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Abstract

The discovery of the ultra-diffuse galaxy NGC1052-DF2 and its peculiar population of star clusters has raised new
questions about the connections between galaxies and dark matter (DM) halos at the extremes of galaxy formation.
In light of debates over the measured velocity dispersion of its star clusters and the associated mass estimate, we
constrain mass models of DF2 using its observed kinematics with a range of priors on the halo mass. Models in
which the galaxy obeys a standard stellar-halo mass relation are in tension with the data and also require a large
central density core. Better fits are obtained when the halo mass is left free, even after accounting for increased
model complexity. The dynamical mass-to-light ratio for our model with a weak prior on the halo mass is

-
+

 M L1.7 V0.5
0.7

, , consistent with the stellar population estimate for DF2. We use tidal analysis to find that the low-
mass models are consistent with the undisturbed isophotes of DF2. Finally, we compare with Local Group dwarf
galaxies and demonstrate that DF2 is an outlier in both its spatial extent and its relative DM deficit.

Key words: galaxies: halos – galaxies: individual (NGC 1052, DF2) – galaxies: kinematics and dynamics

1. Introduction

Ultra-diffuse galaxies (UDGs) were recently recognized as a
ubiquitous class of low-surface-brightness stellar systems with
luminosities like dwarf galaxies but sizes like giants (van
Dokkum et al. 2015; Yagi et al. 2016). They are found in all
environments from clusters and groups to the field (e.g.,
Martínez-Delgado et al. 2016; van der Burg et al. 2017), and
appear to originate from multiple formation channels, including
an extension of normal dwarfs to lower surface brightness, as
tidal debris, and perhaps as “failed” galaxies (e.g., Peng &
Lim 2016; Greco et al. 2018; Pandya et al. 2018).
The failed-galaxy scenario was motivated partly by infer-

ences of UDG halo masses based on dynamics and on number
counts of globular star clusters—masses that in some cases
appear significantly higher than for the overall dwarf-galaxy
population (Beasley et al. 2016; van Dokkum et al. 2016, 2017;
Amorisco et al. 2018; Lim et al. 2018). The implication is that
the stellar-to-halo mass relation (SHMR; e.g., Moster
et al. 2013; Rodríguez-Puebla et al. 2017) for luminous dwarf
galaxies (L∼ 108 Le) may have a much larger scatter than was
presumed, requiring revisions in galaxy formation models at
halo masses of ∼1011Me (see also Smercina et al. 2018).

In this context, one of the nearest known UDGs, NGC1052-
DF2 in a galaxy group at ∼20Mpc (Fosbury et al. 1978;
Karachentsev et al. 2000; van Dokkum et al. 2018c,
hereafter vD+18a), presents a valuable opportunity for detailed
dynamical study. vD+18a used deep Keck spectroscopy to
measure radial velocities for 10 luminous star clusters around
DF2, estimating its dynamical mass within a radius of ∼8kpc
(cf. Virgo-UDGs work by Beasley et al. 2016; Toloba
et al. 2018). The result was very surprising: rather than an
unusually high mass-to-light ratio (M/L) as found for previous

UDGs, the M/L was unusually low, and consistent with
harboring no dark matter (DM) at all.
The low/no-DM result generated spirited debate, much of

which focused on how best to estimate the intrinsic velocity
dispersion σ of DF2 (e.g., Laporte et al. 2018; Martin et al.
2018; van Dokkum et al. 2018a).
However, the more fundamental question is what range of

halo mass profiles is permitted by the data, which we examine
in detail in this Letter. We adopt a generative modeling
approach where the individual velocity measurements are
mapped statistically onto halo parameter space, without the
intervening steps of estimating σ and applying a mass
estimator. In addition to deriving constraints on the dynamical
mass profile, we consider the potential impact of tidal stripping,
and furthermore compare DF2 with Local Group (LG) dwarfs.

2. Observational Constraints

NGC1052-DF2 has position, redshift, surface brightness
fluctuation (SBF), and tip of the red giant branch measurements
that are all consistent with being a satellite of the giant elliptical
galaxy NGC1052 (vD+18a; van Dokkum et al. 2018d). We
adopt a distance of 19Mpc, matching the measured SBF
distance to DF2 (Cohen et al. 2018), while allowing for
a±1Mpc uncertainty in our analysis.7

The UDG surface brightness follows a Sérsic profile with
index n= 0.6, effective radius = R 22. 6e (2.08 kpc), and total
luminosity of ´ L1.2 10 V

8
, . For the stellar M/L, we adopt a

Gaussian prior with mean of *¡ = 1.7V, in Solar units and
standard deviation of 0.5 (based on stellar population
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7 A distance of 13 Mpc has been proposed (Trujillo et al. 2018), but see van
Dokkum et al. (2018d) for an in-depth discussion of the evidence for the greater
distance.
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modeling; vD+18a; van Dokkum et al. 2018b). We truncate
this distribution to be between 0.1 and 10.

NGC1052-DF2 has 10 star clusters with radial velocity
measurements in vD+18a. We use one updated velocity from
van Dokkum et al. (2018a); this has only a mild impact on the
results. Although the mass uncertainties from using so few
tracers are relatively large (as we will find here), there is ample
precedent in the literature for drawing meaningful conclusions
from small sample sizes (Aaronson 1983; Chapman et al. 2005;
Kleyna et al. 2005; Brown et al. 2007; Koposov et al. 2015).

The surface-density distribution of the star-cluster population
is highly unconstrained. We assume an exponential distribution
of tracers (i.e., a Sérsic profile with n= 1) where the half-
number radius is drawn from a Gaussian prior with a mean of
the observed half-number radius (32″) and standard deviation
of 10″. We truncate this distribution to be between 10″ and 70″.
Our adopted mean half-number radius is 40% larger than Re of
the galaxy diffuse starlight, which is consistent with studies of
the star-cluster systems of other UDGs (Peng & Lim 2016; van
Dokkum et al. 2017; Toloba et al. 2018; cf. Forbes 2017).

3. Jeans Modeling Methods

We use the Bayesian Jeans modeling formalism of Wasserman
et al. (2018) to infer the mass distribution of DF2. Here, a given
mass profile and a tracer density profile are linked to a predicted
line-of-sight velocity dispersion profile σJ(R). The assumptions
include spherical symmetry, dynamical equilibrium, and velo-
city-dispersion anisotropy (b s s= -1 t r

2 2) that is constant
with galactocentric radius. (There is no evidence for rotation in
the system, although individual velocity uncertainties are too
large for strong constraints; vD+18a). We adopt a Gaussian
prior on b b= - -˜ ( )log 110 with a mean of 0 (isotropic) and
standard deviation of 0.5 (truncated to the range of b = -˜ 1
to +1).

Because we do not directly constrain the dynamical mass
beyond ∼8kpc, we must rely on priors on the halo
characteristics—on the DM profile shape, and also on expected
correlations between halo mass, concentration, and stel-
lar mass.

We model the mass distribution as the sum of the stellar
mass, with spatial distribution described in Section 2, and a
DM halo. For the halo density distribution we use the
generalized Navarro–Frenk–White (gNFW) profile,

r r= +
g g- -⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( )r

r

r

r

r
1 1s

s s

3

where rs is the scale radius, ρs is the scale density, and γ

quantifies the inner log-slope. For γ= 1, this matches the usual
Navarro–Frenk–White (NFW) halo model (Navarro et al.
1997), but letting γ vary below 1 allows for models that have a
cored, shallower density profile.

We re-parameterize the halo in terms of virial mass (M200c)
and concentration (c200c), where

r
p

= ( )M
r

200
4

3
2200c crit

200c
3

and =c r rs200c 200c .
We then consider two flavors of mass models: one in which

the stellar and halo masses are drawn from a SHMR, and one
where the stellar and dark masses are decoupled. For the latter
model, we use a uniform prior on M Mlog10 200c between 2

and 15. This effectively allows for the case of no DM, as the
stellar mass is  ~M Mlog 8.310 .
For both types of models we assume that the halo

concentration is drawn from a mass–concentration relation
(MCR; Diemer & Kravtsov 2015; Diemer 2017) based on the
Planck 2015 cosmology. We use a log-normal distribution
about this expected concentration with a scatter of 0.16 dex.
For the SHMR we use the z= 0 relation of Rodríguez-

Puebla et al. (2017), where halos with mass ~ M M10200c
10.8

host galaxies with M* similar to DF2 (note that for a satellite
galaxy such as DF2, the halo mass is pre-infall, before tidal
stripping). We allow for variation around this mean relation
through a variable scatter:

*
s = - -( ) ( )M M0.2 0.26 log log 3Mlog vir 1

below virial masses of M1= 1011.5Me (note ¹M M ;vir 200c at
M1, ~M M0.9200c vir), while at higher masses,

*
s Mlog is a

constant 0.2 dex scatter (Garrison-Kimmel et al. 2017; Munshi
et al. 2017).
Given the wide range of possible baryonic effects on the

inner slope of DM halos (Oh et al. 2011; Adams et al. 2014;
Pineda et al. 2017), we adopt a uniform prior on γ between 0
and 2.
To connect the Jeans model predictions for σJ to the velocity

observations, we use a Gaussian likelihood for the probability
of drawing data, vi, given the location Ri and the various model
parameters θ,

 q s s q d

ps
s

= - = +

= -
--

⎛
⎝⎜

⎞
⎠⎟

( ∣ ) ( ( ∣ ) )

( )
( )

( )

v R v v R v
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, ,
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i
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2
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2 2

2 1 2 sys
2

2

where vsys is the systemic velocity (drawn from a Gaussian
prior with a mean of the observed velocities, 1801.6 -km s 1,
and with a 5 -km s 1 standard deviation), and δvi is the
measurement uncertainty.
We draw from our posterior with the emcee Markov Chain

Monte Carlo (MCMC) ensemble sampler (Foreman-Mackey
et al. 2013). We run our sampler with 128 walkers for 2000
iterations, rejecting the first 1500 to ensure fully mixed chains.
The posterior distributions of vsys, ϒ*, and distance closely
match those of the associated prior distributions. For the
inference with the SHMR-informed prior, the posterior
distribution of the star-cluster system Re is slightly lower (with
median of 26″). The weak-prior model prefers a slightly
tangential orbital anisotropy, although consistent with isotropy,
while the posterior anisotropy in the SHMR-prior model
matches the prior.

4. Halo Mass Inferences

Before discussing the best-fitting results, in Figure 1 we
present a comparison between the data and a simple model with
a cuspy NFW halo that follows the mean SHMR, assuming
isotropic orbits. The individual star-cluster velocity measure-
ments (absolute value relative to vsys) versus galactocentric
radius are shown along with a model line-of-sight σ profile
(dashed green curve). It is clear that this is not a favorable
model: ∼3 of the observed velocities should lie above the
curve, which has a spatially averaged σ∼36 -km s 1,
compared to an observed σ∼5–10 -km s 1.

2
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This is not, however, the only plausible model, as there is
scatter in the predicted SHMR and in the halo concentration.
Furthermore, UDGs and luminous dwarfs in general are
expected to inhabit cored DM halos (Chan et al. 2015; Di
Cintio et al. 2017). Allowing for a DM core (dotted–dashed
purple curve) reduces the tension with the data somewhat
(σ∼ 22  -km s 1). Introducing scatter in the SHMR and the
MCR as discussed in Section 3, we present the best “standard”
model from our MCMC fitting, including a freely varying
orbital anisotropy, as a solid-blue curve with uncertainty
envelope in Figure 1. This model dispersion profile is
fairly constant with spatially averaged s = -

+17 4
6 -km s 1and

appears more reasonably close to the data, although it is still in
tension with the many observed near-zero relative velocities.

The posteriors on some key model parameters are: b =
-
+0.0 ,2.5
0.7 = -

+
M Mlog 10.710 200c 0.3

0.2, = -
+c 9200c 3
4 (implying =rs

-
+8 3
4 kpc), and g = -

+0.2 0.2
0.3, although we note that the samples of

γ hit the prior boundary at 0. This is a model solution with a
normal halo and concentration (consistent with the priors: see
Figure 2, left panel) but a large central density core—strongly
disfavoring the NFW model.
We next consider a model that allows for deviation from the

standard SHMR, along with a free central DM slope, while still
imposing the standard prior on halo mass versus concentration.
We find that the DM halo all but disappears, with <M200c

´ M1.2 108 (MDM/M* < 0.6) at the 90th percentile. The
posterior velocity dispersion profile is shown in Figure 1

Figure 1. DF2 observed star-cluster velocity offsets (points with error-bars), compared with the posterior predictive distribution of the velocity dispersion profiles
associated with the star+halo model fit with freely varying anisotropy and Re. The shaded regions give the inner 68% of samples. Left panel: the dashed green curve
shows an isotropic model with a standard DM halo (γ = 1 cusp) and halo mass fixed to the SHMR mean. The dotted–dashed purple curve is for a cored DM halo
(γ = 0.2), with fixed halo mass, and isotropic orbits. The dotted purple lines around this curve show the effect of assuming radial (falling profile) and tangential (rising
profile) anisotropy. The blue solid curve shows a cored halo with mass informed by a log-normal prior about a standard SHMR. Right panel: the red solid curve shows
the model fit with the relaxed prior on halo mass—a model that we see is less in tension with the data than the models with large amounts of DM (left panel).

Figure 2. Distributions of select model parameters. The contours showing the covariance between the two parameters are placed at 1- and 2-σ intervals. Masses are in
Me. Left panel: for the model with the SHMR prior (in blue). The prior distribution is shown in gray. From left to right, the parameters are the stellar mass within
10 kpc, the DM mass within 10 kpc, and the halo concentration. Right panel: the same model parameters but for the model without the SHMR prior. We see that the
SHMR prior model largely recovers the prior distribution, though with slightly lower halo mass, while the data-driven model has a halo mass that hits the prior lower
boundary.
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(right), with an average σ= 7±1 -km s 1. This model prefers
a more tangential b = - -

+1.0 2.7
1.2.

For a measure of relative predictive accuracy of these two
models, we use the Watanabe–Akaike Information Criterion
(WAIC), an approximation of cross-validation (Gelman et al.
2013), defined as





å

å

ò q q q

q

=-

+

( ∣ ) ( )

[ ( ∣ )] ( )

v p d

v

WAIC 2 ln

4 var ln 5

i

n

i

i

n

i

post

post

where ppost(θ) is the posterior distribution,  q( ∣ )vi is the
likelihood, and varpost is the variance over the posterior. The
first term measures the predictive accuracy marginalized over
the posterior distribution, while the second term penalizes for
model complexity by computing an approximation of the
effective number of model parameters (analogous to reduced
χ2). We find ΔWAIC= 1.5 (equivalent to a model odds ratio
of ∼2), slightly favoring the model without the SHMR prior,
although not enough to reject the SHMR model outright.

As a summary of these results, Figure 2 shows the distribution
of stellar and dark mass within a three-dimensional aperture of
10kpc, as well as the halo concentration for these two models.
For the SHMR-prior model, the data prefer a lower enclosed
dark mass than in the prior, with a shift in the median MDM

within 10 kpc from ´ M1.2 1010 to ´ M5.1 109 . For the
weak-priors model, the posterior distribution of MDM(<10 kpc)
extends all the way to the lower prior boundary (∼102Me),
with a 90th-percentile upper bound of ´ M1.2 108 . Thus, the
data prefer a relatively low amount of DM within the region
probed.

The more tightly constrained quantity of interest is the total
dynamical mass within 10kpc, which is ´-

+
( ) M2.2 100.6

0.9 8 , or
dynamical = -

+M L 1.7V 0.5
0.7. The latter value is remarkably

coincident with the independent stellar population estimate for
DF2 (Section 2). We conclude that data-driven dynamical
modeling of DF2 allows for at most an extremely low-mass
DM halo, and suggests that this UDG is comprised purely of
stars.

5. Tidal Effects

The models considered in the previous sections were for an
isolated dwarf and neglected any influence from the nearby
massive elliptical galaxy, NGC1052. In particular, infall of a
satellite into a larger host initiates a process of tidal stripping,
first from the outer DM halo, then from the central regions,
followed by total disruption. Tidal stripping and heating has
been proposed as the dominant mechanism for forming UDGs,
which could be considered as exemplars for galaxies under-
going tidal disruption (Carleton et al. 2018). Some previously
studied UDGs are clearly in the process of disruption (Merritt
et al. 2016), while many others have undisturbed morphologies
out to ~ R4 e (Mowla et al. 2017).

vD+18a presented analysis of tidal stripping to constrain the
physical separation between DF2 and NGC1052. Here our aim
is to develop a holistic model where the inferred UDG mass
distribution is checked for consistency with tidal constraints,
propagating uncertainties on viewing angle, satellite mass
distribution, and central galaxy mass. In particular, is a no-DM
scenario implausible owing to a likelihood of disruption?

We use a simple model for the tidal radius given enclosed
masses of satellite and central galaxies:

a g
=

-

⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( )

( )r
M r

M d
d, 6

M
tidal

sat tidal

cen

1 3

where d is the 3D distance between the two galaxies, γM is the
local log-slope of the enclosed mass profile of the central
galaxy at d, and α= 2 if we assume the orbit of the satellite is
radial and α= 3 if we assume that the orbit is circular (van den
Bosch et al. 2018). Without modeling any constraints on the
actual orbit of DF2, we compare results assuming either radial
or circular orbits for the satellite, assuming that the truth lies
somewhere in between these two cases. For our sampled
central mass profiles and separation distances, γM∼1. DF2
shows no obvious evidence of tidal disturbances, with regular
isophotes out to ≈2 Re (∼4 kpc; vD+18a). This provides a tidal
constraint that r 4 kpctidal .
To estimate the central galaxy mass, we use the halo-to-

stellar mass relation from Rodríguez-Puebla et al. (2017). For
M* = 1011Me (Forbes et al. 2017), we expect = ´M 4.9200c

M1012 with a scatter of 0.25dex (from inverting the SHMR
scatter of 0.15 dex). We then adopt an NFW profile with
concentration from the MCR and calculate the enclosed mass at
a given radius.
To fold in all the uncertainties together (central mass,

satellite mass posterior from the previous inference, and
distance), we randomly sample from the underlying para-
meters, including a uniform distribution of projection angles.
We plot the resulting distribution of tidal radii in Figure 3.
For the data-driven model, = -

+r 4.3tidal 1.7
4.7 ( -

+5.7 1.71
5.09)kpc

when assuming a circular (radial) orbit. Thus, there is a large
fraction of model-posterior space (52% for circular, 81% for
radial) where DF2 can have little/no DM yet be tidally
undisturbed out to 4kpc. We note that the low-velocity star
clusters observed out to ∼7.5kpc could still be bound even
with ~r 4 kpctidal , if they have retrograde orbits (Read et al.
2006).

Figure 3. Distribution of DF2 tidal radii inferred for each of the two models.
The blue histograms show the limits inferred with a strong SHMR prior, while
the red histograms show those for the model without the SHMR prior. The
filled histograms show the tidal radius from assuming a circular orbit, while the
empty histograms show the same distributions from assuming a radial orbit.
The vertical dashed–dotted line shows 2Re for the starlight. We see that 52%
(81%) of the no-SHMR-prior model samples for the circular (radial) orbit are
above this lower bound, thus allowing for little/no-DM solutions that do not
exhibit tidal disturbances.
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Turning to the SHMR-prior model, the dwarf would be
naturally much more resistant to tides, and the tidal radius
would be farther out (Figure 3). However, the predicted value
of = -

+r 16tidal 7
28 kpc (or -

+24 10
33 kpc for the radial case) implies

that DF2 would still likely have most of its DM stripped away
by now, as ~( )M r M 0.2DM tidal 200c (∼0.4).

The latter point leads us to the possibility that DF2 started
out with a normal DM halo, but has been tidally eroded, not
only by removing the outer parts but also by stripping out much
of the central DM prior to disruption of the visible galaxy. Such
a solution was studied through N-body simulations by Ogiya
(2018), who found that the final dark mass within 10kpc could
be ∼108Me—which is consistent with our observations (see
the red curves in Figure 2). We note, however, two major
caveats to this interpretation: (1) there is a small range of orbital
parameter space that allows for the necessary degree of
stripping; (2) the dynamical time within the UDG is
comparable to its orbital period, which may prevent it from
relaxing into a visually undisturbed system with cold
kinematics.

The difference in predicted tidal radii between the DM and
no-DM models motivates looking beyond 4kpc for tidal
features around DF2 to help distinguish between these two
scenarios.

6. DF2 in a Wider Context

We have found through Jeans modeling that the observations
of cold kinematics in DF2 imply a very low DM content.
However, Martin et al. (2018) disputed the unusual nature of
this galaxy by noting its similar σ and dynamical M/L to
previously studied dwarfs. Here we emphasize that such

comparisons neglect the different measurement radii used, and
we clarify the position of DF2 in a wider context by
constructing a plot relating galaxy stellar masses, halo masses,
and sizes (Figure 4).
We take the compilation of LG dwarf galaxies from Fattahi

et al. (2018), selecting only galaxies with M*>105Me and
updating with sizes from Martin et al. (2016) where available.
Taking the dynamical mass within »r R1.31 2 e and subtract-
ing the associated stellar mass, we compute the DM
contribution to the circular velocity,

=
<( )

( )v
GM r

r
, 7circ, DM

DM 1 2

1 2

propagating uncertainties in the distance, size, luminosity,
stellar M/L, and velocity dispersion. We color these points in
Figure 4 by their stellar mass, with different symbols for field
dwarfs versus satellites. We compare these measurements with
halo circular velocity profiles for several halo masses, adopting
MCR concentrations and γ= 0.3 cores, while color-coding
these profiles by the SHMR-predicted stellar mass. The halo-
concentration scatter is illustrated by the red band for the
1011Me halo.
This figure shows that some dwarfs track cored-halo profiles

appropriate to their stellar masses. Others have higher
velocities and perhaps cuspy halos (e.g., Spekkens et al.
2005; Oñorbe et al. 2015; Genina et al. 2018). A few have low
velocities; as most of these are satellites, they may be examples
of ongoing tidal stripping that has depleted their central DM
content (Collins et al. 2013; Buck et al. 2018; Fattahi et al.
2018). DF2, however, stands out from all of these galaxies by

Figure 4. DF2 compared with LG dwarf galaxies. The circles and x’s show the circular velocity of the DM component for field and satellite dwarfs, respectively. The
points are color coded by stellar mass. The curves show cored (γ = 0.3) NFW profiles for different halo masses (in Me), color coded by the mean expected stellar
mass. The posterior predictive value for the data-driven DF2 inference is shown as the star, below =M Mlog 8200c . The open markers with dotted lines for
Andromeda XIX and DF2 show the expected DM halos that they would occupy, given their stellar mass. We see that DF2 is an outlier even beyond the extended LG
dwarfs in both its size and in mismatch between expected and observed DM halo mass.
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having the lowest DM-velocity estimate, despite the much
larger measurement radius. AndromedaXIX is closest in
σ–r1/2 space, but has ∼300×lower stellar mass and thus does
not appear as DM-depleted as DF2. IC1613 has a high stellar
mass, but the smaller measurement radius allows for a larger
range of halo masses.

We therefore strengthen the conclusion of vD+18a that DF2
is an extreme outlier in the usual dwarf–DM scaling relations.
There are then two main possible explanations. One is that the
galaxy formed with little or no DM, and the other is that it has
been severely stripped of DM. We cannot definitively
discriminate between the two scenarios, but in Section 5 we
pointed out potentially major flaws in the tidal argument.
Furthermore, there is an additional clue that has so far been
generally overlooked: the very star-cluster system used to
probe the dynamics of DF2 is itself so far unique in the known
universe. The clusters are on average far more luminous than in
other galaxies including the Milky Way, and they are also
unusually extended and elongated (van Dokkum et al. 2018b).
The presence of either a normal or a stripped DM halo provides
no explanation for this novel observation. On the other hand, if
DF2 formed through a rare pathway without DM (e.g.,
scenarios discussed in vD+18a), then it is more plausible that
its star-cluster system would show unusual properties as well.

The peculiar case of DF2 demonstrates the rich yield of
information that can be obtained through detailed observations
of dwarfs beyond the LG, which will help challenge and refine
our understanding of galaxy formation and of the nature
of DM.

We thank the anonymous referee for useful suggestions.
A.W. thanks Viraj Pandya for helpful discussions. This work
was supported by NSF grants AST-1616598 and AST-
1616710. A.J.R. is a Research Corporation for Science
Advancement Cottrell Scholar.

ORCID iDs

Asher Wasserman https://orcid.org/0000-0003-4235-3595
Aaron J. Romanowsky https://orcid.org/0000-0003-
2473-0369
Jean Brodie https://orcid.org/0000-0002-9658-8763
Pieter van Dokkum https://orcid.org/0000-0002-8282-9888
Charlie Conroy https://orcid.org/0000-0002-1590-8551
Roberto Abraham https://orcid.org/0000-0002-4542-921X
Yotam Cohen https://orcid.org/0000-0001-5487-2494
Shany Danieli https://orcid.org/0000-0002-1841-2252

References

Aaronson, M. 1983, ApJL, 266, L11
Adams, J. J., Simon, J. D., Fabricius, M. H., et al. 2014, ApJ, 789, 63
Amorisco, N. C., Monachesi, A., Agnello, A., & White, S. D. M. 2018,

MNRAS, 475, 4235
Beasley, M. A., Romanowsky, A. J., Pota, V., et al. 2016, ApJL, 819, L20
Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2007, ApJ, 666, 231
Buck, T., Macciò, A. V., Dutton, A. A., Obreja, A., & Frings, J. 2018,

arXiv:1804.04667

Carleton, T., Errani, R., Cooper, M., Kaplinghat, M., & Peñarrubia, J. 2018,
arXiv:1805.06896

Chan, T. K., Kereš, D., Oñorbe, J., et al. 2015, MNRAS, 454, 2981
Chapman, S. C., Ibata, R., Lewis, G. F., et al. 2005, ApJL, 632, L87
Cohen, Y., van Dokkum, P., Danieli, S., et al. 2018, arXiv:1807.06016
Collins, M. L. M., Chapman, S. C., Rich, R. M., et al. 2013, ApJ, 768, 172
Di Cintio, A., Brook, C. B., Dutton, A. A., et al. 2017, MNRAS, 466, L1
Diemer, B. 2017, arXiv:1712.04512
Diemer, B., & Kravtsov, A. V. 2015, ApJ, 799, 108
Fattahi, A., Navarro, J. F., Frenk, C. S., et al. 2018, MNRAS, 476, 3816
Forbes, D. A. 2017, MNRAS, 472, L104
Forbes, D. A., Sinpetru, L., Savorgnan, G., et al. 2017, MNRAS, 464, 4611
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP,

125, 306
Fosbury, R. A. E., Mebold, U., Goss, W. M., & Dopita, M. A. 1978, MNRAS,

183, 549
Garrison-Kimmel, S., Bullock, J. S., Boylan-Kolchin, M., & Bardwell, E.

2017, MNRAS, 464, 3108
Gelman, A., Hwang, J., & Vehtari, A. 2013, arXiv:1307.5928
Genina, A., Benítez-Llambay, A., Frenk, C. S., et al. 2018, MNRAS, 474, 1398
Greco, J. P., Greene, J. E., Price-Whelan, A. M., et al. 2018, PASJ, 70, S19
Karachentsev, I. D., Karachentseva, V. E., Suchkov, A. A., & Grebel, E. K.

2000, A&AS, 145, 415
Kleyna, J. T., Wilkinson, M. I., Evans, N. W., & Gilmore, G. 2005, ApJL,

630, L141
Koposov, S. E., Casey, A. R., Belokurov, V., et al. 2015, ApJ, 811, 62
Laporte, C. F. P., Agnello, A., & Navarro, J. F. 2018, arXiv:1804.04139
Lim, S., Peng, E. W., Cote, P., et al. 2018, arXiv:1806.05425
Martin, N. F., Collins, M. L. M., Longeard, N., & Tollerud, E. 2018, ApJL,

859, L5
Martin, N. F., Ibata, R. A., Lewis, G. F., et al. 2016, ApJ, 833, 167
Martínez-Delgado, D., Läsker, R., Sharina, M., et al. 2016, AJ, 151, 96
Merritt, A., van Dokkum, P., Danieli, S., et al. 2016, ApJ, 833, 168
Moster, B. P., Naab, T., & White, S. D. M. 2013, MNRAS, 428, 3121
Mowla, L., van Dokkum, P., Merritt, A., et al. 2017, ApJ, 851, 27
Munshi, F., Brooks, A. M., Applebaum, E., et al. 2017, arXiv:1705.06286
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Ogiya, G. 2018, MNRAS, 480, L106
Oh, S.-H., de Blok, W. J. G., Brinks, E., Walter, F., & Kennicutt, R. C., Jr.

2011, AJ, 141, 193
Oñorbe, J., Boylan-Kolchin, M., Bullock, J. S., et al. 2015, MNRAS, 454, 2092
Pandya, V., Romanowsky, A. J., Laine, S., et al. 2018, ApJ, 858, 29
Peng, E. W., & Lim, S. 2016, ApJL, 822, L31
Pineda, J. C. B., Hayward, C. C., Springel, V., & Mendes de Oliveira, C. 2017,

MNRAS, 466, 63
Read, J. I., Wilkinson, M. I., Evans, N. W., Gilmore, G., & Kleyna, J. T. 2006,

MNRAS, 366, 429
Rodríguez-Puebla, A., Primack, J. R., Avila-Reese, V., & Faber, S. M. 2017,

MNRAS, 470, 651
Smercina, A., Bell, E. F., Price, P. A., et al. 2018, arXiv:1807.03779
Spekkens, K., Giovanelli, R., & Haynes, M. P. 2005, AJ, 129, 2119
Toloba, E., Lim, S., Peng, E., et al. 2018, ApJL, 856, L31
Trujillo, I., Beasley, M. A., Borlaff, A., et al. 2018, arXiv:1806.10141
van den Bosch, F. C., Ogiya, G., Hahn, O., & Burkert, A. 2018, MNRAS,

474, 3043
van der Burg, R. F. J., Hoekstra, H., Muzzin, A., et al. 2017, A&A, 607, A79
van Dokkum, P., Abraham, R., Brodie, J., et al. 2016, ApJL, 828, L6
van Dokkum, P., Cohen, Y., Danieli, S., et al. 2018a, RNAAS, 2, 54
van Dokkum, P., Cohen, Y., Danieli, S., et al. 2018b, ApJL, 856, L30
van Dokkum, P., Conroy, C., Villaume, A., Brodie, J., & Romanowsky, A. J.

2017, ApJ, 841, 68
van Dokkum, P., Danieli, S., Cohen, Y., et al. 2018c, Natur, 555, 629
van Dokkum, P. G., Abraham, R., Merritt, A., et al. 2015, ApJL, 798, L45
van Dokkum, P. G., Danieli, S., Cohen, Y., & Conroy, C. 2018d, arXiv:1807.

06025
Wasserman, A., Romanowsky, A. J., Brodie, J., et al. 2018, ApJ, in press

(arXiv:1712.01229)
Yagi, M., Koda, J., Komiyama, Y., & Yamanoi, H. 2016, ApJS, 225, 11

6

The Astrophysical Journal Letters, 863:L15 (6pp), 2018 August 20 Wasserman et al.

https://orcid.org/0000-0003-4235-3595
https://orcid.org/0000-0003-4235-3595
https://orcid.org/0000-0003-4235-3595
https://orcid.org/0000-0003-4235-3595
https://orcid.org/0000-0003-4235-3595
https://orcid.org/0000-0003-4235-3595
https://orcid.org/0000-0003-4235-3595
https://orcid.org/0000-0003-4235-3595
https://orcid.org/0000-0003-2473-0369
https://orcid.org/0000-0003-2473-0369
https://orcid.org/0000-0003-2473-0369
https://orcid.org/0000-0003-2473-0369
https://orcid.org/0000-0003-2473-0369
https://orcid.org/0000-0003-2473-0369
https://orcid.org/0000-0003-2473-0369
https://orcid.org/0000-0003-2473-0369
https://orcid.org/0000-0003-2473-0369
https://orcid.org/0000-0002-9658-8763
https://orcid.org/0000-0002-9658-8763
https://orcid.org/0000-0002-9658-8763
https://orcid.org/0000-0002-9658-8763
https://orcid.org/0000-0002-9658-8763
https://orcid.org/0000-0002-9658-8763
https://orcid.org/0000-0002-9658-8763
https://orcid.org/0000-0002-9658-8763
https://orcid.org/0000-0002-8282-9888
https://orcid.org/0000-0002-8282-9888
https://orcid.org/0000-0002-8282-9888
https://orcid.org/0000-0002-8282-9888
https://orcid.org/0000-0002-8282-9888
https://orcid.org/0000-0002-8282-9888
https://orcid.org/0000-0002-8282-9888
https://orcid.org/0000-0002-8282-9888
https://orcid.org/0000-0002-1590-8551
https://orcid.org/0000-0002-1590-8551
https://orcid.org/0000-0002-1590-8551
https://orcid.org/0000-0002-1590-8551
https://orcid.org/0000-0002-1590-8551
https://orcid.org/0000-0002-1590-8551
https://orcid.org/0000-0002-1590-8551
https://orcid.org/0000-0002-1590-8551
https://orcid.org/0000-0002-4542-921X
https://orcid.org/0000-0002-4542-921X
https://orcid.org/0000-0002-4542-921X
https://orcid.org/0000-0002-4542-921X
https://orcid.org/0000-0002-4542-921X
https://orcid.org/0000-0002-4542-921X
https://orcid.org/0000-0002-4542-921X
https://orcid.org/0000-0002-4542-921X
https://orcid.org/0000-0001-5487-2494
https://orcid.org/0000-0001-5487-2494
https://orcid.org/0000-0001-5487-2494
https://orcid.org/0000-0001-5487-2494
https://orcid.org/0000-0001-5487-2494
https://orcid.org/0000-0001-5487-2494
https://orcid.org/0000-0001-5487-2494
https://orcid.org/0000-0001-5487-2494
https://orcid.org/0000-0002-1841-2252
https://orcid.org/0000-0002-1841-2252
https://orcid.org/0000-0002-1841-2252
https://orcid.org/0000-0002-1841-2252
https://orcid.org/0000-0002-1841-2252
https://orcid.org/0000-0002-1841-2252
https://orcid.org/0000-0002-1841-2252
https://orcid.org/0000-0002-1841-2252
https://doi.org/10.1086/183969
http://adsabs.harvard.edu/abs/1983ApJ...266L..11A
https://doi.org/10.1088/0004-637X/789/1/63
http://adsabs.harvard.edu/abs/2014ApJ...789...63A
https://doi.org/10.1093/mnras/sty116
http://adsabs.harvard.edu/abs/2018MNRAS.475.4235A
https://doi.org/10.3847/2041-8205/819/2/L20
http://adsabs.harvard.edu/abs/2016ApJ...819L..20B
https://doi.org/10.1086/519547
http://adsabs.harvard.edu/abs/2007ApJ...666..231B
http://arxiv.org/abs/1804.04667
http://arxiv.org/abs/1805.06896
https://doi.org/10.1093/mnras/stv2165
http://adsabs.harvard.edu/abs/2015MNRAS.454.2981C
https://doi.org/10.1086/497686
http://adsabs.harvard.edu/abs/2005ApJ...632L..87C
http://arxiv.org/abs/1807.06016
https://doi.org/10.1088/0004-637X/768/2/172
http://adsabs.harvard.edu/abs/2013ApJ...768..172C
https://doi.org/10.1093/mnrasl/slw210
http://adsabs.harvard.edu/abs/2017MNRAS.466L...1D
http://arxiv.org/abs/1712.04512
https://doi.org/10.1088/0004-637X/799/1/108
http://adsabs.harvard.edu/abs/2015ApJ...799..108D
https://doi.org/10.1093/mnras/sty408
http://adsabs.harvard.edu/abs/2018MNRAS.476.3816F
https://doi.org/10.1093/mnrasl/slx148
http://adsabs.harvard.edu/abs/2017MNRAS.472L.104F
https://doi.org/10.1093/mnras/stw2604
http://adsabs.harvard.edu/abs/2017MNRAS.464.4611F
https://doi.org/10.1086/670067
http://adsabs.harvard.edu/abs/2013PASP..125..306F
http://adsabs.harvard.edu/abs/2013PASP..125..306F
https://doi.org/10.1093/mnras/183.4.549
http://adsabs.harvard.edu/abs/1978MNRAS.183..549F
http://adsabs.harvard.edu/abs/1978MNRAS.183..549F
https://doi.org/10.1093/mnras/stw2564
http://adsabs.harvard.edu/abs/2017MNRAS.464.3108G
http://arxiv.org/abs/1307.5928
https://doi.org/10.1093/mnras/stx2855
http://adsabs.harvard.edu/abs/2018MNRAS.474.1398G
https://doi.org/10.1093/pasj/psx051
http://adsabs.harvard.edu/abs/2018PASJ...70S..19G
https://doi.org/10.1051/aas:2000249
http://adsabs.harvard.edu/abs/2000A&amp;AS..145..415K
https://doi.org/10.1086/491654
http://adsabs.harvard.edu/abs/2005ApJ...630L.141K
http://adsabs.harvard.edu/abs/2005ApJ...630L.141K
https://doi.org/10.1088/0004-637X/811/1/62
http://adsabs.harvard.edu/abs/2015ApJ...811...62K
http://arxiv.org/abs/1804.04139
http://arxiv.org/abs/1806.05425
https://doi.org/10.3847/2041-8213/aac216
http://adsabs.harvard.edu/abs/2018ApJ...859L...5M
http://adsabs.harvard.edu/abs/2018ApJ...859L...5M
https://doi.org/10.3847/1538-4357/833/2/167
http://adsabs.harvard.edu/abs/2016ApJ...833..167M
https://doi.org/10.3847/0004-6256/151/4/96
http://adsabs.harvard.edu/abs/2016AJ....151...96M
https://doi.org/10.3847/1538-4357/833/2/168
http://adsabs.harvard.edu/abs/2016ApJ...833..168M
https://doi.org/10.1093/mnras/sts261
http://adsabs.harvard.edu/abs/2013MNRAS.428.3121M
https://doi.org/10.3847/1538-4357/aa961b
http://adsabs.harvard.edu/abs/2017ApJ...851...27M
http://arxiv.org/abs/1705.06286
https://doi.org/10.1086/304888
http://adsabs.harvard.edu/abs/1997ApJ...490..493N
https://doi.org/10.1093/mnrasl/sly138
https://doi.org/10.1088/0004-6256/141/6/193
http://adsabs.harvard.edu/abs/2011AJ....141..193O
https://doi.org/10.1093/mnras/stv2072
http://adsabs.harvard.edu/abs/2015MNRAS.454.2092O
https://doi.org/10.3847/1538-4357/aab498
http://adsabs.harvard.edu/abs/2018ApJ...858...29P
https://doi.org/10.3847/2041-8205/822/2/L31
http://adsabs.harvard.edu/abs/2016ApJ...822L..31P
https://doi.org/10.1093/mnras/stw3004
http://adsabs.harvard.edu/abs/2017MNRAS.466...63P
https://doi.org/10.1111/j.1365-2966.2005.09861.x
http://adsabs.harvard.edu/abs/2006MNRAS.366..429R
https://doi.org/10.1093/mnras/stx1172
http://adsabs.harvard.edu/abs/2017MNRAS.470..651R
http://arxiv.org/abs/1807.03779
https://doi.org/10.1086/429592
http://adsabs.harvard.edu/abs/2005AJ....129.2119S
https://doi.org/10.3847/2041-8213/aab603
http://adsabs.harvard.edu/abs/2018ApJ...856L..31T
http://arxiv.org/abs/1806.10141
https://doi.org/10.1093/mnras/stx2956
http://adsabs.harvard.edu/abs/2018MNRAS.474.3043V
http://adsabs.harvard.edu/abs/2018MNRAS.474.3043V
https://doi.org/10.1051/0004-6361/201731335
http://adsabs.harvard.edu/abs/2017A&amp;A...607A..79V
https://doi.org/10.3847/2041-8205/828/1/L6
http://adsabs.harvard.edu/abs/2016ApJ...828L...6V
https://doi.org/10.3847/2041-8213/aab60b
http://adsabs.harvard.edu/abs/2018ApJ...856L..30V
https://doi.org/10.3847/1538-4357/aa7135
http://adsabs.harvard.edu/abs/2017ApJ...841...68V
https://doi.org/10.1038/nature25767
http://adsabs.harvard.edu/abs/2018Natur.555..629V
https://doi.org/10.1088/2041-8205/798/2/L45
http://adsabs.harvard.edu/abs/2015ApJ...798L..45V
http://arxiv.org/abs/1807.06025
http://arxiv.org/abs/1807.06025
http://arxiv.org/abs/1712.01229
https://doi.org/10.3847/0067-0049/225/1/11
http://adsabs.harvard.edu/abs/2016ApJS..225...11Y

	A Deficit of Dark Matter from Jeans Modeling of the Ultra-diffuse Galaxy NGC 1052-DF2
	Recommended Citation
	Authors

	1. Introduction
	2. Observational Constraints
	3. Jeans Modeling Methods
	4. Halo Mass Inferences
	5. Tidal Effects
	6. DF2 in a Wider Context
	References

