
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 2011

N-Grams Assisted Long Web Search Query Optimization N-Grams Assisted Long Web Search Query Optimization

Jehann Kersi Irani
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Irani, Jehann Kersi, "N-Grams Assisted Long Web Search Query Optimization" (2011). Master's Projects.
211.
DOI: https://doi.org/10.31979/etd.t6km-tezz
https://scholarworks.sjsu.edu/etd_projects/211

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/211?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

 1

N-Grams Assisted Long Web Search
Query Optimization

A Project Report

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

Of the Requirements for the Degree

Master of Computer Science

By

Jehaan Kersi Irani

December 2011

 2

© 2011

Jehaan Kersi Irani

ALL RIGHTS RESERVED

 3

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Teng Moh

Dr. Mark Stamp

Mr. Uzair Ali

APPROVED FOR THE UNIVERSITY

 4

ABSTRACT

N-Grams Assisted Long Web Search Query Optimization

By Jehaan Kersi Irani
Commercial search engines do not return optimal search results when the query is a long or multi-topic

one [1]. Long queries are used extensively. While the creator of the long query would most likely use

natural language to describe the query, it contains extra information. This information dilutes the results

of a web search, and hence decreases the performance as well as quality of the results returned.

Kumaran et al. [22] showed that shorter queries extracted from longer user generated queries are more

effective for ad-hoc retrieval. Hence reducing these queries by removing extra terms, the quality of the

search results can be improved. There are numerous approaches used to address this shortfall. Our

approach evaluates various versions of the query, thus trying to find the optimal one. This variation is

achieved by reducing the query length using a combination of n-grams assisted query selection as well

as a random keyword combination generator.

We look at existing approaches and try to improve upon them. We propose a hybrid model that tries to

address the shortfalls of an existing technique by incorporating established methods along with new

ideas. We use the existing models and plug in information with the help of n-grams as well as

randomization to improve the overall performance while keeping any overhead calculations in check.

 5

Acknowledgement

The author is deeply indebted to Dr. Teng Moh for his invaluable knowledge and guidance in the course

of this study.

 6

Table of Contents
Introduction 9

Related Work 10

Technologies and Projects used 11

The Clue Web 09 dataset 11

REST Services 12

Microsoft Web N-Gram Service (Public Beta) N-grams data 14

The Lemur Project 15

Indri Project 17

Indri Build Index 19

Query Clarity with retrieval 22

Retrieval User interface (RetUI) 24

The Experiment 26

Technique 26

The Original Approach 26

Our Approach 30

Implementation 31

Benchmarking and results 32

Conclusion 38

Future Scope 39

References 40

Appendix A: Code Snippets 42

 7

List of Figures

Figure 1: Indri index build setup

Figure 2: Indri indexing in progress

Figure 3: Indices created by Indri for search and other retrieval-based applications

Figure 4: Sample Indri indexing parameters

Figure 5: Sample Clarity Parameters

Figure 6: Indri retrieval user interface (index selection phase)

Figure 7: Example of retrieval using Indri’s retrieval user interface

Figure 8: Sample parameters used for retrieval in non GUI mode

Figure 9 (a): Average Gain

Figure 9(b): Max Gain

Figure 9(c): Original versus Gains

Figure 10: Sample data structures used

Figure 11: Microsoft’s n-gram web service connection class

Figure 12: String Functions used

Figure 13: Code snippet showing original concept implementation

Figure 14: Code snippet showing our implementation

 8

List of Tables

Table 1: TREC-Crowd11 Dataset Stats

Table 2: Sample Soap Request

Table 3: Sample Soap Response

Table 4: Lemur Features

Table 5: Indri Features

Table 6: IndriBuildIndex Parameters

Table 7: Query Clarity with retrieval parameters

Table 8: Results

 9

Introduction

Year over year, a growing number of users are opting for long queries over one and two word search

queries [23]. Commercial keyword based search engines, like Google, perform worse with long queries

than short ones [1]. Long queries are usually expressed using natural language text, instead of keywords

[1]. Due to this limitation on query length, significant improvements in search query performance can be

achieved by reducing the length of the query.

While the utilization of single word queries has dropped by 3% [8], queries of length five words or more

have increased at a year over year rate of 10% [2]. In the past there have been many works trying to

improve upon the original queries by either re-weighting or reducing the original query. The

fundamental driving these approaches is that shorter queries perform better than longer ones.

In this report we propose a hybrid concept that builds upon an existing query reduction method. We re-

create the query, by trying to capture what the original user generated query intended to. We achieve

this by dropping terms that might be unnecessary, thus reducing the length of the query. Dropping a

single correct term (a term that dilutes the search results instead of making a positive contribution) can

vastly improve query performance [2].

As an example consider the query “My friend would like to know the distance between the Earth and

the Sun” Dropping the words “My friend would like to know the” and leaving “distance between the

Earth and the Sun” would improve the performance of this query.

Finding the correct terms to be dropped is the challenge. Consider a query of length n. An existing

approach considers all n sub-queries of length n-1 [2]. This method can yield significant gains. But due to

the limited pool of sub-queries (of length n-1), performance gains are limited. The performance can be

vastly improved by increasing this sample space of sub-queries. But due to the exponential number of

sub-queries that could be selected (2n-1 combinations); it becomes impractical to consider all, especially

for web search where retrieval time is as critical as the retrieval quality.

Hence we look at ways to optimize sub-query consideration, while still maintaining linear time

complexity. We propose a hybrid model that considers not only all sub-queries of length n-1 but also

more. We first try to select the best possible sub-queries of lengths 1 to 5 using n-grams. For the

remaining (from lengths 6 to n-2) we randomly select a sub-query from each length category. Then

finally we select all the possible n-1 combinations as well as the original query. Using this approach we

find that our results on an average improve by about 4 times compared to the approach followed by

Kumaran et al. [2]. Moreover, queries in which further improvements are not possible our approach

returns results identical to the approach referenced above in [2]. Improvements are judged by the

predicted quality of the sub-query selected, which would thus result in optimal search results.

 10

Related Work

There are three main approaches used to improve the quality of search results by finding the optimal

query based on the original query. They are query segmentation, query substitution and query

reduction.

Query segmentation is a technique that segments queries into concepts, and thus search engines

retrieve web documents based on the concepts but not tokens [24]. Mutual information based

approach was used by Jones et al. to determine segment breaks between pairs of tokens [25]. Tan and

Peng’s unsupervised machine learning approach tried to discover the underlying concepts of a query

based on a generative language model [26]. Since the key concepts are identified, this greatly improves

the retrieval performance for long queries [1]. But since segmentation treats all query concepts equally,

the focus on key concepts is lost thus degrading long query effectiveness [1].

Query substitution is the replacement of long queries by short relevant keyword based ones [1].
Although this improves the retrieval performance of long search queries, diverse results as well as
neighboring information may be obtained as it may ignore contexts from the original long query [1].
Yan Chen et al. [1] proposed the substitution -search result refinement algorithm that would filter non-
relevant results, by evaluating the similarities of contexts from the results obtained and the results from
the original query. However, this method is not ad-hoc query friendly.

Query reduction is a technique that eliminates noisy and redundant terms from long queries [1]. This is
done by extracting key concepts using underlying retrieval models [1]. Carvalho, et al. [2] approached
the query reduction problem by considering the effectiveness of a ranking function that scores
documents with respect to a query so as to optimize a target measure. Such a measure is an estimate
since it cannot be completely specified for every possible query. They suggested performance predictors
such as Clarity [7] or Query Scope [10] to obtain the estimates for this target measure.
Since the number of reduced queries that need to be evaluated is exponential, it is not feasible to

evaluate all the possible combinations, especially in a web environment setting (for search). Hence,

query reduction is carried out based on a reduced set of sub-queries. Considering the original query had

n words, they only consider n reduced versions, plus the original query. As stated earlier, this approach

yields dramatic performance improvements in certain cases [2].

Kumaran et al. observed that on an average the reduced versions were less effective than the original

queries’ effectiveness. Also, the maximum gains that could be achieved, considering the best possible

reduced version of the query is selected, were positive. And lastly, if the original query has poor

performance, the reduced versions were more likely to be better than the original query. Conversely, it

was difficult to find reduced versions of queries that had high performing original forms. We pursue

improvement in the query reduction approach as described by Kumaran et al. [2].

 11

Technologies and Projects used

The Clue Web 09 dataset
The Clue Web 09 dataset was created to support the research on information retrieval and related

human language technologies and consists of about a billion web pages in ten languages [3].

The dataset is used by several tracks of the TREC conference [14]. The subset used for this experiment is

the TREC 2011 Crowd sourcing Track (TREC-Crowd11). This track contains pages from the TREC 2010

Relevance Feedback, pooled documents submitted by RF participants, TREC 2009 Relevance Feedback

and Web Million Query Track [14].

Unique topics
217 topics

Topic-docno pairs
19829

Unique topic-docno pairs
19636

Images present
Jpg: 18512

Images missing
Jpg: 1124

Pdf files present
17243

Pdf files missing
2393

Plain text files present
19636

Unique wget’d pages
19636

Table 1: TREC-Crowd11 Dataset Stats
Source: TREC-Crowd11 Readme file [14]

From Table 1 we see that this dataset has 217 unique topics, which result in about 19636 unique topic

document pairs. This gives us a large enough dataset to experiment with. In our search we only index

the html files ignoring images, plain text, pdf and other files. We do this as we are only interested in

indexing the text between specific tags like body, title etc. This way we can get enough data to build an

index as well as filter out information that may not be very relevant. The complete dataset is about 19

GB in size. The datasets are distributed by Carnegie Mellon University for research purposes only [3].

The ClueWeb09-T11 (TREC-2011 Crowdsourcing dataset is available free of charge as a web download

only [3].

 12

REST Services

REST or Representational state transfer is an architectural style, based on the existing design of

HTTP/1.0 [15]. It consists of clients and servers. The clients initiate their requests and the servers

process these requests, giving appropriate responses in return [15]. Information transferred is a

representation of a resource which is essentially a document that captures the current or intended state

of a resource [15]. It relies on a stateless client-server cacheable communications protocol and in most

cases that protocol is HTTP [16].

REST, though initially described in the context of HTTP, is not limited to it. RESTful applications maximize

the use of the pre-existing, well-defined interface and other built-in capabilities provided by the chosen

network protocol and minimize the addition of new application-specific features on top of it [15]. As an

example, the World Wide Web can be viewed as a REST-based architecture [15].

REST is a lightweight alternative to mechanisms like RPC (Remote Procedure Calls) and Web Services

(SOAP, WSDL, etc.) [16]. REST is also fully featured. It encompasses all the capabilities of other web

based service architectures. REST when used over HTTP, simplifies communication between machines

when compared to other complex mechanisms like CORBA, SOAP, etc. [16].

REST services are platform-independent, as well as language-independent. REST offers no built-in

security features, encryption, session management, QoS guarantees, etc. but these can be added by

building on top of HTTP [16]. For example, for encryption, the REST can be used on top of HTTPS.

Consider the following example to understand the difference between REST and Web Services /SOAP.

The SOAP request would look like:

<? xml version="1.0"?>
<soap: Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
 <soap:body pb="http://www.acme.com/phonebook">
 <pb:GetUserDetails>
 <pb:UserID>12345</pb:UserID>
 </pb:GetUserDetails>
 </soap:Body>
</soap: Envelope>
The REST request would look like :
http://www.acme.com/phonebook/UserDetails/12345

Table 2: Sample Soap Request
Source: http://rest.elkstein.org/ [16]

 13

A server response in REST is often an XML file. For example consider:

<parts-list>
 <part id="3322">
 <name>ACME Boomerang</name>
 <desc>
 Used by Coyote in <i>Zoom at the Top</i>, 1962
 </desc>
 <price currency="usd" quantity="1">17.32</price>
 <uri>http://www.acme.com/parts/3322</uri>
 </part>
 <part id="783">
 <name>ACME Dehydrated Boulders</name>
 <desc>
 Used by Coyote in <i>Scrambled Aches</i>, 1957
 </desc>
 <price currency="usd" quantity="pack">19.95</price>
 <uri>http://www.acme.com/parts/783</uri>
 </part>
</parts-list>

Table 3: Sample Soap Response
Source: http://rest.elkstein.org/ [16]

Other response formats like CSV, JSON (Java Script Object Notation) and plain text can also be used.

http://rest.elkstein.org/

 14

Microsoft Web N-Gram Service (Public Beta) N-grams data

An n-gram is a contiguous sequence of n-terms from a given sequence of text or speech [27]. An n-gram

of length 1 is called a unigram, of size 2 a bigram and of size 3 a trigram. N-grams of lengths 4 or more

are called as four-grams, five-grams and so on. They can be used to predict the next item in a sequence

based on statistics collected from the text corpus [27].

We use Microsoft’s n-gram service to predict the performance of sub-queries of lengths 1 to 5. For each

sub-query up to length 5 terms, we look up the joint probabilities of the set of words contained in the

sub-query. Using this score (joint probability) we select the reduced query with the highest score from

each length segment.

This service provides access to petabytes of data via public beta web n-gram Services [11]. These

services are hosted on a cloud based platform, highly useful in areas related to language processing,

speech and web- search [11]. This service provides access to specific content types like the document

body, title and anchor texts and supports smoothed models [11]. The available n-grams are unigram,

bigram, trigram, and n-grams with N=4, 5. The Bing en-us market is used to index the documents [11].

These services are hosted and updated by Microsoft. A user token is needed to access these services.

Microsoft Research issues this token.

These services can be invoked via SOAP or REST requests. For example a GET call on
http://web-ngram.research.microsoft.com/rest/lookup.svc/ would return a list of supported models in
path-form which can then be plugged into the various lookup methods.
The general format is http://web-ngram.research.microsoft.com/REST/lookup.svc/{catalog}/{version}/

{order}/ {operation}? {parameters}

The catalog determines the dataset to be queried, like the Bing-Body. The version identifier determines

the version of the dataset to be used. Jun09 is an example of a version. Order states the order of the n-

grams from one to five to be queried. The operation specifies the type of probability to return. The

choices for operation are conditional and joint probabilities. Other parameters include the user token

which uniquely identifies the user accessing the web service. This token is generated and distributed by

Microsoft Research. P is the phrase to be queried. The format of the result returned can be

specified as well. These could be JSON, text or xml. When no format is specified text is assumed.

 15

The Lemur Project

The Lemur Project, best known for its Indri search engine, Lemur Toolbar, and ClueWeb09 dataset, develops tools

to support research and development of information retrieval as well as text mining software [17]. Some of their

products include search engines, browser toolbars, text analysis tools, and data resources [17].

Their software development is based on the pillars of state-of-the-art accuracy, flexibility, and efficiency [17]. For

example Indri search engine provides search solutions as is and also stores data in a manner accessible to support

further development in the field of information retrieval [17].

The Lemur Project was begun by the Center for Intelligent Information Retrieval (CIIR) at the University

of Massachusetts, Amherst, and the Language Technologies Institute (LTI) at Carnegie Mellon University

[17].

The Lemur Toolkit is designed to facilitate research in language modeling and information retrieval (IR),

where IR is broadly interpreted to include such technologies as ad hoc and distributed retrieval with

structured queries, cross-language IR, summarization, filtering and categorization [5]. The system's

underlying architecture was built to support the technologies above [5].

 16

 Sophisticated structured query languages (using InQuery and Indri)

 Support for XML and structured document retrieval

 Used commonly with a wide range of research test collections (e.g., TREC CDs 1-5, wt10g, RCV1,
gov, gov2)

 Index your web pages with an "out-of-the-box" site search capability

 Interactive interfaces for Windows, Linux, and Web

 Distributed information retrieval and document clustering applications

 Cross-platform, fast and modular code written in C++

 C++, Java and C# APIs

 Free and open-source software

 In use for over 6 years by a large and growing user community

 Indexing

 Multiple indexing methods for small, medium and large-scale (terabyte) collections

 Built-in support for English, Chinese and Arabic text

 Porter and Krovetz word stemming

 Incremental indexing

 Out-of-the-box indexing support for TREC Text, TREC Web, plain text, HTML, XML, PDF, MBox,
Microsoft Word, and Microsoft PowerPoint

 Indexes inline and offset text annotations (e.g., part-of-speech and named entities)

 Indexes document attributes

 Retrieval

 Supports major language modeling approaches such as Indri and KL-divergence, as well as
vector space, tf.idf, Okapi and InQuery

 Relevance- and pseudo-relevance feedback

 Wildcard term expansion (using Indri)

 Passage and XML element retrieval

 Cross-lingual retrieval

 Smoothing via Dirichlet priors and Markov chains

 Supports arbitrary document priors (e.g., Page Rank, URL depth)

Table 4: Lemur Features
Source: http://lemurproject.org/lemur.php [13]

http://lemurproject.org/lemur.php

 17

Indri Project

Indri is a component of the Lemur Project. It is a text search engine, developed at UMass [18]. It is freely

available with a flexible BSD-inspired license [18]. The Indri search engine provides accurate search for

large text collections ‘out of the box’ [17]. It also stores the data in an accessible manner to support

development of new retrieval strategies [17].

 Powerful Query Interface
o Supports popular structured query operators from INQUERY
o Suffix-based wildcard term matching
o Field retrieval
o Passage retrieval

 Flexible Indexing and Document Support

o Supports UTF-8 encoded text
o Language independent tokenization of UTF-8 encoded documents.
o Parses PDF, HTML, XML, and TREC documents
o Word and PowerPoint parsing (Windows only)
o Text Annotations
o Document Metadata

 Package Versatility

o Open source, with a flexible BSD-inspired license
o Includes both command line tools and a Java user interface
o API can be used from Java, PHP, or C++
o Works on Windows, Linux, Solaris and Mac OS X

 Scalability and Efficiency

o Best-in-class ad hoc retrieval performance
o Can be used on a cluster of machines for faster indexing and retrieval
o Scales to terabyte-sized collections

Table 5: Indri Features
Source: http://www.lemurproject.org/indri.php [4]

http://www.lemurproject.org/indri.php

 18

Indri is built up of many sub applications.

IndriBuildIndex:

This application can build Indri repositories from various data sources [18]. The data sources include

TREC formatted documents, HTML documents, text documents, and PDF files [18]. On Windows it has

the added capability of indexing Word and PowerPoint documents [18]. The IndriBuildIndex understands

tags as well (like <head></head> in HTML documents) and hence can index by tags as well [18].

IndriRunQuery:

This application evaluates queries and returns a ranked list of documents [18]. These queries are

evaluated against one or more Indri repositories [18]. For passage retrieval queries, Indri can be

instructed to print the document text as well [18].

IndriDaemon:

This application is a repository server. It awaits connections from the IndriRunQuery instances and

processes queries that come as network requests [18]. An instance of IndriRunQuery can connect to

multiple IndriDaemon instances concurrently [18]. This makes retrieval using a cluster of machines

possible [18].

 19

Indri Build Index
This application builds the index for a collection of documents to be used by other applications.

index Name of the index table-of-content file without
the extension. Use full path information here to
use index later from other directories. i.e.
/lemur/indexes/myindex

indexType The type of the index you want to build.
key for KeyfileIncIndex (.key)
indri for IndriIndex (.ind)

memory Memory (in bytes) to pre-allocate (def =
96000000)

Stopwords Name of file containing the stopword list.

Acronyms Name of file containing the acronym list, currently
not supported by IndriIndex. These acronyms will
still be indexed in lowercase by IndriIndex.

countStopWords If true, count stopwords in document length.

docFormat  TREC for standard TREC formatted
documents.

 web for web TREC formatted documents.

 Chinese for segmented Chinese text (TREC
format, GB encoding) .

 chinesechar for unsegmented Chinese text
(TREC format, GB encoding) .

 arabic for Arabic text (TREC format,
Windows CP1256 encoding) .

Stemmer  porter: Porter stemmer.

 Krovetz: Krovetz stemmer.

 Arabic: arabic stemmer, requires
additional parameters.

 arabicStemDir: Path to directory of
data files used by the Arabic stemmers.

 arabicStemFunc: Which stemming
algorithm to apply, one of:

 arabic_stop : arabic_stop.

 arabic_norm2 : table normalization.

 arabic_norm2_stop : table normalization
with stopping.

 arabic_light10 : light9 plus ll prefix.

 arabic_light10_stop : light10 and remove
stop words.

dataFiles Name of file containing list of data files to index.
Table 6: IndriBuildIndex Parameters
Source: http://www.lemurproject.org/lemur/indexing.php [12]

http://www.lemurproject.org/lemur/indexing.php

 20

Figure 1: Indri Index build setup

Figure 2: Indri indexing in progress

 21

Figure 3: Indices created by Indri for search and other retrieval -based applications.

Figure 4: Sample Indri indexing parameters

 22

Query Clarity with retrieval

Clarity scores measure the ambiguity of a query with respect to the collection of documents and show

that they correlate positively with average precision in a variety of TREC test sets [20]. Query Clarity with

retrieval computes clarity scores for an expanded query model [6]. The calculation is based on pseudo-

feedback documents [6]. Clarity scores are calculated for the entire query as well as each individual term

within the query [6].

Index The complete name of the index table-of-content file for the database
index.

smoothSupportFile The name of the smoothing support file (e.g., one generated by
GenerateSmoothSupport).

textQuery The original query text stream.

expandedQuery The file to store the query clarity scores.

feedbackDocCount The number of docs to use for pseudo-feedback. If not specified or 0, the
value defaults to 500.

queryUpdateMethod Feedback method, one of:

 mixture or mix or 0 for mixture.

 divmin or div or 1 for div min.

 markovchain or mc or 2 for markov chain.

 relevancemodel1 or rm1 or 3 for relevance model 1.

 relevancemodel2 or rm2 or 4 for relevance model 2.

For all interpolation-based approaches

feedbackCoefficient The coefficient of the feedback model for interpolation. The value is in
[0,1], with 0 meaning using only the original model (thus no
updating/feedback) and 1 meaning using only the feedback model (thus
ignoring the original model).

feedbackTermCount Truncate the feedback model to no more than a given number of
words/terms.

feedbackProbThresh Truncate the feedback model to include only words with a probability
higher than this threshold. Default value: 0.001.

feedbackProbSumThresh Truncate the feedback model until the sum of the probability of the
included words reaches this threshold. Default value: 1.

feedbackMixtureNoise  For the collection mixture model method,
feedbackMixtureNoise is the collection model selection
probability in the mixture model. That is, with this probability, a
word is picked according to the collection language model, when a
feedback document is "generated".

 For the divergence minimization method,
feedbackMixtureNoise means the weight of the divergence
from the collection language model. (The higher it is, the farther
the estimated model is from the collection model).

 For the Markov chain method, feedbackMixtureNoise is the

 23

probability of not stopping, i.e., 1- alpha, where alpha is the
stopping probability while walking through the chain.

emIterations Maximum number of iterations the EM algorithm will run. Default: 50.

Table 7: Query Clarity with retrieval parameters
Source: http://www.lemurproject.org/doxygen/lemur/html/RetQueryClarity.html [6]

Figure 5: Sample Clarity Parameters

http://www.lemurproject.org/doxygen/lemur/html/RetQueryClarity.html

 24

Retrieval User interface (RetUI)

RetUI is a Graphical user interface based Indri retrieval application. Once a connection to the index or index server

is established, a query can be entered in the system following which a search can be performed. The number of

documents returned can be pre-set. The Database(s) list shows all open indexes and index servers. Indexes can be

easily added or removed via the file menu.

Figure 6: Indri Retrieval User Interface (index selection phase)

 25

Figure 7: Example of retrieval using Indri’s Retrieval User interface

Figure 8: Sample parameters used for retrieval in non GUI mode.

 26

The Experiment

Technique

Query reduction is one of the many approaches that can be used to optimize the search performance of

a query. As established earlier, the search retrieval performance is inversely proportional to the length

of the query. The longer the query the more specific it gets, and hence the number of results returned

by the search engine is reduced.

Query reduction – the technique of automatically identifying and removing extraneous terms from the

long queries- has proved to be an effective technique for improving performance on long queries [9].

The Original Approach

The authors Kumaran et al [2] approach reduction of long queries by dropping unnecessary terms and

hence improving performance of ad-hoc retrieval on TREC collections.

They proposed three learning formulations that combine query performance predictors to perform

automatic query reduction [2]. These formulations allow easy integration into the search engines

architecture for rank-time query reduction [2]. Their approach yields an approximate improvement of

more that 12% in NDCG@5 in the impacted set of queries and hence significantly outperforms the

original query [2]. This method delivers consistent retrieval gains in original queries that perform poorly

[2]. They approach reduction by dropping a single term at a time [2]. Their studies show that just

dropping a single and correct term from the original long query can result in a 26% improvement in

NDCG@5 [2].

They define the query reduction problem as:

Let f: P x D->R, denote a ranking function (R) that scores documents (D) with respect to a

query (P), represented as a set of query terms. Let Tf (P) denote a target measure of the

effectiveness of the ranking produced by function f for the query P [2].

The problem is to find the reduced version of P* such that the highest value for the target measure is

achieved as P*=arg max Tf(P) where P is a subset of Q [2]. Since this cannot be completely inferred over

all possible instances of sub queries, it is estimated [2]. Hence the task turns to maximizing the

estimated target measure. Query performance predictors like Clarity [7] or Query Scope [19] can be

used to estimate this target measure [2]. This would help select a near optimal reduced version P* of

the original query Q.

 27

Efficiency is a key challenge for reduction of queries. This is due to the exponential number of possible

sub queries to evaluate in order to yield the optimal sub set of query terms. This is critical especially for

web engines where response times are as critical as the quality of results returned. To address this issue

they present a simpler version of the problem. They consider reduced versions that only differ from the

original query by one term. They selected n sub-queries of length n-1 [2]. In this way they limited their

sample space and noticed improvements in search quality performance in some queries over the

original query.

From their experiments they noticed the following:

Figure 9 (a): Average Gain
Source : Kumaran et al [2]

Figure 9 (a) shows distribution of gain. It shows that on an average the reduced versions’ effectiveness is

worse than the original query’s effectiveness [2]. In other words the original query outperforms the

reduced versions on an average.

 28

Figure 9 (b): Max Gain
Source: Kumaran et al [2]

Figure 9 (b): The Maximum gains that can be achieved if the best-reduced version is selected are mostly

positive. Also for some queries the maximum gains are negative indicating that any reduction in the

query will result in decreased performance.

Figure 9 (c): Original versus Gains
Source: Kumaran et al [2]

 29

Lastly they noticed that if the original query had poor performance the reduced versions are more likely

to outperform the original [2]. Conversely it was hard to find a reduced version of a well performing

original query that could provide substantial gains [2].

Based on these observations they developed learning formulations.

Independent Prediction:

The performance of the original long query and its reduced versions is predicted independently. The

query with the highest performance is selected [2]. Thus the query selection problem is transformed

into selecting the query with the highest predicted performance [2].

Difference Prediction:

Since independent prediction does not encode the relationship between the original query and its

reduced versions, the difference in prediction between them needs to be considered to accurately

predict the effectiveness of the individual queries [2]. Hence the difference in performance between the

original long query and its reduced versions is predicted and the query with the highest performance is

selected [2].

Ranking Queries:

In this formulation the original query and its reduced versions are ranked in order to select the top

ranking query [2]. This is done by training on pair wise preferences between the queries [2].

Thresholding:

Thresholding limits the selection of a sub-query by specifying a certain minimal gain that has to be

achieved in order to be shortlisted for final selection.

 In independent prediction, a reduced version is selected only if the reduced version outperforms

the original query by a specified threshold [2].

 In difference prediction, the positive difference has to exceed a threshold in order for the

reduced version to be selected [2].

 For Ranking, the predicted performance of the top ranking reduced version must exceed the

original query’s predicted performance by the threshold specified [2].

 30

Our Approach

The approach as described by Kumaran et al has tradeoffs in terms of the number of queries affected

versus the overall average gains achieved by query reduction. The naïve approximation to the full scale

(exponential) query reduction problem substantially improves efficiency (exponential to linear), while

still providing significant effectiveness gains [2]. In the improved average performance, they noticed

high variance in the performance [2].

Hence we try to build upon their concepts, by increasing the pool of queries whose performance is to be

predicted as well as keeping the number of queries to be evaluated linear. We understand that while

the naïve approach would determine best results, is not feasible. But by considering more subsets of

queries the performance of the above approach can be improved.

Hence our aim was to improve the performance of the above approach by building upon their model.

Their baseline was the original query. Our baseline is their approach, and hence the improvements they

achieved. This way we guarantee the minimum performance what they already achieved as well as

improvements beyond, which in certain cases are very close to the ideal or best case.

We calculate the best case by considering all possible combinations of the given query and calculating

the clarity scores for each one and ranking them by their scores. Then we take the weighted average of

the top 5 queries from the ranked list.

 To increase the sample space of subset of queries we broke the queries up into 3 parts. For the subset

of queries with length one to five terms we used n-grams to evaluate and return only the top ranking

queries from each length segment. Then we considered queries of length six to n-2, which we selected

randomly. Lastly we selected all n possible sub queries of length n-1 and the original long query as

described by Kumaran et al.

Then using this subset of queries we calculated the clarity scores for each query. This would serve as a

score to understand to retrieval quality performance of the query. We then took the difference in clarity

scores between these reduced versions and their original version. By ranking these scores we could

compare the predicted performance of each query.

To obtain a metric for query performance, we considered the weighted average of the query clarity

scores by multiplying each query’s clarity score by the difference between its rank and the lowest

ranked query and then took the sum of all these values. For this we only considered the top 5 ranked

queries. Hence a single normalized metric was obtained to compare query document retrieval

performance which takes the ranking of the queries into consideration.

 31

Implementation

To start with the experiment we first loaded the data set. This was the TREC Crowdsourcing 2011 track.

We used Indri search engines IndriBuildIndex Application to build the index. This could be done by either

using the supplied GUI tool or using the command line. We used experimented with both approaches.

Once the dataset was indexed we ran trial queries using the IndriRetUI GUI tool, to understand indexing

performance and effect of the various parameters that can be set for indexing.

Once indexing was completed we ran Query Clarity on sample queries to understand how ambiguous

and unambiguous queries performed. Clarity was used as a measure to compare and hence judge the

performance of the queries generated. The original authors approach was replicated as accurately as

possible.

After replication of the original method we tried to see the difference in performance by understanding

the effect of n grams to select the optimal query. N-grams being indexed are quickly retrieved and

hence the performance overhead should be near negligible and hence relatively computationally

inexpensive.

Since the first five terms are selected using n-grams, the remaining sub queries are selected randomly

from length 6 to n-2. Then using the authors approach all the queries of length n-1 and n are selected.

We calculated the clarity score for each of the chosen sub queries and then ranked these queries by

their score. These tests were run about a 1000 times to understand the average performance of random

selection of sub queries.

 32

Benchmarking and results
We randomly selected 100 queries from the dataset that was indexed to benchmark the different

approaches. The authors approach scores at best a significant improvement over the original query and

worse case the same as the original query [2]. Our approach uses the authors approach as the baseline

and has a few scores closer to the ideal case. The ideal case scores as mentioned earlier are calculated

by ranking all the possible reduced versions in order to select the top 5 sub-queries for which the

weighted average of the Clarity scores would be calculated. The results of our benchmarking tests are :

Sr.

No. Query

Authors

Approach

Our

Approach Best Case

1

Professional web Hosting Service Provider

HSP and Corporate IT professionals 6.07143 21.51782 33.73132

2

find tons of cheap international travel

airlines and they can be found all over the

place 6.05855 6.43822 31.3861

3 airframe that became The Red Baron 5.56061 9.42546 19.59863

4

searchable in a variety of ways from price

to product type 4.635595 8.485841 35.71394

5

The Internet Definitive Buyers Services

Guide 7.61017 7.61017 35.40384

6

The best choice of cheap downloadable OEM

software is offered 11.56594 15.53296 40.94454

7

Finding the Best T1 Service Provider in Your

Area 2.27936 2.93455 16.78798

8

wedding entertainment professionals who

have entertained thousands of couples -0.25852 -0.10314 22.7893

9

DJ Spinelli Assoc is a professional Disc

Jockey 2.41148 2.42157 7.51011

10 planning your wedding is fun and easy 3.200196 20.45951 32.99578

11

The MinuteMan site has been online since

2002 2.50426 4.03769 55.63561

12

the NJ Environmental Digital Library Census

Bureau online mapping 1.40685 4.80456 27.37782

13

Major League Baseball selects the Adobe

Flash Platform 5.93864 26.4392 46.98035

 33

14

save an incredible amount of time and

effort 0.198724 12.571999 30.72971

15

Consolidate data from two or more data

sources into a data warehouse 0.17384 2.37894 27.158895

16

Flash Player bug and issue management

system is now available for use by external

users 2.11436 24.28304 48.87496

17

protects you from hackers phishing and

other online fraud 0.00122 0.00243 1.2941

18

do not have the correct Flash Player

installed 3.95951 14.88498 27.35322

19

If you use the Internet Explorer browser or

AOL you need 4.278315 22.032245 48.464915

20

OEMs to differentiate their handsets and

devices 2.74477 22.7155 29.72684

21

runtime lets developers use proven web

technologies -0.43894 12.25017 25.60872

22

only for purposes of achieving the

distribution described 1.125018 4.632321 11.57964

23

Inventions links of learned franklin

philosopher American 2.88241 8.91441 22.61704

24

barber shop carson daly ben harper

benchmarking ben jerry 0.46696 0.91797 3.55108

25

gained the recognition of scientists and

intellectuals across Europe 0.035952 0.695969 17.22355

26 worried about all the moving arrangements 1.99168 2.368 10.8209

27

Select from 165 Ben Franklin items

available to buy 1.77397 20.24482 30.62086

28 Ben Franklins Wit and Wisdom 2.48495 5.62292 11.83825

29 Highway 6 at the Lake Murray Dam in Irmo 1.88247 5.34145 30.65717

30 Glass containers are not allowed in the park 1.641058 13.104961 34.973295

31 I sell real estate in the Columbia area 0.30193 2.19788 32.84217

 34

32

Looking for the perfect gift to spark the

interest 0.504753 1.003977 21.20402

33 chairman of the Falmouth School Board 0.142199 7.719973 21.002735

34

Trout fishing is somewhat sporadic however

and actually 1.01262 9.87368 41.90773

35

Build a mini fire extinguisher and float a

soap 0.387849 12.799405 22.312555

36

suggest the rhythm played at the time

rivaled the tempo 0.712627 9.004548 20.722311

37

Professor Probenius is your chemistry

professor for CHEM 1.67967 1.67967 11.77977

38

current operating schedules and

announcements visit the COSD Water Dept 4.38881 7.477932 22.598615

39

I encourage all believers to give up the

shackles of faith 1.387086 7.032334 53.85263

40 The smallest particle of light is a photon 1.224286 6.118562 18.550834

41

The association uses donations to support

arts 5.394981 11.217877 33.238945

42

women who are in love can recognize their

partner -0.003938 14.590807 39.999595

43 The latest release of the Virtual Earth 0.07193 0.07717 30.08633

44

The Daily Mail is encouraging its readers to

buy the traditional non 0.79785 3.471969 50.45134

45

customers to search for more types of

mapping information 1.865478 17.80624 38.39073

46

mashups with an intuitive JavaScript

programming model 0.38099 3.67857 38.50879

47

imagery enhances our currently available

data by seeing 0.269676 2.956008 4.200583

48

UK government have signed up to an EU

decision 5.987756 46.01875 53.87314

49 natively be a premium content layer 2.567362 6.509855 31.614445

 35

50

MSDN technical article posted online

showing users how to authenticate -0.33698 24.83715 33.42506

51 see all the damage that has been done 0.310678 3.310625 8.501512

52

the only weather application that offers

looping radar 4.204547 7.521331 22.973245

53

the drug is intended to help people with a

rare hereditary 2.097099 5.127585 44.851695

54

Balance Board to talk to the program after

decoding the Bluetooth 2.19096 11.455997 45.61618

55

sexy applications that push the limits of

geospatial and Virtual Earth 0.67226 0.67226 62.62344

56

New Orleans area to show your insurance

adjuster 7.05535 22.06113 30.12247

57

for its athletic programs as well as its band

department 1.017211 11.951999 47.181005

58

East Ridge has gone to State Competition

for Concert Band 1.8574 17.7914 38.06548

59

online mapping service that enables users

to search 1.657023 15.710907 40.44724

60

Student enrolment at East Ridge High

School is currently 0.419911 12.063247 23.629185

61

Microsoft provides a staging environment to

test your application 3.03708 21.08689 31.19509

62

known for its athletic programs as well as

its band department -0.040917 8.094521 46.00286

63

A new director has be hired to oversee the

percussion section 1.29421 4.524457 48.35589

64 Lowest prices cheap prescription diet pills 6.03234 8.37805 21.83186

65

not meant to substitute for the advice

provided by your own physician 0.057815 1.965707 32.409165

66

Posted in Prescription online phentermine

no prescription 2.93088 5.21027 14.57121

 36

67 things running for fans around the country 0.485916 0.531482 7.392562

68

A statue to her memory stands in Slater

Park 2.63427 15.85733 30.11823

69 derrick car at the Clinchfield Railroad yard 1.14479 3.17069 17.24397

70

initial startup never had anything to do with

the military 1.332563 4.333282 25.910011

71 real estate virtual tour software service 1.46169 2.36188 16.55054

72

interfering with the absorption of certain

nutrients in consumed food 0.675537 0.684862 27.51389

73

includes a list of ships with the same or

similar names 0.646984 14.626586 45.89544

74 us presidents born in Massachusetts 0.54408 5.02678 6.93027

75 magic the gathering alpha black vice 0.46453 2.91722 18.65372

76 la times vice president public affairs 2.22008 5.1986 11.16651

77

evaluating a university vice presidential

candidate 0.96957 1.19297 16.11441

78

English speaking nations largely followed

either 7.60005 15.89927 25.50411

79

The fact that my two bikes are still going

strong 0.081327 0.814137 6.787198

80

hybrid electric vehicle manufactured by

Honda 2.84995 3.71631 31.71426

81

The raw data for Manhattan is aggregated

from the NYC 9.951521 12.728404 36.779025

82 Nixon was sick on the first televised debate 0.854173 5.859417 27.20089

83

transmission up and down arrows suggest

when to shift gears 4.294902 34.424209 48.634045

84

Diet pills aim to help overweight people to

curb their hunger 6.08813 6.33453 26.56056

85

report to Employment and Immigration

Minister Hector Goudreau 2.101119 20.6542 25.93064

 37

86

significant deceleration when used in

regenerative mode for braking 1.307598 17.22306 23.66421

87 vice president of arizona employers council 3.02186 4.0142 8.72438

88

lightweight aluminum structure to maximize

fuel efficiency and minimize 1.55047 11.67285 18.59682

89 history of president franklin roosevelt 6.56802 7.03426 14.77119

90

The story goes that the military version

could go 2.122865 4.312422 21.571245

91 has more than doubled in the last five years 1.346813 9.241467 23.44662

92

original factory new or used parts and

manufacture parts 0.3509 9.58925 16.51057

93

he benefit may be modest and the side

effects intolerable 1.897887 13.892916 28.397165

94

left so they sold them all to COMB

liquidation 0.145526 15.624767 26.404715

95 superb Naomi Campbell figure is all lined 1.493825 13.976042 24.044755

96

appointment with your doctor will serve this

purpose 3.584 4.918245 26.21529

97 Cathine is found in shrub Catha edulis 7.45465 19.17349 29.10425

98

may not reflect the actual production

season 1.7464 2.19081 6.06296

99

five closing themes in the Japanese

episodes 3.959086 11.247737 40.01236

100

Certain pills now under research and

development 0.26553 0.26553 21.76097

 Totals 233.048222 956.674474 2780.776101

Table 8: Results

From the above results table we see that on an average our method scores about 4 times better than

the original approach. Also worst-case performance is the same as the Author’s approach *2+. In many

instances we can see that our approach’s score is closer to the best case than our baseline *2+. This is

because we consider a greater sample space when compared to just the n-1 approach [2].

 38

Conclusion

In conclusion we would like to state that there is a vast scope for improvement in performance. Until

evaluations of all possible combinations are a feasible option, using predictors to do the same is

currently a good approach. This way, without extensive computation, the performance of a query can be

predicted. The prediction is only as good as its sample space. Hence keeping the sample space linear is a

trade off that dictates query performance (quality) vs. efficiency. Variations in query performance

indicate that we still lack predictors that can give consistent improvements in search results. Besides

that due to the closed nature of commercial search engines any sort of integration is built on an abstract

layer and is loosely coupled which reduces the optimizations possible with tighter integration.

Using n-grams to find out the optimal performing sub queries is still feasible as it is limited to queries of

length 5. Since n-grams are stored using directory structures their pre-computed joint and combined

probabilities could be referred in sub-linear to linear time.

Introducing Random selection to select subset of queries from length 6 to n-2 is an inexpensive way to

increase the sample space of sub-queries while leaving the possible options linear. Over time it also

averages out to an approximately constant end result while still leaving scope for improvement. This is

done without replacing the query in the query pool.

We used clarity score to understand the performance of the various methods. Clarity scores measure

the ambiguity of a query with respect to the collection of documents and show that they correlate

positively with average precision in a variety of TREC test sets [20]. In other words clarity scores can

assist could be used to identify the performance of a query without relevance information [20].

Hence we conclude that while we have found evidence of improved performance over the baseline

(original author’s approach *2+), better prediction methods could yield further improvements as well as

consistency in the results obtained.

 39

Future Scope

There is a significant potential for further improvement in the field of query optimization/ reduction.

Further enhancements could include utilizing n-grams to evaluate more than just a set of five terms at a

time. This could be done by merging two or more sub-queries with overlapping terms.

Utilizing the Apache shingle [21] with n-grams could further yield improvements in query analysis. By

utilizing better performing independent predictors more versions of the queries could be evaluated

concurrently thus yielding better search results with minimal impact on query performance (speed). We

could compare the performance (quality) of the retrieved results when the queries were collected using

even as well as uneven sampling.

Delving further into the applications of random selection of query subsets could also yield a favorable

improvement in query performance. But mostly consistency in the performance of the query needs

further analysis. The maximum gains are sometimes very close to those returned by the ideal set of sub-

queries, and yet at other times at par with our baseline, the original author’s approach [2].

The right set of performance predictors could improve the performance of our approach. Predictors,

which have low overhead and high accuracy, could lead to increased performance of ad-hoc query

retrieval.

 40

References

[1] Chen, Yan; Zhang, Yan-Qing; "A Query Substitution-Search Result Refinement Approach for Long

Query Web Searches," Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT '09.

IEEE/WIC/ACM International Joint Conferences on, vol.1, no., pp.245-251, 15-18 Sept. 2009

doi: 10.1109/WI-IAT.2009.42

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5286069&isnumber=5284878

[2] Niranjan Balasubramanian, Giridhar Kumaran, and Vitor R. Carvalho. 2010. Exploring reductions for

long web queries. In Proceeding of the 33rd international ACM SIGIR conference on Research and

development in information retrieval (SIGIR '10). ACM, New York, NY, USA, 571-578.

DOI=10.1145/1835449.1835545 http://doi.acm.org/10.1145/1835449.1835545

[3] The ClueWeb09 dataset information. Release Version: 1.0 (May 18, 2011) Authors: Mark D. Smucker

and Chandra Prakash Jethani Date: May 2011 URL: http://lemurproject.org/clueweb09.php/

[4] Indri is a search engine that provides state-of-the-art text search and a rich structured query

language for text collections of up to 50 million documents (single machine) or 500 million documents

(distributed search). Available for Linux, Solaris, Windows and Mac OSX. URL:

http://www.lemurproject.org/indri.php

[5] The Lemur Toolkit is designed to facilitate research in language modeling and information retrieval

(IR), where IR is broadly interpreted to include such technologies as ad hoc and distributed retrieval with

structured queries, cross-language IR, summarization, filtering, and categorization. The system's

underlying architecture was built to support the technologies above. URL:

http://www.lemurproject.org/lemur.php

[6] Query Clarity with Retrieval. This application computes clarity scores for an expanded query model

based on pseudo-feedback documents. Performs the retrieval of those documents using the relevant

SimpleKLRetMethod parameters. URL:

http://www.lemurproject.org/doxygen/lemur/html/RetQueryClarity.html

[7] C. Hauff, V. Murdock, and R. Baeza-Yates. Improved query difficulty prediction for the web. In CIKM,

Pages 439-448, 2008.

[8] Searches getting longer: A weblog by Alan Long, hit wise intelligence. URL:

http://weblogs.hitwise.com/alan-long/2009/11/searches_getting_longer.html.

[9] G. Kumaran and V. Carvalho. Reducing long queries using query quality predictors. In SIGIR, pages

564-571, 2009.

[10] B. He and I. Ounis. Inferring query performance using pre-retrieval predictors. In SPIRE, pages 43-

54, 2004.

 41

 [11] Microsoft web n-gram services general information. URL: http://research.microsoft.com/en-

us/collaboration/focus/cs/web-ngram.aspx

 [12] Lemur Project indexing information. URL: http://www.lemurproject.org/lemur/indexing.php

 [13] Lemur Project Information. URL: http://lemurproject.org/lemur.php

 [14] Clue Web 09 crowd sourcing file read me file

[15] Representational state transfer. URL: http://en.wikipedia.org/wiki/Representational_State_Transfer

 [16] Information on REST Services. URL: http://rest.elkstein.org/

[17] Lemur Project Information. URL: http://www.lemurproject.org/

[18] Information on Indri Search Engine. URL: http://sourceforge.net/apps/trac/lemur/wiki/Indri

[19] B. He and I. Ounis. Inferring query performance using pre-retrieval predictors. In SPIRE, pages 43-

54, 2004.

[20] Steve Cronen-Townsend, Yun Zhou, and W. Bruce Croft. 2002. Predicting query performance. In

Proceedings of the 25th annual international ACM SIGIR conference on Research and development in

information retrieval (SIGIR '02). ACM, New York, NY, USA, 299-306. DOI=10.1145/564376.564429

http://doi.acm.org/10.1145/564376.564429

[21] Apache Shingle Information. URL: http://lucene.apache.org/java/3_0_3/api/contrib-

analyzers/org/apache/lucene/analysis/shingle/package-summary.html

[22] G. Kumaran and J. Allan. A case for shorter queries, and helping users create them. In HLT/NAACL,

pages 220-227, 2007.

 [23] Hitwise search query analysis. URL:

http://www.readwriteweb.com/archives/hitwise_search_queries_are_getting_longer.php

[24] J. Guo, G. Xu, H. Li, and X. Cheng. A unified and discriminative model for query refinement.

Proceedings of the 31st annual international ACM SIGIR conference on Research and development in

information retrieval, 379-386, 2008.

[25] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating query substitutions. Proceedings of the

15th international conference on World Wide Web, 387-396, 2006.

[26] B. Tan and F. Peng. Unsupervised Query Segmentation Using Generative Language Models and

Wikipedia. Proceeding of the 17th international conference on World Wide Web, 347-356, 2008.

[27] N-grams Wikipedia information. URL: http://en.wikipedia.org/wiki/N-gram

 42

Appendix A: Code Snippets

Figure 10: Sample of Data Structures used

 43

Figure 11: Microsoft’s n-gram web service connection class

 44

Figure 12: String Functions used

 45

Figure 13: Code snippet showing the original concepts implementation

 46

Figure 14: Code snippet showing our implementation

	N-Grams Assisted Long Web Search Query Optimization
	Recommended Citation

	tmp.1326981614.pdf.KPvEi

