
San Jose State University
SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Summer 2011

Algorithms Analysis System: Recurrences
Anchit Sharma
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Part of the Theory and Algorithms Commons

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact
scholarworks@sjsu.edu.

Recommended Citation
Sharma, Anchit, "Algorithms Analysis System: Recurrences" (2011). Master's Projects. 191.
https://scholarworks.sjsu.edu/etd_projects/191

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/191?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Algorithms Analysis System: Recurrences

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of Requirements for the Degree

Master of Science

by

Anchit Sharma

Spring 2011

 ABSTRACT

 Algorithms which are recursive have running times which can be described by

recurrence equations or recurrences. These equations determine the overall running time

complexity of the algorithm.

This project intends to create a mechanism for

 auto generating recurrence equations of the form T(n) = a(T(n)/b) + f(n)

 creating a computational method for solving them and generating running times

i.e. O (f(n)) or Ω (f(n)).

 presenting students with a way to verify their manually computed answers with

the solution generation by the project

 generating grading and feedback for their solution

The exercises will utilize the ‘Substitution Method’ and the ‘Master Method’ logic to

compute running time of the algorithms. Also, practice exercises for comparison of

various ‘Order of Growth Rates’ will be provided.

The project will contribute towards the teaching of analysis of algorithms.

 v

ACKNOWLEDGEMENTS

I thank my advisor, Dr. David Taylor, whose guidance and support is priceless.

Dr. Taylor is an educator in the truest sense of the word. His continuous pool of

suggestions and ideas helped me visualize the project design. I very much appreciate Dr.

Jon Pearce’s and Dr. Jeff Smith’s participation as thesis committee members.

It has been a challenging, yet rewarding journey which I could not have

completed alone and am grateful for your support.

Thank you.

 vi

Table of Contents

1.0 Introduction

 1.1 Need for Algorithms Analysis and Automatic Assessment

 1.2 Related Work

 1.3 Problems Addressed

1

1

1

2

2.0 Theory

 2.1 Substitution Method

 2.2 Master Theorem

2

3

3

3.0 System Description

 3.1 Substitution Method Panel

 3.1.1 Problem

 3.1.2 Problem Generation

 3.1.3 Solution

 3.1.4 Grading and Feedback

 3.2 Substitution Method Test Panel

 3.3 Master Theorem Panel

 3.3.1 Problem

 3.3.2 Problem Generation

 3.3.3 Solution

 3.3.4 Grading and Feedback

 3.4 Substitution Method Test Panel

 3.5 Order of Growth Panel

 3.5.1 Problem

 3.5.2 Problem Generation

 3.5.3 Solution

 3.5.4 Grading and Feedback

4

7

8

8

10

10

14

15

16

18

18

19

23

24

25

26

27

28

4.0 Conclusion 30

Appendices

 Appendix A. Architecture Design

 Appendix B. Source Code

32

40

References 85

 vii

List of Figures

Figure 1. Substitution Method Panel 7

Figure 2. Substitution Method Solution Panel 10

Figure 3. Substitution Method Grade Panel 12

Figure 4. Substitution Method Test Panel 15

Figure 5. Master Theorem Main Panel 16

Figure 6. Master Theorem Answer Panel 17

Figure 7. Master Theorem Answer Section Completed 18

Figure 8. Master Theorem Solution Panel 19

Figure 9. Master Theorem Grade Panel 20

Figure 10. Master Theorem Test Panel 24

Figure 11. Order of Growth Panel 25

Figure 12. Order of Growth Answer Panel 26

Figure 13. Order of Growth Solution Panel 27

Figure 14. Order of Growth Grade Panel 28

Figure 15. Architecture Diagram 32

Figure 16. Math Operation Classes 34

Figure 17. Recurrence Equation Classes 36

Figure 18. Substitution Method Simulation Classes 37

Figure 19. Master Theorem Simulation Classes 38

Figure 20. Order of Rate of Growth Classes 39

 1

1.0 INTRODUCTION

 This section talks about the need for a system to aid algorithm teaching. It talks of

how algorithm analysis tools can be beneficial in learning algorithm theory.

1.1 Need for Algorithms Analysis and Automatic Assessment

 AA (Automatic assessment) tools have been gradually developed to illustrate core

concepts in theoretical sciences. AA tools are now becoming part of university education.

The field of computer science can leverage benefits from these tools especially in the

teaching of data structures and algorithms which present the core foundation of computer

science education. Visualization of manipulation of data structures and algorithms

analysis has been undergoing research in the universities around the world. The ITiCSE

(Innovation and Technology in Computer Science Education) group which is sponsored

by ACM indicates that the use of Algorithms Analysis AA tools brings positive influence

in the understanding of core concepts and benefits computer science learning.

1.2 Related Work

 There exist automatic assessment tools for teaching data structures through

visualization techniques. Most of them have been developed for academic use by

universities. One such Algorithms Analysis AA teaching system which has contributed

strongly to the field of computer science education is TRAKLA2 – Software

Visualization Group from the Department of Computer Science and Engineering,

Helsinki University of Technology. TRAKLA2 is an environment for learning data

structures and algorithms. The system provides algorithm simulation exercises that can be

 2

automatically graded. The grading is based on comparison between the learner made

simulation sequence and a sequence produced by an actual algorithm.

1.3 Problems Addressed

There has been prior research and development of Algorithm Analysis Tools but

most of them rely on the concept of visualization of algorithms on data structures.

Recurrences and asymptotic analysis is a fairly untouched area in terms of creating a

system to aid its teaching and analysis. Creating an interface for effective analysis and

teaching of recurrence solving algorithms is the key challenge. The system needs to be

able to provide a problem statement, effectively display its solution, and provide an

interface for automatic assessment.

There needs to be a computation engine that will be able to simulate the

Substitution method and the Master method used for solving recurrence relationships.

There has not been any known prior work in making computation schemes for these

algorithms and turning them into an algorithm analysis tool.

2.0 Theory

 This project provides simulation exercises with the objective of creating a deeper

understanding and learning of recurrence relationships and asymptotic analysis of

algorithms. The two methods used to determine asymptotic time complexity of

recurrence relationships used in this project are the Substitution Method and the Master

Theorem. A brief description of these are provided for a quick recap.

 3

2.1 Substitution Method

The substitution method is a way of proving an asymptotic bound on a recurrence by

induction. The guessed answer is substituted into the recurrence equation and the

inductive hypothesis is applied. The induction will always be of the same basic form, but

it is still important to state the property we are trying to prove.

Below is an example of the substitution method in use:

Let the recurrence be T(n) = 2T(n/2) + n.

Lets guess its upper bound to be n (lg n), therefore the solution is T(n) = O(n (lg n))

which means that T(n) <= cn (lg n) for an appropriate choice of the constant c > 0.

We start by assuming that this bound holds for n/2 i.e., that T(n/2) <= c(n/2) (lg (n/2)).

Substituting into the recurrence yields

T(n) <= 2c(n/2) (lg (n/2)) + n <= cn (lg n) (as stated above)

For the inductive hypothesis to be complete

2c(n/2) (lg (n/2)) + n <= cn (lg n)

must hold for a large enough c and for some n >= n0 where n0 is a constant.

After solving it turns out that

T(n) <= cn (lg n) if c >= 1 and n0 = 1

Thus T(n) = O(n (lg n)).

2.2 Master Theorem

 The master method provides a methodical way for solving recurrences of the form

T(n) = a(n/b) + f(n) where a > 1 and b > 1 are constants and f(n) is an asymptotically

positive function.

 4

The theorem has three cases in which may recurrences fall in. The three cases of the

Master Theorem are:

1. If f(n) = O(n
log

b
a

- e

) for some constant e > 0, then T(n) = Ɵ(n
log

b
a
).

2. If f(n) = (n
log

b
a
), then T(n) = Ɵ (n

log
b

a
 lg n).

3. If f(n) = (n
log

b
a

+ e

) for some constant > 0, and if f(n/b) <= cf(n) for some constant c < 1

and all sufficiently large n, then T(n) = Ɵ (f(n)).

3.0 System Description

 The system has the capability of producing unlimited practice problems. It does

not rely on a prepared set of problems or a database of hardcoded problems with

solutions. The problems in this system are generated at runtime. The solution is computed

and matched with the answers provided by the user. The system then generates

instantaneous feedback and grading for the answers submitted.

 The underlying computation engine for all modules relies on substitution of

integer values into equations that formulate in the steps of generating the solution.

The system is presented with a Graphical User Interface with multiple panels. The

outer container of the UI is the Main Control Panel which contains five sub panels i.e. –

 Substitution Method Panel,

 Substitution Method Test Panel

 Master Theorem Panel

 Master Theorem Sub Panel

 Order of Growth Panel

 5

Depending on what the user wants to view, the inner sub panels are instantiated

and embedded in the outer Main Control Panel. This Main Control Panel is designed in

such a way that it can host and change subpanels at runtime.

There are icons with tooltips on the top of the Main Control Panel which, when

pressed instantiate the corresponding panel and launches its UI. By default the

Substitution Method Panel is shown on startup of the system.

All problem panels share a similar UI design outlook. The similar functional areas

of the problem panels are-

 Problem Panel – This area displays the problem generated by the system.

 Answer Panel – This area displays the options available to answer the problem.

 Instructions Panel – This area provides instructions to the user regarding how to

approach the solution of the problem and how to answer it using the Answer

section.

 Buttons Panel – This panel presents the following buttons for the user –

o New Problem – It automatically generates a new problem.

o Solution – It generates a solution to the problem using the computation

engine and switches to the solution panel and displays the step wise

solution to the problem.

o Reset – It resets the Answer Panel selection and entries.

o Grade – It submits the answers and compares them with the solution

generated by the computation engine and provides credit and feedback for

the submission.

 Solution Panel - The solution panel shows the generated solution to the problem.

 6

The two test panels are also similar in their design outlook.

The test panels has four similar functional areas i.e.

 Recurrence Panel – This area updates the recurrence relation being created by

the user.

 Setup Panel – This area provides an interface to the user for creating the

recurrence and its testing bound.

 Solution Panel – This area displays the solution to the problem created above

using the computation engine.

 Buttons Panel – This panel presents the following buttons for the user –

o Add to f(n) – It adds the operations chosen in the Setup Panel to f(n)

part of the recurrence.

o Add to Guess - It adds the operations chosen in the Setup Panel to f(n)

part of the bound in the Guess Panel.

o Reset Recurrence – Clears whatever recurrence has been created by

the user so far.

o Reset Guess - Clears whatever bound has been created by the user so

far.

o Solve – It generates a solution to the problem using the computation

engine and switches to the solution panel and displays the step wise

solution to the problem.

 7

3.1 Substitution Method Panel

Figure 1. Substitution Method Panel

 The Substitution Method Panel gives the user a practice area wherein recurrence

relationships and their solutions generated by Substitution Method can be viewed. There

are two approaches to learn from this module. Either the student can generate numerous

recurrences by using the ‘New Problem’ button and then view the solution to the

generated problem by clicking the ‘Solution’ button. This way the student can see

different kinds of recurrence equations and their solutions. This increases the

 8

understanding of how the substitution method works and also an understanding of

recurrences and asymptotic bounds as such.

 Alternatively, the student can test his grasp of the topic by submitting his answers

to the generated problem for evaluation. The evaluation system generates feedback with

the correct solution for the problem. The system also computes and displays grading for

the submitted answer. This helps the students evaluate if they have understood the

concepts well enough.

3.1.1 Problem

 The Problem generated in the Substitution Method Panel is of the form –

Solve the Recurrence T(n) = aT(n/b) + f(n) for valid c and n0 using the Substitution

Method for the Guess – g(n). In the recurrence, f(n) can be a polynomial function of n

with lower order terms.

Using the Substitution Method algorithm the problem generated is solved for the

values of c and n0. The appropriate answer is chosen with values of c and n0 filled out.

For O bound problems first the lowest positive integer c is found, then for that c

the corresponding lowest positive integer n0 is found.

 In the case of Ω bound problems first the largest positive integer c is found, then

for that c the corresponding lowest positive integer n0 is found.

As the computation engine underlying this module is based on numerical

substitution, it was simpler to keep numerical substitution into equations as integers to

 9

provide better performance of the system and reduce considerable lag in solving these

problems. It also made the User Interface simpler.

3.1.2 Problem Generation

 The system generates a set of problems and then filters them to choose the

problem statement which fits certain criteria, to be a feasible problem statement with not

more than moderate difficulty.

 There is high probability assigned to the generation of the first case given in the

answering section of the panel. The generator first chooses for which option to generate a

problem, then creates a problem set and filters the problems until a feasible problem is

generated.

 The problem uses the computation engine of the Master Theorem module to

compute an asymptotic bound for the generated recurrence. This bound is then modified

slightly to create the guess complexity of the problem. This ensures that the recurrence

and the guess complexity in the problem statement are reasonable enough to be presented

as a problem.

 The constraints are modifiable through several constants which keep the

generation of these problems very configurable. Some of the configuration options are:

 Keep value of c within the range of 5 and 20 if n0 is 1

 Keep value of n0 within the range of 5 and 20 if c is 1

 Probability of generating O or Ω as guess time complexity

 10

 Number of terms to be generated in the guess time complexity function and f(n)

part of the recurrence

 Type and probability of terms to generate in the functions both in guess time

complexity function and f(n) part of the recurrence

3.1.3 Solution

 Clicking on the Solution button invokes the computation engine to generate the

solution for the problem statement. The problem is solves for the lowest integer values of

c and n0. The step by step solution is generated and displayed on the solution panel.

Figure 2. Substitution Method Solution Panel

 11

3.1.4 Grading and Feedback

 The system takes the answers given in the answering section and evaluates it with

the answers generated by the computation engine.

Grading is based on the following criteria - .

Total grade for a correct answer is 100 (50 for c , 40 for n0 and 10 for making the

correct choice).

Grade for c and n0 will be calculated respectively by the following formula:

100% if value matches computed value, 25% if it is 1 greater than correct c, 10% if it is 2

greater than correct c and 0% for all other c values.

So a correct submitted value will have full credit. Small deviation of +1 and +2

will get partial credit. The credits of n0 will be dependent on the submitted value of c and

not the value computed by the system. The system will compute the appropriate n0 using

the submitted c. In case the submitted n0 does not match this n0 computed by the system,

0% credit will be given. 100% credit for n0 will be granted if the value of n0 computed by

the system matches the n0 submitted.

 12

Figure 3. Substitution Method Grade Panel

A sample problem generated by the system with its solution and evaluation is shown

below:

Problem Generated:

Solve the Recurrence T(n) = 16T(n/21) + 10 n
4
 for valid c and n0 using the

Substitution Method for the Guess O n
4
?

Evaluation:

 13

Your Answer: Guess for the recurrence holds for the smallest positive integer c = 1

and for smallest positive integer n, i.e n0 = 1

The answer submitted is largely wrong

Correct c: 11

Percentage grade for submitted c: 0%

Grade for value of C: 0/50

Computed n0 based on c submitted: No value of n0 suffices for the submitted c

Percentage grade for submitted n0: 0%

Grade for value of n0: 0/40

Percentage grade for Choice: 100%

Grade for Choice: 0/10

Total Grade for Problem: 10/100

Please see the solution below.

***************************Solution***************************

Guessing the solution is T(n) = O(n
4
) which means that T(n) <= cn

4
 for an appropriate

choice of the constant c > 0.

We start by assuming that this bound holds for n/21 i.e., that T(n/21) <= c(n/21)
4
.

Substituting into the recurrence yields

T(n) <= 16c(n/21)
4
 + 10 n

4
 <= cn

4
 (as stated above)

 14

For the inductive hypothesis to be complete

16c(n/21)
4
 + 10 n

4
 <= cn4

must hold for a large enough c and for some n >= n0 where n0 is a constant.

After solving it turns out that

T(n) <= cn
4
 if c >= 11 and n0 = 1

Thus T(n) = O(n
4
)

3.2 Substitution Method Test Panel

 The system also provides a test panel wherein the user can create custom

recurrence equations and test them against custom created bounds.

 This panel is useful to test the same recurrence against changing upper or lower

bounds to understand how c and n0 vary with changing bounds.

 The UI for this panel has the four functional areas mentioned earlier plus a fifth

functional are i.e.

 • Guess Panel – This area updates the bound being created by the user.

 15

 Figure 4. Substitution Method Test Panel

3.3 Master Theorem Panel

The Master Theorem Panel gives a practice area to solve simulated exercises

generated to impart the learning of the Master Theorem. The module generates

Recurrence relationship problems and similar to the Substitution Method Panel there are

two approaches to learning from them.

 16

 The student can either generate numerous problems and view their auto generated

solution or choose to test their understanding of the topic by submitting their answers and

letting the system evaluate them.

 Figure 5. Master Theorem Main Panel

3.3.1 Problem

 The problem displayed on the Master Theorem Panel is of the form –

Using the Master Theorem give the tight asymptotic bound for the following recurrence :

T(n) = aT(n/b) + f(n)

 17

Figure 6. Master Theorem Answer Panel

 In order to answer the problem the Answer panel provides certain input and

combo boxes for the user to input. The user is made to select a series of choices as well

as input certain numeric values as his answer. His choices and input values are then

converted internally to the asymptotic bound that the user is suggesting through their

choices.

 The values to be input are

 a

 b

 n
(log

b
 a)

 – Here the value is matched up to only two sequential digits after the

decimal.

After entering these values, the combo boxes present options to choose from.

According to the choices made the complexity to be submitted it computed

dynamically and is updated in the ‘T(n) =’ box.

 18

 Figure 7. Master Theorem Answer Section Completed

3.3.2 Problem Generation

The system works similar to the Substitution Method problem generator. It

generates a set of problems and then filters them to choose a problem statement which fit

desired criteria and appears to be a feasible problem statement with not more than

moderate difficulty.

 There is almost equal probability assigned to the generation of the three cases

given in the Master Theorem. The generator firstly chooses for which option to generate

a problem, then creates a problem set and filters it until a feasible problem is generated.

 The configuration values are similar as used by Substitution Method and are

reused from that module.

3.3.3 Solution

Clicking on the Solution button invokes the Master Theorem computation engine

to generate the solution for the problem statement. Once the case of the theorem is

 19

computed, the correct asymptotic bound is calculated by the engine. The step by step

solution is generated and displayed on the solution panel.

Figure 8. Master Theorem Solution Panel

3.3.4 Grading and Feedback

The system takes the answers given in the answering section and evaluates it

against the answers generated by the computation engine.

Grading is based on the correctness of submitted values of a, b and n
log

b
a
 and the

options selected in the combo boxes.

 20

Total grade for a correct answer is 100 (5 for a, 5 for b, 15 for n
log

b
a
, and 25 each

for the option selected in the 3 combo boxes).

Grade for the a, b and the options selected in the combo boxes will get 0 credit on

any deviation from correct answer.

So a correct submitted value will have 100% and hence full credit.

Grade for n
log

b
a
 will be calculated by the following formula:

100 - |%deviation from the value|) * (percentage weightage of that element)

i.e. 100 - (|correct val - submitted val|)/correct val *100) * (percentage weightage

of that element)

Figure 9. Master Theorem Grade Panel

 21

A sample problem generated by the system with its solution and evaluation is shown

below:

Problem Generated:

Using the Master Theorem give the tight asymptotic bound for the following

recurrence : T(n) = 16T(n/2) + n
4

Evaluation:

Your Answer:

a : 16 b : 2

f(n) : n
4

logba : 4

Since f(n) = Ɵ(n
(4.0+e)

)

Hence we apply Case2 of the Master Theorem and

conclude that T(n) = Ɵ(n
4
 lg n)

The answer submitted is almost correct.

Correct a: 16

The submitted value of A is correct.

Grade for value of a: 5/5

Correct b: 2

The submitted value of B is correct.

Grade for value of b: 5/5

 22

Correct logba: 4

Deviation of submitted logba: 0%

Grade for value of logba: 15/15

Correct bound type of f(n): Ɵ

The submitted bound type of f(n) is correct.

Grade for value of bound type of f(n): 25/25

Correct constant term to be added/subtracted in the exponent :

The submitted constant term to be added/subtracted in the exponent is incorrect.

Grade for constant term to be added/subtracted in the exponent: 0/25

Correct case of Master Theorem: Case 2

The submitted case of Master Theorem is correct.

Grade for case of Master Theorem: 25/25

Total Grade for Problem: 75/100

Please see the solution below.

***************************Solution***************************

 23

Solution by Master Theorem -

For this recurrence, we have

a = 16,

b = 2,

f(n) = n
4
,

and thus

n(log b a) = n(log 2 16)

= Ɵ(n
4
).

Since f(n) = Ɵ(n
(log

2
 16)

),

we can apply case 2 of the Master Theorem and conclude that

T(n) = Ɵ(n
log

2
16

 lg n) or

T(n) = Ɵ(n
4
lg n)

3.4 Substitution Method Test Panel

The system also provides a test panel wherein the user can create custom

recurrence equations and compute their asymptotic complexities using the Master

Theorem computation engine.

This module enables learning through creating fully configurable recurrences and

observing their tight bounds being auto generated by the computation engine.

 24

Figure 10. Master Theorem Test Panel

3.5 Order of Growth Panel

The Order of Growth panel provides simulated exercises which are helpful in

gaining a clear idea of how various asymptotic bounds compare to each other. The

system has the capability of generating unlimited function sets with a new set of

functions appearing with in every new problem. Similar to the previous problem panels,

the student can either choose to see the solutions to the problems being generated or test

 25

their understanding of order of growths by ranking the functions and submitting the

ranked sequence for evaluation.

Figure 11. Order of Growth Panel

3.5.1 Problem

 The Problem generated in the Order of Growth Panel is of the form –

Rank the following functions by order of growth in ascending order: f1(n), f2(n), f3(n),

f4(n), f5(n).

 26

 Using the Order of Growth Comparator module arrangement of the functions is

done in ascending order of growth such that f1(n) = Ω (f2(n)), f2(n) = Ω ((f3(n)), ... f4(n)

= Ω (f5(n)).

In order to answer the problem the Answer panel provides the functions with

radio button in front of them to select. The order of functions intended to be submitted is

order in which the radio buttons are selected. The selected order is above the submit

button. The ranking process can be restarted by clicking the reset button.

 Figure 12. Order of Growth Answer Panel

3.5.2 Problem Generation

 The system generates functions according to criteria specified in a configuration

file. The system makes sure that no two functions of the same order of growth are

generated.

 The constraints are modifiable through constants which keep the generation of

these problems configurable. Some of the configuration options are like

 27

 No of terms to be generated in the guess time complexity function and f(n) part of

the recurrence

 Type and probability of terms to generate in the functions

3.5.3 Solution

 Clicking on the Solution button invokes the computation engine to generate the

solution for the problem statement. The functions are sorted in ascending order of growth

and displayed on the solution panel.

Figure 13. Order of Growth Solution Panel

 28

3.5.4 Grading and Feedback

The system takes the answers given in the answering section and evaluates it with

the answers generated by the computation engine.

There are 5 functions. When you put all 5 in order, it implies an order on
5
C2 = 10

pairs of functions i.e. if you have a < b < c < d < e, it implies the following pairs: a<b,

a<c, a<d, a<e, b<c, b<d, b<e, c<d, c<e, d<e.

Total grade for a correct answer is 100. Each matching inequality pair will get 10

credit amounting to a total of 100 for all 10 correct inequalities.

Figure 14. Order of Growth Grade Panel

 29

A sample problem generated by the system with its solution and evaluation is shown

below:

Problem Generated:

Rank the following functions by order of growth in ascending order: (2
n
), n

3
 (2

n
), n,

(lg n), n
3

Evaluation:

Your Answer: The arrangement of the functions given in the problem

i.e. f1(n), f2(n)..., f5(n) in ascending order of growth

such that f1(n) = Ω(f2(n)), f2(n) = Ω((f3(n)), ... f4(n) = Ω(f5(n))

submitted is :- n
3
<(lg n)<(2

n
)<n

3
 (2

n
)<n

The following pairs of inequalities can be deduced from the order submitted

n
3
 < (lg n)

n
3
 < (2

n
)

n
3
 < n

3
 (2

n
)

n
3
 < n

(lg n) < (2
n
)

(lg n) < n
3

(2n)

(lg n) < n

(2
n
) < n

3
 (2

n
)

(2
n
) < n

n
3
 (2

n
) < n

The inequalities above in red are wrong and the ones in green are correct.

The answer submitted is partially wrong.

 30

Of the arrangement submitted 6 pairs of inequalities are correct.

Total Grade for Problem: 60/100

Please see the solution below for correct order.

***************************Solution***************************

Given functions:

f1(n) = (2
n
)

f2(n) = n
3
 (2

n
)

f3(n) = n

f4(n) = (lg n)

f5(n) = n
3

The arrangement of the functions given in the problem

i.e. f1(n), f2(n)..., f5(n) in ascending order of growth

such that f1(n) = Ω(f2(n)), f2(n) = Ω((f3(n)), ... f4(n) = Ω(f5(n)) is :-

(lg n) < n < n3 < (2n) < n3 (2n).

4.0 Conclusion

 In this project there was implementation of an Automatic Assessment Algorithm

Analysis system which caters to the teaching of Recurrence Relationships and a better

understanding of asymptotic time complexities which helps in imparting strong

mathematical foundation to computer science students.

 31

 The system is a novel way for presenting automatically generated simulation

exercises with auto solution generation and assessment of recurrence based problems.

 The ability to generate unlimited worked examples with instant feedback fosters

a rich learning environment for the students.

 The implementation of the computation engines for solving recurrences through

Substitution Method and Master Method can be utilized for more than just simulation

exercises. The design of the object model used for the implementation can be reused for

creating further enhanced recurrence solving tools and research on the analysis of

recurrences.

 32

 APPENDIX A – Architectural Design

This section describes the detailed design of how the Algorithm Analysis System for

Recurrence Relationships will be implemented. The section contains the class models

used for various algorithm simulations.

Technologies/Architecture Used

 The project will be developed using the Java Platform. For creating the GUI’s

Java Swing will be used.

 The project will be designed using the Model View Controller Architecture. The

core algorithm implementation classes will constitute the Model. The Controller will

control the action events captured from the User Interface and passed on to the

underlying algorithm implementation. The Controller would modify the view depending

upon the choice of view selected by the user. The View generates be the GUI.

 33

Figure 15. Architecture Diagram

Framework Design

 The system is developed using Java Applets. Java Applets can utilize Java Swing

library and thus can be used to build interactive GUIs and utilize all features of

standalone Java development.

This section describes the design of the various Entity classes used in the system.

For building a simulation engine of the algorithms for this system, there needs to be

design of a math functions library. This library would provide the base for the execution

of the simulated algorithms.

Math Operations Design

 34

Figure 16. Math Operation Classes

In order to provide runtime polymorphism and use a generic Math Operation

object reference to point to various Operation implementations, the abstract class

Operation is defined. This abstract class defines two abstract functions i.e. value(double

n) and toStyledString().

 The value function takes as the argument the input operand for the function f(n)

and returns the value of the function on the input n. All Operation implementation classes

must override this abstract function and provide their own mathematical implementation

of the function they are providing the functionality for.

 35

 The toStyledString() function is similar to Java’s own toString() function. It

provides a textual representation of the Operation Object with some styling tags

embedded in it. These styling tags are processed by the Text Processor module written

for the purpose of this system. The Text Processor module takes the output if the

toStyledString() function and using the styling tags embedded in the text creates an

object of java.swing.text.StyledDocument object.

 All Math Operation implementing classes must inherit from this abstract class and

provide implementations for both these functions.

Recurrence Equation Design

 Representation of the Recurrence Equation requires design of some helper entity

classes. The recurrence is basically of the form

T(n) = aT(n/b) + f(n)

In order to represent this equation in code we require the classes shown in Figure17.

 36

Figure 17. Recurrence Equation Classes

 The Recurrence class contains the value of a, b and holds an object of type

FunctionX. The class FunctionX is designed to contain inherits from Operation. It also

contains an ArrayList of Operation objects. These objects can be of any class inheriting

from Operation shown in Figure17. The recurrence class contains an object each of

FunctionX and ComplexityType enum.

 37

 To represent the asymptotic bounds for the recurrence equations, the class

TimeComplexity is used.

 The recurrence class is an integral object used in the recurrence solving

algorithm’s implementation classes.

Substitution Method Computation Design

Figure 18. Substitution Method Simulation Classes

 The substitution method algorithm is simulated using the SubstitutionMethod

class. It takes in an object of Recurrence type and performs simulation on the bound

guessComplexity and computes the n0 and c for the problem presented.

 38

Master Theorem Computation Design

Figure 19. Master Theorem Simulation Classes

 The Master Theorem is simulated using the MasterTheorem class. The

constructor of this class takes an object of Recurrence type. The solve functions computes

the case of the Master Theorem this recurrence lies false in. After it computes the case, it

applies the theorem and computes the bound. The bound is returned as an object of

TimeComplexityMasterMethod type which inherits from TimeComplexity class and

contains an object of caseOfTheorem enum.

 39

Order of Rate of Asymptotic Growth Functions

Figure 20. Order of Rate of Growth Classes

 In order to be able to compare the Order of Rate of Asymptotic Growth Rates of

Functions the class AsymptoticGrowthRates is designed. It contains a list of Functions

represented as FunctionX objects. The comparison logic goes into the compare() function

of the GrowthRatesComparator class which inherits from the generic java class

Comparator.

 40

APPENDIX B – Source Code

File: AsymptoticGrowthRates .java

package algorithmLibrary;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Comparator;

public class AsymptoticGrowthRates {

 private ArrayList<FunctionX> originalFunctions;

 private ArrayList<FunctionX> growthRateFunctions;

 public ArrayList<FunctionX> getOriginalFunctions() {

 return originalFunctions;

 }

 public ArrayList<FunctionX> getGrowthRateFunctions() {

 return growthRateFunctions;

 }

 public AsymptoticGrowthRates()

 {

 originalFunctions = new ArrayList<FunctionX>();

 growthRateFunctions = new ArrayList<FunctionX>();

 }

 public AsymptoticGrowthRates(ArrayList<FunctionX> functions)

 {

 originalFunctions = new ArrayList<FunctionX>();

 growthRateFunctions = new ArrayList<FunctionX>();

 for (FunctionX fx : functions) {

 growthRateFunctions.add(fx);

 originalFunctions.add(fx);

 }

 }

 public void addFunction(FunctionX function)

 {

 growthRateFunctions.add(function);

 }

 public void printAllFunctions(ArrayList<FunctionX> functions)

 {

 int numFuntionsInARow = 5;

 for(int i = 1 ; i <= functions.size() ; i++)

 {

 if(i%numFuntionsInARow == 1)

 {

 41

 System.out.print("\n");

 }

 System.out.print(i + ". " + functions.get(i-1).toString() + " ");

 }

 }

 public void printProblem()

 {

 System.out.println("Problem Set Functions :");

 printAllFunctions(growthRateFunctions);

 }

 public void sortFunctionsByGrowthRatesAndPrint()

 {

 ArrayList<FunctionX> sortedGrowthRateFunctions = new

ArrayList<FunctionX>(growthRateFunctions);

 Collections.copy(sortedGrowthRateFunctions, growthRateFunctions);

 System.out.println("\n\nFunctions listed in order of asymptotic growth rates

(increasing):");

 sortFunctionsByGrowthRates(sortedGrowthRateFunctions);

 printAllFunctions(sortedGrowthRateFunctions);

 }

 public void sortFunctionsByGrowthRates(ArrayList<FunctionX> sortedGrowthRateFunctions)

 {

 Comparator<FunctionX> sortByGrowthRate = new GrowthRatesComparator();

 Collections.sort(sortedGrowthRateFunctions, sortByGrowthRate);

 }

 public void sortFunctionsByGrowthRates()

 {

 Comparator<FunctionX> sortByGrowthRate = new GrowthRatesComparator();

 Collections.sort(growthRateFunctions, sortByGrowthRate);

 }

 public String getSolvedStyledString()

 {

 StringBuilder stringBuilder = new StringBuilder();

 stringBuilder.append("Given functions:\n\n");

 for(int i = 0 ; i< originalFunctions.size() ; i++)

 {

 int j = i+1;

 stringBuilder.append("f"+ j +"(n) = [b" +

originalFunctions.get(i).toStyledString() + "]\n");

 }

 stringBuilder.append("\n");

 stringBuilder.append("The arrangement of the functions given in the problem\n");

 stringBuilder.append("i.e. f1(n), f2(n)..., f5(n) in ascending order of growth\n");

 stringBuilder.append("such that f1(n) = Omega(f2(n)), f2(n) = Omega((f3(n)), ... f4(n) =

Omega(f5(n)) is :-\n\n");

 42

 stringBuilder.append("[b[l");

 for (FunctionX fx : growthRateFunctions)

 {

 stringBuilder.append(fx.toStyledString() + " < ");

 }

 stringBuilder = stringBuilder.delete(stringBuilder.length() - 2, stringBuilder.length());

 stringBuilder.append("]]");

 return stringBuilder.toString();

 }

}

File: CaseOfTheorem .java

package algorithmLibrary;

public enum CaseOfTheorem {

 case1,

 case2,

 case3,

 notsolvableByMasterTheorem

}

File: ComplexityType.java

package algorithmLibrary;

public enum ComplexityType {

 BigO,

 Omega,

 Theta;

 public String toStyledString()

 {

 return name();

 }

}

File: Constant.java

package algorithmLibrary;

public class Constant extends Operation

{

 43

 Double value;

 public Constant(double p_value)

 {

 value = new Double(p_value);

 }

 public String toString()

 {

 String result ="";

 result+= str(value);

 return result;

 }

 @Override

 public String toStyledString() {

 String result ="";

 result+= str(value);

 return result;

 }

 public String str(Double var)

 {

 if(Math.floor(var) == var)

 {

 Integer varInt = var.intValue();

 return varInt.toString();

 }

 return var.toString();

 }

 public double value(double n)

 {

 return value;

 }

}

File: Divide.java

package algorithmLibrary;

public class Divide extends Operation{

 Operation numerator;

 Operation divideby;

 public Divide(Operation p_numerator, Operation p_divideby)

 {

 44

 numerator = p_numerator;

 divideby = p_divideby;

 }

 public Divide(Operation p_numerator, double p_divideby)

 {

 numerator = p_numerator;

 divideby = new Constant(p_divideby);

 }

 public String toString()

 {

 String result ="";

 result+= "(" + numerator.toString() + "/" + divideby.toString() + ")";

 return result;

 }

 @Override

 public String toStyledString() {

 String result ="";

 result+= "(" + numerator.toString() + "/" + divideby.toString() + ")";

 return result;

 }

 @Override

 public double value(double n)

 {

 return numerator.value(n)/divideby.value(n);

 }

}

File: ExpToN.java

package algorithmLibrary;

public class ExpToN extends Operation

{

 Operation base;

 public ExpToN(double p_base)

 {

 base = new Constant(p_base);

 }

 public ExpToN(Operation p_base)

 {

 base = p_base;

 }

 public String toString()

 {

 String result ="";

 if(base.toString().equals("1"))

 45

 {

 result+= "";

 }

 else if(base.toString().equals("0"))

 {

 result+= "0";

 }

 else
 {

 result+= "" + base.toString()+ "^n";

 }

 return result;

 }

 @Override

 public String toStyledString() {

 String result ="";

 if(base.toString().equals("1"))

 {

 result+= "";

 }

 else if(base.toString().equals("0"))

 {

 result+= "0";

 }

 else
 {

 result+= "(" + base.toString()+ "[un])";

 }

 return result;

 }

 public double value(double n)

 {

 return Math.pow(base.value(n), n);

 }

}

File: ExpToOperand.java

package algorithmLibrary;

public class ExpToOperand extends Operation{

 Operation base;

 Operation power;

 46

 public ExpToOperand(Operation p_base, Operation p_power)

 {

 base = p_base;

 power = p_power;

 }

 public ExpToOperand(double p_base, Operation p_power)

 {

 base = new Constant(p_base);

 power = p_power;

 }

 public String toString()

 {

 String result ="";

 if(base.toString().equals("1"))

 {

 result+= "1";

 }

 else if(base.toString().equals("0"))

 {

 result+= "0";

 }

 else
 {

 result+= "(" + base.toString() + "^" + power.toString() + ")";

 }

 return result;

 }

 @Override

 public double value(double n)

 {

 return Math.pow(base.value(n), power.value(n));

 }

 @Override

 public String toStyledString() {

 String result ="";

 if(base.toString().equals("1"))

 {

 result+= "1";

 }

 else if(base.toString().equals("0"))

 {

 result+= "0";

 }

 else
 {

 result+= "" + base.toString() + "[u" + power.toString() + "]";

 47

 }

 return result;

 }

}

File: FactorialN.java

package algorithmLibrary;

public class FactorialN extends Operation

{

 public String toString()

 {

 String result ="";

 result+= "n!";

 return result;

 }

 public double value(double n)

 {

 // as n! grows way too fast at even numbers like n = 100 , stack over occurs

 // because of recursive stacks, therefore making non recursive code

 double returnValue = 1.0;

 for(double i = 1 ; i <= n ; i++)

 {

 returnValue *= i;

 }

 return returnValue;

 }

 @Override

 public String toStyledString() {

 String result ="";

 result+= "n!";

 return result;

 }

}

File: FactorialOfOperand.java

package algorithmLibrary;

 48

public class FactorialOfOperand extends Operation{

 Operation operand;

 public FactorialOfOperand(Operation p_operand)

 {

 operand = p_operand;

 }

 public String toString()

 {

 String result ="";

 result+= operand.toString() + "!";

 return result;

 }

 @Override

 public double value(double n)

 {

 // as n! grows way too fast at even numbers like n = 100 , stack over occurs

 // because of recursive stacks, therefore making non recursive code

 double returnValue = 1.0;

 for(double i = 1 ; i <= operand.value(n) ; i++)

 {

 returnValue *= i;

 }

 return returnValue;

 }

 @Override

 public String toStyledString() {

 String result ="";

 result+= operand.toString() + "!";

 return result;

 }

}

File: FunctionX.java

package algorithmLibrary;

import java.util.ArrayList;

public class FunctionX extends Operation

{

 public Sign signMain;

 public ArrayList<Operation> terms;

 49

 public Sign signConnection;

 public ArrayList<Operation> secondterms;

 public Sign signConstant;

 public ArrayList<Operation> constantTerms;

 Double coefficient;

 public FunctionX()

 {

 terms = new ArrayList<Operation>();

 secondterms = new ArrayList<Operation>();

 constantTerms = new ArrayList<Operation>();

 signMain = new Sign("+");

 signConnection = new Sign("-");

 signConstant = new Sign("-");

 }

 public void addTerm(Operation termobj)

 {

 terms.add(termobj);

 }

 public void addSecondTerm(Operation termobj)

 {

 secondterms.add(termobj);

 }

 public void addSecondTerm(Operation termobj, String sign)

 {

 secondterms.add(termobj);

 signConnection = new Sign(sign);

 }

 public void addConstant(Operation termobj)

 {

 constantTerms.add(termobj);

 }

 public void addConstant(Operation termobj, String sign)

 {

 constantTerms.add(termobj);

 signConstant = new Sign(sign);

 }

 public void setConnectionSign(String sign)

 {

 signConnection = new Sign(sign);

 }

 public void setMainSign(String sign)

 {

 signMain = new Sign(sign);

 }

 50

 public void setConstantSign(String sign)

 {

 signConstant = new Sign(sign);

 }

 public String toString()

 {

 String result = "";

 for(Operation obj : terms)

 {

 if(!obj.toString().equals("1"))

 {

 result = result + obj.toString() +" ";

 }

 }

 result = result.trim();

 if(!result.equals(""))

 return result;

 else
 return "1";

 }

 public double value(double n)

 {

 double returnValue = 1;

 for(Operation obj : terms)

 {

 returnValue *= obj.value(n);

 }

 if(!signMain.ispositive)

 {

 returnValue = returnValue * -1.0;

 }

 //secondTerms support

 if(secondterms.size() > 0)

 {

 double secondTermsValue = 1;

 for(Operation obj : secondterms)

 {

 secondTermsValue *= obj.value(n);

 }

 if(signConnection.ispositive)

 {

 returnValue = returnValue + secondTermsValue;

 51

 }

 else
 {

 returnValue = returnValue - secondTermsValue;

 }

 }

 //constant support

 if(constantTerms.size() > 0)

 {

 double constantTermsValue = 1;

 for(Operation obj : constantTerms)

 {

 constantTermsValue *= obj.value(n);

 }

 if(signConstant.ispositive)

 {

 returnValue = returnValue + constantTermsValue;

 }

 else
 {

 returnValue = returnValue - constantTermsValue;

 }

 }

 return returnValue;

 }

 public String toStyledString()

 {

 String result = "";

 if(!signMain.ispositive){

 result = result + " " + signMain.toStyledString() + " ";

 }

 for(Operation obj : terms)

 {

 if(!obj.toStyledString().equals("1"))

 {

 result = result + obj.toStyledString() +" ";

 }

 }

 result = result.trim();

 //secondTerms support

 if(secondterms.size() > 0)

 {

 result = result + " " + signConnection.toStyledString() + " ";

 for(Operation obj : secondterms)

 52

 {

 if(!obj.toStyledString().equals("1"))

 {

 result = result + obj.toStyledString() +" ";

 }

 }

 }

 result = result.trim();

 //constant support

 if(constantTerms.size() > 0)

 {

 result = result + " " + signConstant.toStyledString() + " ";

 for(Operation obj : constantTerms)

 {

 result = result + obj.toStyledString() +" ";

 }

 }

 result = result.trim();

 if(!result.equals(""))

 return result;

 else
 return "1";

 }

 public ArrayList<Operation> getTerms() {

 return terms;

 }

 public ArrayList<Operation> getSecondTerms() {

 return secondterms;

 }

}

File: GrowthRatesComparator.java

package algorithmLibrary;

import java.util.Comparator;

public class GrowthRatesComparator implements Comparator<FunctionX>{

 enum caseOfComparison

 {

 AGreater,

 BGreater,

 53

 ABEqual

 }

 @Override

 public int compare(FunctionX function_a, FunctionX function_b) {

 double aVal = 0.0f;

 double bVal = 0.0f;

 double startingNValue = 10.0;

 double maxOrderOfCheck = 10;

 double orderOfGrowth = 100;

 caseOfComparison whichCase = caseOfComparison.ABEqual;

 // comparing the values of the functions for various orders of n

 // might have to change the logic for so many comparisons

 // because anyways the checking is happening on the biggest value of n

 long countAGreater = 0;

 long countBGreater = 0;

 long countABEqual = 0;

 for(double n= startingNValue , i = 1; i <= maxOrderOfCheck ; n = n * orderOfGrowth ,

i++)

 {

 aVal = function_a.value(n);

 bVal = function_b.value(n);

 if(aVal > bVal)

 {

 whichCase = caseOfComparison.AGreater;

 countAGreater++;

 }

 else if(bVal > aVal)

 {

 whichCase = caseOfComparison.BGreater;

 countBGreater++;

 }

 else
 {

 whichCase = caseOfComparison.ABEqual;

 countABEqual++;

 }

 // to avoid computation to extremely huge numbers

 if(aVal >= Math.pow(Double.MAX_VALUE, .1) || aVal >=

Math.pow(Double.MAX_VALUE, .1))

 break;

 }

 if(whichCase == caseOfComparison.AGreater)

 {

 return 1;

 }

 54

 else if(whichCase == caseOfComparison.BGreater)

 {

 return -1;

 }

 else
 {

 return 0;

 }

 }

}

File: LogN.java

package algorithmLibrary;

public class LogN extends Operation

{

 Operation base;

 public LogN(double p_base)

 {

 base = new Constant(p_base);

 }

 public LogN(Operation p_base)

 {

 base = p_base;

 }

 public String toString()

 {

 String result ="";

 if(base.toString().equals("2"))

 {

 result+= "(lg n)";

 }

 else
 {

 result+= "(log b-" + base.toString() + " n)";

 }

 return result;

 }

 public double value(double n)

 {

 return (Math.log(n)/ Math.log(base.value(n)));

 }

 @Override

 public String toStyledString() {

 String result ="";

 if(base.toString().equals("2"))

 55

 {

 result+= "(lg n)";

 }

 else
 {

 result+= "(log[d" + base.toString() + "] n)";

 }

 return result;

 }

}

File: LogOfOperand.java

package algorithmLibrary;

public class LogOfOperand extends Operation

{

 Operation base;

 Operation operand;

 public LogOfOperand(Operation p_base, Operation p_operand)

 {

 base = p_base;

 operand = p_operand;

 }

 public LogOfOperand(double p_base, Operation p_operand)

 {

 base = new Constant(p_base);

 operand = p_operand;

 }

 public String toString()

 {

 String result ="";

 if(base.toString().equals("2"))

 {

 result+= "(lg " + operand.toString() + ")";

 }

 else
 {

 result+= "(log b-" + base.toString() + " "+ operand.toString() + ")";

 }

 return result;

 }

 public double value(double n)

 {

 return (Math.log(operand.value(n))/ Math.log(base.value(n)));

 }

 56

 @Override

 public String toStyledString() {

 String result ="";

 if(base.toString().equals("2"))

 {

 result+= "(lg " + operand.toString() + ")";

 }

 else
 {

 result+= "(log[d" + base.toString() + "] "+ operand.toString() + ")";

 }

 return result;

 }

}

File: MasterTheorem.java

package algorithmLibrary;

import java.util.ArrayList;

public class MasterTheorem

{

 Recurrence recurrence;

 public MasterTheorem(Recurrence p_recurrence)

 {

 recurrence = new Recurrence();

 recurrence = p_recurrence;

 }

 public ArrayList<Object> getComputedResultValues()

 {

 ArrayList<Object> resultValues = new ArrayList<Object>();

 //a

 resultValues.add(recurrence.a);

 //b

 resultValues.add(recurrence.b);

 //nLogba

 resultValues.add(logabValCompute());

 CaseOfTheorem caseObj = whichCase();

 if(caseObj == CaseOfTheorem.case1)

 {

 // case1

 57

 resultValues.add("O");

 resultValues.add("-e");

 resultValues.add("Case1");

 }

 else if(caseObj == CaseOfTheorem.case2)

 {

 // case2

 resultValues.add("Theta");

 resultValues.add("");

 resultValues.add("Case2");

 }

 else if(caseObj == CaseOfTheorem.case3)

 {

 // case3

 resultValues.add("Omega");

 resultValues.add("+e");

 resultValues.add("Case3");

 }

 return resultValues;

 }

 public void solve()

 {

 CaseOfTheorem caseObj = whichCase();

 if(caseObj == CaseOfTheorem.case1)

 {

 // case1

 // used for computing the bound for n^log b-b a

 Operation NLogbaBigThetaTerm = new NPower(logabValCompute());

 FunctionX NLogbaBigThetaTermFunction = new FunctionX();

 NLogbaBigThetaTermFunction.addTerm(NLogbaBigThetaTerm);

 String nExplogabValComputeString = "";

 if(logabValCompute() == 1.0)

 {

 nExplogabValComputeString = "n";

 }

 else if(logabValCompute() == 0.0)

 {

 nExplogabValComputeString = "";

 }

 else
 {

 nExplogabValComputeString = "n^" + str(logabValCompute()) ;

 }

 System.out.println("\nSolution by Master Method");

 System.out.println("\nFor this recurrence, we have a = " + str(recurrence.a) + ",

b = " + str(recurrence.b) + ", f(n) = " + recurrence.fx.toString() + ",");

 System.out.println("and thus n^(log b-b of a) = n^(log b-" + str(recurrence.b) + "

" + str(recurrence.a) + ") = Big Theta(" + NLogbaBigThetaTermFunction.toString() + ").");

 58

 System.out.println("Since f(n) = Big O(n^(log b-" + str(recurrence.b)+ " " +

str(recurrence.a) + " - e)), where e is some constant > 0,");

 System.out.println("we can apply case 1 of the Master Theorem and conclude

that");

 System.out.println("T(n) = Big Theta(" + nExplogabValComputeString + ")" + "

or " + "T(n) = Big Theta(n^log b-" + str(recurrence.b) + " " + str(recurrence.a) + ")");

 }

 else if(caseObj == CaseOfTheorem.case2)

 {

 // case2

 // used for computing the bound for n^log b-b a

 Operation NLogbaBigThetaTerm = new NPower(logabValCompute());

 FunctionX NLogbaBigThetaTermFunction = new FunctionX();

 NLogbaBigThetaTermFunction.addTerm(NLogbaBigThetaTerm);

 String nExplogabValComputeString = "";

 if(logabValCompute() == 1.0)

 {

 nExplogabValComputeString = "n ";

 }

 else if(logabValCompute() == 0.0)

 {

 nExplogabValComputeString = "";

 }

 else
 {

 nExplogabValComputeString = "n^" + str(logabValCompute()) +" " ;

 }

 System.out.println("\nSolution by Master Method");

 System.out.println("\nFor this recurrence, we have a = " + str(recurrence.a) + ",

b = " + str(recurrence.b) + ", f(n) = " + recurrence.fx.toString() + ",");

 System.out.println("and thus n^(log b-b of a) = n^(log b-" + str(recurrence.b) + "

" + str(recurrence.a) + ") = Big Theta(" + NLogbaBigThetaTermFunction.toString() + ").");

 System.out.println("Since f(n) = Big Theta(n^(log b-" + str(recurrence.b)+ " " +

str(recurrence.a) + ")),");

 System.out.println("we can apply case 2 of the Master Theorem and conclude

that");

 System.out.println("T(n) = Big Theta(" + nExplogabValComputeString + "lg n)"

+ " or " + "T(n) = Big Theta(n^log b-" + str(recurrence.b) + " " + str(recurrence.a) + " lg n)");

 }

 else if(caseObj == CaseOfTheorem.case3)

 {

 // case3

 // used for computing the bound for n^log b-b a

 Operation NLogbaBigThetaTerm = new NPower(logabValCompute());

 FunctionX NLogbaBigThetaTermFunction = new FunctionX();

 NLogbaBigThetaTermFunction.addTerm(NLogbaBigThetaTerm);

 System.out.println("\nSolution by Master Method");

 59

 System.out.println("\nFor this recurrence, we have a = " + str(recurrence.a) + ",

b = " + str(recurrence.b) + ", f(n) = " + recurrence.fx.toString() + ",");

 System.out.println("and thus n^(log b-b of a) = n^(log b-" + str(recurrence.b) + "

" + str(recurrence.a) + ") = Big Theta(" + NLogbaBigThetaTermFunction.toString() + ").");

 System.out.println("Since f(n) = Big Omega(n^(log b-" + str(recurrence.b)+ " "

+ str(recurrence.a) + " + e)), where e is some constant > 0,");

 System.out.println("We can apply case 3 of the Master Theorem and conclude

that");

 System.out.println("T(n) = Big Theta(" + recurrence.fx.toString() + ")");

 }

 else
 {

 // notsolvableByMasterTheorem

 System.out.println("\nSolution by Master Method");

 System.out.println("\nWe can not apply the master method because the

recurrence falls");

 System.out.println("into the gap between either Case 1 and Case 2 or the gap

between Case 2 and Case 3");

 }

 }

 public String getSolvedStyledString()

 {

 StringBuffer resultStr = new StringBuffer();

 CaseOfTheorem caseObj = whichCase();

 if(caseObj == CaseOfTheorem.case1)

 {

 // case1

 // used for computing the bound for n^log b-b a

 Operation NLogbaBigThetaTerm = new

NPower(roundToDecimals(logabValCompute(),2));

 FunctionX NLogbaBigThetaTermFunction = new FunctionX();

 NLogbaBigThetaTermFunction.addTerm(NLogbaBigThetaTerm);

 String nExplogabValComputeString = "";

 if(logabValCompute() == 1.0)

 {

 nExplogabValComputeString = "n";

 }

 else if(logabValCompute() == 0.0)

 {

 nExplogabValComputeString = "";

 }

 else
 {

 nExplogabValComputeString = "n[u" +

str(roundToDecimals(logabValCompute(),2))+ "]" ;

 60

 }

 resultStr.append("[b[lSolution by Master Theorem -]]");

 resultStr.append("\n\nFor this recurrence, we have \n\n[ba = " + str(recurrence.a)

+ "], \n[bb = " + str(recurrence.b) + "], \n[bf(n) = " + recurrence.fx.toStyledString() + "],");

 resultStr.append("\n\nand thus \n[b[d[xn]](log [db] a) = [d[xn]](log b[d" +

str(recurrence.b) + "] " + str(recurrence.a) + ") \n= Big Theta(" +

NLogbaBigThetaTermFunction.toStyledString() + ")].");

 resultStr.append("\n\n[d[xSince [bf(n) = Big O(n]]][b(log b[d" +

str(recurrence.b)+ "] " + str(recurrence.a) + " - e)])], \nwhere e is some constant > 0,");

 resultStr.append("\n\nwe can apply [b[ccase 1]] of the Master Theorem and

conclude that");

 resultStr.append("\n\n[d[x[b[cT(n) = Big Theta(n]]]][b[l[clog [d" +

str(recurrence.b) + "] " + str(recurrence.a) + "])]]] or " + "\n\n[b[l[cT(n) = Big Theta(" +

nExplogabValComputeString + ")" + "]]]");

 }

 else if(caseObj == CaseOfTheorem.case2)

 {

 // case2

 // used for computing the bound for n^log b-b a

 Operation NLogbaBigThetaTerm = new

NPower(roundToDecimals(logabValCompute(),2));

 FunctionX NLogbaBigThetaTermFunction = new FunctionX();

 NLogbaBigThetaTermFunction.addTerm(NLogbaBigThetaTerm);

 String nExplogabValComputeString = "";

 if(logabValCompute() == 1.0)

 {

 nExplogabValComputeString = "n ";

 }

 else if(logabValCompute() == 0.0)

 {

 nExplogabValComputeString = "";

 }

 else
 {

 nExplogabValComputeString = "n[u" +

str(roundToDecimals(logabValCompute(),2))+ "]" ;

 }

 resultStr.append("[b[lSolution by Master Theorem -]]");

 resultStr.append("\n\nFor this recurrence, we have \n\n[ba = " + str(recurrence.a)

+ "], \n[bb = " + str(recurrence.b) + "], \n[bf(n) = " + recurrence.fx.toStyledString() + "],");

 resultStr.append("\n\nand thus \n[b[d[xn]](log [db] a) = [d[xn]](log [d" +

str(recurrence.b) + "] " + str(recurrence.a) + ") \n= Big Theta(" +

NLogbaBigThetaTermFunction.toStyledString() + ")].");

 resultStr.append("\n\n[d[xSince [bf(n) = Big Theta(n]]][b(log [d" +

str(recurrence.b)+ "] " + str(recurrence.a) + ")])],");

 resultStr.append("\n\nwe can apply [b[ccase 2]] of the Master Theorem and

conclude that");

 resultStr.append("\n\n[d[x[b[cT(n) = Big Theta(n]]]][b[l[clog [d" +

str(recurrence.b) + "] " + str(recurrence.a) + "] lg n)]]]" + " or " + "\n\n[b[l[cT(n) = Big Theta(" +

nExplogabValComputeString + "lg n)]]]");

 }

 61

 else if(caseObj == CaseOfTheorem.case3)

 {

 // case3

 // used for computing the bound for n^log b-b a

 Operation NLogbaBigThetaTerm = new

NPower(roundToDecimals(logabValCompute(),2));

 FunctionX NLogbaBigThetaTermFunction = new FunctionX();

 NLogbaBigThetaTermFunction.addTerm(NLogbaBigThetaTerm);

 resultStr.append("[b[lSolution by Master Theorem -]]");

 resultStr.append("\n\nFor this recurrence, we have \n\n[ba = " + str(recurrence.a)

+ "], \n[bb = " + str(recurrence.b) + "], \n[bf(n) = " + recurrence.fx.toStyledString() + "],");

 resultStr.append("\n\nand thus [b[d[xn]](log [db] a) = [dn](log [d" +

str(recurrence.b) + "] " + str(recurrence.a) + ") \n= Big Theta(" +

NLogbaBigThetaTermFunction.toStyledString() + ")].");

 resultStr.append("\n\n[d[xSince [bf(n) = Big Omega(n]]][b(log [d" +

str(recurrence.b)+ "] " + str(recurrence.a) + " + e)])], \nwhere e is some constant > 0,");

 resultStr.append("\n\nWe can apply [b[ccase 3]] of the Master Theorem and

conclude that");

 resultStr.append("\n\n[b[l[cT(n) = Big Theta(" + recurrence.fx.toStyledString()

+ ")]]]");

 }

 else
 {

 // notsolvableByMasterTheorem

 resultStr.append("[b[lSolution by Master Theorem -]]");

 resultStr.append("\n\nWe can not apply the master theorem because the

recurrence falls");

 resultStr.append("into the gap between either Case 1 and Case 2 or the gap

between Case 2 and Case 3.");

 }

 return new String(resultStr);

 }

 public TimeComplexityMasterMethod getSolvedBound()

 {

 TimeComplexity timeComplexity;

 CaseOfTheorem solvedCase = whichCase();

 Operation operation;

 FunctionX fx;

 switch (solvedCase) {

 case case1:

 operation = new NPower(new LogOfOperand(recurrence.b, new

Constant(recurrence.a)));

 fx = new FunctionX();

 fx.addTerm(operation);

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 62

 break;

 case case2:

 operation = new NPower(new LogOfOperand(recurrence.b, new Constant(recurrence.a)));

 fx = new FunctionX();

 fx.addTerm(operation);

 fx.addTerm(new LogN(2));

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 case case3:

 fx = recurrence.fx;

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 case notsolvableByMasterTheorem:

 //in case the Master Method can not solve the recurrence

 //constant -1.0 is passed back as time complexity fx

 fx = new FunctionX();

 fx.addTerm(new Constant(-1.0));

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 default:

 timeComplexity = new TimeComplexity();

 break;

 }

 return new TimeComplexityMasterMethod(solvedCase,

timeComplexity.getComplexityType(), timeComplexity.getFunctionX());

 }

 public TimeComplexityMasterMethod getRoundedSolvedBound()

 {

 TimeComplexity timeComplexity;

 CaseOfTheorem solvedCase = whichCase();

 Operation operation;

 FunctionX fx;

 switch (solvedCase) {

 case case1:

 operation = new NPower(Math.rint

((Math.log(recurrence.b)/Math.log(recurrence.a))));

 fx = new FunctionX();

 fx.addTerm(operation);

 63

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 case case2:

 operation = new NPower(Math.rint ((Math.log(recurrence.b)/Math.log(recurrence.a))));

 fx = new FunctionX();

 fx.addTerm(operation);

 fx.addTerm(new LogN(2));

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 case case3:

 fx = recurrence.fx;

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 case notsolvableByMasterTheorem:

 //in case the Master Method can not solve the recurrence

 //constant -1.0 is passed back as time complexity fx

 fx = new FunctionX();

 fx.addTerm(new Constant(-1.0));

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 default:

 timeComplexity = new TimeComplexity();

 break;

 }

 return new TimeComplexityMasterMethod(solvedCase,

timeComplexity.getComplexityType(), timeComplexity.getFunctionX());

 }

 public CaseOfTheorem whichCase()

 {

 double fxVal = 0.0f;

 double nExpLogbaVal = 0.0f;

 double maxOrderOfCheck = 100;

 double orderOfGrowth = 10;

 //checking for case 1

 //if n^logb a is polynomially greater than fx

 // will have to change strategy for determining

 // which function is polynomially greater

 long countCase1Greater = 0;

 64

 long countCase1Lesser = 0;

 boolean case1 = false;

 for(double n= 1, i = 1; i <= maxOrderOfCheck ; n = n * orderOfGrowth , i++)

 {

 nExpLogbaVal = nExpLogabValCompute(n);

 fxVal = recurrence.fx.value(n);

 if(nExpLogbaVal > fxVal)

 {

 case1 = true;

 countCase1Greater++;

 }

 else
 {

 case1 = false;

 countCase1Lesser++;

 }

 // to avoid computation to extremely huge numbers

 if(fxVal >= Math.sqrt(Double.MAX_VALUE))

 break;

 }

 if(case1 == true)return CaseOfTheorem.case1;

 // reinitializing the variables to 0

 fxVal = 0.0f;

 nExpLogbaVal = 0.0f;

 //checking for case 2

 //if n^logb a is equal than fx

 long countCase2Equal = 0;

 long countCase2NotEqual = 0;

 boolean case2 = false;

 for(double n= 1, i = 1; i <= maxOrderOfCheck ; n = n * orderOfGrowth , i++)

 {

 nExpLogbaVal = nExpLogabValCompute(n);

 fxVal = recurrence.fx.value(n);

 if(nExpLogbaVal == fxVal)

 {

 case2 = true;

 countCase2Equal++;

 }

 else

 65

 {

 case2 = false;

 countCase2NotEqual++;

 }

 // to avoid computation to extremely huge numbers

 if(fxVal >= Math.sqrt(Double.MAX_VALUE))

 break;

 }

 if(case2 == true)return CaseOfTheorem.case2;

 //checking for case 3

 //if n^logb a is polynomially lesser than fx

 // will have to change strategy for determining

 // which function is polynomially greater

 // and also check the regularity -

 // af(n/b) <= cf(n) for some c<1 and all sufficiently large n

 long countCase3Greater = 0;

 long countCase3Lesser = 0;

 boolean case3 = false;

 for(double n= 1, i = 1; i <= maxOrderOfCheck ; n = n * orderOfGrowth , i++)

 {

 nExpLogbaVal = nExpLogabValCompute(n);

 fxVal = recurrence.fx.value(n);

 if(nExpLogbaVal < fxVal)

 {

 case3 = true;

 countCase3Lesser++;

 }

 else
 {

 case3 = false;

 countCase3Greater++;

 }

 // to avoid computation to extremely huge numbers

 if(fxVal >= Math.sqrt(Double.MAX_VALUE))

 break;

 }

 if(case3 == true)return CaseOfTheorem.case3;

 // if the comparisons of the functions does not lie on any

 // of the above cases

 66

 return CaseOfTheorem.notsolvableByMasterTheorem;

 }

 double nExpLogabValCompute(double n)

 {

 double logba = Math.log(recurrence.a) / Math.log(recurrence.b);

 return Math.pow(n, logba);

 }

 double logabValCompute()

 {

 return Math.log(recurrence.a) / Math.log(recurrence.b);

 }

 public static double roundToDecimals(double d, int c)

 {

 int temp=(int)((d*Math.pow(10,c)));

 return (((double)temp)/Math.pow(10,c));

 }

 public String str(Double var)

 {

 if(Math.floor(var) == var)

 {

 Integer varInt = var.intValue();

 return varInt.toString();

 }

 return var.toString();

 }

}

package algorithmLibrary;

import java.util.ArrayList;

public class MasterTheorem

{

 Recurrence recurrence;

 public MasterTheorem(Recurrence p_recurrence)

 {

 recurrence = new Recurrence();

 recurrence = p_recurrence;

 }

 public ArrayList<Object> getComputedResultValues()

 {

 ArrayList<Object> resultValues = new ArrayList<Object>();

 67

 //a

 resultValues.add(recurrence.a);

 //b

 resultValues.add(recurrence.b);

 //nLogba

 resultValues.add(logabValCompute());

 CaseOfTheorem caseObj = whichCase();

 if(caseObj == CaseOfTheorem.case1)

 {

 // case1

 resultValues.add("O");

 resultValues.add("-e");

 resultValues.add("Case1");

 }

 else if(caseObj == CaseOfTheorem.case2)

 {

 // case2

 resultValues.add("Theta");

 resultValues.add("");

 resultValues.add("Case2");

 }

 else if(caseObj == CaseOfTheorem.case3)

 {

 // case3

 resultValues.add("Omega");

 resultValues.add("+e");

 resultValues.add("Case3");

 }

 return resultValues;

 }

 public void solve()

 {

 CaseOfTheorem caseObj = whichCase();

 if(caseObj == CaseOfTheorem.case1)

 {

 // case1

 // used for computing the bound for n^log b-b a

 Operation NLogbaBigThetaTerm = new NPower(logabValCompute());

 FunctionX NLogbaBigThetaTermFunction = new FunctionX();

 NLogbaBigThetaTermFunction.addTerm(NLogbaBigThetaTerm);

 String nExplogabValComputeString = "";

 if(logabValCompute() == 1.0)

 {

 nExplogabValComputeString = "n";

 68

 }

 else if(logabValCompute() == 0.0)

 {

 nExplogabValComputeString = "";

 }

 else
 {

 nExplogabValComputeString = "n^" + str(logabValCompute()) ;

 }

 System.out.println("\nSolution by Master Method");

 System.out.println("\nFor this recurrence, we have a = " + str(recurrence.a) + ",

b = " + str(recurrence.b) + ", f(n) = " + recurrence.fx.toString() + ",");

 System.out.println("and thus n^(log b-b of a) = n^(log b-" + str(recurrence.b) + "

" + str(recurrence.a) + ") = Big Theta(" + NLogbaBigThetaTermFunction.toString() + ").");

 System.out.println("Since f(n) = Big O(n^(log b-" + str(recurrence.b)+ " " +

str(recurrence.a) + " - e)), where e is some constant > 0,");

 System.out.println("we can apply case 1 of the Master Theorem and conclude

that");

 System.out.println("T(n) = Big Theta(" + nExplogabValComputeString + ")" + "

or " + "T(n) = Big Theta(n^log b-" + str(recurrence.b) + " " + str(recurrence.a) + ")");

 }

 else if(caseObj == CaseOfTheorem.case2)

 {

 // case2

 // used for computing the bound for n^log b-b a

 Operation NLogbaBigThetaTerm = new NPower(logabValCompute());

 FunctionX NLogbaBigThetaTermFunction = new FunctionX();

 NLogbaBigThetaTermFunction.addTerm(NLogbaBigThetaTerm);

 String nExplogabValComputeString = "";

 if(logabValCompute() == 1.0)

 {

 nExplogabValComputeString = "n ";

 }

 else if(logabValCompute() == 0.0)

 {

 nExplogabValComputeString = "";

 }

 else
 {

 nExplogabValComputeString = "n^" + str(logabValCompute()) +" " ;

 }

 System.out.println("\nSolution by Master Method");

 System.out.println("\nFor this recurrence, we have a = " + str(recurrence.a) + ",

b = " + str(recurrence.b) + ", f(n) = " + recurrence.fx.toString() + ",");

 System.out.println("and thus n^(log b-b of a) = n^(log b-" + str(recurrence.b) + "

" + str(recurrence.a) + ") = Big Theta(" + NLogbaBigThetaTermFunction.toString() + ").");

 System.out.println("Since f(n) = Big Theta(n^(log b-" + str(recurrence.b)+ " " +

str(recurrence.a) + ")),");

 System.out.println("we can apply case 2 of the Master Theorem and conclude

that");

 System.out.println("T(n) = Big Theta(" + nExplogabValComputeString + "lg n)"

+ " or " + "T(n) = Big Theta(n^log b-" + str(recurrence.b) + " " + str(recurrence.a) + " lg n)");

 69

 }

 else if(caseObj == CaseOfTheorem.case3)

 {

 // case3

 // used for computing the bound for n^log b-b a

 Operation NLogbaBigThetaTerm = new NPower(logabValCompute());

 FunctionX NLogbaBigThetaTermFunction = new FunctionX();

 NLogbaBigThetaTermFunction.addTerm(NLogbaBigThetaTerm);

 System.out.println("\nSolution by Master Method");

 System.out.println("\nFor this recurrence, we have a = " + str(recurrence.a) + ",

b = " + str(recurrence.b) + ", f(n) = " + recurrence.fx.toString() + ",");

 System.out.println("and thus n^(log b-b of a) = n^(log b-" + str(recurrence.b) + "

" + str(recurrence.a) + ") = Big Theta(" + NLogbaBigThetaTermFunction.toString() + ").");

 System.out.println("Since f(n) = Big Omega(n^(log b-" + str(recurrence.b)+ " "

+ str(recurrence.a) + " + e)), where e is some constant > 0,");

 System.out.println("We can apply case 3 of the Master Theorem and conclude

that");

 System.out.println("T(n) = Big Theta(" + recurrence.fx.toString() + ")");

 }

 else
 {

 // notsolvableByMasterTheorem

 System.out.println("\nSolution by Master Method");

 System.out.println("\nWe can not apply the master method because the

recurrence falls");

 System.out.println("into the gap between either Case 1 and Case 2 or the gap

between Case 2 and Case 3");

 }

 }

 public String getSolvedStyledString()

 {

 StringBuffer resultStr = new StringBuffer();

 CaseOfTheorem caseObj = whichCase();

 if(caseObj == CaseOfTheorem.case1)

 {

 // case1

 // used for computing the bound for n^log b-b a

 Operation NLogbaBigThetaTerm = new

NPower(roundToDecimals(logabValCompute(),2));

 FunctionX NLogbaBigThetaTermFunction = new FunctionX();

 NLogbaBigThetaTermFunction.addTerm(NLogbaBigThetaTerm);

 70

 String nExplogabValComputeString = "";

 if(logabValCompute() == 1.0)

 {

 nExplogabValComputeString = "n";

 }

 else if(logabValCompute() == 0.0)

 {

 nExplogabValComputeString = "";

 }

 else
 {

 nExplogabValComputeString = "n[u" +

str(roundToDecimals(logabValCompute(),2))+ "]" ;

 }

 resultStr.append("[b[lSolution by Master Theorem -]]");

 resultStr.append("\n\nFor this recurrence, we have \n\n[ba = " + str(recurrence.a)

+ "], \n[bb = " + str(recurrence.b) + "], \n[bf(n) = " + recurrence.fx.toStyledString() + "],");

 resultStr.append("\n\nand thus \n[b[d[xn]](log [db] a) = [d[xn]](log b[d" +

str(recurrence.b) + "] " + str(recurrence.a) + ") \n= Big Theta(" +

NLogbaBigThetaTermFunction.toStyledString() + ")].");

 resultStr.append("\n\n[d[xSince [bf(n) = Big O(n]]][b(log b[d" +

str(recurrence.b)+ "] " + str(recurrence.a) + " - e)])], \nwhere e is some constant > 0,");

 resultStr.append("\n\nwe can apply [b[ccase 1]] of the Master Theorem and

conclude that");

 resultStr.append("\n\n[d[x[b[cT(n) = Big Theta(n]]]][b[l[clog [d" +

str(recurrence.b) + "] " + str(recurrence.a) + "])]]] or " + "\n\n[b[l[cT(n) = Big Theta(" +

nExplogabValComputeString + ")" + "]]]");

 }

 else if(caseObj == CaseOfTheorem.case2)

 {

 // case2

 // used for computing the bound for n^log b-b a

 Operation NLogbaBigThetaTerm = new

NPower(roundToDecimals(logabValCompute(),2));

 FunctionX NLogbaBigThetaTermFunction = new FunctionX();

 NLogbaBigThetaTermFunction.addTerm(NLogbaBigThetaTerm);

 String nExplogabValComputeString = "";

 if(logabValCompute() == 1.0)

 {

 nExplogabValComputeString = "n ";

 }

 else if(logabValCompute() == 0.0)

 {

 nExplogabValComputeString = "";

 }

 else
 {

 nExplogabValComputeString = "n[u" +

str(roundToDecimals(logabValCompute(),2))+ "]" ;

 }

 resultStr.append("[b[lSolution by Master Theorem -]]");

 71

 resultStr.append("\n\nFor this recurrence, we have \n\n[ba = " + str(recurrence.a)

+ "], \n[bb = " + str(recurrence.b) + "], \n[bf(n) = " + recurrence.fx.toStyledString() + "],");

 resultStr.append("\n\nand thus \n[b[d[xn]](log [db] a) = [d[xn]](log [d" +

str(recurrence.b) + "] " + str(recurrence.a) + ") \n= Big Theta(" +

NLogbaBigThetaTermFunction.toStyledString() + ")].");

 resultStr.append("\n\n[d[xSince [bf(n) = Big Theta(n]]][b(log [d" +

str(recurrence.b)+ "] " + str(recurrence.a) + ")])],");

 resultStr.append("\n\nwe can apply [b[ccase 2]] of the Master Theorem and

conclude that");

 resultStr.append("\n\n[d[x[b[cT(n) = Big Theta(n]]]][b[l[clog [d" +

str(recurrence.b) + "] " + str(recurrence.a) + "] lg n)]]]" + " or " + "\n\n[b[l[cT(n) = Big Theta(" +

nExplogabValComputeString + "lg n)]]]");

 }

 else if(caseObj == CaseOfTheorem.case3)

 {

 // case3

 // used for computing the bound for n^log b-b a

 Operation NLogbaBigThetaTerm = new

NPower(roundToDecimals(logabValCompute(),2));

 FunctionX NLogbaBigThetaTermFunction = new FunctionX();

 NLogbaBigThetaTermFunction.addTerm(NLogbaBigThetaTerm);

 resultStr.append("[b[lSolution by Master Theorem -]]");

 resultStr.append("\n\nFor this recurrence, we have \n\n[ba = " + str(recurrence.a)

+ "], \n[bb = " + str(recurrence.b) + "], \n[bf(n) = " + recurrence.fx.toStyledString() + "],");

 resultStr.append("\n\nand thus [b[d[xn]](log [db] a) = [dn](log [d" +

str(recurrence.b) + "] " + str(recurrence.a) + ") \n= Big Theta(" +

NLogbaBigThetaTermFunction.toStyledString() + ")].");

 resultStr.append("\n\n[d[xSince [bf(n) = Big Omega(n]]][b(log [d" +

str(recurrence.b)+ "] " + str(recurrence.a) + " + e)])], \nwhere e is some constant > 0,");

 resultStr.append("\n\nWe can apply [b[ccase 3]] of the Master Theorem and

conclude that");

 resultStr.append("\n\n[b[l[cT(n) = Big Theta(" + recurrence.fx.toStyledString()

+ ")]]]");

 }

 else
 {

 // notsolvableByMasterTheorem

 resultStr.append("[b[lSolution by Master Theorem -]]");

 resultStr.append("\n\nWe can not apply the master theorem because the

recurrence falls");

 resultStr.append("into the gap between either Case 1 and Case 2 or the gap

between Case 2 and Case 3.");

 }

 return new String(resultStr);

 }

 public TimeComplexityMasterMethod getSolvedBound()

 {

 72

 TimeComplexity timeComplexity;

 CaseOfTheorem solvedCase = whichCase();

 Operation operation;

 FunctionX fx;

 switch (solvedCase) {

 case case1:

 operation = new NPower(new LogOfOperand(recurrence.b, new

Constant(recurrence.a)));

 fx = new FunctionX();

 fx.addTerm(operation);

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 case case2:

 operation = new NPower(new LogOfOperand(recurrence.b, new Constant(recurrence.a)));

 fx = new FunctionX();

 fx.addTerm(operation);

 fx.addTerm(new LogN(2));

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 case case3:

 fx = recurrence.fx;

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 case notsolvableByMasterTheorem:

 //in case the Master Method can not solve the recurrence

 //constant -1.0 is passed back as time complexity fx

 fx = new FunctionX();

 fx.addTerm(new Constant(-1.0));

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 default:

 timeComplexity = new TimeComplexity();

 break;

 }

 return new TimeComplexityMasterMethod(solvedCase,

timeComplexity.getComplexityType(), timeComplexity.getFunctionX());

 }

 public TimeComplexityMasterMethod getRoundedSolvedBound()

 73

 {

 TimeComplexity timeComplexity;

 CaseOfTheorem solvedCase = whichCase();

 Operation operation;

 FunctionX fx;

 switch (solvedCase) {

 case case1:

 operation = new NPower(Math.rint

((Math.log(recurrence.b)/Math.log(recurrence.a))));

 fx = new FunctionX();

 fx.addTerm(operation);

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 case case2:

 operation = new NPower(Math.rint ((Math.log(recurrence.b)/Math.log(recurrence.a))));

 fx = new FunctionX();

 fx.addTerm(operation);

 fx.addTerm(new LogN(2));

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 case case3:

 fx = recurrence.fx;

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 case notsolvableByMasterTheorem:

 //in case the Master Method can not solve the recurrence

 //constant -1.0 is passed back as time complexity fx

 fx = new FunctionX();

 fx.addTerm(new Constant(-1.0));

 timeComplexity = new TimeComplexity(ComplexityType.Theta , fx);

 break;

 default:

 timeComplexity = new TimeComplexity();

 break;

 }

 return new TimeComplexityMasterMethod(solvedCase,

timeComplexity.getComplexityType(), timeComplexity.getFunctionX());

 }

 public CaseOfTheorem whichCase()

 74

 {

 double fxVal = 0.0f;

 double nExpLogbaVal = 0.0f;

 double maxOrderOfCheck = 100;

 double orderOfGrowth = 10;

 //checking for case 1

 //if n^logb a is polynomially greater than fx

 // will have to change strategy for determining

 // which function is polynomially greater

 long countCase1Greater = 0;

 long countCase1Lesser = 0;

 boolean case1 = false;

 for(double n= 1, i = 1; i <= maxOrderOfCheck ; n = n * orderOfGrowth , i++)

 {

 nExpLogbaVal = nExpLogabValCompute(n);

 fxVal = recurrence.fx.value(n);

 if(nExpLogbaVal > fxVal)

 {

 case1 = true;

 countCase1Greater++;

 }

 else
 {

 case1 = false;

 countCase1Lesser++;

 }

 // to avoid computation to extremely huge numbers

 if(fxVal >= Math.sqrt(Double.MAX_VALUE))

 break;

 }

 if(case1 == true)return CaseOfTheorem.case1;

 // reinitializing the variables to 0

 fxVal = 0.0f;

 nExpLogbaVal = 0.0f;

 //checking for case 2

 //if n^logb a is equal than fx

 long countCase2Equal = 0;

 long countCase2NotEqual = 0;

 boolean case2 = false;

 75

 for(double n= 1, i = 1; i <= maxOrderOfCheck ; n = n * orderOfGrowth , i++)

 {

 nExpLogbaVal = nExpLogabValCompute(n);

 fxVal = recurrence.fx.value(n);

 if(nExpLogbaVal == fxVal)

 {

 case2 = true;

 countCase2Equal++;

 }

 else
 {

 case2 = false;

 countCase2NotEqual++;

 }

 // to avoid computation to extremely huge numbers

 if(fxVal >= Math.sqrt(Double.MAX_VALUE))

 break;

 }

 if(case2 == true)return CaseOfTheorem.case2;

 //checking for case 3

 //if n^logb a is polynomially lesser than fx

 // will have to change strategy for determining

 // which function is polynomially greater

 // and also check the regularity -

 // af(n/b) <= cf(n) for some c<1 and all sufficiently large n

 long countCase3Greater = 0;

 long countCase3Lesser = 0;

 boolean case3 = false;

 for(double n= 1, i = 1; i <= maxOrderOfCheck ; n = n * orderOfGrowth , i++)

 {

 nExpLogbaVal = nExpLogabValCompute(n);

 fxVal = recurrence.fx.value(n);

 if(nExpLogbaVal < fxVal)

 {

 case3 = true;

 countCase3Lesser++;

 }

 else
 {

 case3 = false;

 76

 countCase3Greater++;

 }

 // to avoid computation to extremely huge numbers

 if(fxVal >= Math.sqrt(Double.MAX_VALUE))

 break;

 }

 if(case3 == true)return CaseOfTheorem.case3;

 // if the comparisons of the functions does not lie on any

 // of the above cases

 return CaseOfTheorem.notsolvableByMasterTheorem;

 }

 double nExpLogabValCompute(double n)

 {

 double logba = Math.log(recurrence.a) / Math.log(recurrence.b);

 return Math.pow(n, logba);

 }

 double logabValCompute()

 {

 return Math.log(recurrence.a) / Math.log(recurrence.b);

 }

 public static double roundToDecimals(double d, int c)

 {

 int temp=(int)((d*Math.pow(10,c)));

 return (((double)temp)/Math.pow(10,c));

 }

 public String str(Double var)

 {

 if(Math.floor(var) == var)

 {

 Integer varInt = var.intValue();

 return varInt.toString();

 }

 return var.toString();

 }

}

File: NPower.java

package algorithmLibrary;

 77

public class NPower extends Operation

{

 Operation power;

 public NPower(double p_power)

 {

 power = new Constant(p_power);

 }

 public NPower(Operation p_power)

 {

 power = p_power;

 }

 public String toString()

 {

 String result ="";

 if(power.toString().equals("1"))

 {

 result+= "n";

 }

 else if(power.toString().equals("0"))

 {

 result+= "1";

 }

 else
 {

 result+= "(n^" + power.toString() + ")";

 }

 return result;

 }

 public double value(double n)

 {

 return Math.pow(n, power.value(n));

 }

 @Override

 public String toStyledString() {

 String result ="";

 if(power.toString().equals("1"))

 {

 result+= "n";

 }

 else if(power.toString().equals("0"))

 {

 result+= "1";

 }

 else
 {

 78

 result+= "n[u" + power.toString() + "]";

 }

 return result;

 }

}

File: OperandToPower.java

package algorithmLibrary;

public class OperandToPower extends Operation{

 Operation power;

 Operation base;

 public OperandToPower(Operation p_base, Operation p_power)

 {

 base = p_base;

 power = p_power;

 }

 public OperandToPower(Operation p_base, double p_power)

 {

 base = p_base;

 power = new Constant(p_power);

 }

 public String toString()

 {

 String result ="";

 if(power.toString().equals("1"))

 {

 result+= base.toString();

 }

 else if(base.toString().equals("1") || power.toString().equals("0"))

 {

 result+= "1";

 }

 else
 {

 result+= "(" + base.toString() + "^" + power.toString() + ")";

 }

 return result;

 }

 79

 @Override

 public double value(double n)

 {

 return Math.pow(base.value(n), power.value(n));

 }

 @Override

 public String toStyledString() {

 String result ="";

 if(power.toString().equals("1"))

 {

 result+= base.toString();

 }

 else if(base.toString().equals("1") || power.toString().equals("0"))

 {

 result+= "1";

 }

 else
 {

 result+= "(" + base.toString() + "[u" + power.toString() + "])";

 }

 return result;

 }

}

File: Operation.java

package algorithmLibrary;

public abstract class Operation

{

 public abstract double value(double n);

 public abstract String toStyledString();

}

File: Recurrence.java

package algorithmLibrary;

public class Recurrence

{

 Double a = -1.0;

 Double b = -1.0;

 80

 public FunctionX fx;

 public Recurrence()

 {

 fx = new FunctionX();

 }

 public Recurrence(double p_a, double p_b, FunctionX p_fx)

 {

 a = new Double(p_a);

 b = new Double(p_b);

 fx = p_fx;

 }

 public void PrintConsole()

 {

 // Recurrence of the form T(n) = aT(n/b) + f(n)

 System.out.println("\nRecurrence Relationship");

 System.out.println("T(n) = " + str(a) + "T(n/" + str(b) + ") + " + fx.toString());

 }

 public String toString()

 {

 String aStr="";

 String bStr="";

 String fxStr="";

 // Recurrence of the form T(n) = aT(n/b) + f(n)

 if(fx.terms.size() == 0)

 {

 fxStr = "_";

 }

 else
 {

 fxStr = fx.toString();

 }

 if(a == -1.0)

 {

 aStr = "_";

 }

 else
 {

 aStr = str(a);

 }

 if(b == -1.0)

 {

 bStr = "_";

 }

 else
 {

 81

 bStr = str(b);

 }

 return("T(n) = " + aStr + "T(n/" + bStr + ") + " + fxStr);

 //return("T(n) = " + str(a) + "T(n/" + str(b) + ") + " + fx.toString());

 }

 public String toStyledString()

 {

 String aStr="";

 String bStr="";

 String fxStr="";

 // Recurrence of the form T(n) = aT(n/b) + f(n)

 if(fx.terms.size() == 0)

 {

 fxStr = "_";

 }

 else
 {

 fxStr = fx.toStyledString();

 }

 if(a == -1.0)

 {

 aStr = "_";

 }

 else
 {

 aStr = str(a);

 }

 if(b == -1.0)

 {

 bStr = "_";

 }

 else
 {

 bStr = str(b);

 }

 return("T(n) = " + aStr + "T(n/" + bStr + ") + " + fxStr);

 //return("T(n) = " + str(a) + "T(n/" + str(b) + ") + " + fx.toString());

 }

 public Double getA() {

 return a;

 }

 82

 public void setA(Double a) {

 this.a = a;

 }

 public Double getB() {

 return b;

 }

 public void setB(Double b) {

 this.b = b;

 }

 public String str(Double var)

 {

 if(Math.floor(var) == var)

 {

 Integer varInt = var.intValue();

 return varInt.toString();

 }

 return var.toString();

 }

}

File: Sign.java

package algorithmLibrary;

public class Sign

{

 boolean ispositive;

 public Sign(String p_sign)

 {

 if(p_sign.equals("+"))

 ispositive = true;

 else
 ispositive = false;

 }

}

File: TimeComplexity.java

package algorithmLibrary;

 83

public class TimeComplexity {

 private ComplexityType complexityType;

 private FunctionX functionX;

 public TimeComplexity()

 {

 }

 public TimeComplexity(ComplexityType p_ComplexityType, FunctionX p_FunctionX)

 {

 complexityType = p_ComplexityType;

 functionX = p_FunctionX;

 }

 public String toString()

 {

 return complexityType.name()+"("+functionX.toString()+")";

 }

 public String toStyledString()

 {

 return complexityType.name()+"("+functionX.toString()+")";

 }

 public ComplexityType getComplexityType() {

 return complexityType;

 }

 public void setComplexityType(ComplexityType complexityType) {

 this.complexityType = complexityType;

 }

 public FunctionX getFunctionX() {

 return functionX;

 }

 public void setFunctionX(FunctionX functionX) {

 this.functionX = functionX;

 }

}

File: TimeComplexityMasterMethod.java

package algorithmLibrary;

public class TimeComplexityMasterMethod extends TimeComplexity {

 private CaseOfTheorem caseOfMasterTheroem;

 public TimeComplexityMasterMethod()

 {

 super();

 }

 84

 public TimeComplexityMasterMethod(CaseOfTheorem p_casOfTheroem, ComplexityType

p_ComplexityType, FunctionX p_FunctionX)

 {

 super(p_ComplexityType, p_FunctionX);

 caseOfMasterTheroem = p_casOfTheroem;

 }

 public CaseOfTheorem getCaseOfMasterTheroem() {

 return caseOfMasterTheroem;

 }

 public void setCaseOfMasterTheroem(CaseOfTheorem caseOfMasterTheroem) {

 this.caseOfMasterTheroem = caseOfMasterTheroem;

 }

}

 85

REFERENCES

[1]Introduction to Algorithms. Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, Clifford Stein. The MIT Press. 2009.

[2]Algorithm Design. Jon Kleinberg, Eva Tardos. Pearson Education. 2005

[3]Taxonomy of Visual Algorithm Simulation Exercises, Ari Korhonen and Lauri Malmi.

2004.

[4]Exploring the Role of Visualization and Engagement in Computer Science Education,

Thomas L. Naps, Rudolf Fleischer, Myles McNally. 2003.

[5]Design Pattern for Algorithm Animation and Simulation, Ari Korhonen, Lauri Malmi

and Riku Saikkone. 2001.

[6]MatrixPro - A Tool for Demonstrating Data Structures and Algorithms ExTempore,

Ville Karavirta, Ari Korhonen, Lauri Malmi and Kimmo St˚alnacke. 2004.

[7]Automatic Assessment of Exercises for Algorithms and Data Structures, Mikko-Jussi

Laakso and Tapio Salakoski, 2004.

	San Jose State University
	SJSU ScholarWorks
	Summer 2011

	Algorithms Analysis System: Recurrences
	Anchit Sharma
	Recommended Citation

	Algorithms Analysis System : Recurrences

