
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Publications Physics and Astronomy

June 2015

Tensions in the Productivity in Design Task Tinkering – Tensions in the Productivity in Design Task Tinkering –

Fundamental Fundamental

Gina Quan
University of Maryland at College Park

Ayush Gupta
University of Maryland at College Park

Follow this and additional works at: https://scholarworks.sjsu.edu/physics_astron_pub

 Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Gina Quan and Ayush Gupta. "Tensions in the Productivity in Design Task Tinkering – Fundamental"
American Society of Engineering Education (2015). https://doi.org/10.18260/p.24837

This Presentation is brought to you for free and open access by the Physics and Astronomy at SJSU ScholarWorks.
It has been accepted for inclusion in Faculty Publications by an authorized administrator of SJSU ScholarWorks.
For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/physics_astron_pub
https://scholarworks.sjsu.edu/physics_astron
https://scholarworks.sjsu.edu/physics_astron_pub?utm_source=scholarworks.sjsu.edu%2Fphysics_astron_pub%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/305?utm_source=scholarworks.sjsu.edu%2Fphysics_astron_pub%2F233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18260/p.24837
mailto:scholarworks@sjsu.edu

Paper ID #12561

Tensions in the Productivity in Design Task Tinkering - Fundamental

Ms. Gina M Quan, University of Maryland, College Park

Gina Quan is a doctoral candidate in Physics Education Research at the University of Maryland, Col-
lege Park. She graduated in 2012 with a B.A. in Physics from the University of California, Berkeley.
Her research interests include understanding community and identity formation, unpacking students’ re-
lationships to design, and cultivating institutional change. Ms. Quan is also a founding member of the
Access Network, a research-practice community dedicated to fostering supportive communities in under-
graduate physics departments, and an elected member of the Physics Education Research Leadership and
Organizing Council (PERLOC).

Dr. Ayush Gupta, University of Maryland, College Park

Ayush Gupta is Research Assistant Professor in Physics and Keystone Instructor in the A. J. Clark School
of Engineering at the University of Maryland. Broadly speaking he is interested in modeling learning and
reasoning processes. In particular, he is attracted to fine-grained analysis of video data both from a micro-
genetic learning analysis methodology (drawing on knowledge in pieces) as well as interaction analysis
methodology. He has been working on how learners’ emotions are coupled with their conceptual and
epistemological reasoning. He is also interested in developing models of the dynamics of categorizations
(ontological) underlying students’ reasoning in physics. Lately, he has been interested in engineering
design thinking, how engineering students come to understand and practice design.

c©American Society for Engineering Education, 2015

Page 26.1500.1

 Tensions in the Productivity in Design Task
Tinkering - Fundamental

Introduction
Tinkering is an ad-hoc approach to a problem and involves the practice of manipulating objects
to characterize and build knowledge about a particular system in an exploratory way, often with
the goal of getting some product/idea to produce desired behavior.1-5 Tinkering thus contrasts
with more deliberate activity towards conceptual understanding of how some phenomenon works
or more pre-planned approaches to design. Some researchers have argued that tinkering is an
unproductive process because it does not always lead to progress and/or conceptual learning.4,5
Others view it as productive for students’ learning and for generation of novel solutions.1-3 In this
paper, we do a fine-timescale analysis of the process of tinkering to speak to this tension about
the productivity (or unproductivity) of tinkering for novice designers and programmers. We
claim that tinkering, or ad-hoc sense-making, can play a productive role in making progress
towards design-activity goals. We argue for a more nuanced understanding of the benefits and
drawbacks of tinkering.

Tinkering versus Deliberate Sensemaking
We define tinkering as both a process and an orientation. Processes of tinkering are often messy
to identify, but we operationalize tinkering to be an ad-hoc trial and error.1,5 Tinkering involves
the rapid prototyping of ideas, and information gathered during each prototype drives subsequent
trials. This is what Turkle and Papert describe as bricolage — a plan-as-you-go approach, which
they contrast with a more formal, planned approach.2 We contrast tinkering with deliberate
sensemaking, which is a more systematic and planned activity with the goal of making sense of a
phenomenon or system. The goal of tinkering, on the other hand, is to produce a product or
outcome. This is not to say that conceptual sense-making and tinkering are mutually exclusive
processes. However, in tinkering the goal of producing an outcome drives conceptual sense-
making — that is, conceptual understanding happens only in the service of the outcome, rather
than as an end in itself. This goal orientation in tinkering (or, at least the kinds of activities we
are calling tinkering in this paper) contrasts other kinds of unstructured knowledge generation,
such as play, or messing about,6 where there is no clear goal.

Some researchers describe tinkering as a productive activity. In their study of students learning
to program, Berland et. al. situate tinkering as an essential step between the initial exploration
phase and refinement of ideas.1 In a different vein, Turkle and Papert consider tinkering as a
valid end-goal. They argue that some ways of knowing, such as bricolage, are more authentic in
some situations for some people, and stress the value of multiple ways of knowing and learning
(“epistemological pluralism” p. 161).2 They also highlight the unique affordances of tinkered
approaches, such as helping students move past roadblocks easier. Tinkering is also consistent
with Roth’s description of the design process.3 He illustrates how a given design is often
emergent through the process and context. In this framework, the artifact at a given moment is
reflective of its’ prior states and will influence future states.

Others describe tinkering as unproductive for the lack of clear aims and progress. In a study of
novices and experts engaged in debugging, Law argues that tinkering did more harm than good,
introducing additional bugs, and leading to more overcorrections than in planned approaches.5

Page 26.1500.2

Yeshno and Ben-Ari also suggested that trial and error is only useful if it leads to conceptual
learning.4

In this paper, we add to this debate by providing empirical evidence that in some situations
tinkering can play a productive role in problem solving. Through fine timescale analysis of
unfolding events during tinkering activities in an engineering design learning environment, we
show how tinkering can help students make progress towards their design goals and in some
instances, even motivate their engagement in more systematic sense-making. We also suggest
that there is more to be gained from tinkering than possibly conceptual skills. We do not mean to
suggest that tinkering is universally productive or universally unproductive: rather, we think that
through fine-grained analysis of episodes of tinkering activities embedded within a broader task,
researchers can get a better handle at how to characterize productive or unproductive tinkering
behavior. This, in turn, can help us generate instructional strategies towards scaffolding tinkering
behaviors in the classroom.

In the following sections we describe the context of the learning environment, data collection,
and analysis methodology. Then we present our analysis of two cases; in each case, a student
design pair engages in tinkering behavior. In the first case, tinkering happens to set the stage for
more conceptual sense-making. We highlight how tinkering both encouraged productive
engineering practices and helped students engage in sense-making. In the second case, we
describe an instance of less productive tinkering. Students self-generated and got stuck in an
unachievable task, yet were still able to engage with the content in productive ways. We then
present interview data from one student in the second case, to illustrate how tinkering may
interact with students’ emotional experiences. We suggest that regardless of whether or not
students can complete a design goal, tinkering can help students engage in productive
disciplinary practices.

Classroom Background
We designed and ran a project-based instructional module within Summer Girls, a day-camp for
high school students hosted by the University of Maryland. The module was piloted in Summer
2013, and small modifications were made and implemented in Summer 2014. As part of the
program, students learned to program Arduino (microcontroller) controlled robot-tanks
(henceforth, Arduino-bot). Roughly 1-2 hours per day were dedicated to Arduino activities,
while the rest of the time was spent on modern physics lectures, lab tours, and demonstrations.
The Arduino classroom was structured to have a high level of student agency. Throughout the
program, participants worked in groups of twos or threes through several open-ended Arduino
design tasks before designing and completing a final project using Arduinos. Design tasks
required students to program the Arduino-bot to perform some task such as detecting an obstacle,
visually depicting distance from a wall, etc. The camp was co-taught by two instructors. Each
day, there were 2-3 graduate student and undergraduate volunteers to help students with their
projects. Students were also given a reference library of sample code, and were strongly
encouraged to reference the internet.

Methods
Over two iterations of the summer camp, we collected interviews, coursework, and classroom
videotapes of focal groups. Due to limited resources, we filmed one pair in the pilot year. In the
second iteration, we filmed two pairs and two trios. Interviews occurred at the beginning of the

Page 26.1500.3

camp, beginning of the second week of camp, and after camp ended. Because interviews were
voluntary, only two students completed all three interviews. We collected classroom videotapes
of all Arduino activities, and some additional in-class activities. We also collected some written
work, including daily written feedback, of all consenting participants.

The classroom data corpus was roughly chunked, and marked for focal episodes where students
employed multiple strategies to solve a complex problem. For each focal episode, we
categorized the students’ epistemic goals (e.g. completing a task, understanding a concept) and
created more detailed content logs in which we described the kinds of approaches employed or
proposed. Our analysis attends to how tinkering played a role in students’ design process, in
attempt to understand how tinkering may or may not be a productive process for students. We
look for evidence of particular student goals through speech, gestures and actions using
interaction analysis.7 We selected two focal episodes for this paper, to describe how the process
of tinkering can support students in engaging in more in-depth sense-making. The interview data
corpus was similarly chunked and marked for instances where students described tinkering-like
processes. Those episodes were analyzed to characterize students’ views of what they thought
they were doing during design, and the role of tinkering-like processes. We pair one interview
with the second classroom focal episode, to shed light on the student’s perspective on the
tinkering process. Data and preliminary analyses were presented at multiple University of
Maryland Engineering Education research group meetings, to ensure consideration of multiple
interpretations of the data and to sort out the interpretation supported by the largest fraction of
data.

Hazel and Silver: Tinkering Leading to Conceptual Sensemaking
Our first episode begins when Hazel and Silver (pseudonyms) had just completed a short task in
which they were asked to write a program to make the Arduino-bot move forward until it
detected an obstacle/wall, and then make a right turn. Hazel and Silver initially did not program
the Arduino-bot to stop after turning right, so after the Arduino-bot turns right it starts running
over the keyboard until Silver grabs it. In response, they decide that they should make the robot
stop after turning right. The goal of making the robot stop was not assigned in class, but many
elements contributed to the reinforcement of the task as a goal.

We see the goal of stopping the Arduino-bot emerge through the constraints of the physical
space: had Silver not grabbed the bot, it would have run off the table. When Silver suggested
modifying the task to stop the bot, Hazel immediately took up the task and offered suggestions
for how to make it stop. Later, other groups ask them if they had been able to make it stop,
suggesting that other groups were also adding “stopping” to their task and thus reinforcing this
goal for Silver and Hazel. The openness of the classroom culture in which students felt
ownership over the project task also played a role in students feeling comfortable in modifying
the task statement to include stopping — no group asked the teacher for permission to do this. In
that sense, that the problem statement is emergent is some indication that students are in an
exploratory, tinkering mode in working with the robots.

What follows in the next several minutes is Hazel and Silver systematically tinkering through a
variety of strategies to make the robot stop. They first begin by adjusting the digital outputs, Page 26.1500.4

which are set to HIGH.1

Hazel: We could just, we could also make it stop.
Silver: Oh, like after it gets to this distance.
[Both girls lean into the computer monitor]2
Hazel: We could turn these from, like, LOW stop.. I just changed this one to LOW.
Silver: What was it before?
Hazel: It was HIGH. Cause if one (inaudible)[pointing to left tread] it makes it turn right.
Silver: Oh. So LOW means off.
Hazel: Yeah, same with the light, and brightness.
[Girls upload the program, and the bot moves forward, slows down, and runs into the
box]
Hazel: It's now trying to stop. Oh, no, no
Silver: Oh, it's now turning LOW power to HIGH to just like- stop. Do you think that's in
the PDF?
Hazel: Yeah
Silver: Yeah
[Girls open an Ardunio bot reference sheet]
Silver: It doesn't say how to stop.
Hazel: No, but that's a thing we can Google.

Here, tinkering supported extended engagement in the activity. They first try something that had
worked in a prior LED task, in which rewriting a digital output from HIGH to LOW turned off
an LED. They similarly change the digital settings of the motors, not knowing that LOW and
HIGH correspond to the motors’ directions, rather than speed. This strategy leverages knowledge
from prior tasks to predict a solution, a strategy that we see as productive, even though in this
particular situation it does not yield the desired result for Hazel and Silver. While drawing out
that connection, they try to make sense of how motor treads work (getting information about the
new system rather than simply applying knowledge from previous experience). Their dialogue
and gestures give evidence that they see that turning a motor off will cause a corresponding tread
to stop moving. After their first modification does not work, they spend a couple of minutes
checking a reference guide and then search on Google for the solution, practices which were
encouraged in class. We see this utilization of available resources, without getting too bogged
down in one resource, as productive trial-and-error.

Three minutes later they isolate and execute individual lines of code (commenting out the other
lines), to generate some knowledge about what individual commands do. We see the whole
segment as tinkering because they do not attempt to draw out underlying principles of how the
system works; at a later point in the episode, they even verbally acknowledge that they do not
understand what individual functions do. The rapid testing of activities occur in the span of
about seven minutes.

1 HIGH & LOW: refer to the state of digital pin in the output mode. A command such as digitalWrite(9,HIGH)
would set an output voltage of 5V at the digital pin 9, while the same command with LOW instead of HIGH Will set
that digital pin to 0V.
2 [] Indicate actions or gestures

Page 26.1500.5

One could argue that instead of tinkering, Hazel and Silver should have systematically parsed the
code to make sense of it right from the start; they would have had better task success and better
learned Arduino programming through that process. We contend this notion. Hazel’s and Silver’s
activities reflect a recognition of the variety of resources at their disposal and a systematic walk
through the resources to try and achieve their goal. At each stage, they expanded the scope of
their investigation: first, getting feedback from manipulating the specific system (Arduino-bot),
then searching resources provided by the instructors, and finally searching on the internet.
Furthermore, their activities reflect a certain level of judgment and resource management: they
did not get fixated on any path, but quickly judged if the path would be productive, and if not,
they switched tactic. These are all important skills in the design process, and within authentic
engineering practice are not trumped by the value of systematic processing of the code. The
rapid movement from one idea to the next also reflects metacognitive time management; they do
not get bogged down in any one strategy testing of multiple paths. They also do some broader
exploration of the system, doing work to understand the relevant components of the robot and
code.

We do not, however, deny that line-by-line processing of code is also a valuable epistemic
practice. But it is also time-consuming and requires deferring the goal while one makes sense of
the code before they are ready to manipulate it toward the desired goal. On the other hand,
tinkering or looking up resources, if successful, can be a faster route to the solution. In that
sense, if achieving a particular function is the primary objective (as it was in the case of Hazel
and Silver), then starting as they did can be a productive strategy. What could make tinkering
processes unproductive is if a student gets fixated for a long time on these earlier methods even
when they aren’t yielding desired outcome. Hazel and Silver, however, do not get fixated.
Indeed, when the other strategies do not meet the desired solution (how to make the bot stop) in
about seven minutes, we see Hazel and Silver switch to engaging in a more systematic analysis
of the code.

Hazel: Okay. So we know that, that HIGH was backwards. It is the reverse of what it's
supposed to be.
Silver: I think the distance part is messing it up now.
Hazel: Okay, yeah.
Silver: Maybe take out the distance part and see if it will go for, like a, certain amount of
time, or a certain-
Hazel: We have a delay here, I think that's what's causing things to be weird cause- can
we have more than one (inaudible)? No.
Hazel: So it takes a reading. It calls it for one second. It goes forward. It…

Here we see them begin synthesizing their observations into an understanding of what lines of
code do. Hazel remarks, “So we know that, that HIGH was backwards.” We then see Hazel
parsing each line of the code in terms of its functionality, “So it takes a reading. It calls it for one
second. It goes forward.” However, it was while tinkering with the variables in the code that they
explicitly problematized their lack of understand of certain functions. This awareness could have
contributed to their getting to parsing the code to make sense of the functions. Thus, in some
situations, tinkering can give students a sense for where they might focus a more deliberate
analysis.

Page 26.1500.6

Bianca and Coral: Disciplinary Practices in Tinkering
The next clip highlights how tinkering can still engage students in productive disciplinary
practices, even when the end-goal is not the most productive strategy. In the first week of
Summer Girls, Coral and Bianca generate a goal of completing a 90 degree turn with the
Arduino-bot. This kind of precise task is often difficult to do reliably with the Arduino-bot due
to inconsistencies in Arduino-bot’s motion over short timescales.

Coral and Bianca had just completed a task of detecting and avoiding an obstacle and had moved
onto the next task of completing a “maze.” The “maze” was a pathway of left and right turns,
with “walls” made of wooden blocks, and was set up in the back of the classroom, and students
were allowed to conduct multiple trials. Instructors had intended for students to adapt the
obstacle avoidance code, using a closed-loop control strategy to identify walls with the distance
sensor, and use logic control structures to determine steps. At the start of the task, Coral says
that the maze likely has 90 degree turns, and suggests that they first find the delay to complete a
90 degree turn. This practice of breaking a larger task into small testable pieces is often a good
design practice, but in this case, it ended up being part of an open-loop control strategy, where
they pre-programmed each piece of the Arduino-bot’s motion through the maze. In general,
open-loop strategies can be more susceptible to slight variations in the physical setting as
compared to sensor-based closed loop strategies that can adapt to the variations. We should note,
however, that though the participants in the camp were introduced to sensors, they hadn’t been
explicitly instructed on the merits and demerits of open- versus closed-loop control strategies.

The clip begins with Coral and Bianca trying to get the bot to make discreet turns. Their code
writes the Arduino-bot’s outputs to the turn settings. In their first trial, the bot turns without
stopping. They are surprised, and Coral immediately picks up the (attached) USB cable and
holds it over the bot, so it does not run over the cable. After the first test, they realize they forgot
a delay after the code that sets the bot to turn, so the code is continuously looping through the
turn.

Bianca: Woo! Whoa, Okay!
Coral: Oh it's just turning around
Coral: We forgot- Oh, we have to do a delay on it. I forgot. Let's try a delay of like one
second just to see.

Coral suggests a delay of one second "just to see." Here, she seems to be inserting a placeholder
value based on what she thinks is a reasonable delay. The hedge in her utterance “just to see”
indicates that she is probably expecting to use this as a trial run to see how the system behaves
(getting system-specific information) when a delay is added and that she will be refining that
value later, either systematically or through trial and error. Because the next changes to the time
delay become smaller and smaller, we argue that she was using a placeholder value, with the
intention of narrowing in on the right amount. The statement also signals that she intends to use
the information from the next trial to inform the next modification, demonstrating the tinkering
nature of the activity. After uploading the new code, the Arduino-bot again spins around in
circles, as there is no other code after each spin in the loop.

Coral: It's a loop so it just keeps spinning.
Bianca: Alright well.

Page 26.1500.7

Coral: So it spins for a second, and it reads it again and spins for another second.
Infinitely. How do you make it stop? Oh you have to. Uhhh?
Bianca: Then we should probably do like, ‘And then go forward.’ Instead of turn.
Coral: Ah yeah I guess so.

They use the test as a way to generate knowledge about the system - Coral realizes that the
spinning happens because the code runs through the turn and loops again. Bianca then modifies
their goal to now include a right spin and forward motion, which is necessary for them to be able
to see if they have a satisfactory spin. This instance is similar to what Turkle and Papert describe
“a collaborative venture with the machine (p. 136),” treating the mistake as a part of one’s
navigation, rather than a bug. Bianca adds several more lines of code to have the bot move
forward after it turns. The bot successfully loops through the turn and forward motion, even
though the turn is not 90 degrees.

Coral: We have to try and figure out what the angle is so-
Bianca: It was a little bit more than 90 so
Coral: So let's say it's probably about like
Bianca: It's like 135, so we need it to be like 45 degrees less
Coral: Right. So change it to like-
Bianca: Should we change the delay to -
Coral: Oh yeah you change the delay to like, 750. Wanna try that?

In this segment, they move from one aspect of their goal, getting the bot to spin and move
forward, to getting the timing of the spin. The pair then spends almost four minutes adjusting
and re-adjusing the delay over several trials, making smaller and smaller changes. In one run, the
bot turns 90 degrees on the first turn, but in the second turn, it turns more than 90 degrees.
Bianca starts to notice an inconsistency in how the bot runs.

Bianca: Yeahh! That's like perfect. But how come when it does it the second time it
doesn't?
Coral: I think it was the cord. I think the cord was pulling on it.
[Coral removes cord and runs again. The bot keeps looping through the turn and forward
motion]
Coral: Oh that's a tiny bit more than 90 I think.
Bianca: Why?
Coral: See? Now that was 90! And that was a tiny bit more than 90?
Bianca: Why is it so inconsistent?
Coral: So it went from like here to like
Bianca: Yeah.
Coral: It probably like, it's probably 775.
Bianca: Or maybe we should make it like 780.

In this clip, Bianca notices that the bot doesn’t turn for the same amount in each loop. Coral at
first suggests taking out the USB cord, attending to how the physical setup could be causing
variability in the motion. Bianca makes a bid to understand why it's so inconsistent, but they
revert back to fine-tuning the delay. The period of rapid testing ends when Coral decides to look
at the maze. She briefly consults with a classroom helper.

Page 26.1500.8

Coral: We're figuring out 90 degree turns
Helper: Awesome.
Coral: I hope the maze has 90 degree turns.
Bianca: Yeah that would be, it should be.
Coral: Is the maze up? Do you know?
Helper: I think so.
[Bianca uploads and runs another iteration]
Coral: It's a little bit-
Bianca: Why?
Coral: Cause like if starts like straight, it's pretty close.
Bianca: It's still gonna run into the wall though.
Coral: Well for now, we should probably actually like look at the maze. I'm gonna go-
[Coral gets up]
[Bianca types and tests new values on her own silently]

At the end of this clip, Coral goes to look at the maze while Bianca continues to try to fine-tune
the delay. Revisiting and adjusting the problem while designing solutions is a productive
practice.8 Coral seems to be making a bid at the end for getting the turn “pretty close,” because it
might still go through the maze. Their approach to the maze ends up being an open-loop set of
instructions to turn and go straight, rather than developing an algorithm using a distance sensor.
Only toward the end of the task, they incorporate the distance sensor into the first turn and the
end of the maze.

In some ways, their goal and approach to the task was unproductive. In it, Coral and Bianca are
trying to fine-tune a time delay to get the Arduino-bot to make 90 degree turns. This goal is
nearly impossible to accomplish based on the inconsistencies of the bot, though they do not
know that when they start to work toward it. Despite Bianca noting the inconsistency of bot's
turns, they still stay stuck on trying to accomplish this goal, rather than shift strategies. We
suggest that the unproductive aspects of their activity lay in their goal choice; however, tinkering
in itself is neither productive nor unproductive.

Still, this episode shows how engagement in tinkering enables them to engage in good design
practices. They engage in multiple troubleshooting strategies, without getting too bogged down.
For example, while working on the subgoal, they start their delay by using placeholder values, to
see if their code generally does what they want it to. They also adapt their goal to have the
Arduino-bot turn and run forward, based on information gathered from the system in their
tinkering. This kind of goal adaptation frames their non-working code as a building block, rather
than a mistake. They also try reducing error by taking into account physical features of the
system (moving the USB cord) and modifying the code itself.

Valuing Tinkering for Affective Engagement
Now we turn to excerpts from our interview with Coral to illustrate how tinkering is also an
emotional experience for some students; and their emotions can be coupled with their sense of
whether the tinkering was productive or not. Coral describes tinkering-like practices as
productive for design, and sees managing frustration as a part of tinkering. In an interview in the
middle of camp, Coral discussed the nature of design, and how design requires frequent testing

Page 26.1500.9

of different solutions. At the time of the interview, Coral and Bianca had just begun their final
project. Their project, a walking and dancing baby, required coordination of two separate
Arduino-bots as the feet of the baby.

Interviewer: How are you ensuring that the two robots will work together?
Coral: So, we do have two programs for the two. But we know that from today we saw
that one seemed to be moving a little bit faster than the other. So we were thinking of
trying it just at a lower motor speed or possibly changing out the batteries of the one that
was moving slower since we have been using those a lot and the other ones were like new
batteries. So we thought about that and then also, just testing, a lot a lot of testing. and
like slightly altering the program here but not too much where it'll make a drastic change
and you have to alter the other one and yeah.
Interviewer: So like, making little changes, seeing how it works, making a little more
changes, seeing how it works.
Coral: Yeah. And just like, not getting frustrated, being like, this is going to be difficult to
move the two and we both understand that, so it's just fun and go from there.

Though Coral doesn’t explicitly say “tinkering,” her description of testing aligns with tinkering.
Testing itself isn't necessarily tinkering; testing could also be part of more systematic data
collection. We suggest that to her, testing is what we call tinkering, because testing occurs in the
pursuit of accomplishing a goal, rather than drawing out underlying concepts. Her description of
testing also explicitly includes more than one strategy, lowering speed and changing batteries,
and using multiple strategies is also a feature of tinkering. Coral brings out managing frustration
as an important component of doing design. She elaborates more on frustration.

Interviewer: What happens when things aren't working? You're feeling frustrated?
Coral: I think it's definitely like, you're going to get frustrated and I've done enough with
robotics to know that it's a frustrating task sometimes. But you just have to kinda know
that like, if I don't change it, it's not going to change, and if you want that end goal, or if
you want it to accomplish what you want it to accomplish, it's just gonna take time. And
testing different things, trying out different values, different codes maybe, different ideas,
taking a second to like, just leave it and then just letting your mind play around with
different ideas and just stepping away from the project for a second, and coming back to
it. So, I mean, I think it's one of those things where, I do get frustrated but I don't think
it's overwhelming where I ever really feel like ‘Okay, that's it, I'm done.’

We also see a little more of what that testing process looks like for Coral. "Testing different
things, trying out different values, different codes maybe, different ideas," reflects using multiple
strategies to achieve a result. To Coral, this process is not only helpful, she sees it as an integral
part of doing design. She accepts frustration as part of the design process and says that part of
not letting the frustration turn into an obstacle to progress is to keep an eye on the goal you want
to achieve and taking a break when needed. We can also see Coral as suggesting that the multiple
quick moves that tinkering allows, including making quick changes and trying out new ideas
could potentially alleviate frustration when something isn’t working. The evidence to fully
support this interpretation is thin, but points to the need for investigating how students’ tinkering
practices are coupled with their local emotions, which could impact their engagement with
design.

Page 26.1500.10

Discussion
Though tinkering may not lead to generalizable content learning, we argue that it often has value
as an engineering disciplinary practice. This work sheds light on how tinkering emerges in the
design process, the ways in which tinkering might be productive for design, and how tinkering
might impact student engagement.

In the case of Hazel and Silver, tinkering was a productive part of their process and helped them
engage in more systematic unpacking of concepts. While tinkering, they utilized resources
without getting too bogged down in one strategy, used multiple iterations to build specific
knowledge about the system, and drew connections across tasks. They also identified aspects of
code that they did not understand, and later did more systematic analysis of those areas.

Bianca and Coral tinkered through a self-generated goal that was part of a larger, unproductive
open-loop control strategy. They still engaged in many good practices while tinkering. For
example, they adjusted the goal based on the system, used placeholder values, and revisited the
problem in the process of designing a solution. Interview data with Coral also pairs tinkering
with positive affect related to lowered frustration, and some acceptance of frustration as being
part of the tinkering process. The example of Bianca and Coral raises questions about what to do
when students engage in productive practices yet are following an overall unproductive strategy.
One could imagine steering students toward the more productive or more sophisticated strategy
(such as a sensor-based closed-loop control strategy in the case of Coral and Bianca), and while
we can envision that working out well, we can also envision situations in which such an
intervention might lead students down the path of just doing what the instructor tells them to do.
The specifics of enacting such an instructional intervention would matter greatly in how
subsequent student action plays out. This example draws our attention to the different grain-sizes
at which we might attend to when valuing or critiquing students’ design thinking.

To summarize, we argue that students’ tinkering behaviors can have a productive role in the
engineering design classroom and more research is needed on understanding the various ways in
which students take up tinkering during engineering design activities.

Acknowledgements
We are grateful to the participants in the Summer Girls program for allowing us to videotape
their classroom participation and for volunteering for interviews. We thank Andrew Elby for his
feedback on earlier drafts of this work. We thank members of the University of Maryland
Engineering Education Group (blog.umd.edu/eerg) and Physics Education Group (ter.ps/perg)
for valuable discussions around this data in group meetings.

This material is based upon work supported by the National Science Foundation under Grant
Numbers DRL-0733613 and DUE-1245590.

Page 26.1500.11

References
1. Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using learning analytics to

understand the learning pathways of novice programmers. Journal of the Learning Sciences, 22(4), 564-
599.

2. Turkle, S., & Papert, S. (1990). Epistemological pluralism: Styles and voices within the computer culture.
Signs, 128-157.

3. Roth, W. M. (1996). Art and artifact of children's designing: A situated cognition perspective. Journal of
the Learning Sciences, 5(2), 129-166.

4. Yeshno, T., & Ben-Ari, M. (2001). Salvation for bricoleurs. In Proceedings of the Thirteenth Annual
Workshop of the Psychology of Programming Interest Group, Bournemouth, UK (pp. 225-235).

5. Law, L. C. (1998). A situated cognition view about the effects of planning and authorship on computer
program debugging. Behaviour & Information Technology, 17(6), 325-337.

6. Hawkins, D. (1965). Messing about in science. InThe ESS Reader (pp. 37–44). Newton, MA: Elementary
Science Study.

7. Jordan, B., & Henderson, A. (1995). Interaction analysis: Foundations and practice. Journal of the
Learning Sciences, 4(1), 39-103.

8. Dorst, K., & Cross, N. (2001). Creativity in the design process: co-evolution of problem–solution. Design
studies, 22(5), 425-437.

Page 26.1500.12

	Tensions in the Productivity in Design Task Tinkering – Fundamental
	Recommended Citation

	Tensions in the Productivity in Design Task Tinkering – Fundamental

