
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2011

An Executable Packer An Executable Packer

Neel Bavishi
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Other Computer Sciences Commons, and the Programming Languages and Compilers

Commons

Recommended Citation Recommended Citation
Bavishi, Neel, "An Executable Packer" (2011). Master's Projects. 185.
DOI: https://doi.org/10.31979/etd.2e78-fs4r
https://scholarworks.sjsu.edu/etd_projects/185

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/185?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

i

An Executable Packer

A Thesis

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

By

Neel Bavishi

May 08, 2011

ii

© 2011

Neel K. Bavishi

ALL RIGHTS RESERVED

iii

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

AN EXECUTABLE PACKER

by

Neel Bavishi

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Prof. Soon Tee Teoh, Department of Computer Science Date

Prof. Robert Chun, Department of Computer Science Date

Snehal Patel, Sr. Software Engineer, Yahoo! Date

iv

ABSTRACT

A Packer to defeat Dynamic Un-packers

Neel Bavishi

This thesis addresses the topic of development and advancement of the Packer

technology. It aims to prove that with the implementation of advanced code

encryption and cryptographic techniques in conjunction with standard packing

methods, testing binaries with anti-virus will become increasingly difficult.

Study on this topic reveals that the idea of encoding data has already been

established, but it is still not fully incorporated into a technique to pack an

executable file. There are some noticeable defects as un-packer tools have also

made a great advancement in the field of dynamic analysis. The addition of new

capability to recognize emulation environment and taint analysis has lead to

execution-time detections of malware.

The plan is to develop a proof of concept that proves that the dynamic un-packers

like Renovo can be defeated. The prototype will try to pack and compress the

binary file in such a way that it can easily evade the emulation environment created

by anti-viruses.

1

Contents
List of Figures: ... 2

List of Code Sections: .. 2

1.0 INTRODUCTION ... 3

2.0 BACKGROUND ... 7

2.1 PE File Structure .. 7

2.1.1 PE File Sections ... 10

2.2 How does a packer work? .. 13

2.3 How does a dynamic un-packer work? .. 13

2.4 Dynamic Un-packer example Renovo ... 14

3.0 PREVIOUSLY USED TECHNIQUES TO EVADE DYNAMIC UN-PACKERS 17

3.1 Circumventing the emulated environment ... 17

3.2 Exploiting the time-out ... 23

3.3 Dual Mapping Physical Pages ... 23

4.0 PROJECT OVERVIEW .. 24

4.1 Packer stages ... 25

5.0 COMPRESSION TECHNIQUE USED .. 28

5.1 LZ Compress:... 29

5.2 Huffman coding ... 36

5.3 Generic Compressor Class: .. 41

6.0 PE File Protection: ... 43

7.0 TESTS .. 50

8.0 CONCLUSION:... 54

9.0 REFERENCES ... 55

2

List of Figures:

Figure 1: PE Structure [9] ..9

Figure 2: PE Explorer results for Putty.exe .. 12

Figure 3: Working of a packed Executable [1] ... 15

Figure 4: Output for program to get the system information ... 22

Figure 5: Error caused while running executable under virtual environment..................................... 23

Figure 6: Packer Block Diagram ... 24

Figure 7: Lempel-Ziv family of Algorithms [7] .. 29

Figure 8: Buffers used in LZ Compression Algorithm [11] ... 30

Figure 9: Contents of u-buffer [11] .. 31

Figure 10: Contents of v-buffer [11] .. 31

Figure 11: Flowchart of LZCompress.. 33

Figure 12: Adding new section .. 44

List of Code Sections:

Code Section 1: Small Red Pill test code snippet .. 19

Code Section 2: Determine host specific process .. 20

Code Section 3: Obtain System information.. 21

Code Section 4: Implementation of LZ Compress... 34

Code Section 5: Implementation of find the match function ... 35

Code Section 6: Huffman Coding build tree function ... 41

Code Section 7: Our main Compressor Class .. 41

Code Section 8: Go through all compressors... 42

Code Section 9: Insert new section in a PE file ... 45

Code Section 10: code snippet for rerouting procedure in every IJT entry ... 46

Code Section 11: Simple Encryption for all the sections... 47

Code Section 12: SoftIce detection .. 48

3

1. INTRODUCTION

“PE compression is a way of shrinking a PE file and merging the packed data with

restoration code into a file” [3]. A Packer is a utility which implements compression

and some encryption on an executable to make it undetectable by un-packers/virus

scanners.

Executing a packed executable necessarily un-wraps genuine code and it is then

handed over the control. It has the same effect as that of running the unaffected PE

file. The effect it displays is the same as the original executable was running. This

means that it is impossible for a normal user to differentiate between compressed

and uncompressed PE files.

A condensed executable is a type of self-extracting archive, wherein packed data is

wrapped up along with the pertinent restoration routine in a PE file. There are also

tools which only decompress an executable without actually running it. For

example, programs like ZIP and RAR.

Packed files usually decompress directly into the memory without needing any file

system space to execute. However, some de-compressor stubs write such PE to the

file system to execute. [3]

Packing a file has its advantages and some disadvantages. We will focus here on

some of its disadvantages as it is our aim to protect the hidden malware in a binary.

4

PE file compression often dissuades process of reverse engineering. In some cases,

it might do some obfuscation of the executable contents by using methods shrinking

and/or added encoding. Executable compression prevents straight disassembly to

some extent; it masks the string literal and alters the autographs. This never

suggests that the file cannot be reverse engineered; it is just that the procedure is

now more expensive. “In addition, it becomes impossible for some utilities to

recognize run-time library reliance because only the extractor stub which is

statically connected is visible.” [3]

Again, certain of age infection scanners mark all compressed PE files as viruses

leading to false alarms. This is due to similarity in some characteristics to those of

de-compressor stubs. Most infection scanners usually take out numerous PE

compression layers to check for the original file inside, but again certain popular

anti-viruses have problem in piercing through such layers.

Therefore, packers have a big say in PE protection.

My Packer tool:

This thesis aims at creating such fully undetectable packer tool to protect

executables from anti-virus scanners as well as debuggers. To provide a complete

protection to an executable file, this tool has a basic built in flow which goes

through various cycles of compression and file protection.

Executable Input Packer Output Packed Executable

5

As shown in the above diagram, the input to this packer tool is an executable file

and the output is a packed executable.

Packer consists of three different stages:

Compression:

Executable data compression is the first stage in packer tool. In this stage, the data

is compressed and the decompressor stub is packed into the packed executable

along with the compressed data. This compression happens over two steps as

follows:

1.) LZCompress: In this step all the repetitive byte sequences are removed

2.) Huffman Coding: Prefix code is used to compress data

File Protection:

Executable file protection involves many different stages to make it undetectable.

They include;

1.) Modifying PE File Structure: Adding a new security section

2.) Modify import table values: Mainly related to modifying the Import table

address

3.) Static Code redirection: Try to alter flow of a normal program by inserting jump

statements.

4.) File Encryption: Simple XOR Encryption for all the sections

6

Anti-Debugging Techniques:

There are mainly three anti-debugging techniques used in this tool:

1.) Insert lot of junk code

2.) IsDebugger present to detect presence of executable debugger

3.) SoftIce detection: detect presence of SoftIce debugger and disassembler

These packer stages will be covered in detail in the following sections.

7

2. BACKGROUND

A program can be transformed into a packaged executable using code packing by

condensing and encoding the original code and data into packed data. This can

eventually be linked with a restoration routine. A restoration routine is a code

snippet that can be used for recovering original code and data. Along with this kind

of recovery, it can also set an execution context to the original code when the

packed program is executed.[1]

2.1 PE File Structure

PE file format was introduced by Microsoft as a part of Win32 specifications.

However, they hold their base in earlier used COFF format used on VAX or VMS.

The term PE which stands for Portable Executable was chosen to intend a common

file format across all Windows platforms.

The introduction of 64-bit Windows needed very less modifications in executable

format. It is thus known as PE-32+.It just required deletion of one field and

spreading of some fields from 32-bit to 64-bit. In almost all the cases, this code

works for 32-bit as well as 64-bit systems. “There is magic pixie dust in Windows

header file. It creates the differences which are not visible to most C++ code base “

[9].

The EXE and DLL files use the same PE format. The entire distinction between

8

both the types is just of one semantic. The semantic is only a bit which specifies

whether the file is an EXE or as a DLL. DLL extension is also defined by a user.

DLLs might have dissimilar extensions. For example, .OCX and .CPL are kinds of

DLL. [9]

A standard feature of PE files is the similarity of data structures on disk to those

used in the memory. They are equal. Therefore, loading a PE file into memory just

maps some ranges of an executable into the address space. “Thus, a data structure

like the IMAGE_NT_HEADERS on the disk is similar to that in the memory”. [9]

PE files structures are mapped into memory as a memory-mapped file with multiple

units/sections. Windows loader decides what essential sections of the PE file should

be mapped. This mapping is unswerving in the sense that upper offsets in the file

should relate to upper memory addresses when they are planted into memory. It is

not necessary that offset in the item when on the disk, is same as when it is mapped

into the memory. However, the information needed during transformation from disk

to memory offset is present.

Below figure gives the PE structure [9]:

9

Figure 1: PE Structure [9]

Windows loader loads the executable file into the memory. This in-memory version

of the file is called a module. The beginning address of the module is known as an

HMODULE. So a point worth noting is that given a HMODULE, you can expect a

particular data structure at a given address. This information can help to locate

remaining data structures in the memory. This ability can be exploited for API

interception as well. [9]

A module in memory is a representation of all the data, resources and code from a

portable executable which a process uses. Additional parts of a PE file are possibly

read for instance and relocations, but not necessarily mapped in. Some parts are not

planted in at all. For eg, end of the file having debug information. PE header

10

contains a field which informs the system about the memory required to be put

aside for mapping the PE file into memory. Unmapped data is appended to the end

of the file, after mapping required information.

The PE format is defined in WINNT.H. This header file nearly contains all

enumerations, definitions; structures and #defines used with PE files in memory.

2.1.1 PE File Sections

A PE file section contains some kind of code or data. Talking about data, they are

of multiple types while code is just code. Data can be of the type read/write

program data in form of global variables. In addition, sections contain data which

include API import, the exported tables, relocations, resources, etc. Every section

contains own set of in-memory traits, such as whether it includes some code, it just

contains read-only or read/write data or the data which is shared by all the processes

using the portable executable.

In general sense, in a section, all the code/data is somehow related. There are at

least two sections in a portable executable file. Both code and data occupy each of

them. Usually, a PE file contains at minimum one more kind of data section. Each

section of memory has different features which reflect its usage: readable,

executable, writable and other more specialized operations.

Each section has a unique title/name. This name should express the utility of the

11

section. A section “.rdata” represents a read-only data section. Section names are

utilized just for human understands, while operating systems have nothing to do

with it. A section called “.abcd” is also valid just like a “.text” section. Microsoft

formats generally have a period as a prefix to section names, but it is not a

necessity. Borland linker names its section as CODE and or DATA. Sections can be

created and named; it is the linker which includes them in the executable. A VC++

compiler inserts code or data into a user named section using #pragma statements.

For example, the following statement

inserts all VC++ emitted data into a section called NEW_CODE, and not into the

.data section [9]. Most programs use the default compiler emitted sections, but

occasionally programmers might have a requirement which requires creating new

sections to put data in.

The commonly named sections in a PE file are classified as following:

.text: Main Code snippet Main responsible for execution and is mostly read-only.

.data: Code snippet responsible for main data initialization.

.rsrc: Comprises of data associated with Windows Resources.

.rdata: Read-only data.

.reloc: Base relocations.

12

.debug: Comprises of information responsible for debugging.

.idata: Imported function data.

.tls: Thread Local Storage. Data private to each thread

.CRTData: Set aside for the 'C' Run-Time Library

PE explorer can list all the sections from any DLL or EXE file along with numerous other

attributes that are read from PE File Header.

Figure 2: PE Explorer results for Putty.exe

13

2.2 How does a packer work?

Packing an executable means compressing and encrypting it such that for a user it is

impossible to distinguish between a packed executable and an unpacked executable.

The packed executable includes packed data as well as the de-compression and

decrypting routine.

It works as follows:

Given an arbitrary executable binary, pack the data using compression and

encryption routine. Check if it the real program code created from the packed data

in the file is executed. Extract the whole new-generated code and data with its OEP

(Original Entry Point) address. When the packed PE is executed, its bound

rebuilding routine performs various alteration actions on the compressed and

encrypted data to recuperate the original code and data. After the restoration

completion, the execution context for the original program code to execute is

prepared. This includes initializing CPU registers and assigning the program

counter to the entry point of the newly-generated code region [2].

2.3 How does a dynamic un-packer work?

The primary motive of a un-packer is to un-wrap the hidden exe and the algorithm

used to hide it without executing it on a host system.

It works as follows:

14

Irrespective of packing procedures used or number of coveted layers applied, the

genuine program and the data available in the memory runs, and in addition the

instruction pointer jumps to the original entry point of the re-obtained code which

was written in the memory at runtime [1]. Using this disadvantage of such

fundamental nature of packed executable, the un-packer uses a technique that on

runtime extracts the coveted real code and the original entry point from the wrapped

up executable by checking if the current instruction is formed at runtime [1]. In this

approach, the instruction pointer makes a jump to the monitored memory region

that was written to after the program started. When program loads in the memory, it

generates a memory map which is initialized as clean. Whenever, a memory write

operation is performed, for example mov ead,[edx] and push edi, we blot the

respective terminus of the memory location as dirty, meaning it is recently

generated [1]. Now, the address pointed by the memory pointer is the OEP.

2.4 Dynamic Un-packer example Renovo

RENOVO resides on TEMU [13] platform, a dynamic investigation emulation

software from Bit Blaze. Executable is first executed in an emulation environment.

This emulation isolates the extraction engine from the harmful program code.

Hence, malicious code‟s interference with the extraction engine is difficult and does

not affect analysis of the results. For our analysis, we need to know which processes

should be observed. TEMU provides mechanism to reason about this OS-level

15

semantics. Theoretically, a kernel module is inserted into the emulated environment

to obtain necessary process data. Hence, the module will be notified whenever a

process is created or destroyed, or a module (.dll or .exe) is loaded into the process.

In 32-bit systems, the physical address of the page table for the current process is

stored in CR3 register which makes it unique for each process [1]. After the

program starts to execute, identifying the loaded module leads to knowledge of

memory region it occupies and the states within the region are cleaned. To know

whether program has a hidden executable a timeout mechanism is executed.

Figure 3: Working of a packed Executable [1]

16

When checking newly generated instructions, every instruction is not checked. For

performance, optimization, every fundamental block in the monitored process is

verified. A fundamental block is defined as sequential instructions with a unique

entry and exit. Thus, a fundamental block is nothing but a neighboring code region.

The address is recorded at the entry of the block. Eventually, at the exit of the

block, memory locations, which are marked as dirty within the region covering this

block, are verified whether they exist or not. If they exist then this block entry is the

unique point of entry and the pages with dirty memory bytes are dumped.

17

3. PREVIOUSLY USED TECHNIQUES TO EVADE DYNAMIC UN-

PACKERS

Various techniques are proposed to evade dynamic analysis by un-packers:

Important among those are explained as follows:

3.1 Circumventing the emulated environment

As the binaries are executed in emulated environment in un-packer, one obvious

evasion technique that comes to mind is to detect the presence of emulated

environment and stay inactive. The malicious code measures time elapsed for

certain instructions, as the emulation of such instructions incurs high overhead. This

code may also verify the instructions results such as sidt, because they produce

diverse results under physical and emulated environments. This can be shown by

performing the RedPill test as shown below.

3.1.1 Red Pill Test

Red Pill test [6] discovered by Joanna Rutkowska in Nov 2004, is a way to detect

VMM (Virtual Machine Manager) using a processor instruction. “The important

part of this test is the SIDT instruction which contains the contents of the IDTR in

the destination operand. This operand represents memory location. The interesting

characteristic of SIDT instruction is that though it is executed in the user mode, the

18

contents of the IDTR are returned. IDTR is used internally by operating system”.

[6]

On any system, there is only one IDT register, but there could be multiple OS

running concurrently, like guest and host. Therefore, the guest's IDTR should be

relocated in a safe place by VMM (Virtual Memory Manager) to keep it safe from

host one. Unfortunately, it is not possible for VMM to know when the process

running in guest OS executes SIDT instruction because of its limited privileges.

Thus, the relocated address of IDT is obtained by the process. The relocation

address of IDT on VMWare is detected as 0xffXXXXXX, whereas on Virtual PC it is

0xe8XXXXXX [4].

Short background on SIDT:

SIDT stands for “Store Interrupt Descriptor Table Register”. Its Opcode is 0F 01/1.

General use: SIDT m -> Store IDTR to m.

“The destination operand indicates a 6-byte memory location. If the operand-size

attribute is 32 bits, the 16-bit limit field of the register is stored in the lower 2 bytes

of the memory location and the 32-bit base address is stored in the upper 4 bytes. If

the operand-size attribute is 16 bits, the limit is stored in the lower 2 bytes and the

24-bit base address is stored in the third, fourth, and fifth byte, with the sixth byte

filled with 0s.” [19]

19

Code Section 1: Small Red Pill test code snippet

Host with no VMM: Not in Matrix. (Not in VM)

Host with VMM, but no VMM is running: Not in VM

Host with VMM, VMM running: In VM (Supposedly in a VM)

Guest in the above host: In VM.

Flaw: This test is inadequate because, in multicore CPUs the process execution

takes place in different processors every time. The main problem caused is that

every time the IDT address will change, same problem will be faced while checking

LDT and GDT tables.

20

3.1.2 Determine the Host Specific process

For example, vmsrvc for Virtual Private Client from Microsoft is a process which

runs when we can identify while running our application in VPC. Similarly, there is

a process called VBox Service for Virtual Box from Sun.

Code Section 2: Determine host specific process

Flaw: The software emulators like QEMU being a full system emulator; it is

difficult to identify any such processes being executed to identify the execution

unit.

21

3.1.3 Read Bios information

This technique was used by a security group in a company named Sysinternals

which was later brought by Microsoft. This is one of the easiest and most effective

techniques used to identify whether a binary is executing in an emulated

environment. If it is executed in a virtual machine, it will give an error and stop

executing.

Code Section 3: Obtain System information

22

The above code snippet runs correctly on real system. It prints the hardware

information that is read from RMBIOS by making system calls. Basically, it copies

hardware information into system_info structure.

Figure 4: Output for program to get the system information

Now, when the exe is executed in an emulated environment like QEMU or VPC it

gives an error straight away as no hardware information can be obtained. The error

is as shown below:

23

Figure 5: Error caused while running executable under virtual environment

3.2 Exploiting the time-out

Time-out [4] is an interesting problem discussed in Security Application

Conference in Washington DC, in 2006. As we know, determining whether a PE

contains hidden code or not is an un-decidable problem, for which a time-out

mechanism is usually employed. The malicious programs use this technique

regularly to exploit such feature to remain inactive for long period leading to

incorrect results by the un-packer. To counter this exploitation, un-packers use an

improved metric which determines the termination of the extraction procedure by

counting the number of different instructions from the binary that execute. This

means that these malicious codes cannot avoid detection by merely looping around.

[1]

3.3 Dual Mapping Physical Pages

Another approach is dual-mapping. [5] This approach was first used by H Miller.”

According to this approach, physical pages are mapped to two distinct virtual

address regions. The first region is provided for editable mapping to write during

24

unpacking process whereas the second region is provided for executable mapping

which dynamically executes the unpacked code. Thus, this approach is effective in

evading automated un-packers, which solely depend on perceiving the virtual

addresses code execution that it has been written to.” [5]

4. PROJECT OVERVIEW

The aim of this thesis project is to make a tool which protects the executable or PE

in question from being recognized by anti-virus scanners as threats. Fig 6 gives the

block diagram of this tool.

Figure 6: Packer Block Diagram

This tool accepts a PE (portable executable) file as input. In the packer, it goes through

various transformations as shown in the block diagram to output a packed executable.

25

4.1 Packer stages

Packer has 3 built in stages in form of compression, file protection and anti-debugging.

Compression:

This tool has two built in compressor which have base in open source LZIB compression

library:

1.) LZCompress: LZCompress is a lossless type of data compression. It is most effective

when there are repetitions in byte sequences. It has its base in LZ77 algorithm from

Lempel Ziv algorithms family. In this type of compression algorithm, there are two types of

buffer, one which contains processed bytes, u-buffer and other which contains bytes to

processed, v-buffer. While filling in the v-buffer we check for the similar byte sequences in

u-buffer. If a sequence is obtained, we save the location in the v-buffer instead of holding

the entire buffer content. This helps to reduce a lot of size. It is explained in detail in next

section.

2.) Huffman Coding: It is a form of prefix code. Each value is represented by a sequences

of codes, either 0 or 1. The values which are repeated frequently, for example vowels in a

sentence, are given shorter codes. This again reduces the executable file size. Its

implementation is covered in the next section.

File Protection:

26

File protection is a very important stage of this packer tool. An executable/PE file goes

through various Static protection procedures and dynamic redirection process to prevent

against reverse engineering. Some of them can be listed as follows:

1.) Modify PE File Structure

2.) Static Code Redirection

3.) PE File Encryption

4.) Modify Import Table

5.) Dynamic Code redirection

Anti-Debugging Techniques:

In this tool there three main anti-debugging techniques used

1.) Insertion of Junk Code

2.) Is-Debugger present

3.) SoftIce detection

Apart from this, static code redirection and dynamic code direction causes lot of

problems in code debugging due to changes in normal execution routines.

This part is covered in detail in Section 6.

27

28

5. COMPRESSION TECHNIQUE USED

Data compression is an important stage of this packer tool. Compression is possible due to

redundancy in data. It is basically the technique to encode data such that it requires less

storage space or transmission time than it would take without being compressed.

There are mainly 2 types of data compression techniques:

1. Lossless Compression: Used in spreadsheets, text, executable program Compression.

2. Lossy less Compression: Compression of images, movies and sounds.

As, this tool is about executable compression, it uses Lossless Compression.

In this tool two different types of compression techniques are used. One is the variant of

Lempel Ziv Algorithms family [18] and other uses Huffman coding [17]. They have their

roots in the two algorithms proposed by Jacob Ziv and Abraham Lempel. These

Compression algorithms are mainly divided in two main groups: LZ77 and LZ78 [16]. The

clear difference between the two groups is that LZ77 do not need an explicit dictionary

where LZ78 does need it.

29

Figure 7: Lempel-Ziv family of Algorithms [7]

There are two compressors built in this tool. They are executed one after the other.

The two of them are:

1. LZ Compress

2. Huffman Coding

Small executable files go through only one step where as larger ones need the

execution of second step.

5.1 LZ Compress:

In LZ Compression algorithm, the program stores W previous bytes and scans the next few

bytes such that they are repetition of the previous stored data. In case of the match found,

30

then the length of bits and location are recorded and stored. This requires fewer bytes and

hence less amount of memory space which leads to compression. [14]

This algorithm uses two buffers. First buffer provides encoded strings that were

previously encoded. This “previously encoded buffer" is denoted as “u”. The

second buffer provides the “to be compressed” strings. This “to be encoded buffer"

is denoted as “v”. Last symbol in the v- buffer is excluded because an extension

symbol should always be kept un-encoded.

Figure 8: Buffers used in LZ Compression Algorithm [11]

Flowchart (Fig.11) shows the vital parts of this algorithm. In the beginniing, the u-

buffer is initialized with a value. Now, v-buffer is parsed to find the longest

possible match. During the first iteration, unless the string in contention to be

condensed starts with spaces, the parser cannot search a match.

A code word of the form <p,|u|,q> is formed. p indicates the position from where

the match starts in the u-buffer, and |u| is the extension character. The extension

character q is the subsequent character read in this string and has to be encrypted

after if finds a match. Sometimes, the matches can reach into the v-buffer.

31

Suppose a String for compression:

“Fair is foul, and foul is fair: Hover through the fog and filthy air." [11]

E.g. assuming the u-buffer already contains:

Figure 9: Contents of u-buffer [11]

And the v-buffer contains:

Figure 10: Contents of v-buffer [11]

Table 1: Contents of u- and v-Buffer during Compression [11]

Algorithm:

Basic Algorithm for LZ Compress for the above example is as follows:

32

Step1: Parse the buffer to find the longest match  the next coming character is n

which does not appear in the u-buffer.

Step2: This makes code word to be < 0, 0, n>, n being the next incoming character

scanned.

Step3: Now, shift the u-buffer and v-buffer by 1 character as shown in the table.

Step4: Parse the buffer to find the longest match  the next coming character is d

which does not appear in the u-buffer.

Step5: This makes code word to be < 0, 0, d>, d being the next incoming character

scanned.

Step6: Again, shift the u-buffer and v-buffer by 1 character as shown in the table.

Step7: While the third iteration executes, the lengthiest match is detected in form of

the string “foul”.

Step8: Hence, the code word obtained is <6, 4, t >.

Step9: Both u- and v- buffers are moved by 5 characters towards left, that is length

of the string foul and the extension characters.

33

Figure 11: Flowchart of LZCompress

34

In this algorithm, the input bytes are stored in an array. The bytes processed already

are stored from a[0] to a[Q-1] i.e our u-buffer and the bytes that are to be processed

are stored from a[Q] to a[Q+U-1] which is same as stored in b[0] to b[U-1] i.e. our

v-buffer. Therefore, the bytes in b[0], b[1], b[2] . . b[U-1] are compared with

previous bytes to find a match.

Code Section 4: Implementation of LZ Compress

In this program, “a[]” stores the latest 4096 processed bytes read from the file in question

and plus 16 unprocessed bytes. The 16 unprocessed bytes are referred to as “b[]” in the

above program segment. The algorithm tries to find a copy of bytes in array b starting

from b[0] to as many as possible bytes in previously processed data a[]. If at least two

matching bytes are found, then “s” indicates the number of bytes matched and “r’ gives

the position for match occurrence in a[] so that, the first byte matched is a[r]. If no match

35

is found, at least b[0] and b[1] are tied together in a[], s and m are set to the value of 1

and b[0] respectively, which indicates an input character. [14]

Find function that tries to find actual match:

Code Section 5: Implementation of find the match function

The actual searching happens in the find function. The for loop "for(i = 0; i<Q;

i++). . ." initializes the search process in each position in the processed data. The

actual comparison happens in the statement "for(p = 0; p<m && a[p+i]==b[p];

p++);" This loop just repeats until the end of where the match is found in the two

arrays that are in contention. On completion, “p” indicates the number of places that

match and “i” gives the location of the match. If the match found is longer than the

best one found before, p and i are taken as the new values of s and r. At the end of

36

for loop, the length and location of the longest match in s and r respectively are

obtained.

5.2 Huffman coding

Huffman coding [17] discovered by Ken Huffman, is a form of prefix coding,

which is knowingly or unknowingly are used in common. One example of prefix

coding used in phone is Huffman coding. The order of keys pressed may be a

sequence of any key number combination -- and each order pressed represents a

different definite phone number.

Suppose that you are in a workplace environment with all the employees having

their allotted phone numbers in the office. For internal communication in most of

the companies you don‟t need to dial full number. It is just last four digits and a

prefix digit „9‟. This digit is known as the prefix digit in Huffman coding. Each

element specified has a unique code created by numbers, and because each name

begins with a unique code, there will be no ambiguity that each code when you

enter will be exactly what you wanted. [12]

A Huffman code is a form of prefix code dealing with bits. Here, codes are made up

of a sequence of bits that may be 0 or 1 in place of a series of decimal numbers

from 0 to 9. Each code represents a series of alphabets. This is the main use of

Huffman coding in Deflation algorithm.

37

In Huffman algorithm, firstly all the alphabets are assembled. Each alphabet is then

assigned a “weight” – Weight is the frequency of letters in the data to be packed.

Such weights may be decided earlier, or stated from parsing the data, or some

permutation-combination of both. Two elements are chosen at a time in any case

and the one with minimum weight is selected first. The two elements are made to be

leaf nodes of a node with two branches. Let us see an example with weights given

as below:

D and E are picked first as they have lowest weight. A node is branched into these

two elements -- one being the `0' branch and the other being `1'.

In this situation, complete code for any element cannot be known, but it is at least

clear that D and E have equal codes, other than the last binary digit where D ends in

0 whereas E in 1.

38

The joined node D-and-E is positioned back into the pool of elements which are not

combined, with the weight obtained from the sum of its leaf nodes: for example, 8 +

8 = 16 in this case. Now, the two nodes with lowest weight taken are A, and D-and-

E combined, and they form a large node.

Again, the node A-D-E is re-added to the original set of elements. But this time

around, all outstanding elements have the same value of 32. So there is confusion in

which two to select first for the combination. But it is actually not important in

Huffman algorithm.

Finally we get a complete Huffman tree wherein we can reach any element from

root selecting proper 0 or 1 branch. Thus, each element traversal can be done with

the order of 0's and 1's. This is known as Huffman code for those elements, that

symbolizes the pathway through the tree.

Now, it can be visualized that such a tree, and mere a set of codes, provide a way

for executable compression. During compression of ordinary text, probably 50% of

the ASCII characters could be omitted from the tree completely. Commonly utilized

39

characters, like all the vowels or some letters like “T” will perhaps get quite smaller

codes and the long codes will be used the least.

It is also fairly simple to pass encrypted data along with the tree and can be coded

by slightly altering the algorithm which generates the tree.

So how is Deflate different from class Huffman coding? In the case of classic,

multiple trees could be generated using a single set of elements and weights,

whereas the Deflate variation uses two supplementary rules: elements with the

shorter codes are positioned on the left side and the longer codes on right side. If

codes have the same length, then the first in the element set are positioned on the

left.

Thus, if these two restrictions are applied on the trees, there is a unique tree

generated for every set of elements and their respective code lengths. These code

lengths will help in reconstruction of the tree.

40

void En_Decode::BuildHufTree()
{

int NodeCounter = 256;

int i;

for (i = O; i < NodeCounter; i++)
{

OurTree[i].parent = -1;

OurTree[i].right = -1;

OurTree[i].left = -1;

while (1)

int MinFreqO -1;

int MinFreql -1;

for (i = 0; i < NodeCounter; i++)

{

if (i != MinFreqO)

{

if (OurTree[i].freq > 0 && OUrTree[i].parent -1)

{

if (MinFreqO == -1 11 OurTree[i].freq <
OurTree[MinFreqO].freq)

{

OurTree[MinFreq1].freq)

}

if (MinFreq1 == -1 1 1 OurTree[i].freq <

MinFreq1 MinFreqO;

MinFreqO = i;

else if (MinFreq1

OurTree[MinFreq1].freq)

-1 1 1 OurTree[i].freq <

MinFreql = i;

}

if (MinFreq1 == -1)

{

NumOfRootNode
break;

}

MinFreqO;

//Combine two nodes to form a parent node

OurTree[MinFreqO].parent = NodeCounter;

OurTree[MinFreql].parent = NodeCounter;

OurTree[NodeCounter].freq = OurTree[MinFreqO].freq +
OurTree[MinFreq1].freq;

OurTree[NodeCounter].r ight = MinFreqO;

OurTree[NodeCounter].left =

MinFreq1; OurTree[NodeCounter].parent

= -1; NodeCounter++;

41

Code Section 6: Huffman Coding build tree function

5.3 Generic Compressor Class:

Code Section 7: Our main Compressor Class

The exe compression process goes through both the Compression Strategies and the

resulting exe is the obtained which has the minimum size.

42

Code Section 8: Go through all compressors

43

6. PE File Protection:

PE file protection has been implemented in the following ways in this thesis project.

6.1 Altering Executable structure:

In an executable, the PE header contains information describing the assets and general

features. During the step of PE file protection; this PE header information is modified. The

change mainly includes number of sections, Origin Point Address, Image Size and data‟s

real virtual addresses and their magnitudes.

Addition of a novel section to the executable with the security stuff is a common method

used in packing process. This extra added section is carries the essential knowledge to be

used for the un-wrapping process. This might include the actual executable file headers and

assemblies detached or changed during procedure for putting in the security. Following fig.

describes how such protected PE file is structured.

44

Figure 12: Adding new section

45

Code Section 9: Insert new section in a PE file

6.2 Modifying Import Table:

This is mainly done by altering the table containing Import Addresses (IAT). It mainly

delivers information about the DLL imports and its purposes, which is used by the

executable during runtime. The security is implemented by altering the address of Import

table as well as changing the structure of table itself. The newly generated table is

dependent upon the un-wrapping DLL. This un-wrapping DLL along with some code from

the added protective section performs the un-wrapping operation.

46

6.3 Static Code Rerouting:

This rerouting procedure is a significant step towards a completely secure PE file. This

method aims to reroute some JMP or CALL statements in the actual executable code

towards the IJT which is contingent on the un-wrapping DLL. The static code redirection

processes includes stripping the executable code, then choosing some JMP or CALL

statements and then modify their aimed localities to matching IJT entry [15]. The un-

wrapping DLL is used to reload the apt Interception Jump Table Entry code snippet so that

the execution flow is redirected towards the original location.

Following code illustrates the code used for rerouting procedure in every IJT entry.

Code Section 10: code snippet for rerouting procedure in every IJT entry

6.4 File Encryption:

This procedure should encode some parts of the executable file so that static or dynamic

disassembling and code reverse engineering can be prevented. The defense procedure will

encode the code sections, data directories, actual IAT and IJT and bury the key anywhere in

47

the executable, or the key is derived from certain sections of the executable using some

mathematical calculations/algorithms. Adding several progressions of security on the

executable file defies reverse engineering automation and makes it difficult for the

disassembling software to strip the secured code. Encoding of the code is done primarily

putting untrue algorithm stream in case of direct disassembly. The encoding of IJT makes

the process of reversing the executable difficult as the procedure should be dynamic now.

Code Section 11: Simple Encryption for all the sections

6.5 Anti-Debug Methods:

1.) IsDebuggerPresent Windows Api: It will return none zero value whenever the current

process is running in the context of a debugger.

2.) SoftIce Detection:

48

Code Section 12: SoftIce detection

3.) Insert Junk Code:

In this anti-debug technique, the tool inserts lot of junk code such that even if the PE file is

opened in some unknown debugger, junk code will make sure that the reverse engineering

gets frustrating.

6.6 Dynamic Code redirection:

We have seen Static code rerouting before. It is nice way to protect an exe file. The

problem with it is that we need to keep attached un-packer dll at all times. This creates lot

of overhead for the PE file and degrades its performance. To prevent this degrade, we

implement Dynamic Code Redirection.

The Dynamic Code Redirection should offer an algorithm that, by some means, reduces the

execution overhead without affecting the security of the PE file. This redirection should

treat every IJT Entry as a separate unit and observe the amount of implementations of every

unit. During the same interval, it should monitor the global amount of implementations of

49

all the units in the run time. These counters will act as a key component of the algorithm in

balancing swiftness, performance efficiency and protection of the application. [15]

50

7. TESTS

As a test example, an executable binder.exe is taken. It is checked on a website known as

www.virustotal.com, where in there are about 41 different anti-viruses who check your

file.

Out of those 41, 38 of the viruses detect the existing threat.

http://www.virustotal.com/

51

Now, the file is zipped in a .rar format and again the test is done on Binder.rar. The results

show that 32/41 anti –viruses are still able to detect the threat.

Finally, the file is packed by the proposed Binder and it goes through encryption stage as

shown below.

52

Results obtained when the file is checked on www.virustotal.com are quite positive this

time around. Only 16/41 anti-virus tools are able to catch the existing threat. The results

are shown below.

http://www.virustotal.com/

53

54

8. CONCLUSION:

The technology to pack a portable executable file has gone through efficient and

rich development through the use of various code packing cryptographic

approaches. However, it is important to realize the progress made by un-packers too

which render most of the current means incompetent. Multi core processors and

dynamic analysis have made unpacking very effective and powerful. Hence, it is

important to realize the integration of new encryption and compression methods to

the current equipment. This thesis proposes a new system for greatly improving the

packers. If the processed executable file is able to cut out some import information,

implement dynamic redirection while debugging or implement the time-out

mechanism, it will be possible to break any kind of dynamic scrutiny. This

technique differs from the original packing process in that it doesn‟t measure the

emulation. This thesis will provide a way to integrate a new approach to compress

and encrypt with the currently used technology.

55

9. REFERENCES

[1] Kang, M. G., Yin, H., & Poosankam, P. (n.d.). Renovo. Retrieved from Bit blaze

Berkley: http://bitblaze.cs.berkeley.edu/papers/renovo.pdf

[2] Molnár, L., Reiser, J., & Oberhumer, M. (1996, April). UPX, the ultimate

packer for executables. Retrieved from sourcefourge.net:

http://upx.sourceforge.net/

[3] Executable Compression. (n.d.). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Executable_compression

[4] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee.PolyUnpack:

Automating the hidden-code extraction of unpack-executing malware. In ACSAC

’06:

Proceedings of the 22nd Annual Computer Security Applications Conference on

Annual

Computer Security Applications Conference, pages 289–300,

Washington, DC, USA, 2006. IEEE Computer Society.

[5] Miller, H. (2008, September 20). Dual Mapping. Retrieved from Uninformed:

http://www.uninformed.org/?v=all&a=44

[6] Rutkowska, J. (2004, November). Redpill test. Retrieved from Invisible things:

http://www.invisiblethings.org/papers/redpill.html

http://bitblaze.cs.berkeley.edu/papers/renovo.pdf
http://upx.sourceforge.net/
http://en.wikipedia.org/wiki/Executable_compression
http://www.uninformed.org/?v=all&a=44
http://www.invisiblethings.org/papers/redpill.html

56

[7] IQExplorer. (n.d.). A Review Of Data Compression Technique:

http://www.slideshare.net/nayakslideshare/data-compression-technique

[8] Armstrong, B. (n.d.). Virtual PC Guy's blog. Retrieved from MSDN:

http://blogs.msdn.com/virtual_pc_guy/archive/2005/01/24/359650.aspx

[9] Pietrek, M. (2002). An In-Depth Look into the Win32 Portable Executable File .

MSDN Magazine: http://msdn.microsoft.com/en-us/magazine/cc301805.aspx

[10] Silurian. (n.d.). Anatomy Of PE Files:

http://www.silurian.com/inspect/peformat.htm

[11] Esau, K. (2001). Data Compression. In Distributed Systems Engineering:

http://www.conan.de/docs/compression.pdf

[12] Feldspar, A. (1997). An Explanation of Deflate Algorithm:

http://zlib.net/feldspar.html

[13] Dawn Song, D. B. (2008). TEMU: The BitBlaze Dynamic Analysis Component.

Information Systems Security. Hydrebad: http://bitblaze.cs.berkeley.edu/temu.html

[14] LZ Compression. (n.d.): http://www2.hawaii.edu/~wes/ICS212/Notes/LZ.html

[15] PE File

protection:http://en.wikipedia.org/wiki/Portable_Executable_Automatic_Protection

[16] Lempel Ziv Algorithms: http://en.wikipedia.org/wiki/LZ77_and_LZ78

http://www.slideshare.net/nayakslideshare/data-compression-technique
http://blogs.msdn.com/virtual_pc_guy/archive/2005/01/24/359650.aspx
http://msdn.microsoft.com/en-us/magazine/cc301805.aspx
http://www.silurian.com/inspect/peformat.htm
http://www.conan.de/docs/compression.pdf
http://zlib.net/feldspar.html
http://bitblaze.cs.berkeley.edu/temu.html
http://www2.hawaii.edu/~wes/ICS212/Notes/LZ.html
http://en.wikipedia.org/wiki/Portable_Executable_Automatic_Protection
http://en.wikipedia.org/wiki/LZ77_and_LZ78

57

[17] Huffman, K. (2010). Huffman Algorithm:

http://www.huffmancoding.com/my-family/my-uncle/huffman-algorithm

[18] Zeeh, C. (2003). The Lempel Ziv Algorithm. Famous Algorithms:

http://tuxtina.de/files/seminar/LempelZiv.pdf

[19] SIDT Instruction: http://pix.cs.olemiss.edu/

http://www.huffmancoding.com/my-family/my-uncle/huffman-algorithm
http://tuxtina.de/files/seminar/LempelZiv.pdf
http://pix.cs.olemiss.edu/

	An Executable Packer
	Recommended Citation

	tmp.1307807658.pdf.wYk5r

