
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2011

AUGMENTED-LIFE PHONE ORGANIZER AUGMENTED-LIFE PHONE ORGANIZER

Chao-Hsin Shih
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Shih, Chao-Hsin, "AUGMENTED-LIFE PHONE ORGANIZER" (2011). Master's Projects. 201.
DOI: https://doi.org/10.31979/etd.ezuv-2d7f
https://scholarworks.sjsu.edu/etd_projects/201

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/201?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

AUGMENTED-LIFE PHONE ORGANIZER

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Chao-Hsin Shih

Dec 2011

© 2011

Chao-Hsin Shih

ALL RIGHTS RESERVED

ABSTRACT

AUGMENTED-LIFE PHONE ORGANIZER

by Chao-Hsin Shih

 Augmented-Life Phone Organizer (ALPO) is a geo-based mobile application for users

to search for businesses and make corresponding actions such as calling, navigating, or viewing

comments about the business. Users can take image notes and attach them to a virtual wall, so

others can view the image at the same GPS coordinates later. Users can also view all business

images and augmented notes superimposed on the real world through a mobile device screen and

camera. We have measured application usability and feature practicality by conducting function

tests on three users, and the results are encouraging.

ACKNOWLEDGEMENT

I would like to express my deep appreciation to my project advisor, Dr. Chris Pollett, for

his support, encouragement, and supervising. This project would not have been completed or

written without his technical supports, guidance, proofreading, and innovative ideas from our

weekly meetings.

 I also want to thank to my committee members Dr. Teoh Soon Tee and Dr. Khuri Sami for

their directions, and helpful advices along this project.

 Finally, I want to appreciate my friend Ming Tsai, who gave me lots of valuable suggestions

on database design, helped me to proofread my report, and helped me testing the results. I also

want to extend my appreciation to my coworker Joan Andrews, who helped me to proofread my

report. Last, I want to thank for my friend Yun-Chieh Lin, and Wayne Tang for helping me

collect reference papers and do testing.

Table of Contents

1.0 Introduction to the Project…………………….………………………………………….... 1

2.0 Definition of Teminology………………………………………………………………….. 3

2.1 Libraries ………………………………………………………..……………............... 4

2.1.1 Facebook………………………………………………………………………. 4

2.1.2 Yahoo Local Search Web Service ……………………………………………. 4

2.1.3 CloudMade…………………………………………………………………….. 5

3.0 Designs and Implementations.……………………………………………………………... 6

3.1 Design and Implementation Challenge ………………………………………………. 6

3.2 Architecture…………………………..……………………………………………….. 8

3.3 The MVC Design Pattern ……………..……………………………………………… 9

3.3.1 The Data Model……………………………………………………………….11

3.3.2 The Interface View……………….……………………………….…………. 11

3.3.3 The Controller………………………………………………..………………. 11

3.4 Supported Features………………………..…………………….…………………….12

3.4.1 Point of Interests………………………………………………………………13

3.4.1.1 Search Business………………………………..………………………14

3.4.1.2 Get Business Detail……………………………………………………15

3.4.1.3 Add Business to Favorite………………………………………………16

3.4.1.4 Business Navigation……………………………………………………16

3.4.1.5 Call Business ……………………………..……………………………18

3.4.1.6 Navigate to Car………………………………………………………...18

3.4.1.7 Comments and Replies………………………………………………...18

3.4.2 Image Note…………………………………………………………….………19

3.4.2.1 Image Note List……………………...…………………………………19

3.4.2.2 Add Image Note……………………...………………………………...20

3.4.3 Augmented Reality View………………...………………………………..…..21

3.5 Implementation………………………..………….…………………………………..22

3.5.1 Single Sign-On………………………………………………………….……..22

3.5.2 GPS Location………………………………………………..………….……..23

3.5.3 Map View……………………………………………………………….……..24

3.5.4 Augmented Reality View……………………………………………….……..24

3.5.5 User Interface Render………………………………………………..………..26

3.5.6 Yahoo Local Search Web Services………………………………..…………..27

3.5.7 HTTP Request…………………………………………………………............27

3.5.8 JSON Parsing………………………………………………………………….28

3.5.9 Image Loader………………………………………………………………….28

3.6 Server Side………………………..………………………………………….……….29

3.6.1 Member…………..……………………………………………………………...29

3.6.2 Point of Interests…………...………………………………………………….29

3.6.3 Comments and Replies………………………………………..……………....30

3.6.4 Favorites..………………………………………………………………..……30

3.6.5 Image Notes………………………………………………….………………..31

3.6.6 Mobile Phone Server Application……………………………….…….…….. 33

4.0 Experiments………………………………………………………………………………..35

4.1 Library Selection……………………………………………………………………..35

4.1.1 Point of Interests Local Search Library………………………………...……..35

4.1.2 JSON Parse Library…………………………………………………….……..37

4.1.3 Image Recognition and Visual Search………………………………….……..37

4.2 Image Storing Method………………………………………………………………..38

4.3 Testing ………………………………………………………………………………..39

5.0 Conclusion…………………………………………………………………………..……. 42

Reference………...……………………………………………………………………….…….. 43

List of Figures

Figure 3.1 Server-Client architecture ….………………………………………………..……... 8

Figure 3.2 Model-View-Conroller concept……………………………………………..……… 9

Figure 3.3 MVC class diagram……. ….……………………………………...………..…….. 10

Figure 3.4 User Case diagram ….…………………………………………….………..…….. 13

Figure 3.5 Business search screen….………………………………………….………..……..14

Figure 3.6 Search result in list/map view mode and short cut menu bar……..………..…….. 15

Figure 3.7 Business detail screen ….…………………………………………………..……..15

Figure 3.8 Favorite View….……………………………………………………..……..……..16

Figure 3.9 Navigation View ….………………………………………………………..……..17

Figure 3.10 Turn-by-turn list….………………………………………………………..……..17

Figure 3.11 Comments and Replies View……………………………………………....……..19

Figure 3.12 Note list…………………………………………………………………….……..20

Figure 3.13 Uploading image note view and select Facebook group view……………..……..20

Figure 3.14 Augmented Reality View……………………………………………….….……..21

Figure 3.15 Single Sign-On flowchart…………………………………………………..……..23

Figure 3.16 Database schema………………………………………………………………….32

Figure 4.1 Database schema………………………………………………………………….39

List of Tables

Table 1 Image transmission time comparison ……………………………………………….39

Table 2 Users’ knowledge for mobile applications ………………………………………….39

Table 3 Learning times and usability questionnaire………………………………………….40

1"
"

1.0 Introduction to the Project

Augmented Reality has become one of the most popular mobile application topics.

Improvements in mobile device hardware allows developers to utilize sensors such as

GPS, magnetometer, gyroscope, accelerometer, and cameras to capture information

related to the user’s surroundings. Augmented reality makes information that cannot be

seen by the naked eye visible by overlaying virtual objects in the real world in real-time.

The iPhone is a smartphone designed by Apple that function as a small PC,

allowing users to take pictures, surf the Internet, check e-mail, chat via

videoconferencing, and play videos, music, and games. The first generation iPhone was

released in 2007 and has already become a leading mobile phone because of its

user-friendly interface and complete libraries [1]. Today, more and more engineers have

devoted effort to mobile device development and have made hundreds of thousands of

useful applications. People use mobile devices to get information, such as the best nearby

restaurants, restaurant reviews, coupons, directions, and price comparison. Most of social

network services such as Facebook, Yelp, and Twitter have ported to mobile platforms so

that people can share and view posts anytime and anywhere.

Because of the mobility and portability of mobile devices, popular social networks

(e.g., Facebook, Yelp, Twitter) have developed applications for mobile devices.

According to the top iPhone and iPad app downloads list since mid-2008, when the App

Store opened, Facebook tops the list for free iPhone applications [2].

Augmented-Life Phone Organizer (ALPO) is an application that I wrote for the

2"
"

iPhone platform. The app will help people find information by using the iPhone to

Augment Reality naturally. Users can save a location where they parked their car and

easily find it later by navigating to the saved parking space. When users search Points of

Interest a list of nearby businesses in the area is displayed with possible options for

navigation. Users can call, or view reviews of the businesses. They can also take a picture

and share it so that other users in the same area can see the pictures later.

3"
"

2.0 Definition of Terminology and Libraries

Before we begin digging into the iPhone world, we need to know the meaning of the

following terms.

Integrated Development Environment (IDE) – a software application that

provides developers with a graphical user interface that integrates several tools that can

help maximize a developers’ productivity.

Software Development Kit (SDK) – a term for development tool that allows

developers to utilize the native library to achieve their goal.

Cocoa Touch – a framework that is a SDK, which share similar patterns with Mac

but specializes on touch-based interfaces.

Object-oriented – a programming concept that separates the objects, methods and

interactions.

ANSI C – a standard published by the American National Standard Institute that

encourages developers to follow requirements so that the code will be more portable.

Objective-C – a programming language based on an object-oriented concept that

extends the standard ANSI C language.

iOS – Apple’s mobile operating system that was originally developed for iPhone that

can be extended to iPod touch, iPad, and Apple TV.

JavaScript Object Notation (JSON) – light-weight text-based data derived from

Javascript. JSON is primarily used for serializing and transmitting data between the

server and client side.

4"
"

Document Object Model (DOM) – represents objects in HTML and XML

documents, which is cross-platform. Each object is represented as an element that can be

manipulated.

2.1 Libraries

In this chapter, we will introduce several libraries that are used in this project. All

libraries used are free, and some of them are open sourced. We will explain what these

libraries are doing and how are we going to use them.

2.1.1 Facebook

Facebook is a social network, which launched in February 2004, and it has hit 800

million users as of July 2011. Users can connect with friends, exchange messages,

organize events, create group chats, post pictures, and share news or links. Facebook

launched an iPhone application at August 2007, which has over 350 million users each

month. The Facebook platform was then released at May 2007 [3]. The Facebook

platform, which supports Single Sign-On (SSO), enables developers to integrate the

Facebook social experience into their own mobile applications.

2.1.2 Yahoo Local Search Web Service

This service allows users to search for business, location (can be an address, zip

code, or the latitude and longitude), or even route. We will be using this service to

provide Points of Interest’ information. Since each business has its own ID, we will store

5"
"

the ID in our database for other purposes.

2.1.3 CloudMade

CloudMade is a company integrating the OSM data and producing APIs for map

rendering, route calculating, and other geographic-related services. The style editor

allows the user to customize the color and layers of Google and Yahoo maps and export

the style numbers for further purposes. The developer can also assign the map style by

given style number, which may be generated by the developer or retrieved on the map

library. Although CloudMade only supports a few major cities in the United Kingdom,

Ukraine, Germany, and the U.S [4]., the routing API is pretty well developed, and was

easy to integrate in our project.

6"
"

3.0 Design and Implementation

People like to share their daily life with others on Facebook. Examples are the

food they just had, the places they went. These posts could be a valuable source of

information when other users need to know about businesses or places or for businesses

to get feedback from users. Yelp provides people business search, users reviews, and

ratings. Since Yelp is not focusing on message exchange, users cannot reply to reviews.

ALPO’s Comment function allows users to leave comments and replies for businesses.

In Facebook, users cannot add location or date information to albums or photos.

ALPO’s “Image Note” component allows users to upload images from Facebook friends

based on their current location, and view them on the real world camera view. We will

discuss how to implement the augmented reality techniques in later chapters.

3.1 Design and Implementation Challenges

Since we are building a mobile application that targets iPhone platform, limited

screen size is the first factor to be considered when designing functions and user

interfaces. For example, on PCs or tablets, we can display all other information on the

same page. On mobile phones, we need to deploy a hierarchical view mechanism to

present details. User interfaces should be clear, self-explanatory, and easy to interact with;

users should be able to start using it without needing explanation. In ALPO, we display

business names and ratings in a list view, allowing users to view details with a single

click.

7"
"

Another critical issue we have faced is processing speed. Mobile phones are

normally equipped with weaker CPU chips, slower memory access, and less memory

compared to low-end PCs. Internet bandwidths through iPhone devices are usually lower

than that of PCs, which prevents us from sending a large amount of data. In ALPO, we

adopt JSON as the server response data type to reduce the bandwidth load.

Heavy computations or device tracking on mobile devices may cause additional

power consumption. So we needed to avoid complicated calculation, heavy rendering on

a mobile device, due to those limitations. We also need to be careful when dealing with

threading, which may cause blocking of UI rendering or even the unexpected resources

releasing. In ALPO, HTTP request are running in the background while the loading

icon displayed on the main thread.

Other than equipment limitations, since iOS is a well-supported framework, it has

many resources, third party APIs, libraries, and frameworks that allow developers build

their applications easily. Although there are many third party libraries, we need to

estimate carefully before deciding on one that fits out needs. There are some factors we

need to consider before adopting a new library. For example, does it use any deprecated

APIs? Does it support only newer versions? Performance? Is there any conflict between

the selected library and others? Is it flexible enough to customize and fit into our goals?

We need to make sure each library pass those tests before integrate into our project. In

the experiments chapter, we will show and explain the result of libraries we have

experimented with and how did we decide which libraries to adopt.

8"
"

3.2 Architecture

The architect of ALPO is based on a server-client model. The mobile device acts

as a client that interacts with users and the web server that retrieves data from a MySQL

database, which is hosted at the same domain as the web server (See Figure 3.1).

Figure 3.1. Server-client architecture

 The server side is running on Apache/2.2.21 (Unix), MySQL 5.1.60, and PHP 5.2.1.

On the client side, we developed our app using Xcode, which has the iOS development

environment including SDKs, on Mac OS X. Once we finish setting up the working

environment on both server side and client side, we are ready to go to the next step.

3.3 The MVC Design Pattern

iPhone programs are written in Objective-C. Objective-C encourages developers

to adopt the Model-View-Controller (MVC) design pattern, which is a software

9"
"

architecture that focuses on isolating data from user interfaces and connecting them via

controller. The Model manages the data in the application. The View renders the user

interface. The Controller receives user input and performs actions based on instructions.

Figure 3.2 shows the relationships between those three patterns.

Figure 3.2. Model-View-Controller concept. Solid lines represent direct association while
dashed lines represent indirect association.

Source: Model-View-Controller (n.d.). Retrieved December 01, 2009, from Wikipedia
site: http://en.wikipedia.org/wiki/Model–View–Controller

Since iOS is based on object-oriented Objective-C, we adopted the MVC

design pattern to meet the object-oriented programming language design principle. The

complete MVC development design diagram is shown in Figure 3.3.

10"
"

Figure 3.3. MVC class diagram

POI
Result

Note

Comment

Reply

Favorites

User Authentication

Facebook Log in

Search Point of Intersts

Compute Virtual Objects &
Render

Sensor Data Collection

Add Markers on Map View

Switch Mode

View Image Note List

View Business Comments

Navigate to Business

Call Business

Business Detail

Add Image Note

Login

Image Note
List

Comments

Business
Detail

Map View

Camera
View with
AR View

Settings

New Image
Note

Add Business to Favorite

Log out

List View

Model Controller View

11"
"

3.3.1 The Data Model

ALPO’s Model layer structure consists of data objects that are managed by the

application, such as business details, business reviews and replies, and image notes.

Three customized data models serve as intermediate data stores for storing remote

third-party API data retrieved.

3.3.2 The Interface View

The Interface View layer handles the task of presenting information to users and

getting input from users. In our case, this layer contains the main windows, tabs, all UI

elements, tables, map view, and Augmented Reality view in the client application. In

addition, the interface view elements need to bind with controllers that can take user

input and provide responses.

3.3.3 The Controller

The Controller layer acts as a bridge between the Model layer and Interface

View layer. The Controller receives user input from the View layer and makes

corresponding changes to the Data Model. For example, when users type words on the

search bar and click the “search” button, the Interface View generates notifications and

sends them to the Controller after receiving input from users. Once the Controller

receives these updates, it sends the request to the server to query the business data from

the Yahoo library regarding user input keywords. The Controller then parses the response

data, updates the list view, and overlays the markers on the map view.

12"
"

3.4 Supported Features

In this section, we will introduce the main components and the corresponding

functions for this project. Figure 3.4 shows the user case diagram. According to our goals

and requirements in section 3.1, there are two main components in ALPO: the Points of

Interest and Image Notes. For Points of Interest, ALPO implemented following functions:

• Search businesses

• Get business details

• Add business as a favorite

• Call businesses

• View or leave comments for businesses

• Plan routes and direct users to businesses

 For Image Note, ALPO separates viewing privileges of different users in the

following way:

• Everyone nearby – includes Facebook and non-Facebook users

• Facebook Friends

• Specific Facebook friend group

• No anyone else

In ALPO’s Augmented Reality view, both the searched business within

the vicinity and the Image Notes are displayed and scaled by distance in the Augmented

Reality view when the camera points towards the targeted Points of Interest. This

13"
"

Augmented Reality view provides an easy one-look experience that presents the users’

desired set of items. Figure 3.4 shows the user case diagram.

Figure 3.4. User Cases diagram

3.4.1 Points of Interest

 When users switch to the main view, “Let me see” tab, a navigation bar is

displayed on top, and then a search bar and a map view covers the lower half screen as

shown in Figure 3.5. In the navigation bar, a segmented control is on the left side of

the bar title and two buttons on the right side. The segmented control allows switching

between map view and list view mode.

The “Park” button allows users save their parked car location. The eye image button

on the far right allows the user to switch to the Augmented Reality view.

14"
"

Figure 3.5 Business search screen

3.4.1.1 Search Business

 Users can search nearby Points of Interest by either using a partial or full name of

the business, category, or a combination of the name and category. For example, if users

need to find the nearest fast food burgers, they can type “fast food”, “burger”, or “fast

food burger” for keywords in the search bar to get all businesses based on

users’ current location. Once the user finishes the search, the map view displays updated

pins or markers and the list view is updated. Figure 3.6 (a)(b) shows the result in the list

and map view mode of the searched keyword “burger”. Frequently used keywords such

15"
"

as nearest gas station, ATM, and parking space are added to the bottom bar. Tapping on

the pull-tab can hide or extend the bar.

Figure 3.6(a)(b). Search result in list/map view mode (c) shortcut menu bar

3.4.1.2 Get Business Detail

 If users click any of the list items, a details page will display (See Figure 3.7).

The business detail page includes the address, distance, phone number and rating of the

business. Users can see whether the business is a favorite. Users can also view comments

by clicking the “View Comments” button.

Figure 3.7. Business detail screen

16"
"

3.4.1.3 Add Business to Favorite

Users can add the restaurant as a favorite by clicking the star icon as shown in

Figure 3.7. When the star is yellow, the business is recorded as the user’s favorite. Users

can reach added favorite businesses in the Business tab (See Figure 3.8). The search starts

with the selected business name and ALPO switches the view to the main view (See

Figure 3.5 (a)(b)) after the user taps on the favorites.

Figure 3.8 Favorites View

3.4.1.4 Business Navigation

 When the user presses the address row as shown in Figure 3.7, the view switches

back to map view with routing details (See Figure 3.9).

17"
"

Figure 3.9 Navigation view

The gray information bar at the top indicates the starting and ending points. When

the user clicks the button with a bulletin image at the top right side, the turn-by-turn

list will be displayed with total travel distance and time (See Figure 3.10).

Figure 3.10 Turn-by-turn list

18"
"

3.4.1.5 Call Business

When users need to make a call to the business to make a reservation, they can click

on the phone number row as shown in Figure 3.7. The application will make a call to the

business.

3.4.1.6 Navigate to Car

 Users can store the current location of the car by clicking the “Park” button on the

navigation bar (See Figure 3.5). They can hit the red Cabriolet car on the right-bottom

corner, and directions to their car will show in the same way as search business does.

3.4.1.7 Comments and Replies

Sometimes the ratings stars are not reliable enough to determine whether a

restaurant is worth trying. Users can view comments by clicking the “View

Comments” button as displayed in Figure 3.7. This also applies when users need to see

the restaurants’ most popular dishes. Users can also post a new comment or reply

to existing comments (See Figure 3.11). Comments, name of poster, date posted, message,

and numbers of replies are displayed in descending order by creation date. Replies are

inserted below comments when clicking on the originating comment. Each reply includes

the message and the name of message owner.

19"
"

Figure 3.11. Comments and Replies view

3.4.2 Image Note

 Image Note is the second component ALPO has implemented. Users can view the

Image Notes list or add new Image Note.

3.4.2.1 Image Note List

 Users can view the note list in the “Notes” tab as shown in Figure 3.12(a). For

power consumption, the list does not automatically refresh. Users can manually update

the list by dragging the list down. The loading bar displays on top when an update takes

place. Releasing the list shows the loading in the progress bar as shown in Figure 3.12(b).

The pull-to-refresh function is provided by EGOTableViewPullRefresh library, which is

hosted on github.

20"
"

Figure 3.12(a)(b). Note list

3.4.2.2 Add Image Note

 Users can add Image Notes by either taking a picture from a mobile device’s camera

or picking an image from the photo library. Users can then enter corresponding

information that is related to the image to be saved, such as title or comment. Users can

also determine which Facebook friend group can see the note by selecting the “Share

with”, and when the user want to show/hide the image note. (See Figure 3.13 (a)(b)).

Figure 3.13. (a) Uploading image note (b) select Facebook group

21"
"

3.4.3 Augmented Reality View

 Users can view both Points of Interest and Image Notes in the Augmented Reality

view by clicking the eye image button shown in Figure 3.5. The Camera

View gets brought up and corresponding virtual objects overlay on the top of real world

as shown in Figure 3.14. The virtual objects get displayed when the user direct the

camera to the right direction. Users can get details of objects by double tapping on the

floating objects. The segmented control bar at the right top is used to filter the results.

The left control displays all searched Point of Interest and the right control displays all

image notes.

Figure 3.14 (a)(b)(c) Augmented Reality View

We have introduced the designs, user interfaces, and functions of ALPO. In the next

section, we will introduce the details of implementations on the both client-side and the

server side.

22"
"

3.5 Implementation

 In this section, we will first introduce implementations and technologies that are

used to perform the functions of the client application and then introduce the work on the

server-side in details.

3.5.1 Single Sign-On

 To support Single Sign-On, ALPO asks the first-time user to log in with existing

Facebook account as we discussed in previous sections. ALPO checks whether the

FBTokenAccessKey and FBExpirationDateKey are existed. If both keys are existed, then

ALPO checks whether the FBTokenAccessKey is still valid by comparing the current

date and FBExpirationDateKey. If the session key is valid, then users can pass the Log-In

screen. If the session key is expired or not exists, users will be asked to log in with

Facebook account and authorize ALPO mobile application permissions such as personal

information and users’ friends list to access ALPO services. Once users successfully log

in, the FBTokenAccessKey and FBExpirationDateKey will be generated and

permanently stored in the application. The following flowchart (Figure 3.15) shows the

Log-In flow.

23"
"

Figure 3.15 Single Sign-On flowchart

 Users can sign out the Facebook account by switching to Settings tab. Then both

FBTokenAccessKey and FBExpirationDateKey will be removed.

3.5.2 GPS Location

In order to obtain the current user’s location or compass information, we imported

a framework called Core Location. Using the Core Location framework, ALPO can

retrieve data in three ways: Global Positioning System (GPS), Wi-Fi positioning Service

(WPS), and cell tower triangulation [5]. The framework determines which

technology will be used, but the level of accuracy used by the framework is manually

set in ALPO. We can communicate with the Core Location framework via Location

Manager. With the GPS information, ALPO can locate the user and provide associated

business information such as directions of parking lots, restaurants, and other points of

Token &
Token

expiration
date exist

Retrieve Token key &
Token expiration date

Is Session
Valid

Display Log in View

Log In

Store Token and Token
Expiration date

Enter ALPO

Authorize
Permissions

24"
"

interests.

3.5.3 Map View

The MapKit API in iOS is based on Google maps. Since this natively comes with

Xcode SDK, it is well developed but also have some limitations. The MapKit API

provides map view, coordination plotting, and pin/annotation placing. Since we are

building an application that helps people get Points of Interest information, we should not

only provide them details but also show them how to get to the business. Compared to

MapKit, the CloudMade library allows customized map tiles and routing/driver directions,

both of which are particularly useful in this project. The three variables that are needed to

make a routing API call in CloudMade are current location coordination, destination

coordination, and vehicle mode. The vehicle mode can be walking, bike, or car; in this

project, we only support car mode in ALPO. The take-users-to-car function uses the same

principle by storing the current locations permanently in device using NSUserDefaults

class. The data will not be removed even if users leave the app or restart the device; this

only get deleted when user remove the application.

3.5.4 Augmented Reality View

The camera view is the foundation of the Augmented Reality (AR) view. The

camera view gets brought up, and the listing business info and Image Note will be

overlaid on the top of camera view when users switch to augmented reality view mode.

The capability of computing on mobile devices has been largely improved in past years

25"
"

that allowed AR techniques to be ported on mobile devices. There are two ways to

achieve AR technique on mobile devices; one is using object recognition (OR)

technology, and the other one is using input sensor pose such as GPS and gyroscope. The

OR technique has higher accuracy due to it is rendering the object according to the real

world view on camera, but it only works if the target is already stored in the database.

The second method is better than the previous method since most smart phones now

incorporate GPS and a gyroscope sensor. It is also easier to build the data in the database

using the second method since all we need are the latitude and longitude information of

the target. ALPO adopts the second approach. By combining the info acquired from

embedded camera, GPS sensor, and magnetometers, ALPO can

obtain users’ location and device directions easily and accurately. There are several steps

to make the virtual object layout accurately on the real-world view:

1. Attain device sensor pose

2. Calibrate target

3. Check whether the object is contained in camera view

4. Render virtual objects

We first capture the device latitude, longitude, and heading, and then calculate the

distance, azimuth, and inclination of the device and

the target. iPhone has built-in equipment enabling the sensing of six-degree-of-freedom

(6DOF), which means the movement of device of x, y, and z value in three-dimensional

26"
"

coordination system plus orientation in pitch, yaw, and roll, of the camera lens(See

Figure 3.10 (b)).

We first use the LocationManager API to retrieve the current location and camera

heading information. Secondly, we calibrate each object using current location; we

can get degrees of angle between two points with North Pole as pole and radial

coordinate by calculating the difference of latitude and longitude between two points.

Thirdly, we use the azimuth of the current location and the field of view of the camera to

calculate the viewport and further decide objects to render. Lastly, ALPO scales the size

of an object according to distance and render the object.

3.5.5 User Interface Render

 Although the iPhone has very complete UI libraries, there are still some UI elements

we need to customize such as the loading dialog, refreshing table header view, or

the badge view for indicating replies of comments. It would be too much work if we

needed to customize those UI elements from the existing iPhone SDK UI libraries.

Fortunately, there are some third-party libraries that achieve what we required.

We adopted the TapKu Library, which is an open source framework for iOS. The library

includes customized coverflow view, calendar view, line chart view, progress alert view,

and image, label, and button in table cells. We utilized the progress alert view

and badge view in ALPO. The progress alert view displays after the HTTP request is sent,

and before data parsing is finished. The badge view displays in the Comments view that

indicates the numbers of replies. ALPO displays refresh status and last-update timestamp.

27"
"

3.5.6 Yahoo Local Search Web Services

After discussing the concept of how Augmented Reality view works and how

AR is implemented through ALPO on iPhone, we are going to discuss the

implementations of functions we mentioned in 3.5 section. When the user executes a

search, the controller sends a request to the Yahoo API for the correspondingly searched

businesses. The Yahoo local web services API allows us to customize queries and the

response data format. For example, we can assign the number of results to be returned,

radius distance, latitude and longitude, route, and category. We can also sort the results,

omit category, format the output as xml, JSON, or php. Since JSON is

data-oriented while xml is document-oriented, JSON is more suitable for

data-interchange. JSON matches the data model of most object-oriented programming

languages.

3.5.7 HTTP Request

To make HTTP request, we adopt ASIHttpRequest library in this project.

ASIHttpRequest wraps the Objective-C framework CFNetwork API, a framework of

Objective-C that helps perform network tasks such as sockets, SSL, FTP, and Apple

Bonjour services that make the connection with web server easily and efficiently.

Background-threading is supported in iOS4, which is the first version that supports

multi-tasking, so the UI can be rendered while the network tasks are processing in the

background. Since we are targeting an iOS that have higher version than iPhone4, we

send the request asynchronously; while HTTP request and the response parsing is being

28"
"

performed in a background thread, ALPO shows a spinning wheel with the word

“Loading…” to present the application is processing the query. Once the parsing has

done, the Controller adds pins and annotations on the map view, updates the list view,

and removes the loading animation when finished.

3.5.8 JSON Parsing

We use JSONKit library to parse JSON format data. JSONKit library is

customized for Objective-C on iOS platforms. The library decodes JSON format and

maps to Objective-C foundation class. For example, null map to NSNull, boolean value

and number to NSNumber, string to NSString, array to NSArray, and Object to

NSDictionary. The object contains key value hash tables, associative arrays, and

dictionaries, of which the dictionary is used the most in ALPO. Users can view the details

of businesses by clicking items on the list view. The business data is stored in POIResult

Data Model introduced in Figure 3.3 and passed to business detail View Controller.

3.5.9 Image Loader

While we are doing the query for retrieving an Image Note, the response

data includes an image URL. We need to load those images in table view without

blocking the main thread, and cache the images data for future rendering. JSImageLoader

solves the loading time problem by returning DOM image objects from given URLs;

with image dynamically loaded, the client side can preload and render additional

29"
"

information at the mean while. It also speeds up the loading time by caching the image

data in a local file for future use.

3.6 Server Side

 After seeing the functional design of the application, let’s look at the database

design schema. We will also explain how we implemented the request processing and

database query on the server side.

3.6.1 Member

Since ALPO uses Facebook accounts to identify users, we collect the Facebook ID

for primary key in the member table and foreign key for other tables that we will discuss

in later sections. We retrieved the Facebook ID and personal info using FQL [6], which is

a SQL-style interface to query the Facebook data. After authentication, we retrieve

personal info, collect user’s information such as name and profile picture URL along with

the ID in the member table.

3.6.2 Points of Interest

For the Points of Interest feature, we do not keep the data in the database since it is

coming from Yahoo local search database. ALPO stored the IDs of businesses for the

purpose of saving and loading comments.

30"
"

3.6.3 Comments and Replies

Comment and Replies tables are for storing all messages from users. It has columns

for message owner, creation time, message content, and comment id for replies.

To retrieve the comments and replies, we first need to get the business_id, which is

the column name y_id in our tables. In this case, we will need information from three

tables: the user name from member table, all comments belonging to this business, and all

replies belong to selected comments. The query is as following:

SELECT c.y_id, c.c_id, c.comment, c.m_id, m.name AS CommentOwner,

c.comment_created, r.r_id, r.comment AS reply, r.created AS replyCreated,

mr.name AS replyOwner FROM comment c LEFT JOIN replies r ON c.c_id =

r.comment_id LEFT JOIN member m ON c.m_id = m.uid LEFT JOIN member mr ON

r.replies_owner = mr.uid WHERE c.y_id='".$yid."' ORDER BY c.comment_created

DESC

We first join the replies table to the comment table on Comment ID, and the

Member table left joins the generated table by Member ID. Then we order the results

descended by Comment’s creation date.

3.6.4 Favorites

For the favorite function, to get better performance, we pre-load all favorites

associated with the current user so that we can filter the needed information in a short

31"
"

time. The favorite table only has two attributes: member_id and yahoo id. Since we can

always do a query to Yahoo database to retrieve business information, we only store

Yahoo ID.

3.6.5 Image Notes

The second main component in ALPO is the Image Note. There are several ways to

store images in MySQL those are listed below:

• Using blob column type that images stores in binary mode

• Using longtext column type that images encode with base64 schema and

stores as string

• Store the image locally in filesystem and store URL in image_url column

We used the third method after experimenting with all methods. The first two

methods are not efficient in this project. Binary Large Object (BLOB) type is a field type

for storing binary data and UIImage class is used to capture images stored on iPhone.

To convert the UIImage to BLOB, we first need to compress the UIImage into JPEG or

PNG file format using API, which can take a few seconds. We then cast the file to

NSData class type, which can be posted via HTTP request method. After we get the

image data on the server side, we format the binary data for insertion. When

we need to retrieve the image data, we use the reverse steps to get images displayed on

the client side. The upload process takes up to a minute but not vice versa. When the data

32"
"

volume goes up, then the entire processing time to pull all image data grows painfully

long too. For the second method, the steps for uploading/downloading are similar to

the previous one we discussed except the image is encoded with base64 schema and then

stored in the table as a longtext type. This takes longer for both uploading and

downloading images due to data transmission in string type. The downloading

transmission time statistics comparison is presented in the experiments section. After

considering the timing factor, we decided to upload the image to server and then save the

URL in the database to speed-up the data transmission. We have a folder on the

server-side to keep all uploaded images, the client-side only post values and images with

MIME type. The PHP code on the server side stores the image information along with

stored image URL. The Note table stores all details corresponding to the image,

beginning date, expiration date, shared group, and note URL.

Figure 3.16. Database schema

replies.comment_id
comment.c_id

replies.replies_own
er
member.uid

note.owner_id
member.uid

memberFav.m_id
member.uid

comment.m_id
member.uid

33"
"

3.6.6 Mobile Phone Server Application

 The ALPO project is separated into three parts: database, server, and client. On the

server side, we use PHP to act as a bridge between the database and mobile device

(client). The client-side uses POST request to submit data to the server, the server then

collect inputs in $_POST variables and execute corresponding queries. The response data

from server side strips off all unnecessary information to lighten the load on clients, due

to the hardware limitation on the client side. Multi-table queries are used to achieve this

goal. After the query results are obtained, PHP encodes the result using json_encode

function and returns it to the client side. There are seven PHP classes listed below, on the

server side to handle the request:

• Uploader - takes the image data and corresponding information and store in Note

table

• AddComment - takes user ID, message, and Business ID as inputs and insert record

into Comment table

• AddReply - takes user ID, message, comment ID as inputs and insert record into

Replies table

• AddFavorite – takes user ID and Yahoo ID as inputs and insert record into

memberFav table

• GetFavorites – takes userID as input and returns favorites encoded results in

JSON type

34"
"

• GetNotes – takes user ID as the only input and returns notes encoded results in

JSON type

• RegisterMember – takes user ID, name, and picture URL as inputs and insert

ignore record into RegisterMember

35"
"

4.0 Experiments

 In this section, we will conduct experiments for libraries selections and

Augmented Reality View computation.

4.1. Libraries Selection

 We have mentioned earlier in design and implementation challenge section that

there are many open-source and public third-party APIs for iOS development. Many of

them have similar functions and targets with different approaches. Each of them may suit

different situations, such as iOS version, device family, or data type.

4.1.1 Point of Interest Local Search Library

 There are several public Points of Interest data libraries, such as Open Street Map

(OSM), Yelp, and Yahoo. OSM is an open-source map whose most data comes from

GPS devices, aerial photography, and user uploads. OSM has the richest database among

three libraries, and it consists of global Points of Interest [7]. The disadvantage of OSM is

the information is insufficient. Many business phone numbers ae missing, business

categories are limited. Yelp and Yahoo local search web services allow users to

search detailed complete business data in real-time by giving name or location

information (this can be an address, zip code, or the latitude and longitude), but both

databases are limited to United States businesses. Yelp has its own iOS SDK, which is

easy to integrate, but it has strict guidelines to follow, such as request amount limits, user

interface design-style, link requirement to the Yelp website, and users must log in to

36"
"

leave comments [8]. ALPO targets users in the United States and fully controls the

layouts design style and allow users to share comments without needing to create another

Yelp account. ALPO adopted the Yahoo local search web services after evaluation.

 For testing the Open Street Map library, we first needed to find an existing APIs for

querying OSM data. For example, Xapi, MapScript, and CloudMade. CloudMade was the

most complete API and had the best documentation among them. Further,

free form address and POI search features will be supported soon. The CloudMade

website provides different data types created and extracted from OSM map data. We

chose GPX files for testing. GPX, means the GPS Exchange Format. It is XML data

format for exchange GPS data such as waypoints and routes between applications and

web services. To store GPX data in out database, we first parsed the node element and

then converted to SQL insert statements. There was two reasons that we ended up with

doing it this way: The first one is the data only includes the name, category, latitude, and

longitude of the business, which was not enough for our purpose. Secondly, the data itself

was scattered and incomplete in that some states had extremely limited data in both

quality and quantity.

 The Yelp developer API is well-documented, and the input and output data types

are adaptable. We can pass word, numbers, filters, bound box, and locations for input

parameters. Each business also has precise detail information. There are two reasons why

we decide not to Yelp API. First, Yelp requires branding and linking to Yelp that restricts

the way user interface displayed. Secondly, Yelp requires users need to register to leave

comments that against our goal for Single Sign-On.

37"
"

4.1.2 JSON Parse Library

There are several options for JSON parsing frameworks, such as YAJL, json-framework,

Touch JSON, and JSONKit. We only tested the json-framework and JSONKit for parsing

time and import complexity. The json-framework is the oldest and follows the

JSON protocol strictly. It also has the biggest (and so slowest to download) library. The

json-frameowork, which is adopted by the Facebook iOS API, provides a parsing

interface that allows one to specify the configuration parsing depth. This allows

developers to parse large JSON structures without going too deep. In ALPO, the

JSON structures are fairly straightforward –they only have two levels. We adopted

JSONKit for ALPO. JSONKit is a lightweight library that has an easy to use API. To

import the JSONKit library, developers only need to add JSONKit.h and JSONKit.m to

do the project. The parsing speed is faster than json-framework in our case since the

JSON structure is straightforward.

4.1.3 Image Recognition and Visual Search

 At some point in the ALPO project, we were planning to have an image recognition

feature. Using image recognition, a user can enter the details themselves or allow the

image recognition tool to identify the image object and details for them. IQEngines

provides free limited API for developers, and they offer an easy way for mobile

developers to integrate visual search into mobile applications. There are two ways

to identify objects in IQEngine, one is using computer vision and the other one uses

human Crowdsourcing. When the engine receives a request, the Computer Vision module

38"
"

identifies the key visual content in the scene. This takes a few seconds. Since this is

based on existing data, there is the possibility that the image is not in the database. If the

system cannot get an accurate result, the engine sends the image

to human CrowdSourcing modules that using real people to identify images [9]. This may

take minutes to complete. We experimented on several objects, such as flyers, mugs,

furniture, books, and electronic products. It took one to two minutes to get the result back,

and a few of them were not accurate. The reason for the lengthy processing time

and inaccurate results was because IQEngine had just started their service and its dataset

was small. After many experiments, we decided to make ALPO simpler, and users will

need to enter the title and comments manually.

4.2 Image Storing Method

 We have mentioned earlier in Section 3.6.5 that there are three ways to store images

in the database. We have compared the download time for each method by recording time

intervals between requests sent and responses received. Looking at Figure 4.1 and Table

1, it is evident that the transmission time for Blob and Longtext is considerably longer

than the time of URL.

39"
"

Figure 4.1 Image transmission time chart

 5 10 15 20(Images)

Blob 7.68 11.183 13.937 16.359(s)
LongText 12.014 13.338 20.233 23.169(s)
URL 0.253 0.266 0.216 0.272(s)

Table 1 Image transmission time comparisons

4.3 Testing

 We will now describe the usability and functionality tests we conducted for our app.

We designed several scenarios and asked three users to complete them without any help.

The scenarios are listed in the first column of Table 3. We recorded their Facebook, Yelp,

and Google map use habits (See Table 2).

 User A User B User C
Facebook ✗ ✓ ✓
Yelp ✓ ✓ ✗
Google Map ✓ ✓ ✗
Total 2 3 1

Table 2 Users’ knowledge for mobile applications

40"
"

We also recorded the number of attempts it took for the users to complete the task (See

Table 3).

Tasks User A User B User C Total
 Fail Useful Fail Useful Fail Useful Failed Useful

Image Note List 0 ✓ 0 ✓ 0 ✓ 0 3
Note Details 0 ✓ 0 ✓ 0 Δ 0 2
Add Note 0 ✓ 0 ✓ 0 ✓ 0 3
Assign Note Privilege 1 ✓ 0 ✓ 0 Δ 3 2
Assign Existence time 0 ✓ 0 Δ 0 ✓ 0 2
Search Business 0 ✓ 0 ✓ 0 ✓ 0 3
View Business Detail 0 ✓ 0 ✓ 0 ✓ 0 3
Navigate to Business 1 ✓ 0 ✓ 0 ✓ 6 3
Turn-by-turn lists 2 ✓ 1 ✓ 1 ✓ 3 3
Call Business 0 ✓ 0 ✓ 0 ✓ 1 3
View Comments 0 ✓ 0 ✓ 0 ✓ 0 3
Leave Comments 0 ✓ 0 ✓ 0 ✓ 0 3
Reply Comments 2 Δ 1 ✓ 1 ✓ 3 2
Add/Delete Favorites 1 ✓ 0 ✓ 0 ✓ 1 3
Record Car Location 1 ✓ 1 ✓ 1 ✓ 2 3
Navigate to Car 1 ✓ 0 ✓ 2 ✓ 3 3
Shortcut Search 2 ✓ 1 ✓ 3 Δ 6 2
Augmented Reality View 0 ✓ 0 Δ 1 ✓ 2 2
Virtual Object details 2 ✓ 2 Δ 3 ✓ 7 2
Total 13 15 6 16 12 13 51/57

Table 3 Learning times and usability questionnaire

From the two tables, we can see that if the users were already familiar with the

activity provided by applications from Table 2, then they did better on corresponding

tasks in our application. Users with more experience on social networks and map tools

seemed comfortable with our application. We combined the failure rate with the

usefulness rating of each task to arrive at the final score.

41"
"

 In the “Useful” column, we add 1 point if the user thinks the function is useful

(with ✓ symbol), 0 points if the function is optional (with Δ symbol), and -1 point if the

user thinks the function is unnecessary (with ✗ symbol). Overall satisfaction was 89% or

51/57 points, which proves that ALPO is a very useful application. From this testing we

learned how users felt and what they expect from ALPO, so that we can make future

improvements.

42"
"

5.0 Conclusion

ALPO is an iPhone application that implements useful functionality from existing

social networks to help people get information to help them with their daily life such

as business search, navigation, comments and replies, favorites, image notes, and

Augmented-Reality view. By combining Yelp’s business list info feature and

social network information from Facebook in our service, users can share daily life with

friends and indirectly help friends with suggestions on business.

To create ALPO, we overcame the following challenges: hardware limitations, low

bandwidth, threading, misuse library, and lower performance.

 There are still some features that are not implemented presently. To make

this application more attractive and functional, I will add the following features in the

future:

 People rely on post-it notes to remind them of things like buying diapers, and

depositing checks. This same reminder can be integrated into the business search function.

By doing a search, the items in the reminder list that relate to the search item will show in

an alert. For example, if a user puts “buy milk” in their reminder list, when they search

for stores like “Walmart”, an alert will pop up reminding them to “buy mill”.

 For the Map View part, the ratings are not visible. For future enhancements, we can

scale the pins according to the ratings or use different colors to represent the reputation of

the business. We should incorporate the walking and biking mode to fit different needs,

since it supports only car mode. The CloudMade API includes geo-based advertisement

services that can display a coupon banner on the bottom of Map View. For the directions,

43"
"

we can add multi-routing functions so that users can add multiple destinations without

changing the destination over and over. The last function we want to add to ALPO is just

for fun. The icon for taking users to the car button should be customizable so that users

can upload a photo of their own car.

44"
"

References

[1] iphones. (2011, 11 10). Retrieved from http://en.wikipedia.org/wiki/IPhone

[2] Apple reveals most downloaded iphone, ipad apps of all time. (2011, 01 09). Retrieved
from
http://www.networkworld.com/news/2011/011911-apple-appstore-iphone-ipad-download
s.html

[3] Wales, J. (n.d.). http://en.wikipedia.org/wiki/facebook. Retrieved from
http://en.wikipedia.org/wiki/Facebook

[4] Geocoding and geosearch. (n.d.). Retrieved from
http://developers.cloudmade.com/projects/show/geocoding-http-api

[5] ios 5: Understanding location services. (2011, 10 25). Retrieved from
http://support.apple.com/kb/HT4995

[6] Facebook query language (fql). (n.d.). Retrieved from
http://developers.facebook.com/docs/reference/fql/

[7] Openstreetmap. (n.d.). Retrieved from http://www.openstreetmap.org/

[8] Api 1.0: Overview. (n.d.). Retrieved from
http://www.yelp.com/developers/documentation

[9] Iq engines: Image recognition platform. (n.d.). Retrieved from
http://www.iqengines.com/

The following papers provide thoughtful insights for augmented reality:

Ebling, Maria R.; Cáceres, Ramón; , "Gaming and Augmented Reality Come to
Location-Based Services," Pervasive Computing, IEEE , vol.9, no.1, pp.5-6, Jan.-March
2010 doi: 10.1109/MPRV.2010.5
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5370800&isnumber=53
70796

45"
"

Jongbae Kim; Heesung Jun; , "Vision-based location positioning using augmented reality
for indoor navigation," Consumer Electronics, IEEE Transactions on , vol.54, no.3,
pp.954-962, August 2008
doi: 10.1109/TCE.2008.4637573
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4637573&isnumber=46
37567

Chang, W.; Qing Tan; , "Augmented Reality System Design and Scenario Study for
Location-Based Adaptive Mobile Learning," Computational Science and Engineering
(CSE), 2010 IEEE 13th International Conference on , vol., no., pp.20-27, 11-13 Dec.
2010
doi: 10.1109/CSE.2010.66
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5692452&isnumber=56
92448

Paucher, R.; Turk, M.; , "Location-based augmented reality on mobile
phones," Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE
Computer Society Conference on , vol., no., pp.9-16, 13-18 June 2010
doi: 10.1109/CVPRW.2010.5543249
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5543249&isnumber=55
43135

Chang, W.; Qing Tan; Fang Wei Tao; , "Multi-Object Oriented Augmented Reality for
Location-Based Adaptive Mobile Learning," Advanced Learning Technologies (ICALT),
2010 IEEE 10th International Conference on , vol., no., pp.450-451, 5-7 July 2010
doi: 10.1109/ICALT.2010.130
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5573236&isnumber=55
71093

	AUGMENTED-LIFE PHONE ORGANIZER
	Recommended Citation

	Microsoft Word - CS298_ALPO_Shih.doc

