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Unsupervised machine learning account of magnetic transitions in the Hubbard model

Kelvin Ch’ng, Nick Vazquez, and Ehsan Khatami*

Department of Physics and Astronomy, San José State University, San José, California 95192, USA

(Received 10 August 2017; published 16 January 2018)

We employ several unsupervised machine learning techniques, including autoencoders, random trees embed-
ding, and t-distributed stochastic neighboring ensemble (t-SNE), to reduce the dimensionality of, and therefore
classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for
the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the
three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function
of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from
making such connections between the output of the autoencoder and physical observables for the Hubbard
model. However, we are able to define an indicator based on the output of the t-SNE algorithm that shows a near
perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions
in the weak-coupling regime. t-SNE also predicts a transition to the canted antiferromagnetic phase for the
three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be
expected to work away from half filling when the “sign problem” in quantum Monte Carlo simulations is present.

DOI: 10.1103/PhysRevE.97.013306

I. INTRODUCTION

Machine learning has emerged as an unconventional tool
to gain insight into properties of many-body physics. In 2014,
Louis-François et al. [1] used support vector machines, a type
of supervised learning models, to obtain Green’s function of
the Anderson impurity model. Supervised machine learning
techniques based on artificial neural networks were used later
in a groundbreaking work to classify phases of models in
statistical mechanics and condensed matter physics [2]. Shortly
after, other groups expanded the application of these techniques
to identify phase transitions, including to topological phases,
in quantum many-body systems at zero or finite temperatures
[3–7].

Parallel efforts demonstrated the power of restricted Boltz-
mann machines, simple artificial neural networks with one vis-
ible layer corresponding to the physical system and one hidden
layer, in learning thermodynamics of Ising models [8], produc-
ing starting points for variational quantum Monte Carlo that are
superior to those from conventional methods [9], performing
tomography for many-body quantum states [10], and construct-
ing topological states [11]. Interesting connections between
artificial neural networks and more conventional methods in
condensed matter physics have also been uncovered [12,13]

Unsupervised machine learning techniques, on the other
hand, have so far been mostly used to classify phases of clas-
sical model in many-body physics. For example, t-distributed
stochastic neighboring ensemble (t-SNE) technique [14–16]
was used in Ref. [2] to cluster spin configurations and visualize
the phase transition of the two-dimensional (2D) Ising model.
Later, Lei Wang [17] applied principal component analysis
(PCA) [18] to obtain low-dimensional representations of Ising
spin configurations and make connections between principal

*Corresponding author: ehsan.khatami@sjsu.edu

components and physical observables such as the magnetiza-
tion and the susceptibility, conventionally used to determine
critical phenomena. His work was recently followed up by
other groups who provided a more detailed examination of the
PCA and other techniques applied to various classical models,
including those on frustrated geometries [19–21]. PCA has
also been applied to quantum systems [5]; however, the 2D
visualization of the spin configuration for the random-field
Heisenberg model did not produce any useful features. A
proposal for a different type of unsupervised machine learning
for quantum many-body systems, which combines two-point
function calculations with convolutional neural networks, is
also recently put forth [22].

Here we employ several nonlinear unsupervised machine
learning methods, including fully connected and convolutional
autoencoders [23–25], random trees embedding [26–28], and
the t-SNE, to reduce the dimensionality of raw auxiliary
spin (also known as auxiliary field) configurations generated
during quantum Monte Carlo simulations of the two- and
three-dimensional (3D) Fermi-Hubbard models [29]. We focus
on the finite-temperature magnetic phase transitions of the
model in three or the corresponding crossover in two spatial
dimensions. Therefore, most of the data are generated at half
filling, where there are on average one fermion per lattice
site. We visualize the outcomes and look for features in the
dimensionally-reduced configurations that may correlate with
physical observables or signal phase transitions and crossovers.
We work with unlabeled data during learning; we do not use
any knowledge of the model parameters or temperature each
configuration corresponds to in our analysis, nor do we use
any information about the location of the phase transitions or
crossovers during learning.

We start, however, with the classical Ising model on a
3D cubic lattice and benchmark the outcome of our con-
volutional autoencoder using spin configurations generated
in a Monte Carlo simulation in a range of temperatures
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on both sides of the phase transition. We are able to de-
fine indicators that closely resemble the magnetization or
the susceptibility. We then generalize the neural network to
accommodate for the additional imaginary time axis in the
auxiliary spin configurations of the Hubbard models and show
that quantum fluctuations as well as the O(3) symmetry of
the model in this case lead to low-dimensional visualizations
that are fuzzier than their classical counterparts, although
useful indicators signaling magnetic phase changes can still
be defined. Next, we find that a fully connected autoencoder,
combined with random trees embedding produces a more or
less temperature-resolved image of the configurations in two
dimensions.

t-SNE emerges as a clear winner among all the techniques,
or combinations of techniques we have used, producing low-
dimensional representations of data with clearly distinguish-
able patterns above and below the Néel temperature for the
3D model or the crossover temperature for the 2D model.
We define temperature-dependent indicators and show that,
in the weak-coupling regime, they correlate perfectly with the
antiferromagnetic (AFM) structure factors, and can capture
a transition in the presence of a magnetic field. Finally, we
apply t-SNE to configurations generated for the 3D Hubbard
model away from half filling in the presence of the “sign
problem” [30,31] in quantum Monte Carlo simulations and
discuss the risks of using dimensional-reduction techniques in
sign-problematic regions.

In the following section, we briefly discuss the models we
have considered in this study. Then, in Sec. III, we provide
an overview of the various machine learning techniques we
employ. The results are discussed in Sec. IV, followed by
concluding remarks.

II. MODELS

A. 3D Ising model

We first consider the classical Ising model on the 3D cubic
lattice,

H = −J
∑
〈ij〉

σiσj , (1)

where σi = ±1, 〈..〉 denotes nearest neighbors, and J is
the strength of the corresponding exchange interaction (we
set J = 1 as the unit of energy whenever the Ising model
is discussed). The system undergoes a second-order phase
transition as the temperature is lowered below the critical value
of 4.5J [32].

We perform Monte Carlo simulations based on the Metropo-
lis algorithm [33] on a N = 8 × 8 × 8 lattice and generate spin
configurations at different temperatures. Each configuration is
an array of size N with ±1 as elements, and can be thought of
as a points in a N -dimensional space.

B. The Fermi-Hubbard model

We are mainly interested in how quantum fluctuations
affect our ability to locate phase transitions or crossovers with
unsupervised machine learning techniques. Therefore, we also
consider strongly-correlated fermions in 3D cubic and 2D

square lattices, described by the Hubbard model,

H = −t
∑
〈ij〉σ

c
†
iσ cjσ + U

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)

−μ
∑
iσ

niσ − h

2

∑
i

(ni↑ − ni↓), (2)

where c
†
iσ (ciσ ) creates (annihilates) a fermion with spin σ on

site i, niσ = c
†
iσ ciσ is the number operator, t is the nearest-

neighbor hopping integral (we set t = 1 as the unit of energy
whenever the Hubbard model is discussed), U is the on-site
Coulomb interaction, μ is the chemical potential, and h is the
magnitude of the magnetic field. By symmetry, μ = 0 leads to
half filling (average density of one fermion per site) and hole
doping is achieved by decreasing μ.

For any U > 0, the 3D model displays a second-order
transition from an unordered phase at high temperatures to
a long-range Néel ordered phase below a U -dependent critical
temperature TN . Theoretical and numerical analysis [34–40]
have shown that after an exponential increase from zero by
turning on U in the weak-coupling regime [34], TN peaks
around U = 9 and eventually goes to zero as 1/U by fur-
ther increasing the interaction strength in the strong-coupling
regime. The latter can be understood from the Néel transition of
an antiferromagnetic spin−1/2 Heisenberg model [41], which
provides the low-energy description of the half-filled Hubbard
model in the strong-coupling regime where double occupancy
is largely suppressed and fermions interact predominantly
through the spin exchange interaction J = 4t2

U
. Long-range

antiferromagnetic correlations of the model have recently
been observed in an experimental realization using ultracold
fermionic atoms on optical lattices [42].

We use the determinantal quantum Monte Carlo (DQMC)
[43,44] method to simulate the model on a N = 4 × 4 × 4
lattice for three different values of the interaction strength,
U = 4, 9, and 14, in the weak-, intermediate-, and strong-
coupling regimes, respectively. We generate and save auxiliary
spin configurations that can be thought of as points in a
(NL)-dimensional space, where L = 200 is the number of
imaginary time slices, for a range of temperatures (see Ref. [4]
for details of our DQMC simulations).

We also generate auxiliary spin configurations for the model
in two dimensions with N = 10 × 10 and U = 4 and the same
number of time slices as in the 3D case. The 2D model does not
have a finite-temperature phase transition to a long-range order,
rather, a crossover to a region with strong antiferromagnetic
correlations. The onset of this region, which is associated
with the formation of a peak in the uniform susceptibility is
estimated to be around T = 0.25 for U = 4 [45,46].

III. METHODS

A. Autoencoders

Autoencoder refers to a particular set of architectures of
artificial neural networks [47] that can be trained to extract
features or reduce the dimensionality of big data without the
specific prior knowledge of features or distinctions (in an
unsupervised fashion). They are made up of multiple fully
connected and/or convolutional layers, similar to what is used
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in supervised neural network machine learning algorithms. An
example of the autoencoder architecture is shown in the top
panel of Fig. 1. Similarly to supervised learning, such a feed-
forward network can be trained by minimizing a cost function,
which is defined based on the difference between neuron
outputs at the output (right-most) layer and the desired output.
However unlike in the supervised learning, the autoencoder is
supposed to reproduce the input data [what is fed to the network
in the input (left-most) layer] at the output layer; the desired
output is simply the same as the input.

The hidden layers on the left half of the autoencoder are
called the encoding layers, where, for example, an image is
gradually deconstructed and represented using smaller and
smaller number of pixels, whereas the hidden layers on the
right half are called the decoding layers, where the network
tries to reconstruct the image from the knowledge in the
low-dimensional space. The middle layer, also known as
the coding layer, provides the most dimensionally reduced
representation of the input data after the network has been
trained, allowing other clustering or machine learning methods
to extract meaningful information more easily. It is known
that a single-layer autoencoder with linear activations and the
PCA are very similar [48]. Here, we have used deeper fully
connected and convolutional autoencoders and have avoided
the PCA as it is useful only for data with linear correlations.
The latter is shown to have a poor performance for quantum
systems relative to classical ones in classifying phases [5,49].

In our convolutional autoencoder, the network tries to
extract features in encoding layers by convolving a shared
filter (or kernel), which sweeps the previous layer, with small
cubic subsections on the data in that layer. To further reduce
the dimensionality before the next convolutional layer, a
process called maxpooling is typically performed after each
convolutional layer in which the resolution is reduced by taking
the maximum value of a subsection of data and passing only
that value to the next layer. The decoding is done through a
general process called upsampling, which refers to random
resampling and interpolation to put together the extracted
features and increase the resolution of the data.

In fully connected autoencoders, however, each neuron in an
encoding or decoding layer is connected to all the neurons in the
neighboring layers, as opposed to convolutional autoencoders,
where only subsections of data from the previous layer are
connected to their corresponding neurons in the following layer
via an adjustable filter, allowing for fewer parameters needing
to be trained. We use both fully connected and convolutional
autoencoders in our study using convolutional autoencoders
specifically to allow spatially correlated features to be extracted
more efficiently.

B. Random trees embedding

Random trees embedding transforms data in an unsuper-
vised fashion to a high-dimensional space using tree graphs,
resulting in sparser representation, for which the principal
features can be extracted and mapped to a lower dimension
[26–28]. Here, tree is referring to a graph with nodes repeatedly
branching unidirectionally. The parent node, or the root of the
tree, contains all the data and a node on a branch has a subset
of the data. A node is associated with a global feature of the

subset, and so, smaller branches, which contain smaller subsets
farther away from the root, reveal more localized structures.
Representing data in a metric space on a tree graph introduces
distortions. This issue is overcome by embedding the data using
an ensemble of randomized trees instead. That is, the metric
space is divided into random sections with overlapping of these
sections permitted. A given section is then further divided
up into smaller subsets on a tree. An ensemble of such trees
can make independent observations. The maximum branching
depth of a tree and the number of trees are tunable parameters
in the algorithm.

Once these random trees are grown, the pruning for features
begins. The ensemble of trees votes for prominent features
based on the density of the overlap between nodes from
different trees at a given depth. Features with overlapping
density lower than a certain threshold are discarded. This
voting process reduces the bias and variance of those selected
features.

Here, we use random trees embedding with 100 randomized
trees and a maximum depth of 10 for the number of branchings.
We apply the algorithm to a low-dimensional representation of
the auxiliary field data for the Hubbard model obtained via a
fully-connected autoencoder as outlined in Sec. IV.

C. t-SNE

PCA has been the go-to dimensionality reduction technique
in condensed matter physics so far and has been successfully
applied to classical models like the Ising model for extracting
measures that closely resemble the order parameter or the
susceptibility. However, PCA performs linear projection of the
data from the high-dimensional space to a low-dimensional
space by maximizing the variance of the projection, and so,
local structures with non-linear correlations are not preserved.
A simple measure such as the magnetization is evident to the
linearity of the Ising model as each state can be projected onto
a point in one dimension merely by summing its spins. The
same linearity cannot be assumed for meaningful observables
extracted from the auxiliary field configurations.

t-SNE is a powerful algorithm developed to preserve both
global, and more importantly, local structures of data in
low-dimensional space when projecting them from a high-
dimensional space. Prior to t-SNE, SNE [50] was one of several
attempts at achieving that. Although not very successful, it was
the foundation for t-SNE. SNE employs stochastic gradient
descent to minimize Kullback-Leibler divergences between
pairwise conditional probability distributions that represent
similarity of points, from the high- and low-dimensional spaces
[14]. The distributions are obtained from Gaussian functions
centered around each point. The effective number of neighbors,
also known as the perplexity, which is provided by the user, is
kept fixed by adjusting the width of the Gaussian distributions
in different regions of the configuration space with different
density of points. t-SNE uses a slightly different cost function
and Student-t distribution, as opposed to Gaussian, in the
low-dimensional space to mitigate some issues in the original
SNE and provide a better performance [14].

Values between 5 and 50 are suggested for the perplexity
[14,15]. We use a perplexity of about 27, which leads to the
most physically interesting features across various U ’s in the
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low-dimensional representations of the field variables. The
method is rather slow, scaling likeO(n2), wheren is the number
of data [51].

D. k-means

k-means is an unsupervised clustering algorithm that locates
the centroids of k clusters in the data, where k is provided by the
user. The algorithm starts by k centroids distributed randomly.
The next step is to calculate the euclidean distance (L2-norm)
of each data point to each centroid and assign them to a cluster
based on which centroid they are closest to. The new centroids
of these clusters are then calculated and these two steps are
repeated until one converges to a stable set of centroids. This
type of clustering also allows for new points to be classified
based on which cluster they fall closest to. It is, of course,
most effective in cases where data points form well-separated
clusters.

Here, we apply the k-means algorithm to the 2D output
of our autoencoders or t-SNE to quantify the spread of data
at various temperatures. We ask k-means to identify three
centroids at each temperature. Then we find the center of the
three centroids and define a temperature-dependent indicator,
D, which is the mean distance of the three centroids from their
center. We note that our indicator is not unique, one may be
able to come up with measures that more accurately capture
the evolutions of features in the outputs as the temperature is
varied.

IV. RESULTS

We start with spin configurations generated in a Monte Carlo
simulation of the Ising model on a N = 8 × 8 × 8 cluster. We
use a fine grid for the temperature ranging from T = 3 to
T = 6 in increments of 0.01 and work with a total of about
23 000 configurations across all temperatures. Similarly to
what is done in Refs. [17,20], we treat each configuration
as a point in the N -dimensional space and try to deduce any
features corresponding to the phase transition by reducing the
dimensionality of the configuration space and visualizing it in
one or two dimensions.

We use a 3D convolutional autoencoder with four encoding
and decoding layers and one fully connected coding layer with
either one or two neurons. The architecture is shown in Fig. 1.
The input and output (

⊙
and

⊗
) have the same structure as the

physical system. The filter used in the convolutions is 2 × 2×2.
A maxpooling layer is used after each convolutional layer. We
shuffle the configurations among all temperatures, then use
70% of them to train the neural network until the accuracy,
defined as one minus the mean square error between the input
and the output, saturates to a value around 75%. We then feed
the autoencoder with the remaining 30% of the configurations
it has not seen during the training and plot the values of neurons
in the coding layer (also known as the latent variables).

The main panel in Fig. 1 shows the output of the coding
layer with two neurons. The color gradient of points represents
the temperature gradient. There is a clear distinction between
how data points cluster at high and low temperatures. At
temperatures above the transition (red dots), we detect only
one cluster. However, below the critical temperature, Tc, (blue

FIG. 1. Values of neurons in the coding layer of a trained au-
toencoder that takes Monte Carlo spin configurations of a 3D Ising
model on a N = 8 × 8 × 8 lattice as the input. The architecture of
our 3D convolutional autoencoder is depicted on top with neurons
in the coding layer as filled (orange) circles. The encoder (decoder)
part consists of four convolutional (upsampling) layers with 32, 8, 4,
and 4 feature maps. Different symbol colors (red middle cluster and
blue clusters on the sides) in the scatter plot correspond to different
temperatures. Top inset: The output of a similar autoencoder, in which
the coding layer consists of only a single neuron, as a function
of temperature. The dashed line is a fit to A(B − T )β + C with
A = 0.38, B = 4.55, β = 0.34, and C kept fixed at −0.25, which is
the average output over all T . Bottom inset: Temperature dependence
of the spread of the data as measured through k-means. The vertical
dashed line marks the location of Tc.

dots) two clusters separated along both axes clearly emerge.
This duality is a result of the spin inversion symmetry in the
model that manifests itself in the ordered phase.

At the lowest temperatures, the two clusters have the largest
separation, which seems to reach a saturation value, analo-
gous to the behavior of the order parameter (magnetization).
However, we cannot properly quantify this separation as a
function of temperature as the broken time reversal symmetry
at a given T < Tc forces all configurations to fall in one
or the other low-temperature cluster, but not both. Having
also predominantly one cluster of points formed at very high
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temperatures, suggests that in the critical temperature region,
the points are the most spread out. We quantify the spread
of data by applying the k-means clustering technique and
requiring it to identify three clusters and their centroids (shown
in Fig. 1 at T = 4.5J as white circles). We plot D as a
function of temperature in the bottom inset. D bears a striking
resemblance to the magnetic susceptibility of the Ising model.
Interestingly, thermodynamics of the system, encoded in the
distribution of configurations in the importance sampling, are
preserved during the dimension reduction.

In the top inset of Fig. 1, we also plot the autoencoder output
in the case where we have only one neuron in the coding layer
as a function of temperature. We observe a bifurcation of the
neuron output as we decrease the temperature belowTc. Similar
results were shown in Ref. [20] for the 2D Ising model. The
neuron output looks almost exactly like magnetization of the
model as a function of temperature, except for a seemingly
arbitrary shift. Therefore, we fit the neuron outputs in the top
branch at T < 4.5J to a function proportional to A(B − T )β

after a shift, where A, B and β are constants (fitted function
is shown as a black dashed line in the inset of Fig. 1), and
obtain B = 4.55J as the critical temperature, which agrees
well with 4.54J , estimated for a system of the same size [32],
and β = 0.34, close to 0.33, the critical exponent of the 3D
Ising model.

Inspired by these findings, we ask if one can use a similar
dimension-reduction recipe to deduce critical temperatures
in quantum mechanical systems? In this work, we focus on
magnetic phase transitions. We know that the perfect antifer-
romagnetic alignment of spins in the z direction can no longer
describe the Néel state, and so, quantum fluctuations will likely
blur the clear image we observe in reduced dimensions for
the classical Ising model. However, to what extent can the
information be still useful?

We set to answer this question by using the auxiliary fields
and modifying our convolutional autoencoder such that the
L = 200 imaginary time slices are treated as different “color”
channels in the input and output layers (L

⊙
and

⊗
), each

with L × L × L neurons, the same as the single channel we
used for the Ising model. The architecture of the remaining
network is also modified to suit the smaller L (=4) we use
for the Hubbard model. We use one less hidden layer and
different number of feature maps in hidden layers than in the
Ising autoencoder. The output in this case is sensitive to the
number of feature maps and we have chosen a set that results
in the largest accuracy [52].

The results are shown in Fig. 2 for U = 4, 9, and 14.
The first three main panels show the outcome in the case
where the coding layer has two neurons. Unlike the classical
case, lowering the temperature does not lead to the formation
and contraction of two distinguishable clusters. Instead, the
data points seem to spread out mostly along one of the
two dimensions, at least for U = 4 and U = 9. Quantum
fluctuations and the fact that our auxiliary field is represented
along a particular direction in the spin vector space seem to
play a significant role in blurring the picture. As a result, in this
case, our measure of the spread of data obtained from k-means,
D, behaves more similarly to an order parameter than to the
susceptibility. In Fig. 2(d) we show this quantity, along with
the AFM structure factor [53], calculated in the DQMC, as a

FIG. 2. The output of the 3D convolutional autoencoder for the
3D Hubbard model with (a) U = 4, (2) 9, and (3) U = 14 at half
filling. Each of the L = 200 imaginary time slices is treated as a
different “color” channel. The input is a four-dimensional array of
size L × N with N = 43. Similarly to the output for the Ising model,
the character of the output in the space of the neuron outputs of
the coding layer changes as a function of temperature. However, we
do not find a formation of distinct clusters below the expected Néel
temperatures. In (d), we showD for the data in (a) and (b), normalized
to fit the antiferromagnetic structure factors (shown as red solid lines)
in each case, as a function of temperature. For U = 14, this indicator
is dominated by noise, and therefore, not shown.

function of temperature for U = 4 and 9.D has been multiplied
by a constant that minimizes the mean square distance of its
values from the structure factor data (weighted by the error
bars in the latter) over all temperatures. We do not find a good
agreement between the two at low temperatures, however, D
is a relatively smooth function for U = 4 and displays the
fastest rise around T = 0.20, where we expect the critical
temperature to be for this cluster. For U = 9, we observe large
fluctuations in D, which appear to grow significantly larger
below T = 0.35, the expected Neél temperature. For U = 14,
the indicator is dominated by noise and is not shown. Our
approach seems to be most efficient in locating the critical
behavior in the weak coupling regime of the Hubbard model.

The same conclusion can be drawn considering the output
of an autoencoder that has a single neuron in the coding layer.
Unlike for the Ising model, we do not find a bifurcation as
a function of temperature when projecting the data to one
dimension. However, we find that the fluctuations in the data
increase rapidly as the temperature decreases. So, in the insets
of Figs. 2(a), 2(b), and 2(c), we show the standard deviation of
the latent variable as a function of temperature. For U = 4 and
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FIG. 3. The output of random trees embedding algorithm trained
on the four latent variables of a fully-connected autoencoder for the
3D Hubbard model with (a) U = 4, (b) U = 9, and (c) U = 14 at half
filling. The input layer of the autoencoder (shown on top) is a 1D array
of size L × N . The hidden layers in the encoder and decoder parts
have 80, 30, and 10 neurons. The random trees embedding algorithm
further reduces the dimension of the data from four to two. In this case,
the outputs clearly separate data points from different temperatures.
The dashed lines are line fits to data at the estimated Néel temperature
for each U . (d)–(f) Same as in (a)–(c), except that the inputs are
the latent variables of the convolutional autoencoder used for Fig. 2,
modified to have four neurons in the coding layer. In this case, the
temperature gradient is larger along output 1 and clustering of points
at low temperatures is visible for U = 4 and U = 9.

U = 9, it behaves similarly to D, e.g., rapidly rises around TN

for U = 4. For U = 14, the fluctuations dominate at T < 0.3.
Next, we explore the possibility of having more than two

neurons in the coding layer (more than two latent variables)
and further reducing the dimensionality of data using another
technique such as random trees embedding. We use the same
convolutional autoencoder architecture as we used for Fig. 2,
except that we choose to have four neurons in the coding layer.
Then, we feed the output of the autoencoder to the random
trees embedding algorithm and obtain a representation in two
dimensions. The results are summarized in Figs. 3(d)–3(f).
The emerging fan shape not only creates an approximate
temperature resolution, but for U = 4 and 9 also exhibits
two low-temperature clusters near small values along the first
dimension, separated along the second dimension, reminiscent
of the Ising picture. For U = 14, the latter feature is mostly
washed away.

The convolutions in our autoencoder appear to be crucial
for the low-temperature clustering in the output of the random
trees embedding, but not for the temperature resolution. We

try the same combination of autoencoders and random trees
embedding, except that this time, we use a fully-connected
autoencoder, shown in the top part of Fig. 3. The results for
the latter are shown in Figs. 3(a)–3(c). We find that despite
the better temperature resolution than with the convolutional
autoencoder, which extends even to U = 14, there is no
peculiarity that can point to different phases at high and low
temperatures. Interestingly, data points corresponding to a
given temperature spread along straight lines in this reduced
space with the slope of the line correlating with temperature.
We have also explored applying random trees embedding to
data extracted not from the coding layer, but from various
hidden layers of our fully connected autoencoder. We find that
the coding layer yields the best picture in terms of temperature
resolution.

Techniques like random trees embedding do not scale well
with the dimension of the original configuration space and
so cannot easily be directly applied to the raw auxiliary
field configurations for dimension reduction. Other clustering
techniques, such as the PCA or the t-SNE, can better handle
larger dimensions. As we discuss below, we find that the direct
application of t-SNE to the raw data yields a superior distinc-
tion between clustering patterns at different temperatures.

We apply the t-SNE algorithm [16] with perplexity of
27.07 to the half-filled 3D Hubbard configurations at our three
interaction strengths. We reduce the dimensionality to 37 after
preprocessing using PCA by a batch size of 500 data at a
time within the t-SNE algorithm for greater speed without
inducing severe distortions and to filter out some noise [14,54].
These are the same configurations as the ones we used for the
autoencoder. The two-dimensional visualizations are shown
in Figs. 4. For U = 4 in Fig. 4(a), not only the data points
spread out by decreasing the temperature, similarly to the
autoencoder outcome in Fig. 2, but also two distinct clusters
emerge, analogous to what we observed in Fig. 3 from random
trees embedding, or for the 3D Ising model. We point out,
however, that unlike in the Ising case, there is a significant
number of points that are scattered between the two centers at
the lowest temperatures.

A similar picture emerges for U = 9 in Fig. 4(b), however
for U = 14, we find that the data points stick together and form
worm-like figures. As can be seen in Fig. 4(c), they mostly
gather around two centers at low temperatures. Interestingly,
we find that they are formed by data points that belong to
the same temperature to a great extent. We attribute their
formation to Mott physics. In the Mott region at large U , the
freezing of charge degrees of freedom manifests itself in a
significant increase in the autocorrelation time in the single
spin-flip scheme of our DQMC algorithm, and the simulations
become less ergodic than in the weak- or intermediate-coupling
regimes. We observe this behavior despite the fact that we
have attempted to mitigate the problem by performing ten
different simulations of the model for U = 14 using different
random number seeds and shuffling the configurations from
those simulations before applying t-SNE.

We find a remarkable correlation of the indicator D, cal-
culated for the 2D t-SNE outputs, and the AFM structure
factor of the model in the weak-coupling regime. The two
are plotted in Fig. 4(d) for U = 4 after normalizing D to best
fit the structure factor (red solid curve). They show a very
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FIG. 4. Output of the t-SNE algorithm in two dimensions for the
3D Hubbard model at half filling for three different values of the
interaction strength, (a) U = 4, (b) U = 9, and (c) U = 14. We use
the raw auxiliary field configurations from DQMC simulations of
the model at 51 temperatures on a uniform grid that extends from
T = 0.10 to T = 0.60 as input. Different symbol colors (densities
in the greyscale) in (a)–(c) correspond to different temperatures. (d)
Same indicators as in Fig. 2(d) as a function of temperature calculated
for the t-SNE outputs. For U = 4, the indicator follows the AFM
structure factor very closely.

good agreement across the entire range of temperatures shown.
The development of long-range correlations and the growing
dissimilarities in the configurations due to the breaking of the
time-reversal symmetry as we lower the temperature can be
directly mapped to the increase in the structure factor.

We have also applied t-SNE to the auxiliary spin configu-
rations for visualizations in 1D and 3D (not shown). We do not
find any meaningful features in the 1D visualization. Projection
of the configurations to 3D produces outputs that resemble
volumetric versions of the 2D scatter plots.

Breaking the SU(2) symmetry of the Hubbard model
changes the low-temperature physics and the picture obtained
from unsupervised machine learning algorithms. We explore
that by including a strong uniform magnetic field, h = 1.0,
which mostly aligns the spins with the z axis and pushes the
remnant AFM correlations to the xy plane. The canted AFM
physics for the 3D Hubbard model is evidenced by the z and xy

components of the AFM structure factor plotted in Fig. 5(d).
The ferromagnetic correlations along z (not shown) are more
than a factor of two larger than the xy component of the AFM
correlations.

We study the effect of the magnetic field on the results from
the convolutional autoencoder and the t-SNE. The output of
the autoencoder with two latent variables, shown in Fig. 5(a),

FIG. 5. (a) The convolutional autoencoder (CAE) and (b) t-SNE
outputs for the 3D Hubbard model with U = 4 at half filling in the
presence of a magnetic field h = 1.0. (c) The corresponding indicators
as a function of temperature. (d) The AFM structure factors of the
model for the z and xy components of the spin as a function of
temperature.

displays a temperature resolution; however, unlike for the orig-
inal model with SU(2) symmetry, all of the low-temperature
points appear to belong to a single cluster. As shown in
Fig. 5(c), D for this case is a flat function of temperature,
which misses the important phase changes in the xy plane.
One can in principle define other indicators. For example, the
distance between the high-temperature cluster and clusters at
lower temperatures can presumably serve as a measure for the
ferromagnetic correlations along z. The t-SNE, on the other
hand, in addition to displaying the temperature resolution,
assigns low-temperature points to a region that shrinks rapidly
by lowering the temperature below T ∼ 0.3, signaling a phase
change similar to the case of zero magnetic field. This is more
clearly captured by the corresponding indicator in Fig. 5(c),
which now measures simply the concentration of points.

Motivated by the ability of t-SNE to distinguish high-
temperature configurations from the low-temperature ones
below the critical temperatures of the 3D Hubbard model, at
least for small U , we examine the 2D Hubbard model in the
weak-coupling regime, also at half filling, using t-SNE with
the same parameters as used for the 3D model. As shown in
Fig. 6, the outcome of t-SNE in this case exhibits a similar
extension of points in the space by lowering the temperature
as for the model in 3D. We do not find any specific features that
point to a crossover, as opposed to a phase transition expected
in 3D. In fact, the indicator D, which closely follows the AFM
structure factor in this case too, exhibits an even sharper rise
just below T = 0.2 than for the model in 3D.

One may be tempted to apply these techniques to con-
figurations generated for the Fermi-Hubbard model away
from half filling to, for example, study the fate of the
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FIG. 6. Output of the t-SNE algorithm for the 2D Hubbard model
with N = 102 and U = 4 at half filing. We use 800 raw auxiliary field
configurations for each temperature in the uniform grid of T between
0.1 and 0.6. We use the same t-SNE parameters as in the training for
the 3D Hubbard model in Fig. 4. (b) The indicator D (green symbols)
and the AFM structure factor (red line) as a function of temperature.

antiferromagnetic phase of the model in 3D, or the pseudogap
and superconducting properties in 2D, as the system is doped.
However, any phase transition or crossover deduced from the
dimensionally reduced data in that case, for example, through
an indicator similar to D, would be a transition or crossover
not for the Fermi-Hubbard model, but for an alternative model
whose statistics is described by the absolute value of the
probability amplitudes in the DQMC simulation of the Fermi-
Hubbard model. Therefore, unless it so happens that the phase
boundaries of the two models are the same for the transition
or crossover of interest, the results will not be of much use for
the Fermi-Hubbard model.

Here, we demonstrate this concept using DQMC simula-
tions of the 3D Hubbard model for U = 9 at nonzero hole
doping (μ < 0). We generate 2000 auxiliary spin configura-
tions per μ that ranges from −0.2 to −4.0 in increments of
0.2 at T = 0.16, which is deep in the AFM phase at half
filling. We first ignore the signs of the configurations and
run t-SNE on 3/4 of the entire set. Then, in our visualization
of the 2D output, we separate configurations with a negative
sign (S = −1) from those with a positive sign (S = 1) at
different values of μ. The results are shown in Figs. 7(a)–7(d)
and Figs. 7(e)–7(h), respectively. We have seen an indicator
can be defined based on the t-SNE output that behaves very
similarly to a physical observable (e.g., the structure factor),
although this was not exactly the case for our D at U = 9. If
we assume this is valid away from half filling and separately
for the positive and negative configurations, the indicators are
expected to correlate with the corresponding structure factors
calculated using positive only or negative only configurations
[see Fig. 7(i)]. However, the physical structure factor in the
presence of the sign problem in the DQMC is obtained from the
difference between the above two structure factors divided by
the average sign [the latter is shown in Fig. 7(j) as a function of
μ]. Therefore, one cannot expect an indicator, when calculated
using a mixture of negative and positive configurations at
every μ (effectively ignoring the sign) to yield any physically
meaningful quantity. This is specially evident in our case at
μ < −1.0, where the sign problem is severe and the scatter
plots for S = −1 and S = +1 look essentially alike.

FIG. 7. (a)–(h) The t-SNE output for the 3D Hubbard model
with U = 9 away from half-filing. We have used 1500 auxiliary field
configurations per chemical potential μ, generated deep in the AFM
phase (T = 0.16) for μ ranging from μ = −0.2 to μ = −4.0 in steps
of 0.2. We show snapshots of the output at select μ, separated into
configurations with negative sign (S = −1) in the top row and those
with a positive sign (S = +1) in the bottom row. We use the same
t-SNE parameters as in the training for the 3D Hubbard model at half
filling. (i) The expectation value of the AFM structure factor obtained
using configurations with positive or negative signs separately as a
function of the chemical potential. (j) The average sign as a function
of μ.

Finally, we examine the application of t-SNE separately
on configurations with positive or negative signs to make sure
that the results in Fig. 7 are not biased due to the dominance
of the S = 1 configurations near half filling. Figure 8 shows
the same trend in the similarity of the scatter plots between
the configurations with different signs when the average sign
drops to zero.

In summary, we have applied various unsupervised ma-
chine learning techniques, such as autoencoders, random trees

FIG. 8. Same as Fig. 7, except that here, t-SNE calculations have
been performed separately on configurations with the same sign. We
also use 2000 auxiliary field configurations per μ.
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embedding, k-means, and t-SNE, to obtain low-dimensional
representations for the auxiliary spin configurations of the
Fermi-Hubbard models in different interaction regimes. We
show that one can extract features from the data in reduced
dimensions that resemble physical observables related to the
magnetic correlations in the physical system. The config-
urations are sampled during DQMC simulations at finite
temperatures at and away from the half-filing.

As a benchmark, we first train a convolutional autoencoder
using spin configurations of a 3D classical Ising model and
obtain indicators that closely resemble magnetization and
susceptibility. The low-dimensional representations of autoen-
coders, or a combination of them with random trees embedding
techniques, however, are largely affected by quantum fluctua-
tions in the Hubbard model, preventing us from mapping the
results to physical observables despite the existence of distinct
features that can point to a phase transition at low temperatures
at least in the weak-coupling regime.

On the other hand, we find that the t-SNE algorithm com-
bined with k-means provides results that perfectly correlate
with the AFM structure factor of the model in two or three
spatial dimensions as a function of temperature. We also

explore the effect of a symmetry breaking magnetic field on the
outcome of the unsupervised techniques and show that t-SNE
is also capable of capturing the transition to a different type
of phase at low temperatures. We employ t-SNE to demon-
strate that the measures we extract from low-dimensional
representations of the auxiliary fields in order to describe
the physics can no longer serve that purpose away from half
filling in the presence of the sign problem in the DQMC
simulations.
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