
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Spring 2012 

JAVA DESIGN PATTERN OBFUSCATION JAVA DESIGN PATTERN OBFUSCATION 

Praneeth Kumar Gone 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Gone, Praneeth Kumar, "JAVA DESIGN PATTERN OBFUSCATION" (2012). Master's Projects. 242. 
DOI: https://doi.org/10.31979/etd.hk46-gemv 
https://scholarworks.sjsu.edu/etd_projects/242 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/242?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F242&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


JAVA DESIGN PATTERN OBFUSCATION

A Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Praneeth Kumar Gone

May 2012



c© 2012

Praneeth Kumar Gone

ALL RIGHTS RESERVED



The Designated Project Committee Approves the Project Titled

JAVA DESIGN PATTERN OBFUSCATION

by

Praneeth Kumar Gone

APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2012

Dr. Mark Stamp Department of Computer Science

Dr. Chris Pollett Department of Computer Science

Dr. Jon Pearce Department of Mathematics



ABSTRACT

Java Design Pattern Obfuscation

by Praneeth Kumar Gone

Software Reverse Engineering (SRE) consists of analyzing the design and imple-

mentation of software. Typically, we assume that the executable file is available, but

not the source code. SRE has many legitimate uses, including analysis of software

when no source code is available, porting old software to a modern programming

language, and analyzing code for security vulnerabilities. Attackers also use SRE to

probe for weaknesses in closed-source software, to hack software activation mecha-

nisms (or otherwise change the intended function of software), to cheat at games,

etc.

There are many tools available to aid the aspiring reverse engineer. For example,

there are several tools that recover design patterns from Java byte code or source code.

In this project, we develop and analyze a technique to obfuscate design patterns. We

show that our technique can defeat design pattern detection tools, thereby making

reverse engineering attacks more difficult.



ACKNOWLEDGMENTS

I would like to thank Dr. Mark Stamp, for guiding me through this research

project and working with me to achieve this. I also thank him for his suggestions

and contributions for handling some of the difficulties faced during the course of this

project. Without him, this would not have been possible.

I would like to thank members of the committee, Dr. Chris Pollett and Dr. Jon

Pearce, for their valuable feedback, encouragement and advice.

v



TABLE OF CONTENTS

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Anti-reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Reversing and Anti-reversing Tools . . . . . . . . . . . . . . . . . 8

1.4 Related Work and Project Goal . . . . . . . . . . . . . . . . . . . 8

1.5 Organization of the Report . . . . . . . . . . . . . . . . . . . . . . 11

2 Reverse Engineering Java . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Java Decompilers . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Reverse Engineering HelloWorld Java program . . . . . . . 13

2.1.2 Evaluation of Decompilers . . . . . . . . . . . . . . . . . . 16

2.2 Design patterns and Pattern detection tools . . . . . . . . . . . . 18

2.2.1 Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Pattern detection tools . . . . . . . . . . . . . . . . . . . . 37

3 Obfuscation of Design Patterns . . . . . . . . . . . . . . . . . . . . 48

3.1 Obfuscation using available tools . . . . . . . . . . . . . . . . . . . 48

3.1.1 jarg - Java Archive Grinder tool . . . . . . . . . . . . . . . 48

3.1.2 JavaGuard . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.3 BebboSoft (bb mug) obfuscation tool . . . . . . . . . . . . 51

3.1.4 Proguard Obfuscation tool . . . . . . . . . . . . . . . . . . 52

3.1.5 Sandmark Obfuscation tool . . . . . . . . . . . . . . . . . 55

vi



vii

3.2 Design Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 FactoryMethod pattern . . . . . . . . . . . . . . . . . . . . 60

3.2.2 AbstractFactory pattern . . . . . . . . . . . . . . . . . . . 61

3.2.3 Builder pattern . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.4 Adapter pattern . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.5 Bridge pattern . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.6 Flyweight pattern . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.7 Decorator pattern . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.8 Mediator pattern . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.9 Observer pattern . . . . . . . . . . . . . . . . . . . . . . . 69

3.2.10 Strategy pattern . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.11 TemplateMethod pattern . . . . . . . . . . . . . . . . . . . 71

3.2.12 Visitor pattern . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Tool Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Design and Functionality . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Implementation Platform . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Program Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Results and Observations . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Test of 23 GoF patterns . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Tests on Grand GoF patterns from [26] . . . . . . . . . . . . . . . 88

5.3 Tests for Vince Huston patterns [44] . . . . . . . . . . . . . . . . . 92

5.4 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



viii

5.5 Comparison to Proguard and Sandmark . . . . . . . . . . . . . . . 97

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 99



LIST OF FIGURES

1 Platform independent Java language. . . . . . . . . . . . . . . . . . . 3

2 Execution of Java bytecode vs Machine code. . . . . . . . . . . . . . . 4

3 Hex view of HelloWorld.class file. . . . . . . . . . . . . . . . . . . . . 5

4 Class file view (HelloWorld.class). . . . . . . . . . . . . . . . . . . . . 6

5 Constant Pool table. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6 HelloWorld Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 JAD decompiled HelloWorld . . . . . . . . . . . . . . . . . . . . . . . 14

8 DJ Java decompiled HelloWorld.java . . . . . . . . . . . . . . . . . . 15

9 JODE decompiled HelloWorld.java . . . . . . . . . . . . . . . . . . . 15

10 Mocha decompiled HelloWorld.java . . . . . . . . . . . . . . . . . . . 16

11 JD decompiled HelloWorld.java . . . . . . . . . . . . . . . . . . . . . 17

12 Java Bytecode Decompilers [20] . . . . . . . . . . . . . . . . . . . . . 17

13 Decompilation Correctness Classification [20] . . . . . . . . . . . . . . 18

14 Decompiler Test Results [20] . . . . . . . . . . . . . . . . . . . . . . . 19

15 UML diagram of FactoryMethod Pattern [10] . . . . . . . . . . . . . 23

16 UML diagram of AbstractFactory Pattern [10] . . . . . . . . . . . . . 24

17 UML diagram of Builder Pattern [10] . . . . . . . . . . . . . . . . . . 25

18 UML diagram of Adapter Pattern [10] . . . . . . . . . . . . . . . . . 26

19 UML diagram of Bridge Pattern [10] . . . . . . . . . . . . . . . . . . 27

20 UML diagram of Flyweight Pattern [10] . . . . . . . . . . . . . . . . . 29

21 UML diagram of Decorator Pattern [10] . . . . . . . . . . . . . . . . 30

ix



x

22 UML diagram of Mediator Pattern [10] . . . . . . . . . . . . . . . . . 31

23 UML diagram of Observer Pattern [10] . . . . . . . . . . . . . . . . . 33

24 UML diagram of Strategy Pattern [10] . . . . . . . . . . . . . . . . . 34

25 UML diagram of TemplateMethod Pattern [10] . . . . . . . . . . . . 35

26 UML diagram of Visitor Pattern [10] . . . . . . . . . . . . . . . . . . 37

27 PINOT Command-line Interface . . . . . . . . . . . . . . . . . . . . . 41

28 Similairty Scoring Command-line Interface . . . . . . . . . . . . . . . 43

29 Similairty Scoring User Interface . . . . . . . . . . . . . . . . . . . . . 44

30 Patterns detected from 23 GoF patterns . . . . . . . . . . . . . . . . 45

31 Graph for Patterns detected . . . . . . . . . . . . . . . . . . . . . . . 46

32 PINOT false positives . . . . . . . . . . . . . . . . . . . . . . . . . . 46

33 Proguard GUI In/Out options . . . . . . . . . . . . . . . . . . . . . . 53

34 Patterns detected using Proguard . . . . . . . . . . . . . . . . . . . . 54

35 Detected patterns graph using Proguard . . . . . . . . . . . . . . . . 55

36 PINOT false positives . . . . . . . . . . . . . . . . . . . . . . . . . . 55

37 Sandmark GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

38 Detected patterns using Sandmark . . . . . . . . . . . . . . . . . . . 58

39 Detected patterns graph using Sandmark . . . . . . . . . . . . . . . . 59

40 Obfuscate FactoryMethod pattern . . . . . . . . . . . . . . . . . . . . 61

41 Obfuscate AbstracFactory pattern . . . . . . . . . . . . . . . . . . . . 62

42 Obfuscate Builder pattern . . . . . . . . . . . . . . . . . . . . . . . . 63

43 Obfuscate Adapter pattern . . . . . . . . . . . . . . . . . . . . . . . . 64

44 Obfuscate Adapter Client . . . . . . . . . . . . . . . . . . . . . . . . 64



xi

45 Obfuscate Bridge pattern . . . . . . . . . . . . . . . . . . . . . . . . . 65

46 Obfuscate Flyweight pattern . . . . . . . . . . . . . . . . . . . . . . . 66

47 Obfuscate Decorator pattern . . . . . . . . . . . . . . . . . . . . . . . 67

48 Obfuscate Mediator pattern . . . . . . . . . . . . . . . . . . . . . . . 68

49 Obfuscate Observer pattern . . . . . . . . . . . . . . . . . . . . . . . 69

50 Obfuscate Strategy pattern . . . . . . . . . . . . . . . . . . . . . . . . 70

51 Obfuscate TemplateMethod pattern . . . . . . . . . . . . . . . . . . . 71

52 Obfuscate Visitor pattern . . . . . . . . . . . . . . . . . . . . . . . . 73

53 Obfuscate design patterns . . . . . . . . . . . . . . . . . . . . . . . . 74

54 Java Model Overview [42] . . . . . . . . . . . . . . . . . . . . . . . . 76

55 Sequence diagram DesignObfuscationEngine . . . . . . . . . . . . . . 78

56 Block diagram DesignObfuscationEngine . . . . . . . . . . . . . . . . 79

57 Program flow DesignObfuscationEngine . . . . . . . . . . . . . . . . . 81

58 Create AST and CompilationUnit . . . . . . . . . . . . . . . . . . . . 81

59 Create Import and Package Declaration . . . . . . . . . . . . . . . . . 82

60 Class and Method declaration . . . . . . . . . . . . . . . . . . . . . . 82

61 Variable and Parameter declaration . . . . . . . . . . . . . . . . . . . 82

62 Detected patterns with Obufscation . . . . . . . . . . . . . . . . . . . 85

63 Detected patterns graph with Obufscation . . . . . . . . . . . . . . . 86

64 Runtime Analysis for Normal and Obfuscated patterns . . . . . . . . 87

65 Runtime analysis graph . . . . . . . . . . . . . . . . . . . . . . . . . . 88

66 Detected patterns without Obfuscation . . . . . . . . . . . . . . . . . 89

67 Detected patterns without obfuscation graph . . . . . . . . . . . . . . 90



xii

68 Detected patterns with Obfuscation . . . . . . . . . . . . . . . . . . . 91

69 Detected patterns with obfuscation graph . . . . . . . . . . . . . . . . 92

70 Detected patterns without Obfuscation . . . . . . . . . . . . . . . . . 93

71 Detected patterns without obfuscation graph . . . . . . . . . . . . . . 94

72 Detected patterns with Obfuscation . . . . . . . . . . . . . . . . . . . 95

73 Detected patterns with obfuscation graph . . . . . . . . . . . . . . . . 96

74 Patterns for Proguard and DesignObfuscationEngine . . . . . . . . . 97

75 Patterns for Proguard, Sandmark and DesignObfuscationEngine . . . 98



CHAPTER 1

Introduction

Business organizations and companies spend an immense amount of time and

money on computer software development in order to drive a product from conception

to release. Important software development tasks include the design and integration

of complex modules into an application. In the field of software system developers,

a need to understand how existing software works is imperative. This process of

analyzing source code and technological principles such as functions, structures from

existing software binaries (exes, C/C++ object files or java class files) is called Soft-

ware Reverse Engineering (SRE) [8]. SRE involves an analysis of a software systems

components, its internal structure, or its design from software binaries. An SRE is

used for purposes listed below [6, 9]:

1. Documentation of the software or to understand how existing software works

to extend its functionality;

2. Monitoring access to resources like files, system registry [27];

3. Security audit of software applications [48];

4. Cryptanalysis of famous cryptographic systems;

5. Reverse engineering of Protocols, typically includes reversing of encryption and

hashing functions [48];

6. Software benchmarking, verification of software includes analyses and match

user expectations [48];

1



7. Analysis of digital rights of a system;

8. Cheating in games;

9. and Stealing and replicating someone’s idea.

1.1 Reverse Engineering

Software reverse engineering (SRE) can be used for analysis of executable

files [17]. Examples of such analysis includes redocumenation of programs [4], code

smell detection [12], renewal of software modules [28], migration of legacy code [5],

translation of program from one language to another [25] and architecture recovery

like recovery of design patterns [2]. SRE is also used in piracy of software, and other

illegal activities.

Software Reverse Engineering (SRE) is used for the analysis of executable

files [17]. Examples of these analyses includes re-documentation of programs [4], code

smell detection [12], renewal of software modules [28], migration of legacy code [5],

translation of a program from one language to another [25] and architecture recovery

such as recovery of design patterns [2]. SRE is also used in software piracy, and other

illegal activities.

SRE of the software binaries is accomplished in three steps [6]:

1. Parsing and semantic analysis of code;

2. Extracting information from the code;

3. and Dividing the product into components.

Disassembling tools are used to parse software binaries and then a semantic

analysis is performed on each parsed code. Information gathered is stored in an

2



informational base and is used to understand the softwares design and functionality.

Details obtained can be used to develop functionally superior software or similar

software with different abstractions.

Essential tools for SRE are both a disassembler and debugger [27]. Disassemblers

are used for software parsing by converting an executable (Windows exe) to the

assembly code. Issues faced in the disassembling process are separating the code

and gathering data where there is no information regarding variable names and/or

label names. Disassembling an executable file for analysis and reassembling it into

a functioning executable file is not always possible. Debuggers are used for dynamic

analysis tasks such as setting break points while the software executes and analyzes

the program flow.

Software Reverse Engineering for Java software programs is much simpler than a

native assembly code. The Java source code, when compiled, generates bytecode that

will be executed by a Java Virtual Machine (JVM). This byte code will have more

information regarding the source code than a native code will contain. This creation

of a bytecode that runs on JVM makes the Java language platform independent as

shown in Figure 1 below.

Figure 1: Platform independent Java language.

3



A JVM must be installed on a computer in order to use Java language. To

execute a Java application, these intermediate symbols are read by a JVM and are

converted to machine code in order to run the process as shown in Figure 2 below.

Figure 2: Execution of Java bytecode vs Machine code.

The SRE of a Java bytecode, as explained, uses a HelloWorld example that in-

volves a mapping of the HelloWorld binary to a Java class file format; the extraction

of information occurs by opening the Java class file using a text editor. The Hel-

loWorld binary is shown in Figure 3 and the mapping of a HelloWorld binary to Java

class file format is shown in Figure 4 and Figure 5.

The Java class file format specification document [23] gives details regarding the

protocol used in forming class files by using symbols defined in the bytecode. There

are 10 basic sections to the Java class file structure [47] as demonstrated below:

1. Magic Number: 0xCAFEBABE

2. Version of Class File Format: the minor and major versions of the class file

3. Constant Pool: this pool consists of constants of the class

4. Access Flags: specified whether the class is abstract, static etc.,

5. This Class: name of the current class

4



Figure 3: Hex view of HelloWorld.class file.

6. Super Class: name of the super class

7. Interfaces: interfaces used in the class

8. Fields: fields declared in the class

9. Methods: methods declared in the class

10. Attributes: such as name of the source file, etc.,

An analysis of a HelloWorld class file [38], according to the Java class file for-

mat,gives information such as method references within the class; an example would

be System.out.println with the parameter HelloWorld! inside the main method.

A native code in assembly language will not provide this information regarding the

5



Figure 4: Class file view (HelloWorld.class).

software binary and its reverse engineering is more complex and tedious, even with

the use of SRE tools.

This SRE example of using a simple HelloWorld program demonstrates a mech-

anism for using and extracting basic information through a text editor, without the

help of an SRE tool. Extensive documentation detailing the Java bytecode and the

JVM is readily available and helpful in the development of an automated SRE tool in

order to decompile Java class files. Presently, tools, such as decompilers and pattern

detection tools are readily available to reverse engineer Java source and class files.

Decompilers are used to extract source code from Java binaries, and pattern detection

tools are used where analyzing design patterns from an extracted Java source or its

binaries is needed.

6



Figure 5: Constant Pool table.

1.2 Anti-reverse Engineering

Anti-reverse engineering is the process to protect software from reverse engineer-

ing. The software community is facing a tough challenge in order to protect software

from attackers and to prevent its misuse. According to [9], The patent system is

not quite as effective with software as it is with traditionally engineered tangible ar-

tifacts. While a patent mandates IP protection it is next to impossible to prove

or even suspect any IP theft in a software product that might have been the result

of a malicious reverse engineering attack on a patented competitor. The goal of any

anti-reverse engineering technique is to increase the amount of work needed to reverse

engineer software and increase the reversing time beyond the life-time of a software

7



application.

1.3 Reversing and Anti-reversing Tools

There are many tools available in order to reverse engineer software applications:

reverse engineering tools such as disassemblers that extract system blocks information

using an assembly code from an executable file; debuggers used for dynamic analysis;

and decompilers to gain the source code from software binaries. Tools can be open

source and/or commercial software [37]. Most use disassembling and debugging tools

available include OllyDbg, IDA Pro, and WinDbg. Apart from disassembling and

debugging, these tools can also produce additional information [9].

A Java byte code is not created in a human readable format; in fact, it has a

close resemblance to the source code and will help in understanding basic details of

a program. The tools available for reverse engineering Java are JaD [36], JODE [22],

MOCHA [18], DJ Java decompiler [3], and PINOT [34].

In order to defend the need for reversing software binaries, necessary research is

being conducted within the software community. Suggested mechanisms for making

it more difficult to reverse engineer software include: software obfuscation; physically

protecting a software application platform; encrypting an executable; and watermark-

ing the software [9]. The main idea of our project is to use code obfuscation; we start

with an analysis of the design pattern detection tools and implement our obfuscation

tool by following the techniques described in [29].

1.4 Related Work and Project Goal

Software obfuscation is an anti-reverse engineering mechanism that changes the

structure of a given code with no change to its functionality. There are three types

8



of obfuscation used: control-flow obfuscation in order to obscure the flow of control;

dataobfuscation that makes understanding data fields difficult; and layout-obfuscation

where we split logic into separate procedures. Many obfuscation tools are available; a

list of open source obfuscation tools is given in [35, 14] and these are ProGuard [13],

yGuard [49], SandMark [7], jarg [19], bb mug (BebboSoft) [41], JavaGuard [43], as

well as commercial tools such as Allatori [40], Zelix KlassMaster [50], and JShrink [11].

These obfuscation tools support functions such as:

1. Rename class, method, field and local names to some random meaningless

strings;

2. Removing debugging information;

3. Removing dead code and constant fields (Shrinking the code);

4. Optimizing local variable allocation;

5. and Exception Obfuscation.

The tools listed above implement a control-flow obfuscation, data-obfuscation

and layoutobfuscation; however, these tools do not perform a design level obfuscation.

Functions supported by these tools do not bring a structural change in the class level

(i.e., removing interfaces, adding abstractions) and will not bring a major change in

class level interactions. Obscuring a design requires change in the relationship between

software system class components. Design patterns mainly use an inheritance feature

of an object oriented program; we need to obscure this inheritance level relationship

between classes in order to hide and shield architecture from a pattern detection tool.

Present obfuscation tools do protect programs and make it difficult to reverse

engineer. However, these obfuscation tools cannot hide the software system design

9



level mechanism. In Chapter 3, we describe obfuscation using current available tools

that do not show hiding patterns from detection tools. These experiments clearly

demonstrate that three obfuscations, control-flow; dataflow; and layout obfuscations,

do not completely obfuscate the design level architecture.

Design obfuscation is necessary in order to obfuscate object oriented programs

that protect applications from reverse engineering. Software obfuscation techniques

described in [29], class-coalescing, class-splitting, and type-hiding, can be used for

design obfuscation. In a class-coalescing technique two or more classes are combined

into a single class; for class-splitting a single class is split into a number of classes with

the functionality divided between them. Type-hiding is used to increase the number

of interfaces that are implemented by classes.

These techniques are implemented into Design Obfuscator Java (DOJ) applica-

tion [29] that uses Soot optimization framework to analyze the bytecodes within an

application. A DOJ tool design obfuscation was tested on medium and large sized

programs. Results demonstrate that class-splitting resulted in an overhead of 10

Tasks completed in this project were to implement a design obfuscation tool that

will obfuscate 23 Gang of Four (GoF) design patterns that hide an internal architec-

ture from reverse engineering. Design obfuscation techniques, described in [29], such

as class-coalescing and class-splitting are applied to binaries. This obfuscated source

is tested for design pattern detection by running pattern detection tools. Before and

after obfuscation results are compared and analyzed in Chapter 5.

10



1.5 Organization of the Report

This project report is organized as follows:

• Chapter 2 will describe the decompilers used in Java reverse engineering, intro-

duction to design patterns, and pattern detection tools.

• Chapter 3 explains an obfuscation approach used for important design patterns.

• Chapter 4 presents the implementation details used by the developed software

tool.

• Chapter 5 shows results from two pattern detection tools, and comparing pro-

posed obfuscator to present obfuscators.

• Chapter 6 concludes our report and provides future work.

11



CHAPTER 2

Reverse Engineering Java

The reverse engineering of a Java class file is simple, as class files contain most

of the information about the original source code. Many decompilers, and design

extraction tools for source and class files are available.

2.1 Java Decompilers

A Java decompiler is used to covert our java class files (*.class) into source code

files (*.java). Many software applications do not provide their source code; however

these applications can be reverse engineered by using decompilers in order to obtain

source Java files for analysis. Many Java decompilers are available [37], and a few

effective tools are as follows:

1. Jad Java decompiler [36]

2. DJ Java decompiler [3]

3. JODE decompiler and optimizer [22]

4. Mocha java decompiler [18]

5. JD (Java Decompiler) [21]

Our list includes a decompiler that can be run through either a command line

or GUI. The inner working of these decompilers by decompiling HelloWorld class file

and evaluation of various decompilers [20], will be explained in the next subsections.

12



2.1.1 Reverse Engineering HelloWorld Java program

By decompiling a simple HelloWorld class file we can demonstrate the working

of all these decompilers. The following below in Figure 6 is the code for the Hel-

loWorld.java program. We compiled this program using a Java compiler in order to

create a HelloWorld.class file.

Figure 6: HelloWorld Source

2.1.1.1 JAD

The Java Decompiler (JAD) is an old decompiler and currently not under main-

tenance [36]. JAD provides a command line interface that decompiles class files to

Java files. Decompiled program of HelloWorld.class file is as shown in Figure 7.

13



Figure 7: JAD decompiled HelloWorld

2.1.1.2 DJ Java Decompiler

A DJ Java decompiler is the GUI version of JAD and one of the most widely

used decompilers. A full version of DJ Java decompiler is available for $19.99 [3], and

a decompiled HelloWorld program, using a Trial version, is shown in the Figure 8.

14



Figure 8: DJ Java decompiled HelloWorld.java

2.1.1.3 JODE

After installing the JODE decompiler, we start decompiling the process of our

HelloWorld.class file using the following command as shown in Figure 9 below:

Figure 9: JODE decompiled HelloWorld.java

JODE can decompile all class files that do not contain any dependencies; it

displays an error trying to decompile class files with dependencies and also it cannot

15



understand complex expressions or statements within the program.

2.1.1.4 Mocha

This decompiler is also not under maintenance and it reportedly has problems

decompiling class files created by recent a Java compiler version [18]. The decompiled

HelloWorld.java program is shown in Figure 10 below:

Figure 10: Mocha decompiled HelloWorld.java

2.1.1.5 JD - Java Decompiler

A Java decompiler (JD) is available as a library JD-Core, in GUI JD-GUI and

a plugin for eclipse JD-Eclipse [21] is also available. A decompiled HelloWorld class

file, on JD-GUI, is shown in Figure 11:

2.1.2 Evaluation of Decompilers

Evaluating decompilers requires tests that contain different types of source code;

an example would be a code with exceptions, try-catch blocks, and interface abstrac-

tions. In [20] the authors used a set of classes to evaluate commonly used and available

16



Figure 11: JD decompiled HelloWorld.java

decompilers. The decompilers that were evaluated are shown in Figure 12, below.

Figure 12: Java Bytecode Decompilers [20]

The decompilers are scored according to output results shown in Figure 13, and

decompiler test results are shown in Figure 14.

Decompiler results conclude that ClassCracker3, jdec, jReversePro, Mocha,

SourceTec (Jasmine) decompilers preform poorly and are not able to decompile a

single program from the given set. Dava, Jad, and JODE decompilers performed

similarly when decompiling five programs from the set; but for the most part, JODE

17



Figure 13: Decompilation Correctness Classification [20]

correctly decompiled the programs. The JD decompiler out-performed Dava, and

Jad in recovering most of the source programs within the given set. SourceAgain is

the only commercial decompiler that performed well, however it is no longer sold or

supported.

2.2 Design patterns and Pattern detection tools

Pattern detection tools were implemented in order to detect design patterns.

Software systems are built using design patterns in order to solve design specific

problems. There are at least 250 existing patterns that are used in an object oriented

world. The 23 GoF patterns are well known and widely used patterns. In this

section, we will discuss, in brief, the 12 GoF patterns using examples, followed by

18



Figure 14: Decompiler Test Results [20]

pattern detection tools and their efficiency.

2.2.1 Design Patterns

Computer science software design problems are solved using design patterns.

These design patterns are reusable and use object oriented techniques that provide a

design for software development in various fields. In our project we will address the

23 GoF design patterns [15]. Design patterns are grouped into three categories [15]

creational patterns, structural patterns, and behavioral patterns. In this subsection

we will discuss 12 design patterns, problems each pattern resolves, and when a given

pattern must be applied using an example. These 12 design patterns will also be

used to explain obfuscation techniques in Chapter 3. The 23 GoF design patterns are

divided into categories are listed below.

19



Creational Patterns: These are design patterns that deal with the creation of

an object according to a given situation. Creational patterns are formed by encapsu-

lating the knowledge of given object in order to create and hide the instances of how

these objects are created. There are five creational patterns listed below.

1. AbstractFactory

2. Builder

3. FactoryMethod

4. Prototype

5. Singleton

Structural Patterns: In software engineering, structural patterns solve prob-

lems of realizing relationships between different entities. A software system consists

of a number of classes interacting with each other in order to complete an applica-

tion. The type of structural pattern is often selected according to a given situation

examples include: adapting an object, and creating complex type from simpler types.

Below is the list of structural patterns:

1. Adapter

2. Bridge

3. Composite

4. Decorator

5. Facade

20



6. Flyweight

7. Proxy

Behavioral Patterns: These patterns solve design problems by implementing

a common communication and implementation between entities. Communicating

between entities involves mediating between classes, notifying the state of an object,

and selecting different algorithms at run time. The list of behavioral patterns is given

below:

1. Chain of Responsibility

2. Command

3. Interpreter

4. Iterator

5. Mediator

6. Memento

7. Observer

8. State

9. Strategy

10. TemplateMethod

11. Visitor

21



A description of commonly used and important design patterns is explained

below along with examples. Obfuscation of these examples, types of obfuscation, and

obfuscation testing will be explained further in Chapter 3.

2.2.1.1 FactoryMethod Pattern

This pattern solves the problem of creating objects without specifying an ex-

act class initialization of an object. Initiating different objects in the application

could duplicate the use of code and might increase memory requirements. The Fac-

toryMethod pattern defines a separate abstract method that can be overridden by all

subclasses and the derived type object is used further within the application [10].

Example:

Below we see a Factory Product example; it has a Factory Interface that specifies

generic behavior for the products. The Client, when using identification details,

requests a product from the ConcreteFactory in order to initialize the Product

variable which uses concrete products. The ConcreteProduct is an implementation

of the Product interface; there can be different implementations depending on the

type of product. The UML diagram of a Factory Product example is shown in

Figure 15.

22



Figure 15: UML diagram of FactoryMethod Pattern [10]

2.2.1.2 AbstractFactory Pattern

The AbstractFactory is also a creational pattern used to create a family of re-

lated products without explicitly specifying their classes. Consider the example of an

AbstractFactory class that can create products from two product families: Abstract-

ProductA and AbstractProductB. The UML diagram for this program is shown in

Figure 16.

23



Figure 16: UML diagram of AbstractFactory Pattern [10]

Example:

An AbstractFactory is the abstract class that creates concrete classes where spe-

cific products are created. Product creation is accomplished through different abstrac-

tion implementations, namely AbstractProductA and AbstractProductB. When a

client wants to change a product type a new concrete factory can be easily assigned

to the AbstractFactory class and then new set of concrete products can be created.

2.2.1.3 Builder Pattern

This pattern is used to build complex products using several small objects within

the application. Developing a complex application requires complex classes and ob-

jects; these complex objects can be developed using some smaller objects that follow

a defined algorithm. A Builder pattern can be used to create complex objects using

smaller objects according to an algorithm or procedure. Figure 17 shows the UML

diagram for the Builder pattern.

24



Figure 17: UML diagram of Builder Pattern [10]

Example:

The Client class calls the main() method that will initiate a Builder and

Director class. A Builder class represents a complex object that needs to be

built using other small objects and types. The Director receives this Builder

class and is responsible for calling appropriate methods that create a complex ob-

ject. A Client can call a respective ConcreteBuilder depending on the parameters

defined to create different complex objects. An example would be, a TextConverter

that converts an RTF document to an ASCII document. An RTFReader class will

be acting as a Director, where a TextConverter interface is a Builder interface

and an ASCIIConverter is an implementation of Builder, i.e., TextConverter. An

ASCIIConverter reads each character or string from an RTFReader, then converts

and writes to an ASCII document by following the Builder pattern.

25



2.2.1.4 Adapter Pattern

This pattern is used to solve the problem of adapting an object to a particular

operation. During software development, it is expected that the need for an object

and another class that offers the same features and implements another interface will

be required. Using both will diminish the need for re-implementing one of them. An

Adapter pattern is used for this purpose and is used to implement required features.

Figure 18, below, shows the UML diagram for this Adapter pattern.

Figure 18: UML diagram of Adapter Pattern [10]

Example:

An Adapter class uses an Adaptee delegation in order to adapt to the request

function overridden from the Target interface. A Client uses this Target interface

to initiate different adapters and then uses them according to a given situation.

26



2.2.1.5 Bridge Pattern

A Bridge pattern is a structural pattern used for designing different abstraction

implementations defined within the application. Often a single abstraction could

contain different implementations. Consider the persistence of a data object over a

different platform using either relational databases or file system structures (files or

folders). A Bridge pattern can be used to decouple an abstraction from the imple-

mentation so that the two can vary independently. Figure 19, below, shows the UML

diagram for the Persistence example using a Bridge pattern:

Figure 19: UML diagram of Bridge Pattern [10]

Example:

An example of a persistence API that can have many implementations for the

presence of file system or relational database, is described below.

A Persistence Interface illustrates an Abstraction interface that can have

27



different implementations. A PersistenceImplementor is the Implementor inter-

face can be implemented for a file system as a FileSystemPersistenceImplementor

and for relational data base called a DatabasePersistenceImplementor. These

Implementor implementations can be used as delegations to perform various functions

within concrete Persistence implementations.

2.2.1.6 Flyweight Pattern

This design pattern is used to create a large number of objects with shared states.

Some applications required a large number of objects with sharing states among them.

Example:

An example of a Wargame that needs to instantiate a large number of soldier

objects is described. A soldier object has the graphical representation of a soldier,

firing a weapon, and additional characteristics. Initiating a large number of soldier

objects is necessary; however, this task will require a considerable amount of system

memory. A Flyweight pattern can be used to create various soldier objects, by sharing

states through a common function (in the present example moveSoldier function).

The UML diagram for the Wargame application is shown in Figure 20.

28



Figure 20: UML diagram of Flyweight Pattern [10]

2.2.1.7 Decorator Pattern

A Decorator pattern is used to demonstrate the relationship, during runtime,

between entities. In software development we can extend an objects functionality

statically, at compile time by using inheritance. However, in some situations we need

to extend functionality dynamically during runtime.

Example:

An example of a graphical window, used to create a FrameWindow class would

decorate a Window class and a FrameWindow object created statically by the client

program. This use of a FrameWindow needs to initiate different objects within the

clients program. Decorator pattern can be used to create a FrameWindow dynamically,

without creating objects in the clients program. The UML diagram demonstrating a

Graphical Window application, using a Decorator Pattern, is shown in Figure 21.

The Window interface represents a component interface, and a SimpleWindow

implements the Window interface in order to create a general window. A

29



DecoratorWindow is the implementation containing special and extra decorative

added features. This DecoratorWindow can be extended by using various classes

such as a ScrollableWindow class, that add special features to decorate a window as

shown in Figure 21.

Figure 21: UML diagram of Decorator Pattern [10]

2.2.1.8 Mediator Pattern

A Mediator pattern is a behavioral pattern that aids in the interaction of large

number of classes. A software project using object oriented design, will have classes

that interact with each other in order to implement a particular application. If an

algorithm or principle is not followed it is very difficult to understand and run the

application. A Mediator pattern can be used to remove the tight coupling behavior

of the above design. Figure 22, shows the UML diagram of a Mediator pattern.

30



Figure 22: UML diagram of Mediator Pattern [10]

Example:

Consider an example of developing a screen that contains different controls. Var-

ious controls need to interact with other controls. For example, if a button is pressed

it must determine if the data is valid in other controls. Therefore in different ap-

plications these controls need to interact differently. To solve this problem we use

a Mediator pattern that can be extended with different implementations in order to

serve our purpose.

A Colleague is the abstraction interface that will be implemented by the con-

crete colleagues i.e., screens. All screens must determine the change on one screen

and this information must be shared with other screens using the concrete mediator

implementation from the Mediator abstraction.

31



2.2.1.9 Observer Pattern

An Observer pattern solves the problem of updating the state to certain other

objects. In object oriented programming, objects have states and it is within these

states changes are made within objects. In some cases, it is necessary to be informed

about the changes occuring in within other objects. An Observer pattern can be used

when a subject has to be observed by one or more observers.

Example:

Lets consider an example of news agency that publishes news to different sub-

scribers, where subscribers can receive their news in different forms: Emails, and/or

SMS.

A NewsPublisher class will act as an Observable interface and will be extended

by the type of news it distributes such as business, sports, entertainment and so on.

Subscribers (Email and SMS) will then act as Observers

A NewsPublisher keeps a list of all current Subscribers and informs them of the

latest news. NewsPublisher, if there is change in the state of latest news, will notify

all subscribers. Figure 23 shows the UML diagram of a NewsPublisher application.

32



Figure 23: UML diagram of Observer Pattern [10]

2.2.1.10 Strategy Pattern

This pattern enables the user to select an appropriate class with a selected be-

havior at runtime. Some classes during software development differ only in their

behavior. In this case, it is better to use a Strategy pattern where separate behaviors

are developed into different classes, aloong with isolating algorithms enabling them

to select an appropriate class at runtime.

Example:

Consider an example of the Robot simulation, this will have an IBehavior inter-

face as its Strategy abstraction. This abstraction is implemented by behaviors such

as the attack strategies of a robot. The UML diagram for the Robot application

is shown in Figure 24. In the present example, aggressive, defensive, and normal

strategies are implemented for the IBehavior interface.

33



Figure 24: UML diagram of Strategy Pattern [10]

2.2.1.11 TemplateMethod Pattern

This pattern solves design problems through an abstract method that is im-

plemented by the subclasses. In some applications it is necessary that a subclass

implement all the necessary methods; these methods will be used to gain the final

results. A Template method design pattern can be used for this purpose. In practice,

the template method allows subclasses to override a few steps of the algorithm and

the final step is performed by a Super class using implemented steps.

Example:

For example, a Travel agency has several trips to select from and to create a new

class for each trip will require more memory. In this case a Template method pattern

can be used, where a Trip abstract class has methods for an overall trip. Different trip

packages must implement this Trip abstract class and the Client can call necessary

functions to perform the total trip. The UML diagram for this process is shown in

Figure 25. In this example the performTrip function will act as template method that

has a total or a partial implementation of the entire trip. Once the abstract methods

for each day are overridden by each Package, invoking a performTrip function will

34



complete the desired trip.

Figure 25: UML diagram of TemplateMethod Pattern [10]

2.2.1.12 Visitor Pattern

This pattern completes an operation on each element of the collection with dif-

ferent data types. Collections are data types widely used in all Object oriented

programming languages. They often contain objects of different types. To perform

a command operation on these collections we need to know the type of instances

that are stored within the collection. After determining the instance types, we use

instanceof function for each object to check and perform particular operations. This

kind of checking is not object oriented and uses numerous if-else conditions. A Visi-

35



tor pattern can be used for this situation, where each object is visited and an object

related operation is performed [10].

Example:

A Customers application can be considered an example of a Visitor pattern.

In this application, a reporting module is created for a customer group. To gather

statistics you need specific details for all the customers within a particular group. An

IVisitor is the interface that has abstractions for all the visit methods within all the

visitable objects. An Interface IVisitable should be implemented by all visitable

objects and should override the accept() method. A CustomerGroup, Customer,

Order and Item classes are considered visitable classes. The GeneralReport is the

IVisitor implementation and output the customer statistics. The UML diagram of

the Customers application is shown in Figure 26.

A GeneralReport will call visit methods for each customer present in

CustomerGroup and obtain the number of orders for each customer and retrieve the

number of items purchased for each order. Finally, a report is displayed demonstrat-

ing the Customer buying behavior.

36



Figure 26: UML diagram of Visitor Pattern [10]

2.2.2 Pattern detection tools

A Design pattern detection is another reverse engineering technique that aids

in analyzing a majority of the design patterns used within the Java source code

or binaries. There are several pattern detection tools available that use different

algorithms for detecting design patterns from software binaries or source. A few of

the pattern detection tools are:

37



1. SPOOL [39]

2. Hedgehog [1]

3. Reclipse [24]

4. PINOT (Pattern INference and recOvery Tool) [33, 34]

5. Similarity Scoring [31, 32]

2.2.2.1 SPOOL and Hedgehog

A SPOOL was developed in order to reverse engineer design patterns from C++

software binaries [39]. A HEDGEHOG system was developed using pattern descrip-

tion language called SPINE [1]. SPINE is a language similar to Prolog and contains

typed first order logic for describing patterns; it is not currently available for down-

load. Patterns detected can be verified using a HEDGEHOG system to distinguish

between patterns.

2.2.2.2 Reclipse

A Reclipse is a reverse engineering tool for automatic pattern detection from a

Java source code. It uses UML2.0 diagrams from the source code in order to un-

derstand the design (i.e., object diagrams for structure based and UML sequence

diagrams for behavioral based designs). Reclipse provides two graphical editors for

structural and behavioral patterns. Detection of a specified pattern starts from de-

tecting possible design pattern occurrences (candidates); once detected, they are given

a percentage rating. A dynamic analysis is used to confirm or reject this percentage

rating. Installation of this tool requires Eclipse IDE v3.6.1, and Eclipse Modeling

Tools, version 3.6.1 [24], however, these exact versions of the software are not avail-

38



able for download.

2.2.2.3 PINOT

A Pattern INterference and recOvery Tool (PINOT) [34] takes a creative ap-

proach in detecting design patterns. According to [33], the authors of PINOT used

their own reverse engineering techniques and characteristics that classify GoF de-

sign patterns in an attempt to detect design patterns from a Java source code. The

authors discuss four reverse engineering techniques:

1. language-provided,

2. structure-driven,

3. behavior-driven,

4. and domain-specific patterns.

Prototype and Iterator patterns are classified as language-provided patterns, as

they are widely used and implemented in many languages. Classes that have inter-

class relationships, such as Adapter and Facade patterns, are identified as structure-

driven patterns; and the classes that differ in certain behavioral requirements, such as

Singleton and Flyweight, are deemed as behavior-driven patterns. Finally, GoF pat-

terns used in certain domains such as Interpreter and Command patterns are known

as domain-specific patterns. PINOT focuses on detecting structure and behavior

driven patterns as given in [33].

In order to detect structure-driven patterns that has interclass relationships for

Adapter (adapter vs adaptee), Facade (Facade vs subparts) and Proxy (proxy vs real),

we identify patterns that share a common goal of defining a new class which hide other

39



classes from system integration or simplification. For detection of behavioral-driven

patterns, a different approach is used; their pattern detection technique is trained

on GoF behavioral patterns then the given model is subjected to various inputs and

the output is examined according the known behavior. For example, once a singleton

pattern instantiates its data object, the same one should always be returned under

multiple subsequent requests.

The PINOT pattern detection tool occasionally detects false positives [33, 16];

23.75

The PINOT tool is developed using an IBM Jikes Java Compiler; using a Java

compiler allows this tool the ability to compare the design pattern data using Ab-

stract Syntax Graphs, created by Jikes. The input source files are parsed using a

Jikes compiler with a PINOT back-end, then the detected patterns are output to the

command-line interface. A PINOT command-line interface for testing the 23 GoF

design patterns is shown in Figure 27, and Figure 30 which shows detected patterns

for this test.

2.2.2.4 Similarity Scoring

Similarity scoring is a design pattern extraction tool that can be downloaded

at [32]. This pattern detection tool has a unique way of building matrices for pat-

tern detection and does not depend on behavioral characteristics. Their principle of

considering only structural characteristics makes it difficult to detect patterns, such

as State and Strategy which only differ in behavior.

The similarity detection of large software systems, with an increased presence

of the great number of system classes and multiple roles and classes would lead to

efficiency problems due to slow convergence of the algorithm [31]. An advantage to

40



Figure 27: PINOT Command-line Interface

using this tool is that it does not follow any heuristics in detecting patterns and can

be applied to any pattern once trained on that patterns input. This tool has been

tested on three types of open source software: JHotDraw, JRefactory, and JUnit,

each demonstrate limited false negatives and no false positives.

The process of detection follows the building of matrices from Java class files

and comparing them to known matrices [31]. The rationale of a similarity scoring

algorithm is from the proposed iterative algorithm in order to calculate the similarity

between the vertices of two directed graphs. In the similarity matrix, each entry

expressed a similarity vertex i of one matrix is to vertex j from another matrix.

Two graph matching algorithms are applied to form pattern graphs: an Exact graph

matching and an Inexact graph matching algorithm.

An Exact graph matching algorithm finds one-to-one mapping between the ver-

tices of two graphs and also has the same number of nodes. Inexact graph matching

41



is applied when we cannot find isomorphism between two graphs and aim at find-

ing the best possible match between two graphs. Association and Generalization

matrices were created using edges from generalization and association graphs; each

were formed using graph matching algorithms with connected edges such as 1 and 0,

otherwise.

Methodology of detecting design patterns is accomplished in five steps as [31]:

1. Reverse engineering of the system under study;

2. Detection of inheritance hierarchies;

3. Construction of subsystem matrices;

4. Application of similarity algorithm between the subsystem matrices and the

pattern matrices;

5. and Extraction of patterns in each subsystem.

The input class files are reverse engineered to obtain component information that

can be used to detect the inheritance relationships. This class information is used

in building two graphs Association and Generalization graphs. Matching is followed

by matching two graphs using matching algorithms and creating subsystem matrices.

Generalization and Association matrices are Similarity scored using a specific algo-

rithm. The extractions of pattern instances is performed as a similarity algorithm

resulting in score of 1 for subsystems and are considered to be exact matching to

the patterns; for subsystems with a score of less than 1, a characteristic study and

specific pattern detection process is followed to find a pattern match.

This similarity scoring is developed using Java and has a graphical user inter-

face that shows results and we can output the results to an XML file. Usage of a

42



Java bytecode manipulation framework helps in static analysis of a systems struc-

ture that will help in retrieving abstraction, inheritance, class attributes, constructor

signatures, method signatures, and other more advanced properties such as similar

abstract method invocation, and a template method. The Adapter/Command and

State/Strategy patterns are grouped for detection results; this might be because they

do not check behavioral characteristics.

Figure 28: Similairty Scoring Command-line Interface

A Similarity scoring GUI is started through a command line as shown in Fig-

ure 28 results from a tool using a GUI are shown in Figure 29. The results window

demonstrates that it cannot detect all 23 GoF patterns out of the detected patterns

as Prototype and Proxy patterns are not detected. Figure 30 shows patterns detected

for this test.

Using these tools, PINOT and Similarity scoring are available and can be used

for testing. Therefore, for this project PINOT and Similarity Scoring were used to

test an obfuscated code. The created obfuscated source is compiled in order to form

43



Figure 29: Similairty Scoring User Interface

class files; both source and class files are used as inputs to PINOT and Similarity

Scoring respectively in an attempt to analyze patterns detected.

2.2.2.5 Pattern detection results for PINOT and Similarity Scoring

The package given as input for these tools contains all 23 GoF patterns and some

patterns appear more than once. The number of patterns detected from both tools is

shown in Figure 30 and Figure 31. From Figure 30 ”*” represents Adapter/Command

patterns detected under single pattern, and ””̃ represents State/Strategy patterns are

also detected under single pattern.

44



Figure 30: Patterns detected from 23 GoF patterns

The results from a PINOT tool shows less detection for creational patterns (from

AbstractFactory Singleton in table) as we can see from Figure 30, only one Singleton

pattern is detected out of four Singletons present in the original source. For the

structural patterns (from Adapter - Proxy) tool we detected at least one instance for

all patterns except Adapter and Decorator, and there are two false positives out of

four detected Facade patterns, and one false positive for Flyweight and one for Bridge.

The Behavioral patterns from CoR (Chain of Responsibility) to Visitor, were not able

to detect Command, Interpreter, Iterator, and Memento. One false positive in the

Strategy patterns were detected and two Observer patterns detected were Visitor

patterns; from 10 Mediator patterns we detected two false positives and one Facade

pattern detected was a Mediator pattern. Figure 32 below shows all false positives

45



Figure 31: Graph for Patterns detected

for the PINOT tool.

Figure 32: PINOT false positives

There are no false positives detected from the Similarity scoring detection tool,

but it cannot detect all the pattern instances present within the input source; therefore

only four patterns Factory patterns were detected out of six instances, out of 7 ( 4

Adapter and 3 Command) instances it can only detect six instances as shown in

Figure 30. We ran one more comparison analysis using PINOT and the Similarity

46



Scoring technique is explained in [16] using JEdit and JHotDraw packages; they

discuss algorithms used and do not address how exact patterns were detected.

47



CHAPTER 3

Obfuscation of Design Patterns

This section describes obfuscation techniques applied to the 23 GoF design pat-

terns. Firstly, we will obfuscate a source using available obfuscation tools such as

Proguard [13], SandMark [7], jarg [19], BebboSoft (bb mug) [41], and JavaGuard [43]

followed by testing detected and compared patterns before and after obfuscation. We

then obfuscate design patterns using our proposed tool and detected patterns will

be compared to patterns used in an actual source. These results are analyzed and

discussed in Chapter 5.

3.1 Obfuscation using available tools

This section shows obfuscation of GoF patterns using jarg, JavaGuard, BeeboSoft

(bb mug), Proguard, and Sandmark. Sandmark obfuscated class files are tested using

Similarity scoring as we cannot decompile class files. Class files obfuscated from other

obfuscators are decompiled to source files and tested using PINOT. Then results are

compared to patterns detected on an original source from Section 2.2.5.

3.1.1 jarg - Java Archive Grinder tool

The obfuscation tool jarg is used to obfuscate a Java bytecode; this tool contains

features such as an optimizer, an obfuscator, a shrinker and a reducer [19]. Obfusca-

tion starts by analyzing the Java class files, performing removal of unnecessary code

such as unused functions, and debugging information; after classes, fields, methods

and interfaces are renamed and optimized. This obfuscation tool can quickly obfus-

cate, optimize, or shrink a Java package, or jar file. We then obfuscated the original

48



design pattern source using jarg and then ran pattern detection tools to examine

results and compare them to results before obfuscation.

3.1.1.1 Design pattern obfuscation

jarg is a command line tool that can be easily accessed using command [19]:

java -jar jarg.jar -nocomp abc.jar

nocomp : no compressed output jar

This command will obfuscate the source abc.jar and creates new jar file abc s.jar

in the same location. An abc s.jar file is extracted in order to obtain obfuscated

class files that are used for testing a Similarity scoring algorithm. The decompiling

of obfuscated source was unsuccessful so PINOT cannot be used.

3.1.1.2 Analysis of results

Obfuscation using jarg does not show changes in patterns detected; the same

number of patterns are detected from the original source as shown in Figure 30 and

Figure 31.

3.1.2 JavaGuard

JavaGuard is one more Java bytecode obfuscator; this tool can be included as

a package within regular software development and testing processes [43]. Obfusca-

tion of this tool follows three obfuscation techniques: class-flow, data, and layout

obfuscations. We then obfuscated design patterns using JavaGuard then ran pattern

detection tools in order to compare results with the normal design patterns source.

49



3.1.2.1 Design patterns obfuscation

JavaGuard is also a command line tool without much documentation. This

tool uses a Jakarta-ORO for regular expression matching, and achieves an input

parameter as a jar file that will generate an output jar as specified through the

command line. A script file can also be used to configure an obfuscator in an attempt

to prevent certain classes, fields, and methods from being renamed. The Command

to run JavaGuard on a normal source is as shown below:

java -cp javaguard.jar;jakarta-oro-2.0.6.jar JavaGuard

i normalSource.jar o obfusSource.jar

-cp : classpath

-i : input

-o : output

This command will obfuscate class files present in the normalSource.jar and store

them in an output obfusSource.jar within a specified location (using this command

it will be stored in the same location)

3.1.2.2 Analysis of results

Obfuscation using JavaGuard cannot hide patterns from the detection tools; the

same number of patterns were detected as shwon in Figure 30. Therefore, obfuscating

using JavaGuard does not help hide the design from pattern detection tools.

50



3.1.3 BebboSoft (bb mug) obfuscation tool

The bb mug is a tiny and fast Java bytecode obfuscator [41]; this tool replaces

class, method and field names with shorter names, then it removes all information

that is not required for execution, and specified packages are renamed.

3.1.3.1 Design patterns obfuscation

bb mug is also a command line tool that is executed using the following

command

USAGE: java -jar bb mug.jar [-?] [-l <logfile>]

[-p <package>=<newpackage>] <inpath> <outpath>

-? display this message

-l <logfile> write mapping info into file

-p <package>=<newpackage> rename <package> to <newpackage>

Add bb mug.jar to CLASSPATH, enter the folder with a normalSource.jar file

and run the command:

java jar bb mug.jar normalSource.jar obfusSource.jar

This will create obfuscated design pattern class files in jar file format, extract

jar file, and run a Similarity detection tool. A decompiler is not available that can

extract source from obfuscated class files so it cannot run a PINOT pattern detection

tool.

51



3.1.3.2 Analysis of results

Obfuscating using bb mug also did not help in hiding design patterns from Simi-

larity detection; there was no change in patterns detected when compared to patterns

detected as seen in Figure 30 and Figure 31.

3.1.4 Proguard Obfuscation tool

Proguard is an opensource Java class file shrinker, optimizer, obfuscator, and pre-

verifier [13]. The Java file shrinker removes unused classes, fields, methods and then

attributes and optimizes the bytecode removing unused instructions. This obfusca-

tion step involves the renaming of classes, fields, and methods using short meaningless

names. Proguard typically reads the input as jar, war, zip, or directories and outputs

are suggested as jar, war, and zip files. For the present obfuscation we are not using

shrinker and optimizer as it effects the operation of our design patterns. The Pro-

guard tool is available in command line and GUI; we used a GUI to obfuscate class

files from the 23 GoF patterns.

3.1.4.1 Design pattern obfuscation

The zip file for design pattern class files is displayed as an input to the Proguard

GUI as shown in Figure 33, and obfuscation options are selected using a configura-

tion pro file. The obfuscated class files are given as input to the JODE decompiler;

decompiled source files are used to test for pattern detection for PINOT, and the

obfuscated class files are used for Similarity scoring.

52



Figure 33: Proguard GUI In/Out options

3.1.4.2 Analysis of results

The obfuscated source and class files are tested using pattern detection tools. The

results from PINOT and Similarity scoring are shown in Figure 34 and Figure 35.

The results show that the PINOT tool cannot detect both the CoR (Chain

of Responsibility) and Facade patterns. The Factory pattern was detected in four

instances along with one false positive compared to zero detected in the original

source. Composite patterns also show four instances with two false positives and

a false positive for Bridge, and Flyweight patterns, as shown in Figure 36. Seven

instances of the Mediator pattern compared to 10 patterns detected from normal

source.

53



Figure 34: Patterns detected using Proguard

Similarity scoring cannot detect Visitor pattern except that there is no change

with the patterns detected from the original source. igure 36 represents a bar graph

represents comparing PINOT and Similarity scoring demonstrating actual patterns

present.

54



Figure 35: Detected patterns graph using Proguard

Figure 36: PINOT false positives

3.1.5 Sandmark Obfuscation tool

Sandmark is the tool developed for software watermarking, tamper proofing, and

code obfuscation of Java bytecode [7]. This tool was developed at the University of

Arizona in an attempt to study the effectiveness of software protection algorithms.

The tool integrates the number of static and dynamic watermarking algorithms,a

large collection of obfuscation algorithms, various code optimizers, and a tool to

view and analyze the Java bytecode. The Sandmark obfuscation feature is used for

55



the present testing. There are 39 different algorithms available to obfuscate a Java

bytecode. These algorithms are used to obfuscate the design patterns source; the

obfuscated class files cannot be decompiled to source code to test using PINOT.

Three algorithms: SplitClasses, Objectify and OverloadName are able to hide a few

design patterns; all other algorithms show the same number of patterns as an original

source. Results from these three obfuscation techniques are explained as follows.

3.1.5.1 Design pattern obfuscation

The jar file of design pattern class files is given as an input to the Sandmark GUI

as shown in Figure 37 and an obfuscation algorithm is selected through the drop down

present in the right side of input and output fields. The obfuscated jar file is saved

at the location mentioned in output filed. This obfuscated source jar is extracted to

generate class files, but cannot be decompiled using the decompiler. These extracted

class files are used to test for pattern detection using a Similarity scoring tool, as

there is no source available for testing using PINOT.

Three obfuscation techniques are used: Split classes, Objectify and Overload-

Names. Split classes obfuscation is the obfuscation technique that splits a single class

into a number of classes. Objectify is a type of obfuscation technique that creates

a large number of objects of the same instance to confuse detection tools and Over-

loadNames will rename all classes, methods, and fields names by changing targeted

access specifiers.

3.1.5.2 Analysis of results

The results of pattern detection tools using a obfuscation source from three

obfuscation algorithms is shown in Figure 38. A decompiler tool is not available that

56



Figure 37: Sandmark GUI

can extract the source code from these obfuscated source files; therefore we cannot

run a PINOT detection tool. Similarity scoring detection is used, and the patterns

detected are shown in Figure 38. The graph showing the difference between actual

patterns present and number of patterns detected using three obfuscation techniques

using Similarity scoring is shown in Figure 39.

Results from these three obfuscation algorithms, Split class, Objectify and Over-

loadName demonstrate that, OverloadNames obfuscation can only hide a Visitor

pattern compared to patterns detected from the original source. The SplitClass ob-

fuscation technique hides the Adapter/Command, a Singleton and Decorator, and the

Similarity algorithm detects 15 State/Strategy instances. From these 15 instances,

10 instances are false positives and five are actual instances that are present. For

57



Figure 38: Detected patterns using Sandmark

the Objectify obfuscation algorithm, except Factory, Template Method and Visitor

patterns, all other patterns were hidden from the detection tool as shown in Figure 39.

3.2 Design Obfuscation

The above applied obfuscation tools completes three types of obfuscation such as

control-flow to obscure flow of the program; data-flow obfuscation makes it difficult

to understand fields and layout obfuscation will split the code into separate proce-

dures. Therefore, these tools do not obfuscate structural and behavioral mechanisms

pertaining to class components of the system. Obfuscating design in a class level for

object oriented programs is very important in order to hide the internal architecture

of the software system. From our test results jarg, BebboSoft, and JavaGuard cannot

58



Figure 39: Detected patterns graph using Sandmark

perform design or software obfuscation, whereas Proguard can hide two patterns (Vis-

itor and Singleton) due to additional obfuscation features such as efficient optimizing

and adding dead code. A Sandmark tool using an obfuscation algorithm Objectify

can hide a few design patterns and make pattern detection tools to detect many false

positives for SplitClass obfuscation.

Design obfuscations described in [29] are applied on structural and behavioral

characteristics of the 23 GoF design patterns. Software or design obfuscation is a

new class of obfuscation techniques that are used to obscure class level design of

object oriented programs. This obfuscation can be completed using three techniques:

class-coalescing, class-splitting, and type-hiding.

Class-coalescing is the transformation where two or more classes within the pro-

gram are replaced with a single class. At one extreme, this obfuscation can replace

all the classes with a single class making an OO program into non-OO procedural

59



program.

Class-splitting is the transformation where one class is split into two or more

classes. There are important decisions that need to be made when splitting one

class. Used in addition with class-coalescing, this technique can change the program

structure.

Type-hiding uses the concept of a Java interfaces, in other words it introduces a

number of interfaces that are implemented by the existing classes to confuse reverse

engineering from understanding the program.

In the next subsections, we describe obfuscation of 12 GoF patterns by using

class-coalescing, class-splitting and type-hiding techniques. Since two techniques hide

most design patterns from pattern detection tools, for our purpose we did not use

type hiding obfuscation.

3.2.1 FactoryMethod pattern

Obfuscation of this FactoryMethod pattern is completed using class-coalescing

(removing two or more classes using single class). By removing the Factory interface,

plus its implementations, we included functionality into the Client class using a

separate createProduct methods initiate for all products. Figure 40 below shows

the Client class before and after obfuscation; we can see that before the Client class

had Factory instantiation for creating Products. But after obfuscation, there are

individual methods for each Product and these methods are used to create concrete

products.

60



Figure 40: Obfuscate FactoryMethod pattern

3.2.2 AbstractFactory pattern

Class-coalescing AbstractFactory, AbstractProductA and AbstractProductB

interfaces, and implementing individual classes for each Product, use them directly

in the Client class as shown in Figure 41. For the ObfuscateAbstractFactory class

we add two functions to create ProductA and ProductB, then initiate these classes

as needed.

3.2.3 Builder pattern

Obfuscation of this pattern is completed by removing the Builder interface and

implementing individual ConcreteBuilder classes for each complex object. Fig-

ure 42 shows the obfuscated version of the Builder code for the TextConverter

example. The TextConverter converts an RTF text to an ASCII text. At this

point the TextConverter is the Builder and an RTFReader is the Director and

61



Figure 41: Obfuscate AbstracFactory pattern

an ASCIIConverter is a ConcreteBuilder. To obfuscate this application, an

ASCIIConverter class and a TextConverter class are class coalesced into one class

with the name TextConvereter. The functionality of an ASCIIConverter class is im-

plemented within the TextConverter class in order to convert an RTF to an ASCII

document.

3.2.4 Adapter pattern

Obfuscation of this pattern can be completed by removing an Adaptee inter-

face and implementing an Adapter class for each request method that needs to be

implemented. An example for drawing a shape such as Line and Rectangle, to imple-

ment an Adapter pattern we should use Shape interface with abstract draw method;

Line and Rectangle class implements a Shape interface and uses an Adaptee classes

62



Figure 42: Obfuscate Builder pattern

LegacyLine and LegacyRectangle as instances. Obfuscation of this pattern can be

completed by removing the Line and Rectangle interface and using objects from the

LegacyLine and LegacyRectangle classes. Obfuscation of a source level code is shown

in Figure 43, and Figure 44. Figure 43 demonstrates the removing of the Adaptor

implementation Rectangle and adding all functionality to the LegacyRectangle class.

Figure 44 shows the Client class that uses direct instantiation of the LegacyLine

and LegacyRectangle after obfuscation instead of Line and Rectangle. Some minor

modifications are implemented to the main method as shown in Figure 44.

63



Figure 43: Obfuscate Adapter pattern

Figure 44: Obfuscate Adapter Client

64



3.2.5 Bridge pattern

Obfuscation of this design pattern is achieved by class-coalescing of the

PersistenceImplementor interface and Persistence interface from the appli-

cation. In this pattern we see that leaving an interface (i.e., only obfuscating

one interface) will remove a Bridge pattern which will result in detecting

other patterns. Figure 45 shows the obfuscation by removing an Abstrac-

tion and Implementation interface. We see in Figure 45 Persistence and

PersistenceImplementor are removed and their functionality is added to the respec-

tive implementation, i.e., FileSystemPersistenceImp, DatabasePersistenceImp,

FileSystemPersistenceImplementor, and DatabasePersistenceImplementor

classes.

Figure 45: Obfuscate Bridge pattern

65



3.2.6 Flyweight pattern

To obfuscate this pattern class-coalesce, a Soldier and SoldierFactory class

makes the pattern hide from pattern detection tools. Removing the Soldier inter-

face makes it necessary to implement all Soldier objects individually. As shown in

Figure 46 SoldierImp1, and SoldierImp2 are the two soldier classes needed to im-

plement all soldier objects. Implementing the number of classes for a Wargame will

increase the total number of classes and require a large amount of memory. We can

see after obfuscation, the SoldierClient class has objects from SoldierImp1, and

SoldierImp2.

Figure 46: Obfuscate Flyweight pattern

66



3.2.7 Decorator pattern

Obfuscation of a decorator pattern can be achieved by class-coalescing a Win-

dow interface from the application and designing each decorator window individually.

Within the client class you need to create each object statically in order to hide the

decorator pattern. Obfuscation showing client class and other Windows implementa-

tions are shown in Figure 47. A GUIDriver client class initiates a ScrollableWindow

class without defining a super object DecoratorWindow class; we can determine that

a Windows interface is class coalesced from the Decorator pattern.

Figure 47: Obfuscate Decorator pattern

3.2.8 Mediator pattern

Obfuscation of a mediator pattern can be achieved using classcoalescing (re-

moving Mediator Interface) from the project. We need to replace Mediator

67



references to respective mediator implementations. For this example it should

be ApplicationMediator, Figure 48 shows the obfuscation of the Mediator

pattern through its source code; a Mediator interface is removed, and an

ApplicationMediator is implemented as an ordinary class with all the implemen-

tation. This ApplicationMediator is to be instantiated into a Colleague class;

all Mediators must be implemented and be used in respective Colleague classes by

instantiating.

Figure 48: Obfuscate Mediator pattern

68



3.2.9 Observer pattern

Class-coalescing obfuscation is used for hiding the Observer pattern; we removed

the NewsPublisher interface and Subscriber interface and developed separate news

classes for each news type: business, sports and others. A Single subscriber class will

contain all the methods needed to update various types of subscribers such as SMS,

Email, and all other forms. In Figure 49, a NewsPublisher interface is removed and

a common NewsPublisher class is implemented that will update to all subscribers by

calling respective methods for each subscriber. A Subscriber abstract class is also

removed following the same technique and updating each subscriber using methods

such as emailUpdate and smsUpdate.

Figure 49: Obfuscate Observer pattern

69



3.2.10 Strategy pattern

Obfuscation of this pattern is completed using class-coalescing of the IBehavior

interface by implementing all behaviors as methods for a Robot class. Each robot be-

havior is implemented a separate function and is called when a particular movement

is required. Obfuscation of a source is shown in Figure 50 and demonstrates that

AggressiveBehavior, DefensiveBehavior, and NormalBehavior classes, which

implement an IBehavior interface, are removed. Add methods to a Robot class such

as moveAggressiveCommand, and moveDefensiveCommand, are called in the Client

class according to the behavior needed.

Figure 50: Obfuscate Strategy pattern

70



3.2.11 TemplateMethod pattern

Obfuscation of this pattern can also be completed by removing the Trip interface

and individually creating classes for each trip package. These package classes are

initiated to perform the trip as shown in Figure 51. A Trip interface is removed

from the code after obfuscation of individual Package classes are implemented and

Packages are instantiated within the client class to call a performTrip function.

Figure 51: Obfuscate TemplateMethod pattern

3.2.12 Visitor pattern

Obfuscation of the Visitor Pattern can be completed through class-coalescing

IVisitor and IVisitable interfaces from the application. Implementing all the in-

71



dividual functions, with respective class related statistics in a GeneralReport class

is shown in Figure 52. We can see that the IVisitor and IVisitable interfaces

are removed; individual classes for Customer, Order, Item and GeneralReport are

implemented. Still a GeneralReport will have visit methods and Customer, Order

and Item classes will have accept methods in order to work according to the appli-

cation. This pattern is obscure by simply removing the IVisitor and IVisitable

interfaces.

72



Figure 52: Obfuscate Visitor pattern

73



Obfuscation techniques applied to all design patterns are listed in the Figure 53

below:

Figure 53: Obfuscate design patterns

74



CHAPTER 4

Tool Implementation

In our project we implemented an obfuscation tool, DesignObfuscationEngine,

using techniques described in Chapter 3. This tool must implement class-coalescing,

class-splitting and type-hiding within the Java source code in order to hide design

patterns. An Obfuscation tool is developed using:

1. Abstract Syntax Tree (AST) Eclipse API

2. PINOT command line

3. Similarity Scoring command line to start GUI

4.0.12.1 Abstract Syntax Tree (AST) Eclipse

A tool is developed in Java using an Eclipse Abstract Syntax Tree (AST) API.

An AST API is used to create source files of the obfuscated version of patterns. An

AST is a tree representation of an abstract syntactic structure of the source code from

any programming language [46]. An Abstract Syntax Tree is the base framework for

many tools in Eclipse including refactoring, QuickFix, and QuickAssist [42]. Eclipse

IDE looks at your code using an AST as shown in Figure 54; every Java source file

is entirely represented as a tree of AST nodes. An ASTNode is the parent class of

all these nodes. Each element in a Java source file is a node; an example would be:

the node for method declarations (MethodDeclaration) and for a variable declaration

(VariableDeclarationFragment). A DesignObfuscationEngine tool uses AST nodes

to create source files.

75



Figure 54: Java Model Overview [42]

4.0.12.2 PINOT Command Line

The PINOT tool does not have a GUI, therefore command pinot is used to run

the tool giving rt.jar as classpath argument and source files path. The command

used to run PINOT is:

pinot classpath pinot/lib/rt.jar <sourcePath>

This command is run using a Java program using a Runtime class from the

package org.eclipse.jdt.internal. A Method invocation statement used to run

PINOT command is:

Process p = Runtime.getRuntime().exec("pinot classpath

pinot/lib/rt.jar <SourcePath>");

76



4.0.12.3 Similarity Scoring Command

A Similarity scoring tool is developed using Java language, runs through the jar

file pattern4.jar and command used to start the Similarity Scoring GUI

java -Xms32m -Xmx512m -jar pattern4.jar

and command to run a Similarity Scoring tool through a command line is

java -Xms32m -Xmx512m -jar pattern4.jar

target <sourcepath> -output <xml>

The same method invocation statement using Runtime class is used to run a

Similarity Scoring tool.

For Command line:

Process p = Runtime.getRuntime().exec("java -Xms32m -Xmx512m

-jar pattern4.jar -target j̈HotDraw-̈output jhotdraw v0 0.xml");

To start GUI:

Process p = Runtime.getRuntime().exec("java -Xms32m -Xmx512m -jar

pattern4.jar");

4.1 Design and Functionality

Designing the tool can be explained using a sequence diagram shown in Figure 55

and also briefly explaining the sequence of steps within the tool in order to complete

77



total obfuscation and testing using detection tools.

As shown in the sequence diagram, the user starts the DesignObfuscationEngine

tool that first creates an obfuscated design pattern code and saves it to the system. A

DesignObfuscationEngine class uses a Compiler object to compile this obfuscated

code and save the binaries, followed by tests using pattern detection tools through a

RunCommand object. Then results from both detection tools will be displayed on the

users computer screen.

Figure 55: Sequence diagram DesignObfuscationEngine

Functionality of a DesignObfuscationEngine tool can be explained in three steps:

1. Obfuscate example programs that use 23 GoF design patterns

2. Compiles these obfuscated source program to get class files

3. Run pattern detection tools PINOT and Similarity Scoring

78



A DesignObfuscationEngine first creates obfuscated Java source files of example

programs that use 23 GoF patterns using an Eclipse AST, code in order to generate

a Product class file. Obfuscated source files are placed under respective packages

and all source files are stored at a known location. In the next step, these files are

compiled using a Compiler class from an org.eclipse.jdt.internal package. After

successful compilation, PINOT tool is run on the source files using pinot command

programmatically and then a Similarity Scoring tool is run in a similar way as PINOT.

A Block diagram of the obfuscation tool is shown in Figure 56.

Figure 56: Block diagram DesignObfuscationEngine

4.2 Implementation Platform

The DesignObfuscationEngine is developed in Java SDK v1.7.0 revision 3 us-

ing Eclipse AST on Windows OS. An IDE used for development is Eclipse v3.6.2

with necessary plugins installed. A Similarity scoring pattern detection tool works on

Windows and Linux OS, whereas the PINOT tool was developed to work on Linux or

any UNIX based systems. Therefore, a developed DesignObfuscationEngine must be

79



platform independent and able to run on machines with Linux OS. The DesignOb-

fuscationEngine is implemented using Java to make it platform independent in order

to run both pattern detection tools.

4.3 Program Flow

Basic working and functionality of the DesignObfuscationEngine are explained

till now. This section of the report explains the flow of the program using Figure 57.

Running the tool starts DesignObfuscationEngine class that will initially create

Java source files and that are stored in known location. Then Compiler class will

be delegated and used to compile these source files, the class files are also stored in

known location. These Java source and class files are used by RunCommand object

to run PINOT command for source files and SimilarityScoring command for class

files. The pattern detection results from PINOT are shown on command prompt and

Similarity Scoring results are given as XML file.

80



Figure 57: Program flow DesignObfuscationEngine

Code snippets for creating obfuscated files are shown below with a brief expla-

nation of its working:

For creating any Java source file first we need to instantiate a language parser

for creating an abstract syntax tree (ASTs) as it decodes the parameter of a language

specification (JLS2). This parser is used to create a CompilationUnit as shown in

Figure 58 below.

Figure 58: Create AST and CompilationUnit

A CompilationUnit contains elements that need to be opened before they

can be navigated or manipulated. The children of a CompilationUnit are a type

81



of PackageDeclaration that declares Packages as shown in Figure 59 and an

ImportDeclaratoin is for importing necessary packages.

Figure 59: Create Import and Package Declaration

A TypeDeclaration and MethodDeclaration are classes used to define class and

declare methods, respectively, as shown in Figure 60 below. A MethodDeclaration

class contains methods such as setConstructor and setModifier in order to create

methods as needed.

Figure 60: Class and Method declaration

The instance and local variables in a class are created using a

VariableDeclarationFragment class applied to the CompilationUnit. A

SingleVariableDeclaration is used to create parameters for the methods added

to the class. These two classes can be instantiated as shown in Figure 61 below.

Figure 61: Variable and Parameter declaration

82



These child classes are added to a CompilationUnit, and these statements were

placed in the order they were added to the CompilationUnit. These classes taken

from the package org.eclipse.jdt.core.dom, were used to add different types of

statements, such as assignments, and method invocations for developing our tool.

83



CHAPTER 5

Results and Observations

Obfuscated design pattern tools were scored using two pattern detection tools

PINOT and Similarity Scoring. Results from each tool will be discussed separately:

5.1 Test of 23 GoF patterns

Similarity Scoring:

The Similarity scoring tool obtains input .class files, and was unable to detect

any design information from the obfuscated source generated using the DesignOb-

fuscationEngine tool. Results of the pattern detection tool are shown in Figure 62.

This figure demonstrates that no patterns were detected through a Similarity Scor-

ing, and the design is completely obfuscated from the Similarity algorithm. This

similarity algorithm depends on the class information retrieved from the Java class

files and uses this information to create Association and generalization graphs. With

class-coalescing and class-splitting applied to the design patterns, finding an exact

class relationship that matches known graphs is difficult. These also result in no or

fewer edges connected within the graph. These graphs are not scored to match known

scores. This result in poor similarity score and concludes in no exact matches within

any given patterns were discovered.

84



Figure 62: Detected patterns with Obufscation

PINOT:

The PINOT tool runs pattern detection with the source code of the obfuscated

design patterns. The PINOT tool was unable to detect patterns, for most of the

design patterns, within the source. For patterns that include more abstractions such

as Visitor, Bridge, Command, Chain of Responbility (CoR ) we need to remove all

abstractions in order to hide patterns. Figure 62 shows the results from running the

PINOT tool on the obfuscated design pattern source. Results show that it still detects

85



one Facade, Proxy, TemplateMethod, and CoR pattern that are false positives. There

were four false positives, detected as a Mediator pattern. These two observer patterns

are false positives that are detected Visitor patterns shown as Observer patterns.

Figure 63 below shows patterns detected on obfuscated design patterns for

PINOT and Similarity scoring tools.

Figure 63: Detected patterns graph with Obufscation

5.1.1 Runtime Analysis

The runtime analysis of obfuscated design patterns demonstrates faster execution

times when compared to normal design patterns. This increase in execution time

is expected due to a class-coalescing mechanism applied to most of the patterns.

In class-coalescing obfuscation, we replace two or more classes with one class; this

technique will reduce instantiation of two or more objects and improves the runtime

of obfuscated design patterns. Runtime analysis of a large software application will

be affected due to class-coalescing; but when only applied to the design patterns

86



source, it demonstrated an improved runtime in most cases. The running time of

each pattern, before and after obfuscation, is shown in Figure 64 and Figure 65

graphs the compared runtime.

Figure 64: Runtime Analysis for Normal and Obfuscated patterns

87



Figure 65: Runtime analysis graph

5.2 Tests on Grand GoF patterns from [26]

Further application testing for GoF patterns from the Patterns in Java book is

needed; these patterns are developed using object oriented structures such as inner

classes, multilevel inheritance, including multi-patterns such as Composite and Tem-

plateMethod patterns that are present in most of the patterns. Patterns detected

using PINOT and Similarity scoring for these patterns are shown in Figure 66 and

Figure 67.

Once these patterns are obfuscated using the proposed tool, we can see that

patterns are hidden from a Similarity scoring tool; with the exception of one false

positive: Prototype pattern. The PINOT tool that uses a source code for detecting

patterns can detect a few patterns that are not obfuscated, since our tool does not

obfuscate inner classes, multilevel inheritances, and multiple patterns inside a single

source. PINOT also detects patterns through method invocation details from ob-

88



Figure 66: Detected patterns without Obfuscation

jects, as does Singleton pattern getInstance() (even after obscuring method name)

method. The number of detected patterns through PINOT and Similarity scoring

after obfuscation is shown in Figure 68 and Figure 69.

89



Figure 67: Detected patterns without obfuscation graph

90



Figure 68: Detected patterns with Obfuscation

91



Figure 69: Detected patterns with obfuscation graph

5.3 Tests for Vince Huston patterns [44]

The design patterns from Vince Hustons website also use high object orientation

structures with the addition of an interface for several implementations and multilevel

inheritance. These patterns also have multipatterns, i.e., pattern within patterns.

Detection of patterns, without obfuscation of Hustons patterns is shown in Figure 70

and Figure 71.

92



Figure 70: Detected patterns without Obfuscation

Obfuscation of these patterns demonstrates false positives for PINOT and a

Similarity scoring technique can detect a false positive template method. Detection

of patterns with is shown in Figure 72 and Figure 73.

93



Figure 71: Detected patterns without obfuscation graph

94



Figure 72: Detected patterns with Obfuscation

95



Figure 73: Detected patterns with obfuscation graph

5.4 Observations

These pattern detection tools use different techniques for analyzing source or

class files. The Similarity scoring algorithm uses a symmetry scoring approach that

was unable to detect patterns from the obfuscated class files. The PINOT tool collects

information from blocks such as class hierarchies, method invocations, and relation-

ships between classes. This information is analyzed through a behavior mechanism

or examined for related patterns, as well as structural aspects used to detect pat-

terns. As PINOT gathers all this information, it finds relationship between classes

that matches patterns and sometimes arrives at a false positive. Results from present

tests demonstrated that PINOT detects false positives even after implementing class-

coalescing and class-splitting obfuscation.

The proposed tool must be extended in order to work on the source code adding

more complex object oriented structures such as inner classes, multilevel inheritance,

96



and codes with more abstractions. Tests on patterns from Patterns in Java, demon-

strates that patterns with complex structures cannot be completely obfuscated. The

present obfuscator cannot perform a complete obfuscation and should be extended to

work on different cases.

5.5 Comparison to Proguard and Sandmark

In this section we shall compare pattern detection results for the obfuscate

patterns from available obfuscators Proguard, and Sandmark to DesignObfuscatio-

nEngine. Figure 74 & Figure 75 show graphs of detected patterns from these three

obfuscators.

Figure 74: Patterns for Proguard and DesignObfuscationEngine

Firstly comparing patterns detected using PINOT detection tool, Figure 74,

demonstrates using Proguard obfuscated code can hide three patterns Singleton,

Adapter, and CoR patterns. The obfuscated source from the DesignObfuscatio-

nEngine obscures all patterns, and the detected patterns are false positives.

97



Figure 75: Patterns for Proguard, Sandmark and DesignObfuscationEngine

A comparison using the Similarity scoring detection tool are given in Figure 75,

this demonstrates that obfuscation, using Proguard and Sandmark can hide few design

patterns. However, the DesignObfuscationEngine completely obscure design patterns

from the Similarity scoring tool.

98



CHAPTER 6

Conclusion and Future Work

Reverse engineering Java applications are simple as binaries will be in bytecode

that represent an intermediate symbols between program and machine code. With

just a little knowledge regarding the use of bytecode anyone can easily understand

details of code such as method, field names, and additional architecture related infor-

mation. Binaries reverse engineering gives unauthorized access to source code order-

ing in understanding the architecture and internal structure of a given application.

In 2008, the reported loss to the software industry due to software piracy in general

was $47.809 billion (Business Software Alliance, May 2008). This loss increased to

$51.41 billion by May 2010 (Business Software Alliance, May 2010) [8] and for 2011

that loss is expected to be more than $59 billion. Creating a tool or mechanism that

can eradicate reverse engineering is needed, although we cannot completely stop re-

verse engineering, we can develop tools that obfuscates binaries in order to consume

a reverse engineer’s time and while not revealing the details of the software.

Obfuscation of the software binary, using available obfuscation tools such as

jarg, bb mug, JavaGuard, do obscure binaries. Well-known tools such as Proguard

and Sandmark, use many features to obfuscate code such as inserting dead code,

and layout obfuscation. Obfuscation, using these tools can hide patterns and cause

detection tools to detect false positives. These tools follow three types of obfuscation

control-flow, data obfuscation, and layout obfuscation. Three obfuscation types can-

not totally obscure the design of the softwares binary code, as it is easy for detection

tools to still detect patterns [29].

99



In our project, we defined a tool that obfuscates the 23 GoF design patterns and

analyzed it for obfuscation. Design obfuscation techniques from [29], class-coalescing,

class-splitting, and type-hiding are used for obfuscation. This prototype tool is able to

obfuscate different example programs that are designed using 23 design patterns. The

obfuscation mechanisms are applied to patterns such that minimum modifications are

needed; these modifications include removing interface abstractions from the patterns

and adding some methods to implement these functions. The obfuscated patterns are

examined using both tools and the results show improved obfuscation over available

obfuscation tools. The PINOT tool detects false positives and no patterns are de-

tected for the Similarity scoring detection. One main observation is to remove all

abstractions within a software package so that pattern detection would be difficult.

In order to hide the design or internal architecture from detection tools, we need to

remove or combine all abstractions from software binaries.

Testing the proposed tool by using patterns and object oriented approaches,

such as inner classes, multilevel inheritance, using multiple patterns in single code,

and blocks of code can break the present obfuscator tool. As shown in Section 5.1,

there are patterns detected using PINOT after obfuscation. For future work, this

prototype tool should be extended to work on complex object oriented approaches.

The current prototype tool can be used as base work and applied to binaries

or packages. Future work for this tool would be to test an obfuscated source from

our prototype tool on other available pattern detection tools. Functionality can be

extended to work on medium-to-large Java binaries. In order to add and create

functions for each Product in Factory pattern for Factory class; the problem is to

search for Products required, and then create functions in Client for initializing

each Product. This is just one approach to create obfuscated code for extending the

100



proposed tool.

101



LIST OF REFERENCES

[1] Alex Blewitt, Alan Bundy, Ian Stark (2001). Automatic verification of Java de-
sign patterns. Proceedings 16th Annual International Conference on Automated
Software Engineering, 2001. (ASE 2001) [Electronic Version]
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.9.9295

[2] Antoniol, G., Casazza, G., Penta, M.D., & Fiutem, R. (2001, November 15).
Object-oriented design patterns recovery, Journal of Systems and Software,
Volume 59, Issue 2, Pages 181-196, ISSN 0164-1212, DOI: 10.1016/S0164-
1212(01)00061-9 [Electronic version]
http://www.sciencedirect.com/science/

article/B6V0N-449TJ06-J/2/1194eca49fa9a9d8dbafde4af2041130

[3] Atanas Neshkov, DJ Java Decompiler
http://www.neshkov.com/dj.html

[4] Benedusi, P., Cimitile, A., & Carlini U.D. (1992, November). Reverse engineering
processes, design document production, and structure charts. Journal of Systems
and Software, Volume 19, Issue 3, Pages 225-245

[5] Canfora, G., Cimitile, A., Lucia, A. De, & Lucca, G. A. Di (2000). Decompos-
ing legacy programs: a first step towards migrating to client-server platforms.
Journal of Systems and Software, 54(2):99-110.

[6] Chikofsky, E.J.; Cross II, J.H. (1990). Reverse Engineering and Design Recov-
ery: A Taxonomy in IEEE Software. IEEE Computer Society: 1317. [Electronic
version]
http://seal.ifi.uzh.ch/fileadmin/User_Filemount/

Vorlesungs_Folien/Evolution/SS05/chikofsky90.pdf

[7] Christian Collberg, Department of Computer Science, The University of Arizona,
SandMark: A Tool for the study of Software Protection Algorithms
http://sandmark.cs.arizona.edu/index.html

[8] Cipresso, T. (2009). Software Reverse Engineering Education. Masters thesis,
San Jose State University, CA. [Electronic version] Retrieved December 3, 2010,
from Software Reverse Engineering (SRE) Web supplement to Masters thesis:
http://reversingproject.info/wp-content/uploads/

2008/10/cipresso_teodoro_cs299_report.pdf

102



[9] Deepti Kundu. (2011) JShield: A Java Anti-reversing Tool. Masters thesis, San
Jose State University, CA. [Electronic version] May 2011, Web supplement to
Masters thesis
http://scholarworks.sjsu.edu/etd_projects/161/

[10] Design Patterns [Online]
http://www.oodesign.com/

[11] Eastridge Technology, JShrink
http://www.e-t.com/jshrink.html

[12] Emden, E.V. & Moonen, L. (2002, November). Java quality assurance by detect-
ing code smells. In Ninth Working Conference on Reverse Engineering (WCRE
2002), Richmond, VA, USA, pages 97-107

[13] Eric Lafortune, ProGuard
http://proguard.sourceforge.net/

[14] Eric Lafortune , Proguard Alternative shrinkers, optimizers, obfuscators, and
preverifiers
http://proguard.sourceforge.net/index.html#alternatives.html

[15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software text book
http://c2.com/cgi/wiki?DesignPatternsBook

[16] George Spanogiannopoulos (January 2007) An Analysis of Design Pattern De-
tection Using PINOT AND Similarity Scoring. Pattern Detection Project, York
University [Electronic Version]
www.cse.yorku.ca/~spano/reports/report.pdf

[17] H. A. Mller, J. H. Jahnke, D. B. Smith, M. Storey, S. R. Tilley, and K. Wong,
Reverse engineering: a roadmap, in Proc. Conf. Future of Software Engineering,
Limerick, Ireland, 2000, pp. 47-60.

[18] Hanpeter van Vliet, Mocha, The Java Decompiler
http://www.brouhaha.com/~eric/software/mocha/

[19] Hidetoshi Ohuchi, jarg Java Archive Grinder
http://jarg.sourceforge.net/

[20] James Hamilton, Sebastian Danicic An Evaluation of Current Java Bytecode
Decompilers (2009). Ninth IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM 2009) [Electronic Version]
http://jameshamilton.eu/sites/default/files/JavaBytecodeDecompilerSurvey.pdf

103



[21] Java Decompiler
http://java.decompiler.free.fr/

[22] Jochen Hoenicke, JODE decompiler and optimizer
http://jode.sourceforge.net/

[23] JSRs (Java Specification Requests) detail JSR# 202
http://www.jcp.org/en/jsr/detail?id=202

[24] M. von Detten, M. Meyer, D. Travkin, Reclipse Reverse Engineering for Eclipse
http://www.fujaba.de/no_cache/projects/reengineering/reclipse.html

[25] Mariano Ceccato, Thomas Roy Dean, Paolo Tonella, Davide Marchignoli, (April
2010) Migrating legacy data structures based on variable overlay to Java, in
Journal of Software Maintenance and Evolution, vol. 22, n. 3, pp. 211-237

[26] Mark Grand, Patterns in Java: a catalog of reusable design patterns illustrated
with UML 1998, Wiley Computer Publishing

[27] Mark Stamp, Chapter 12: Insecurity in Software (October 2010)
Information Security: Principles and Practices Text book

[28] Merlo, E., Gagne, P.-Y., Girard, J.-F., Kontogiannis, K., Hendren, L.J., Panan-
gaden, P., & Mori, R. de (1995). Reengineering user interfaces. IEEE Software,
12(1):64-73

[29] Mickail Sosonkin, Gleb Naumovich, Nasir Memon (2003) ”Obfuscation of de-
sign intent in object-oriented applications” DRM03 Proceedings of the 3rd ACM
Workshop on Digital rights management

[30] Mickail Sosonkin, Gleb Naumovich, Nasir Memon Design Obfuscator for Java
(DOJ)
http://users.rowan.edu/~tang/courses/

ref/metrics/Design%20Obfuscator%20for%20Java%20%28DOJ%29.htm

[31] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S. T. Halkidis, (November,
2006). ”Design Pattern Detection Using Similarity Scoring”, IEEE Transactions
on Software Engineering, vol. 32, no. 11, pp. 896-909. [Electronic Version]
http://java.uom.gr/~nikos/publications/TSE_2006.pdf

[32] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S. T. Halkidis, Design pattern
detection Similarity scoring tool
http://java.uom.gr/~nikos/pattern-detection.html

104



[33] Nija Sji and Ronald A. Olsson (2006) Recovery of design patterns from Java
Source code - 21st IEEE/ACM International Conference on Automated Software
Engineering [Electronic Version]
http://www.cs.ucdavis.edu/~shini/research/pinot/reverseJavaPatterns.pdf

[34] Nija Sji and Ron Olsson, (2006) PINOT (Pattern INterference and recOvery
Tool) Detection the GoF Patterns,
http://www.cs.ucdavis.edu/~shini/research/pinot/

[35] Open Source obfuscators in Java
http://java-source.net/open-source/obfuscators

[36] Pavel Kouznetsov, JAD Java Decompiler Download Mirror
http://www.varaneckas.com/jad

[37] Prashant Chandrakar, Java Decompilers (.class to .java file)
http://yuvadeveloper.blogspot.com/2009/03/java-decompilers-class-to-java-file.html

[38] Robert Lie, Java class decompiled: HelloWorld.class
http://www.mobilefish.com/download/java/HelloWorld.html

[39] Rudolf K. Keller, Reinhard Schauer, Sbastien Robitaille, and Bruno Lagu
(2002) Pattern-Based Design Recovery with SPOOL, Advances in Software
Engineering. Comprehension, Evaluation, and Evolution, chapter 6, pages
113-135. Springer. [Electronic Version]
http://www.iro.umontreal.ca/~keller/Publications/Papers/2002/cbook-2002-dpr.pdf

[40] Smardec, Allatori Obfuscator
http://www.allatori.com/features.html

[41] Stefan Bebbo Franke, bb mug a Java class obfuscator
http://www.bebbosoft.de/\#java/mug/index.wiki

[42] Thomas Kuhn, Eye Media GmbH, Olivier Thomann, IBM Ottawa Lab, Java
Code Manipulation AST
http://www.eclipse.org/articles/

article.php?file=Article-JavaCodeManipulation_AST/index.html

[43] Thorsten Heit, JavaGuard bytecode obfuscator
http://sourceforge.net/projects/javaguard/

[44] Vince Huston Design Patterns
http://www.vincehuston.org/dp/

[45] Viral Patel, Java Virtual Machine, An Inside story
http://viralpatel.net/blogs/2008/12/java-virtual-machine-an-inside-story.html

105



[46] Wiki - Abstract Syntax Tree (AST)
http://en.wikipedia.org/wiki/Abstract_syntax_tree

[47] Wiki - Java Class file
http://en.wikipedia.org/wiki/Java_class_file

[48] Wiki - Reverse Engineering of Software
http://en.wikipedia.org/wiki/Reverse_engineering#Reverse_engineering_of_software

[49] yWorks, yGuard Bytecode Obfuscator and Shrinker
http://www.yworks.com/en/products_yguard_about.html

[50] Zelix, KlassMaster
http://www.zelix.com/klassmaster/features.html

106


	JAVA DESIGN PATTERN OBFUSCATION
	Recommended Citation

	tmp.1337957090.pdf.OIu5N

