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Observation of canted antiferromagnetism with ultracold fermions in an optical lattice

Peter T. Brown,1 Debayan Mitra,1 Elmer Guardado-Sanchez,1 Peter Schauß,1 Stanimir S. Kondov,1

Ehsan Khatami,2 Thereza Paiva,3 Nandini Trivedi,4 David A. Huse,1 and Waseem S. Bakr1, ∗

1Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
2Department of Physics and Astronomy, San José State University, San José, California 95192, USA

3Instituto de Fisica, Universidade Federal do Rio de Janeiro,
Caixa Postal 68.528, 21941-972 Rio de Janeiro RJ, Brazil

4Department of Physics, The Ohio State University, Columbus, OH 43210, USA

Understanding the magnetic response of the normal state of the cuprates is considered a key piece
in solving the puzzle of their high-temperature superconductivity [1]. The essential physics of these
materials is believed to be captured by the Fermi-Hubbard model [2], a minimal model that has
been realized with cold atoms in optical lattices [3, 4]. Here we report on site-resolved measurements
of the Fermi-Hubbard model in a spin-imbalanced atomic gas, allowing us to explore the response
of the system to large effective magnetic fields. We observe short-range canted antiferromagnetism
at half-filling with stronger spin correlations in the direction orthogonal to the magnetization, in
contrast with the spin-balanced case where identical correlations are measured for any projection
of the pseudospin. The rotational anisotropy of the spin correlators is found to increase with
polarization and with distance between the spins. Away from half-filling, the polarization of the
gas exhibits non-monotonic behavior with doping for strong interactions, resembling the behavior
of the magnetic susceptibility in the cuprates [5]. We compare our measurements to predictions
from Determinantal Quantum Monte Carlo (DQMC) [6] and Numerical Linked Cluster Expansion
(NLCE) [7] algorithms and find good agreement. Calculations on the doped system are near the
limits of these techniques, illustrating the value of cold atom quantum simulations for studying
strongly-correlated materials.

Ultracold quantum gases have emerged as a powerful
tool to study strongly correlated many-body physics. A
two-component Fermi gas in an optical lattice can realize
the repulsive Hubbard model, which describes fermions in
a periodic potential with onsite interaction U and tun-
neling matrix element t between neighboring sites [8].
The recent introduction of quantum gas microscopes for
fermionic atoms [9–15] has led to rapid development in
the experimental study of the 2D Hubbard model. The
number-squeezed nature of the Mott insulating phase—
previously inferred from bulk measurements [3, 4]—has
been explicitly revealed. Furthermore, site-resolved mea-
surements probe antiferromagnetic correlations beyond
the nearest neighbor [16–18], which was not possible in
previous studies [19–21].

In this work, we investigate the Fermi-Hubbard model
with imbalanced spin populations described by the
Hamiltonian

H = −t
∑
〈ij〉,σ

(
c†i,σcj,σ + c†j,σci,σ

)
+ U

∑
i

ni,↑ni,↓. (1)

Here c†i,σ is the creation operator for a fermion with spin

σ on site i and ni,σ = c†i,σci,σ. Theoretical studies of
spin-imbalance in the Hubbard model have predicted an
interesting magnetic structure in trapped gases arising
from the interplay of spin-imbalance and antiferromag-
netic and Stoner instabilities [22–24]. Experimentally,

∗ wbakr@princeton.edu

the polarization of our two-component atomic Fermi gas
is a controllable quantity that is conserved due to the
absence of spin-relaxation mechanisms. Thermodynam-
ically, a non-zero polarization corresponds to the intro-
duction of an effective Zeeman field h = (µ↑ − µ↓)/2,
where µ↑,↓ are the chemical potentials of the two compo-
nents. A starting point for understanding the low tem-
perature phase diagram at half-filling and strong inter-
actions is the Heisenberg Hamiltonian

H = J
∑
〈ij〉

Si · Sj − 2h
∑
i

Szi , (2)

which is a good approximation for the Hubbard model in
this regime. Here, S is the vector spin operator, Sz = ± 1

2
is its projection along the direction of the magnetization
and J = 4t2/U is the superexchange coupling. At zero
field, the SU(2) symmetry of the Hamiltonian leads to
isotropic antiferromagnetic correlations that decay expo-
nentially in 2D with a correlation length that diverges
at zero temperature. For a non-zero field, the Heisen-
berg model has a finite temperature Kosterlitz-Thouless
transition to a canted antiferromagnet [22] (Fig. 1a),
which accommodates magnetization along the field while
still benefiting from the superexchange interactions by
building up long-range antiferromagnetic correlations of
the spin components perpendicular to the magnetization.
While the Heisenberg model provides useful insight in
this regime, with finite U/t or with doping it is necessary
to consider the full Hubbard model.

We realize the two-dimensional Fermi Hubbard model
using a degenerate mixture of two hyperfine ground
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FIG. 1. Site-resolved imaging of a spin-imbalanced Fermi gas in an optical lattice. a, Schematic phase diagram
of the Heisenberg model. T is the temperature, and h is the effective Zeeman field, controlled experimentally by the global
polarization P . At h = 0, the ground state is an antiferromagnet with SU(2) symmetry. For non-zero h, there is a finite
temperature transition to a canted antiferromagnetic phase. Antiferromagnetic correlations also exist above the phase transition
temperature, where they decay exponentially. The ellipsoids surrounding the spins illustrate the magnitude of correlations in
a given direction. b, We prepare a spin mixture (blue) in an optical lattice, then selectively remove one spin state (red or
green) and doublons. We extract spin correlations from the resulting density correlations for the Sz spin projection and the
Sx projection after a spin rotation (π/2-pulse). c, Site-resolved fluorescence image after removal of one spin state. Field of
view is 35 µm. d, Azimuthally averaged profiles and single fluorescence images showing ns

↑ (green), ns
↓ (red), ns (blue), and

polarization ps (gray) over the trap with a spin-imbalanced Mott insulator at the center. Insets are exemplary single shot
pictures. Field of view is 48 µm.

states |↑〉 and |↓〉 of 6Li in an optical lattice. The global
spin imbalance P = (N↑ −N↓)/(N↑ +N↓) can be varied
continuously from 0 to ≈ 0.9 by evaporating the gas in
the presence of a magnetic gradient leading to preferen-
tial loss of one of the spin states. We work at a scat-
tering length of 448(9) a0, where a0 is the Bohr radius,
obtained by adjusting a bias magnetic field in the vicin-
ity of a broad Feshbach resonance centered at 690 G.
The imbalanced mixture is prepared in a single layer
(for details see [25]) and subsequently loaded adiabati-
cally into a 2D square lattice of depth 10.5(3) ER, where
t = h×450(25) Hz. Here, ER = h×14.66 kHz is the recoil
energy. For these parameters, we obtain U/t = 8.0(5),
where strong antiferromagnetic correlations are expected
at half-filling in the balanced gas.

Fluorescence images obtained with quantum gas mi-
croscopy techniques enable us to identify singly occupied
sites in the lattice, regardless of the spin state (see Meth-
ods). Doubly occupied sites undergo light assisted col-
lisions and appear empty. We can also identify singly
occupied sites where the atoms are projected onto a cho-
sen eigenstate of Sz by illuminating the cloud with a
short pulse of resonant light that ejects atoms in the other
eigenstate (Fig. 1b,c). By first converting atoms on dou-
bly occupied sites to deeply bound molecules, we ensure
that they are not affected by this light pulse and they
are subsequently lost in light-assisted collisions during
imaging. From these images we extract the azimuthally-
averaged density of atoms on singly-occupied (s) sites
in a particular spin (σ) state nsσ(r) and the total den-
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FIG. 2. Anisotropic spin correlations vs. polariza-
tion. a, Nearest neighbor (large circles) and diagonal neigh-
bor (squares) spin correlations for the Sz (yellow) and Sx

(blue) spin projections versus local polarization ps at half-
filling. We show NLCE (dashed lines) and DQMC (small
circles) results at U/t = 8 corrected for our detection effi-
ciency of 0.96 (see Methods) and uncorrected NLCE results
(solid lines). We display a temperature band from T/t = 0.38
to 0.53. b, Anisotropy A of nearest-neighbor (large green
circles) and diagonal neighbor (red squares) spin correlations
with NLCE (solid lines) and DQMC (small circles) results. A
is insensitive to detection efficiency. Error bars are s.e.m. Ex-
perimental data averaged over ∼ 50 images and azimuthally.

sity ns = ns↑ + ns↓, shown in Fig. 1d for an imbalanced
gas. We observe a plateau in ns over an extended region
near the center of the trap, indicating the formation of a
spin-imbalanced Mott-insulating state. The deviation of
ns from unity within the Mott insulator is primarily due
to doublon-hole quantum fluctuations, which are non-
negligible at our interaction strength. We characterize
the local polarization in terms of the measured quanti-
ties ps = (ns↑ − ns↓)/(ns↑ + ns↓). This definition coincides

with the true polarization in the absence of doubly oc-
cupied sites. At the accessible temperatures, the local
polarization is constant throughout the Mott insulator.

We measure the spin correlators in the Mott insulator
both for the spin components along the field, Cz, and or-
thogonal to it, Cx, by extending techniques previously in-
troduced in experiments on balanced gases [16–18]. The
spin correlator at a displacement d between two sites
is given by Cα(d) = 4

(
〈Sαi Sαi+d〉 − 〈Sαi 〉〈Sαi+d〉

)
, where

the brackets denote an ensemble and azimuthal average.
Cz(d) is obtained from the singles density correlators
〈nsinsi+d〉 and 〈nsi,σnsi+d,σ〉 taking into account the effect
of doublons and holes (see Methods). To extract Cx(d),
we insert an additional radiofrequency pulse to rotate the
spins by π/2 before initiating the measurement protocol.

The measured nearest and next-nearest neighbor cor-
relators Cx,z are shown versus ps in Fig. 2a. As the
polarization is increased, we observe an overall decrease
in correlations, with Cz decreasing faster than Cx. We
define the correlator anisotropy as A = 1 − Cz/Cx.
For an almost unpolarized gas ps = 0.02(4) we measure
A = −0.06(7) for the nearest neighbor and A = 0.0(2)
for the next-nearest neighbor. The consistency of these
values with zero verifies the SU(2) symmetry of the Hub-
bard Hamiltonian at h = 0. The anisotropies are shown
versus ps in Fig. 2b. The system’s preference to build
correlations in the plane orthogonal to the field can al-
ready be understood at the level of a classical Heisenberg
model, since spins oriented with the staggered magnetiza-
tion in xy the plane can lower their energy by uniformly
canting in the direction of the field. In the quantum sys-
tem, strong quantum fluctuations in 2D reduce the mag-
nitude of the nearest-neighbor correlator in the balanced
gas from 1 to 0.36 in the ground state [16], and thermal
fluctuations and imaging fidelity further reduce it to the
experimentally measured value of 0.207(4). At non-zero
polarization, we observe that the correlator anisotropy is
stronger when the sites are further apart. For example, at
ps = 0.48(4), A = 0.38(9) for the nearest neighbor, while
A = 0.8(2) for the next-nearest neighbor. The increase
of the correlation anisotropy with distance can be partly
understood by considering what happens at lower tem-
peratures as we approach the Kosterlitz-Thouless transi-
tion. There the Cx correlations become long range while
the Cz do not, so at long distance A approaches one.

Insight into the range of the antiferromagnetic order
can be gained by examining 2D plots of the spin correla-
tors as a function of the displacement vector between the
sites, shown in Fig. 3. The checkerboard pattern is visible
for displacements of up to four sites along the diagonal
in the almost unpolarized gas, and the overall decrease
of all correlations with polarization, as well as the rel-
ative suppression of Cz relative to Cx is evident. The
Cx correlations remain antiferromagnetic at all polariza-
tions, but the Cz correlations can be viewed as the den-
sity correlations of the gas of minority spins [26] whose
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FIG. 3. Spin correlation matrices. Full spin correlation matrices for different site displacements, shown at half-filling for
different polarizations ps. Top row shows Sx correlators, Cx, and bottom row shows Sz correlators, Cz. Correlator values are
averaged over symmetric points. See Methods for comparison with NLCE data.

modulation becomes longer wavelength as the density of
this gas decreases. This leads to a change in the sign of
Cz(1, 1) near ps = 0.6 which can be seen in Figs. 2a and
3. The observation of this percent-level negative correla-
tion is only possible because of the superb sensitivity of
quantum gas microscopy.

We compare our measurements to results from DQMC
and NLCE simulations of the Fermi-Hubbard model
[27, 28] at half-filling in the presence of a chemical po-
tential imbalance with the temperature left as a free pa-
rameter. For the balanced gas, the measured nearest
neighbor correlators give a temperature of T/t = 0.40(5).
The temperature shows a mild increase with polariza-
tion, rising to T/t = 0.57(5) at ps = 0.77(3). The cal-
culated anisotropy is almost independent of temperature
over this range, and shows excellent agreement with the
experiment (Fig. 2b).

In addition to spin correlations, our data gives ac-
cess to density correlations between singly occupied sites
〈nsinsi+d〉c = 〈nsinsi+d〉 − 〈nsi 〉〈nsi+d〉 (Fig. 4). Previ-
ous analysis of this correlator in balanced gases re-
vealed a dominant positive contribution at half-filling
from doublon-hole virtual excitations and a smaller nega-
tive contribution from hole-hole correlations due to Pauli
repulsion [18]. For increasing polarization, singles density
correlations decrease as Pauli blocking suppresses double
occupancy in the gas. The results of NLCE and DQMC
calculations at U/t = 8 show good agreement with the
data using the same temperature range extracted from
the spin correlations. In the inset of Fig. 4, we show the
singles density correlation versus 〈ns〉 for different po-
larizations. As was observed in the balanced case, the
correlator changes sign as the filling is reduced, an effect
that has been attributed to Pauli repulsion in the metal-

lic regime [18]. This repulsion becomes more pronounced
as the polarization is increased, leading to negative cor-
relations over a wider range of fillings.

The polarization profile of the imbalanced gas in the
trap gives insight into the spin susceptibility of the Hub-
bard model in the doped regime. For strong interac-
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FIG. 5. Polarization vs. doping at large interactions. a, Azimuthally averaged profiles showing n↑ (green), n↓ (red),
n (blue), and p (gray) for a spin-imbalanced Mott insulator at U/t = 14.7(8) and global polarization P = 0.29(3). b, Local
polarization as a function of density (gray circles). NLCE results (blue squares) at U/t = 14 for T/t = 0.42 and h/t = 0.22.
DQMC results (small circles) at U/t = 15 for T/t = 0.42 and h/t = 0.22 (red), T/t = 0.36 and h/t = 0.20 (orange) and
T/t = 0.42 and h/t = 0.20 (green). Error bars are s.e.m. Experimental data averaged over ∼ 55 images and azimuthally.

tions we observe that the in-trap polarization profile
can exhibit non-monotonic behavior as shown in Fig. 5a
for U/t = 14.7(8) obtained by increasing the scattering
length to 793(12) a0. For these experiments, we extract
the true polarization p = (n↑ − n↓)/(n↑ + n↓), rather
than ps (see Methods). The local polarization shows a
shallow rise near the edge of the Mott insulator, then
drops in the metallic region, before rising rapidly at the
edge of the cloud. These effects can be understood qual-
itatively in terms of the magnetic susceptibilities of the
gas at different fillings. At half-filling (n = 1), the sus-
ceptibility is expected to be that of an antiferromagnet
χAF ∝ 1/J = U/4t2, while for small doping at our tem-
peratures there is a nondegenerate gas of holes in the
lower Hubbard band and as a result a weak maximum
in the susceptibility. At intermediate hole doping, the
susceptibility crosses over to that of a metal, χm ∝ 1/t,
which is smaller than χAF for large U/t. Similar behav-
ior has been observed in the cuprates in the normal phase
[29–31] and studied theoretically [32, 33]. At even lower
filling, T/TF > 1 and there is no filled Fermi sea to hin-
der spins from aligning with the effective field, leading to
an enhanced magnetic susceptibility. We show the polar-
ization versus density in Fig. 5b. and compare to NLCE
and DQMC calculations in the local density approxima-
tion. The data is at a constant effective field since the
trapped gas is in chemical equilibrium. The strength of

the field, h/t = 0.21(1), is extracted from the experimen-
tal polarization at half-filling, which exhibits only a weak
dependence on temperatures for T/t < 0.5. These cal-
culations reproduce the non-monotonic behavior of the
polarization.

We have presented the first study of a 2D spin-
imbalanced Fermi-Hubbard system in a regime near the
edge of what state-of-the-art numerical techniques can
simulate. Our quantum simulations qualitatively repro-
duce the non-monotonic behavior of the magnetic suscep-
tibility with doping in the cuprates. On the other hand,
the high effective fields reached in our experiments allow
us to explore canted antiferromagnetism, physics that is
inaccessible in the cuprates at laboratory magnetic fields.
Interesting future directions for both experimental and
theoretical work include investigation of spin-imbalance
in the attractive 2D Hubbard model where Fulde-Ferrell-
Larkin-Ovchinnikov superfluid correlations should be de-
tectable at the entropies achieved in repulsive experi-
ments [34] and study of the Kosterlitz-Thouless transi-
tion in the imbalanced repulsive gas [22] which would
require lower temperatures. Finally, the achievement of
cold spin-imbalanced clouds in an optical lattice suggests
a new route for local entropy reduction using adiabatic
demagnetization cooling, a technique previously demon-
strated in bosonic lattice experiments [35].
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METHODS

Preparation of a spin-imbalanced gas in an optical lattice We realize the Fermi-Hubbard model using a
degenerate mixture of two Zeeman states (|1〉 = | ↑〉 and |3〉 = | ↓〉, numbered up from lowest energy) in the ground
state hyperfine manifold of 6Li placed in an optical lattice. The global spin imbalance P = N1−N3

N1+N3
can be varied

continuously from 0 to ≈ 0.9 while the temperature T remains relatively unaffected.
To create the sample we load a magneto-optical trap (MOT) from a Zeeman slower, then use a compressed MOT

stage before loading into a ≈ 1 mK deep optical trap and evaporating near the 690 G Feshbach resonance. We stop
the evaporation before Feshbach molecules form and transfer the atoms to a highly anisotropic ‘light sheet’ trap with
aspect ratio ωx : ωy : ωz = 1 : 2 : 10 where it undergoes further evaporation near 300 G where as = −890a0. Next
we transfer to the final trap geometry where a 1070 nm beam provides radial confinement and a 532 nm accordion
lattice with trapping frequency ωz = 2π× 19.9(3) kHz provides axial confinement (for further details see [1]). The
spin populations are imbalanced by evaporating the mixture in a magnetic gradient of up to 40 G /cm along the same
direction as the magnetic bias field, which we set in the range 75-500 G depending on the targeted imbalance. We
then tune the bias field to set the scattering length and load into a 2D square lattice with a 50 ms long ramp to a
depth of 10.5(3)Er.

Details of the 2D lattice We use a non-separable 2D lattice with 752 nm spacing formed by four interfering passes
of a single vertically polarized beam. The lattice geometry is shown in Fig. S1 and described in [2]. Compared to
the commonly used lattice configuration created by two non-interfering orthogonal retro-reflected beams, this lattice
has a spacing a factor of

√
2 larger and a much larger depth because of the 4-fold interference, features that facilitate

quantum gas microscopy.
Here we have to take into account that the two incoming lattice beams are not exactly at a 90◦ angle. To compensate

the resulting tunneling asymmetry in the lattice and retain a symmetric lattice we attenuate the retro-reflected laser
power. The potential at the atoms is given by

V (x, y) = V0

(
1− 1 + r2 + 2r cos (2kx cos(θ/2))

1 + 2r + r2
· 1 + cos (2ky sin(θ/2))

2

)
where we align the coordinate axes with the principle axes of the lattice. The lattice beams travel in the x + y and
x−y directions. Here, V0 is the full lattice depth, θ the angle between the first two incoming lattice beams, k = 2π/λ
and r the electric field amplitude attenuation factor of the retro-reflected beam. For θ ≈ 90◦ the lattice constant is
alat ≈ λ√

2
= 752 nm. The lattice beam waist is 70 µm.

FIG. S1. Lattice geometry Lattice beams are shown in pink, the mirrors in gray and the lenses in blue. All four lattice
beams crossing in the center interfere in this configuration.

Calibration of Hubbard parameters We extract our lattice parameters from atom resolved images, finding that
the lattice axes are at an angle of 90.02(2)◦ and the lattice constants are ax = 762 nm and ay = 741 nm from which
we extract the intersection angle of the lattice beams, θ = 2 arctan (ax/ay) = 91.63(2)◦.

We experimentally compensate for the tunneling asymmetry by finding the retro-reflection power that gives sym-
metric tunneling by making the singles-density correlators equal along both lattice axes. We calibrate our lattice depth
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by measuring the frequencies of the three d bands in a deep lattice using lattice amplitude modulation, and compare
these with the 2D band structure calculation, including the measured lattice angle and the retro-reflection attenuation
factor r as a fit parameter. At the best fit r = 0.54, the inferred depth of the lattice at which our measurements
are performed is 10.5(3) Er, where Er = 14.66 kHz. From that we obtain tight-binding tunneling values tx = 442
Hz, ty = 462 Hz (tx/ty = 0.96), confirming our experimental procedure for making the tunneling symmetric. The
reduction of the lattice depth across the cloud due to the gaussian profile of the lattice beams leads to an increase in
the tunneling by 10 % at the edge of the cloud compared to the central value. We also have a non-zero but negligible
diagonal tunneling td = 12 Hz = 0.03tx, due to the non-separability of the lattice

We measure the interaction energy U using radio frequency spectroscopy. We transfer atoms from state |1〉 to |2〉
and resolve the frequency shift between singly and doubly occupied sites. We determine U13 = δU a13

a13−a23 taking into
account a small correction due to weak final state interactions. The experimentally measured value agrees with the
value determined from band structure calculations including higher band corrections [3] to within 10%.
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FIG. S2. RF spectroscopy for U-calibration. Spectroscopy signal from a band insulator at lattice depth of 10.5Er and
scattering length 448a0. Shown is the transferred atom number in the center of the cloud (red), where we had mainly doubly
occupied sites and in the surrounding Mott insulator region (blue) where we measure a clean bare resonance signal. To determine
the interaction energy the final state interaction has to be taken into account (see text).

Measurement of spin correlations After the imbalanced gas is loaded adiabatically into the optical lattice, we
freeze tunneling dynamics by increasing the lattice depth within 100 µs to 55 Er. After that, we convert the |1〉 − |3〉
mixture to a |1〉 − |2〉 mixture by driving a radio-frequency Landau-Zener transition between states |3〉 and |2〉 in
10 ms with efficiency of 0.99(1). This step is necessary because an RF transition between state |1〉 and |3〉 is forbidden,
so we cannot perform pseudospin rotations with the |1〉 − |3〉 mixture. Next we hide all doublons in our sample by
converting them to molecules, employing a ramp across a narrow Feshbach resonance near 543 G. Then we either
drive a π/2 spin rotation to measure correlations for the spin component perpendicular to the effective magnetic field,
or omit this to measure correlations for the spin component parallel to the field.

We image the final atom distribution by increasing the lattice depth to 2500 Er within 250 µs, ramping up the light
sheet to provide axial confinement, and then collecting fluorescence photons during Raman cooling. Raman imaging
is not spin sensitive, so to measure spin correlations we remove one spin state from the trap before imaging. We take
three sets of images, one with |1〉 atoms removed, one with |2〉 atoms removed, and one with no removal pulse.
Spin removal For removing atoms in a particular spin state, we illuminate the cloud with a 30 µs resonant pulse.

The length of this pulse was determined by observing atom loss for different pulse lengths. The atom loss curve
exhibits two well-separated time scales, which we interpret as resonant heating and off-resonant heating of the two
spin states, and fit with the sum of two decaying exponentials [4]. We find time constants 4.5(2) µs and 1.7(5) ms,
from which we estimate that 0.2% of resonantly blown atoms remain, and up to 2% of the off-resonant state atoms
are ejected.

The resonant pulse also pumps some of state |1〉 (|2〉) atoms into state |5〉 (|4〉). We take advantage of the cycling
state |3〉 = |mI = −1,mJ = −1/2〉 to calibrate these values. To measure the probability of pumping |1〉 into |5〉 we
prepare a |1〉 − |3〉 Mott insulator and compare the results blowing both states with blowing only state |3〉. We find
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that we pump 0.8(1) % of the atoms from |1〉 to |5〉. We separately measured the probability of pumping |2〉 into state
|4〉 to be 1.2(1) % by preparing a |1〉 − |2〉 Mott insulator and comparing blowing both states with blowing |2〉 only.

Handling doublons We observe that resonantly blowing one of the spin states does not lead to loss of a doublon,
but ejects only a single atom. The other atom, which has a different spin state, remains behind. This is in contrast to
the behavior observed during Raman imaging, where doublons are lost through light-assisted collisions. As the spin
correlator cannot be easily extracted with the extra atoms from the doublon blowing, we hide doublons by ramping
the magnetic field over the narrow |1〉 − |2〉 Feshbach resonance near 543 G thereby converting doublons to Feshbach
molecules before resonantly blowing.

To estimate the fidelity of doublon hiding, we first prepare a band insulator. We take images with neither doublon
hiding nor blowing to determine the number of singles in the band insulator. We then compare this to the number of
singles we observe after performing doublon hiding and removing one of the spin states with a blowing pulse, which
leaves behind single atoms on sites where the doublon hiding failed. We find a doublon hiding fidelity of 90(3)%.

Raman imaging We use a Raman cooling scheme for lithium similar to the ones demonstrated before [5, 6] but
with slight differences. We use a lin-perp-lin configuration for the Raman beams in a retro-reflected configuration.
The Raman axis is along the diagonal of the square lattice and tilted about 10◦ out of plane. The optical pumping
beam is circularly polarized. We use a magnetic offset field of about 200 mG which is in the plane of the lattice and
perpendicular to the Raman axis. The optical pumping beam is tuned 5 GHz to the red of the D1 line. We typically
operate with 50 µW focused to a waist of about 1 mm for the pump beam and 3 mW focused to a waist of 75 µm for
each Raman beam. We estimate our Rabi frequency to be Ω = (2π) 180 kHz by measuring power broadened Raman
spectra for different powers.

We perform Raman imaging for 1200 ms and collect approximately 1000 photons per atom using a Special Optics
custom objective with a working distance of 24.7 mm. An achromatic doublet with f = 750 mm gives a magnification
of ≈ 30, which we verified using Kapitza-Dirac scattering of a molecular BEC. Our objective is designed to be
diffraction limited for 671 nm and corrected for our 5 mm thick fused silica vacuum window. We image the atoms
with a Zyla 4.2 CMOS camera (Andor Technology) with quantum efficiency of ≈ 75 % near 671 nm.
Image analysis We reconstruct the atom distribution in the lattice following the image reconstruction procedure

described in [7] (Fig. S3). The reconstruction allows us to reduce the data from the fluorescence pictures to binary
matrices that are the basis for all further data processing. Our measured point spread function (PSF) has a full-width
half-max of 900(20) nm, slightly larger than expected for our numerical aperture of 0.5.

We estimate fidelity errors due to Raman imaging imperfections by taking 40 consecutive images with our standard
imaging time of 1200 ms of the same atom cloud and determine the shot-to-shot differences. This leads to a hopping
rate during one picture of 0.4(2) % and a loss rate of 1.6(3) %. In addition, while holding the atoms in a deep lattice
for spin manipulations and doublon hiding, we lose 2(1) % of the atoms, leading to a net detection efficiency of ≈ 96 %.
Extracting density and spin correlations We are able to measure several different kinds of correlators with

the techniques described previously. Recall that we define the singles density of spin σ on lattice site i = (ix, iy) by
nsi,σ = ni,σ − ni,↑ni,↓. We also define nsi =

∑
σ n

s
i,σ.

The first correlator we measure is the singles density correlator. This is the natural quantity we measure with the
microscope without any blowing pulses or doublon hiding. In this case, the doublons are removed by light-assisted
collisions during the imaging. The correlator is defined by,

M(d) =
〈
nsin

s
i+d

〉
c
,

where 〈AB〉c = 〈AB〉−〈A〉 〈B〉. If we insert a resonant blowing pulse to eject one spin state and additionally perform
doublon hiding, we measure singles density correlations of one spin state,

Bσ(d) =
〈
nsi,σn

s
i+d,σ

〉
c
.

This correlator is closely related to the spin correlator, but with additional contributions due to the presence of holes
and doublons.

To define the spin correlator, we first write the z-component of the spin operator in terms of density operators,
Szi = 1

2 (ni,↑ − ni,↓). Then, we have

Cz(d) = 4
〈
Szi S

z
i+d

〉
c

= 〈(ni↑ − ni↓)(ni+d,↑ − ni+d,↓)〉c
= 2 [B↑(d) +B↓(d)]−M(d).

We define Cx and Cy analogously. In the experiment we cannot distinguish between Sx and Sy spin correlations
and effectively measure C⊥ = 1

2 (Cx + Cy). The Fermi-Hubbard model with an applied field along the z-direction
retains in-plane rotational symmetry, so C⊥ = Cx = Cy.
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FIG. S3. Reconstruction visualization a, Fluorescence image from Fig. 1c of the main text with lattice sites overlaid,
showing occupied sites (circles) and unoccupied sites (points). Field of view is 46 µm. b, Histogram of detected photons on
each site for panel a. We identify the lower peak with unoccupied sites and the upper with occupied sites. By fitting gaussians
to these peaks, we identify a threshold value (orange line). Any site with more counts than the threshold we count as an atom.
c, Fluorescence image showing a band insulator in the center of the cloud, surrounded by a Mott insulator region. d, Histogram
of detected photons for panel c.

Systematic errors in measuring correlations Atoms that are lost from the trap after tunneling dynamics are
frozen can reduce our measured correlations. We estimate this effect by introducing the probability of an atom being
lost before imaging, εl, and the probability εr that we image a single when it is not present on a site. εr is a result of
both hopping and recapture of atoms during imaging. We find

ñsi = nsi (1− εl) + (1− nsi )εr〈
nsin

s
i+d

〉
c
−
〈
ñsi ñ

s
i+d

〉
c

= 2 (εl + εr)
〈
nsin

s
i+d

〉
c
,

to first order in ε. Using our previous estimates for imaging loss rate, hopping rate, and loss during hold times, leads
to an expected reduction of 0.92(2) in all measured correlators.

Imperfections in the spin imaging process can also effect correlators. Our blowing pulse off-resonantly ejects an
atom in the spin state of interest with probability εσ and fails to eject an atom in the other spin state with probability
εfσ, leading to

ñsi,σ = nsi,σ(1− εσ) + nsi,−σεfσ.
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The errors considered here are due to the resonant blowing pulses and do not effect the value of M(d). However, they
do effect the Cz(d) through the Bσ(d). The reduction in these correlators is

Bσ(d)− B̃σ(d) = (2εσ)Bσ(d)− (εf,σ)
[〈
nsi,σn

s
i+d,−σ

〉
c

+
〈
nsi,−σn

s
i+d,σ

〉
c

]
Cz(d)− C̃z(d) = (εf,↑ + εf,↓)C

z(d) +
∑
σ

(εf↑ + εf↓ − 2εσ)Bσ(d),

where we have used the identity Cz(d)−B↑(d)−B↓(d) =
〈
nsi,↑n

s
i+d,↓

〉
c

+
〈
nsi,↓n

s
i+d,↑

〉
c
. For the spin correlator, the

magnitude of the first term is at most 1 × 10−3, while the second two are at most 5 × 10−3.
Imperfect doublon hiding also effects our correlators. If we fail to hide a doublon with probability εd, we find

ñsi = nsi + εddi〈
nsin

s
i+d

〉
c
−
〈
ñsi ñ

s
i+d

〉
c

= − (εd)
(
〈nsi di+d〉c +

〈
din

s
i+d

〉
c

)
.

NLCE predicts the correlator on the right hand side of this equation is at most 3×10−3 (see supplement to [8]). This
effect has magnitude at most 3× 10−4.
The Numerical Linked Cluster Expansion The numerical linked-cluster expansions (NLCEs) [9, 10] com-

bine high-temperature series expansions (HTSEs) with exact diagonalization techniques to calculate exact finite-
temperature properties of quantum lattice models in an extended temperature range in the thermodynamic limit.
The formalism can be summarized in the following equation

P =
∑
c

WP (c), (S1)

where P , an extensive property per lattice site in the thermodynamic limit, is expressed in terms of contributions
[or weights, WP (c)] of all the clusters c that can be embedded in the lattice and are not related by any translational
symmetry. The smallest cluster is a single site, the next smallest is a nearest-neighbor bond, and so on. If the
Hamiltonian is also invariant under point group symmetries of the underlying lattice, the number of terms in Eq. S1 can
be reduced by considering only clusters that are topologically distinct and multiplying their weights by a multiplicity
factor M(c), which represents the number of ways per site cluster c can be embedded on the lattice. The weights
WP (c) are in turn calculated using the inclusion-exclusion principle; writing Eq. S1 for the finite cluster c, we can
express WP (c) as

WP (c) = p(c)−
∑
s⊂c

WP (s), (S2)

where p(c) is the extensive property of interest on the finite cluster c, and s are all the clusters that can be embedded
in c (sub-clusters of c).

Unlike in the HTSEs, where p(c) are expressed as perturbative expansions in terms of powers of the inverse tem-
perature, in the NLCEs, we obtain p(c) exactly (to all powers in the inverse temperature) using full diagonalization,
leading to a better convergence.

We use the site expansion NLCE in which the results in the nth order contain contributions from all clusters with
n sites or less. We carry out the expansion to the 9th order. Only in the last order, and for each of the two values of
U/t (8.0, and 14.0), we diagonalize the Hubbard Hamiltonian in the presence of a magnetic field for 112 topologically
distinct 9-site clusters that have no particular symmetry. We choose a fine grid for the temperature and work in the
grand canonical ensemble; for U/t = 8.0 at half filling, we fix the chemical potential and choose a fine grid for the
magnetic field. Similarly for U/t = 14 away from half filling, we fix the magnetic field and choose a fine grid for the
chemical potential. These allow us to have a high resolutions for the polarization and the density, respectively [11].

The converged results are valid in the thermodynamic limit and contain no systematic or statistical errors. However,
due to the finite number of terms in our series the convergence is lost below a temperature that is dependent on U/t,
the polarization and the density. To extend the convergence to lower temperatures, we take advantage of numerical
re-summation techniques. To minimize the possibility of introducing systematic errors, we use two vastly different
algorithms, namely, Wynn resummation with four cycles of improvement and the Euler resummation for the last six
terms in the series [10, 12], and present results when they agree within a few percent.

In the NLCE, one can in principle compute correlation functions at distances as far as the largest clusters in the
series extend. However, as this distance increases, a smaller number of clusters contribute to the series, and so, one
should expect the lowest convergence temperature to increase with distance. In Fig. S4, we show spin correlations
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from the NLCE at U/t = 8.0 for distances as large as (3, 3). We find a very good qualitative agreement with the
experimental results shown in Fig. 3 of the main text. The NLCE results are at a fixed T/t = 0.415, so we do not
consider the temperature variations that may exist from one polarization to the next in the experimental data.
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FIG. S4. Spin correlators vs. singles polarization NLCE results for T/t = 0.415. Top row shows Sx correlators, Cx, and
bottom row shows Sz correlators, Cz.

Determinantal Quantum Monte Carlo The determinantal or auxilliary field quantum Monte Carlo (QMC) for
interacting fermions is an unbiased algorithm that provides statistically “exact” answers for the energy and correlation
functions as a function of temperature. We start with the Hubbard model in terms of fermion operators H = T + V
where the single particle part of the Hamiltonian is

T = −t
∑
〈i,j〉σ

[c†iσcjσ + h.c.]− µ
∑
i

(ni↑ + ni↓)− h
∑
i

(ni↑ − ni↓) (S3)

and the repulsive (U > 0) interacting part

V = U
∑
i

(ni↑ − 1/2)(ni↓ − 1/2). (S4)

Here, t is the hopping amplitude between sites, µ is the chemical potential that controls the density of fermions
and h is the Zeeman field that controls the imbalance between majority up and minority down spin fermions. The
experiments are performed in the canonical ensemble for a fixed total number of fermions N = N↑ +N↓ and a fixed
magnetization M = N↑ −N↓ whereas the simulations are done in the grand canonical ensemble for a fixed µ and h.

For a bipartite lattice, the repulsive Hubbard model maps onto an attractive Hubbard model through a particle-
hole transformation on the down spins and an additional π phase shift on the B sublattice given by cA↓ → c†A↓,

cB↓ → −c†B↓. With this mapping the chemical potential and Zeeman field get interchanged µ ↔ h and h ↔ µ in
the repulsive and attractive Hubbard models. We will return to this mapping when we discuss the nature of the sign
problem toward the end of the section.

With the Hamiltonian defined above, we next divide up the imaginary time interval [0, β = 1/(kBT )] into M
segments of width δτ = β/M . A Trotter break up of the two non-commuting operators T and V can now be done
on each time-slice with errors on the order of tU(δτ)2, which gives e−βH = [e−δτ(T+V )]M ≈ [e−δτT e−δτV ]M . By

introducing auxiliary fields at each space-time point ~S(i, τ) in a path integral representation of the partition function
in imaginary time, typically we use Ising auxiliary fields S = ±1 at each space-time point, the quartic interaction
terms can be factored into quadratic forms, given by

e−δτU(ni↑−1/2)(ni↓−1/2) =
1

2
e−δτU(ni↑+ni↓)/2

∑
S(i,τ)=±1

e−λS(i,τ)(ni↑−ni↓) (S5)

=
1

2

∑
S(i,τ)=±1

∏
σ=±1

e−(σλS(i,τ)+Uδτ/2)niσ
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FIG. S5. Average sign as a function of density for T/t = 0.36 (teal and black), T/t = 0.42 (purple), T/t = 0.50 (blue), and
T/t = 0.63 (brown), open symbols for balanced populations and closed symbols for h/t = 0.20, triangles for U/t = 15 and
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with λ determined by cosh(λ) = exp(δτU/2) and σ = ±1.
The path integral of the interacting problem is thus converted to an effectively non-interacting action that describes

the motion of a fermion propagating through fluctuating auxiliary field configurations, given by:

−t
∑
〈i,j〉σ

[c†iσhσ(S̄(τ))cjσ] = −t
∑
〈i,j〉σ

[c†iσcjσ + h.c.] (S6)

+
∑
iσ

[−(µ+ U/2 + σh) + σλS(i, τ)]niσ.

The fermions can now be integrated out yielding a partition function

Z =
∑
{S}

DetM↑(S)DetM↓(S) (S7)

as a sum of determinants over auxiliary field configurations that are sampled using Monte Carlo methods, where
Mσ(S) = [I +

∏
τ exp(−δτhσ(S(τ))]. The negative sign or complex phase of this determinant is the source of the

so-called “sign-problem” in QMC simulations that can limit the ability to go to low temperatures away from half
filling.

In Fig. S5 we show the average sign as a function of density at various temperatures for zero field and a finite
field. The important points to note are: (i) The magnetic field does not generate a sign problem since it essentially
maps to µ in the attractive Hubbard model for which the up and down determinants have the same sign, hence the
product is always positive, for any density. (ii) At half filling the average sign is unity, hence no sign problem, for any
temperature and field. (iii) For U/t = 8 (Fig. S5, black squares) where most experimental data were taken, the sign
problem is not severe and does not affect the quality of the data at the lowest temperatures considered. (iii) Away
from half filling the sign is most severe around 0.5 . n . 0.8 filling for U/t = 15; the average sign nose dives with
decreasing temperature. Within this density region, for T/t ≥ 0.42 increased statistics is used to improve the quality
of the data and we were able compare our QMC with the experimental data for the density and the polarization.
For even smaller temperatures (Fig. S5, down triangles) we have not used QMC data to compare with experiments.
The error bars reported in the figures are statistical. The QMC simulations were performed for 8 × 8 lattices with
tδτ = 0.05 for U/t = 8 and tδτ = 0.02 for U/t = 15. Each data point was obtained from up to 60 independent runs,
each with 4000 sweeps through the lattice.
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Sign change of spin z-correlation for large polarizations To understand why Cz(1, 1) becomes negative near
ps = 0.6 at half filling, it is instructive to consider what happens in the Heisenberg model with a nearly fully polarized
gas. We can regard the fully polarized gas as a vacuum state and the minority spins as a dilute gas of magnons
[13, 14]. These magnons are bosons and can form a Bose Einstein Condensate (BEC) at low temperatures. We will
find that the BEC off-diagonal order is associated with the spin correlations perpendicular to the magnetization, and
the density correlation of the magnons are associated with the spin correlations parallel to the magnetization.

To make this argument more concrete, we rewrite the Heisenberg Hamiltonian using operators defined by β†i = S+
i ,

βi = S−i and Szi = β†i βi − 1/2,

H =
J

2

∑
〈i,j〉

(
β†i βj + β†j βi

)
+
∑
i

(h− 4J)β†i βi + J
∑
〈i,j〉

β†i β
†
j βiβj. (S8)

The βi and βj satisfy bosonic commutation relations for i 6= j. To avoid difficulty at i = j we introduce an infinite

on-site repulsion, or hard-core constraint, and can then regard β†i as the creation operator for a boson on site i [13].
From the middle term in in Eq. S8, we see the field h is the chemical potential of the magnons (up to a constant
offset). The last term describes nearest neighbor repulsion of magnons. The first term describes the bosons hopping.
Transforming to momentum space, this term becomes

∑
q ε(q)β†qβq with ε(q) = J (cos(qxa) + cos(qya)) where a is

the lattice constant. In contrast to the typical case, the hopping term here is positive and the condensate forms at the
band minimum, q = (π, π). Condensation is signalled by non-zero expectation value of off-diagonal density matrix
elements. For system of volume V and total particle number N these elements are〈

β†i βi+d

〉
=

1

V

∫
dq exp (iq · d/~)

〈
β†qβq

〉
=
N

V
(−1)dx+dy .

Using the identity β†i βi+d + β†i+dβi = 2
(
Sxi S

x
i+d + Syi S

y
i+d

)
, we see the BEC off-diagonal order is associated with

spin correlations perpendicular to the magnetization, and the anti-ferromagnetic checkerboard is associated with the
condensate quasimomentum, (π, π).

The spin correlations parallel to the magnetization are associated with the density correlations of the magnons,

which can be written
〈
β†i βiβ

†
i+dβi+d

〉
c

=
〈
Szi S

z
i+d

〉
c
∝ Cz(d). These are the density correlations of a liquid of bosons

on the lattice, with hard core exclusion and nearest-neighbor repulsion. These are expected to be typical liquid
correlations, starting negative at short distances and oscillating and damping with distance, first becoming positive
at a distance of order the inter-particle spacing. As we go to high polarization and thus low density of these bosons,
this inter-particle distance grows and moves beyond the diagonal neighbor distance, resulting in the sign change in
Cz(1, 1).
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