L imaginary time slices is
immediately connected to 32 hidden volumetric feature
maps (blocks in the first hidden layer) for feature

extraction, for the network to detect a collection of unique
features.
To produce the volumetric feature maps in the first

hidden layer, we convolve a shared filter (also known as a

kernel) wð2Þ
lm with a 2 × 2 × 2 local receptive cube that

sweeps each input block, and we offset the result with a

shared bias bð2Þm . The kernel wð2Þ
lm can be thought of as a 23

tensor, where the superscript denotes the layer it corre-
sponds to, l ∈ ½1;L� is the input block label, which is the
same as the imaginary time index, and m ∈ ½1; 32� labels
the blocks in the first hidden layer. The convolution can be

written as a tensor operation zlmn ¼ wð2Þ
lm xln þ bð2Þm , where

xln represents the nth input as picked up by the local
receptive cube as it sweeps the lth input block. The process
is depicted in Fig. 5. Before z is written in the correspond-
ing element in the hidden layer, we pass it through a
rectified linear unit (ReLU) fðzÞ ¼ maxð0; zÞ, serving as
the neural activation function.
Sliding the local receptive cube with a stride of one in

each spatial dimension on the L input cubes completes the
construction of a volumetric feature map. To ensure that the
information around the borders does not deplete too
quickly, especially with smaller input size, as more con-
volutions are performed in the next layers, we use zero
padding to preserve the input size after each convolution;
we pad each of the input cubes with zeros, increasing their
size to 5 × 5 × 5 so that the output volume has the same
size as the original data, i.e., 4 × 4 × 4.

FIG. 5. Construction of a volumetric feature map. To produce
the highlighted neuron in the volumetric feature map, from the
input, a shared filter wð2Þ

l1 is convolved with a 2 × 2 × 2 local
receptive cube x0l across all the inputs in the imaginary time slices,

adding a bias offset bð2Þ1 , before being activated using ReLU.
Sliding the 2 × 2 × 2 cube in each of the spatial dimension while
repeating the convolutional procedure completes a volumetric
feature map. The spatial size of the volumetric feature map can be
preserved by using zero padding.
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As deeper networks are typically more powerful, we use
two more convolutional layers with ReLUs. We employ 16
and 8 volumetric feature maps for the second and third
hidden convolutional layers, respectively. We repeat the
procedure described above to construct the feature maps in
these layers.
The final feature extraction layer is connected to the first

classification layer, where some judgement on the input is
made (see Fig. 1). There are eight neurons in this layer.
Each of the 8 × 43 individual neurons from the third feature
extraction layer is connected to each of the fully connected
neurons in the first classification layer. Finally, each of the
eight hidden neurons is connected to two output neurons,
where the final judgement is made, using softmax as their
activation function. One of the output neurons represents
the ordered state ðT < TNÞ, and the other represents the
unordered state ðT > TNÞ. The output of the softmax
functions represents the likelihood of the input configura-
tion belonging to each of the two categories. As such,
the sum of outputs from the two neurons is always 1.
The activated output neuron is taken to be the one with the
highest probability.
During training, we use dropout regularization with a

dropout rate of 0.5 on the eight fully connected neurons in
order to mitigate overfitting. Namely, half of the eight fully
connected neurons are chosen at random and temporarily
deactivated. This forces the neurons to adapt to more robust
features.
An exponentially decaying learning rate is also used to

ensure that the network starts out learning rapidly and
slows down the learning after the model is close to
convergence. The learning rate is given by

η ¼ η0λ
training epoch; ðB1Þ

where the initial learning rate η0 ¼ 10−3, and the decay rate
λ ¼ 0.925. A complete training epoch is defined as when
the network has stepped through the whole set of training
data once.
We use a cross-entropy cost function given by [1]

C ¼ −
1

ntd

X

x

X2

i¼1

½yi ln ai þ ð1 − yiÞ lnð1 − aiÞ�; ðB2Þ

where x is the input data, ntd is the number of training data,
yi is the desired output, and ai is the network output.

2. Case of N = 83

The same procedure described above for the N ¼ 43

system is used for N ¼ 83. However, to keep the computa-
tional cost of the optimizations manageable, for N ¼ 83, we
perform convolutions without zero padding. We also use
four hidden-feature extraction layers in this case. To prevent

overshooting the optimal model, we use a more aggressive
decay rate λ ¼ 0.875.
We find that handpicking the number of feature maps

and fully connected neurons, similar to what we do for the
case of N ¼ 43, yields no learning. Thus, to avoid a costly
hyperparameter grid search, where hyperparameter refers to
the number of feature maps or number of neurons in the
classification layer, we perform a Monte Carlo sampling
for 20 search iterations in the hyperparameter space.
We constrain the number of feature maps and fully
connected neurons to the interval [8, 128]. The optimized
hyperparameters we found (the set that yields the largest
training accuracy) are nð2Þ ¼ 54, nð3Þ ¼ 26, nð4Þ ¼ 14,
nð5Þ ¼ 18, and nð6Þ ¼ 64, where nð2Þ through nð5Þ are the
number of feature maps in the feature extraction layers and
nð6Þ is the number of neurons in the first classification layer.

APPENDIX C: TRAINING THE CNN

Figure 6 shows the training progress of our networks and
the evolution of the cost function in different cases vs
training epochs. In a training epoch, we go through the
entire set of shuffled training data once through iterations
that involve batch sizes of 200. Here, 85% of the input data
was used for training and 15% for testing. Test data are used
as a gauge for overfitting (overtraining). The network
overfits to the training data when the training accuracy
continues to improve, but the testing accuracy stalls. We
stop the training once we detect overfitting. The criterion is
that the training accuracy and testing accuracy should not
deviate from each other for more than 10 successive
training evaluations.
We save the model (weights and biases) every time (i) the

difference between the training accuracy and testing accu-
racy is less than 2.5%, (ii) the training accuracy is greater
than the testing accuracy, and (iii) the current testing

FIG. 6. Progress of the training process. Training accuracy for
(a) simultaneous training with U ¼ 5 and 16, (b) U ¼ 5 alone,
and (c) U ¼ 16 alone vs epochs. The location of last saved model
is shown as a green circle in each panel. The testing accuracies for
saved models are 92.7% (93.2%) for N ¼ 43 (N ¼ 83) in (a),
91.9% in (b), and 94.3% in (c).
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accuracy is better than the last recorded testing accuracy.
The locations of the last saved models are shown as green
circles for each case in Fig. 6.

APPENDIX D: WHAT DOES
THE MACHINE LEARN?

One may wonder what features are learned by the CNN,
as encoded in the weights and biases. Before addressing
this question, we make one observation. Unlike in cases of
image or sound recognition, the information put into our
machine (auxiliary spin configurations) consist of binary
numbers; namely, each input neuron takes 1 or −1 as the
value. Therefore, the “features” extracted by the eight-site
receptive cube will be no more than 28 ¼ 256 distinct
patterns of 1’s and −1’s on a 2 × 2 × 2 cube.
In Figs. 7(a)–7(d), we show a typical auxiliary field for
the first 10 time slices from DQMC simulations of the
system with U ¼ 5 and U ¼ 16 both below and above TN .
One can see that, due to quantum fluctuations, a clear
AFM pattern that can be discerned does not emerge in the
2D images. However, plotting the histogram of all 256
patterns in a sample set for U ¼ 16 in Figs. 7(e) and 7(f)
reveals that the AFM pattern is in fact the dominant one
at T < TN .
We focus on the first feature extraction layer immedi-

ately after the input layer. What has been encoded in the
weights and biases in that layer should be a good indication
of what the CNN is looking for in all the feature extraction
layers. Specifically, we would like to know to what extent
the saved wð2Þ

lm correlate with each of the 256 ordering
patterns. To find out, we convolve each of the ordering

patterns with each wð2Þ
lm . We introduce the following overlap

function:

γx ¼
X

lm

jwð2Þ
lm xj; ðD1Þ

where each x is a 2 × 2 × 2 tensor with 1’s and −1’s as
elements corresponding to one of the 256 ordering patterns
on the eight-site cube. We have safely ignored the biases as
they introduce a uniform shift and do not pertain to local
correlations. We take the absolute value of the tensor
product before performing the sums since we expect the
spin inversion symmetry to have been encoded in the CNN

to a good extent during the training; i.e.,
P

lmw
ð2Þ
lm x is orders

of magnitude smaller than γx for any of the ordering
patterns, something we confirm with our network. The
dominant features, as seen by the CNN, are those with the
largest γx. Here, γx plays a role analogous to the order
parameter for each of the ordering patterns. For example,
wxAFM, where xAFM corresponds to the perfect AFM
pattern, would be the staggered “magnetization” of w.
In Fig. 8, we show histograms of γx for the 256

possibilities for x at U ¼ 5 and U ¼ 16, respectively.

FIG. 7. (a)–(d) Typical auxiliary field patterns above and below TN used as input to the CNN for the N ¼ 43 system. In each panel, the
four rows correspond to the four layers in the z direction. We show the field only in the first 10 imaginary time slices (left to right) for
each case. (e,f) Normalized count of the 256 patterns within 2 × 2 × 2 cubes as detected in the raw configurations forU ¼ 16 below and
above TN . The two largest peaks in (f) correspond to the two AFM patterns.

FIG. 8. Histogram of the overlap between the learned features
and all the possible ordering patterns picked up by the 2 × 2 × 2
receptive cube. Top and bottom panels correspond to cases with
U ¼ 5 and U ¼ 16, respectively. The vertical dashed (red) line
marks the value for the perfect AFM ordering pattern.
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The ones in the large-γ tail of the distribution are the
dominant patterns. The red vertical line denotes the
magnitude of the convolution (overlap) with the two
degenerate AFM patterns. We find that for both a CNN
trained by the U ¼ 5 data and one trained by the U ¼ 16
data, the AFM pattern is clearly the dominant pattern
learned by the network.
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