
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2012

Electrocardiogram (ECG/EKG) using FPGA Electrocardiogram (ECG/EKG) using FPGA

Vaibhav Desai
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Desai, Vaibhav, "Electrocardiogram (ECG/EKG) using FPGA" (2012). Master's Projects. 238.
DOI: https://doi.org/10.31979/etd.kk7h-c84x
https://scholarworks.sjsu.edu/etd_projects/238

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/238?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F238&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Electrocardiogram (ECG/EKG) using FPGA

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Vaibhav Desai

Spring 2012

Copyright 2012

Vaibhav Desai

All Rights Reserved

SAN JOSÉ STATE UNIVERSITY

The Undersigned Project Committee Approves the Project Titled

Electrocardiogram (ECG/EKG) using FPGA
by

Vaibhav Desai

Approved for the Department of Computer Science

 Dr. Robert Chun Department of Computer Science Date

Dr. Jon Pearce Department of Computer Science Date

Dan Need Siemens Medical Solutions Date

Approved for the University

Associate Dean Office of Graduate Studies and Research Date

ABSTRACT

FPGAs (Field Programmable Gate Arrays) are finding wide acceptance in medical systems

for their ability for rapid prototyping of a concept that requires hardware/software co-design, for

performing custom processing in parallel at high data rates and be programmed in the field after

manufacturing. Based on the market demand, the FPGA design can be changed and no new

hardware needs to be purchased as was the case with ASICs (Application Specific Integrated

Circuit) and CPLDs (Complex Programmable Logic Device). Medical companies can now move

over to FPGAs saving cost and delivering highly-efficient upgradable systems.

ECG (Electrocardiogram) is considered to be a must have feature for a medical diagnostic

imaging system. This project attempts at implementing ECG heart-rate computation in an FPGA.

This project gave me exposure to hardware engineering, learning about the low level chips like

Atmel UC3A3256 micro-controller on an Atmel EVK1105 board which is used as a simulator

for generating the ECG signal, the operational amplifiers for amplifying and level-shifting the

ECG signal, the A/D converter chip for analog to digital conversion of the ECG signal, the

internal workings of FPGA, how different hardware components communicate with each other

on the system and finally some signal processing to calculate the heart rate value from the ECG

signal.

ACKNOWLEDGEMENTS

 I am very grateful to my advisor Dr. Robert Chun for guiding me through this project. His

constant support and patience was vital to the completion of this project. I thank him for

believing in me and encouraging me throughout the course of this project.

I am grateful to Mr. Dan Need for sharing his expertise on FPGA and helping me take the

right decisions. I thank him for taking the time to answer my questions clearly and with patience

during the design phase of the project.

I appreciate the help I received from Mr. Tarak Shah in overcoming all the technical

challenges I faced while working on this project. His knowledge on FPGA systems and their

implementation is exceptional.

Finally, I would like to sincerely thank my committee member Dr. Jon Pearce for his

support. I am also thankful to my friends and family especially Ms. Namrata Bapat who stood by

me throughout this entire journey here at San Jose State University.

Thank you.

Vaibhav Desai

TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

1. BACKGROUND

This section gives a brief introduction to ECG. Section 1.1 explains what is ECG. Section 1.2

explains the electrical activity of the heart resulting in generation of 5 distinct waves. Finally,

section 1.3 explains how ECG data is interpreted to get the heart rate from the electrical signal.

1.1 WHAT IS ECG

Electrocardiography (ECG/EKG) is a medical diagnostic test that captures the heart’s

electrical workings helping in understanding the rhythm of the heart and any irregularities

associated with it. The result of the test is called an “Electrocardiogram”. The heart muscles

contract due to electrical signals received from the sinoartrial node. These electrical impulses are

detected by an ECG. It is non-evasive and one of the most common procedures a person

undergoes when having any trouble with breathing, chest pain, etc.

1.2 HOW DOES IT WORK

Electrical signals are triggered due to heart muscle depolarization which occurs during every

heartbeat. Each heart muscle cell has a negative charge around it, which is along its membrane

when the heart is at rest. Depolarization is the process of decreasing this negative charge to zero

with the help of cations like Na+ and Ca++. This causes the heart muscles to contract. During

each heartbeat, a healthy heart will have an orderly progression of a wave of depolarization that

is triggered by the cells in the sinoatrial node, spreading out through the atrium, and passing

through the atrioventracular node and then spreading all over the ventricles.

Generally more than two pairs of electrodes are used to detect these signals. The output of a

pair of electrodes is known as lead. Placing more than a pair of electrodes provides a better way

8 | P a g e

to analyze the heart from different angles. Commonly 12 electrodes are used during an ECG,

which are placed across the chest, arms and legs. An ECG signal is shown in the figure below:

Figure - Typical ECG signal

• The P wave represents the atrial contractions.
• QRS complex represents the ventricular contractions. The R peak indicates a heartbeat.
• The T wave is the last common wave in an ECG. This electrical signal is produced when

the ventricles are repolarizing.
• The letters used in the ECG signal description do not have abbreviations in medical

terminology.
1.3 ECG INTERPRETATION

The output generated by an ECG is in the graph format with time on the x-axis and voltage

on the y-axis. The baseline voltage is known as isoelectric line. In case of no signal detection,

this would be a flat line. QRS complex is a combination of three graphical deflections noted on a

typical ECG. Most of the times, it is the central and most visually obvious part of the trace

generated. An ECG has five deflections, “P” through “T”. The Q, R and S waves occur in rapid

succession and are usually considered together. They reflect a single event but do not necessarily

appear in all leads. Post P wave, the Q wave is a downward deflection. It is followed by the R

wave which is an upward spike. The S wave is again a downward deflection after the R wave. S

wave is followed by the T wave. Modern ECG monitors convert these electrical signals into

9 | P a g e

digital values. They make use of various types of filters for signal processing. AN ECG graph as

observed on a Philips ECG system is shown below:

Figure - ECG graph recorded on Philips system

10 | P a g e

2. RELATED WORK

This section discusses the methods that have been used for implementing ECG.

2.1 TRADITIONAL METHOD

The traditional methods involve using leads to detect heart rate. The standard 12-lead

electrocardiogram is a representation of the heart's electrical activity recorded from electrodes on

the body surface. The electrical signals then get passed on to a data logger system that performs

all the necessary signal processing and shows an ECG waveform on the screen. This method is

widely used in diagnostic centers.

2.2 PULSE OXIMETRY

This method uses the principle of light absorbance to determine oxygenated blood from

deoxygenated. In doing so, it then calculates the heart rate and an ECG. Pulse oximetry uses a

sensor which is placed on a sensitive part of the body, usually fingertip or earlobes. The basic

idea is to pass light of two different wavelengths through the body. Typically, light emitting

diodes (LEDs) are used in this process. One emits red light while the other emits infrared light.

The absorption of light depends on the wavelengths as well as the blood inside the human body.

Absorption of radiation as a function of wavelength is calculated. Absorption of both the lights

differs significantly for oxygenated and deoxygenated blood as it depends on the amount of

oxygen present. Based on it, the device can determine a heartbeat or a pulse. In smartphone apps,

the camera is used to emit light. Placing one’s fingertip on the camera is same as placing it on a

sensor of a pulse oximetry device. The app triggers the phone to emit light of certain

wavelengths and then calculates the heart rate.

11 | P a g e

2.3 SEISMOCARDIOGRAPHY

Seismocardiogram (SCG) is the recording of body vibrations that are induced by the human

heart. SCG can provide definitive information about cardiac output. It uses accelerometer to

determine the pace or change of pace in the vibrations. SCG with the help of accelerometers can

help establish heart rate by assessing respiratory movements. Accelerometers can be attached

directly to human body using inertial footpads or by attaching it to some fabric. They are

commonly used on treadmills.

12 | P a g e

3. SYSTEM COMPONENTS

This section discusses the individual components used in the implementation of ECG using

FPGA.

3.1 DEVELOPMENT BOARD - ALTERA DE2 115

This project is implemented using the Altera DE2 115 development board.

Figure - Altera DE2 115 development board
The DE2 115 development board is featured with a very high end Cyclone IV

EP4CE115F29C7 FPGA on it. Although, this board has a number of components integrated on it,

for this project, the following components are used:

• USB-Blaster for downloading the code on the target
• Ethernet port for transferring data over the network
• High Speed Headers (HSMC) to read data from the ADC
• 128 MB SD-RAM Memory
• 2 MB S-RAM Memory
• 50 MHz Input Clock

The development of a system on FPGA consists of two separate steps: hardware generation,

and software creation. Hardware generation used in this implementation is discussed in Section

3.2. Section 3.3 discusses the software creation process.

13 | P a g e

3.2 HARDWARE GENERATION - SOPC

SOPC Builder is software provided by Altera that allows creating soft-hardware components

by generating the corresponding Verilog or VHDL files in the background. This eases the

development efforts and helps in focusing on the application logic. In this case, the software was

used to create a system that will use the NIOS II soft-core processor from Altera.

SOPC Builder automates the task of integrating hardware components. Using traditional design

methods, the developer manually writes HDL modules to wire together the pieces of the system.

SOPC Builder generates the interconnect logic automatically as components are added to the

system. SOPC Builder generates HDL files that define all components of the system, and a top-

level HDL file that connects all the components together. SOPC Builder generates either Verilog

HDL or VHDL equally. In this project, the focus was only on the Verilog files. It produces low-

level drivers for accessing the hardware and adds an API layer on top of these drivers which can

be easily called from the software. The following figure shows the SOPC system design for the

project:

14 | P a g e

Figure - SOPC System Design

Component Description

Each component used in the SOPC system design is described as below:

15 | P a g e

Table - SOPC System Components

Number Component Name Component Description
1 pll PLL converts 50MHz board clock to 100MHz for the project

implementation
2 jtag_uart JTAG UART is used by software for standard input and

output
cpu Soft-core processor running on the FPGA

3 onchip_memory2 Represents the on chip memory of the FPGA. Not used in the
current implementation

4 sdram SDRAM holds the software application

5 clock_50 Input clock to the FPGA running at 50MHz
6 clock_crossing_io The clock crossing i/o allows running the timer, sysid, key,

ledr, lcd peripherals at a slower rate than 100MHz, giving the
place & route tool more flexibility in meeting the design’s
timing constraints

7 timer Interval timer used only for debugging purposes
8 sysid Unique identifier for the SOPC system that is verified when

downloading the software on the FPGA board
9 ledg Parallel IO on the DE2 board representing the Green LEDs.

Not used in the current implementation
10 ledr Parallel IO on the DE2 board representing the RED LEDs.

Used for debugging purposes
11 lcd LCD on the DE2 board. Used for debugging purposes. This

LCD will display the calculated heart beat
12 tse_mac TSEMAC is Altera’s tri-speed Ethernet MAC IP that interacts

with the on-board PHY chip for Ethernet communication
13 sgdma_tx SDGMA are scatter/gather DMA units for transferring

network data between the MAC and the SDRAM. These
DMA units are programmed by software and used by the
Nichestack TCP/IP stack software

14 sgdma_rx
15 descriptor_memory Descriptor Memory stores DMA descriptors prepared by

application software for controlling DMA transfers by the
SGDMA units

16 fifo_0 FIFO component holds acquisition data provided by the
st_source_passthru component. The passthrough component
and the data-acquisition pipeline is described in detail in
subsequent sections

17 data_transfer_timer Interval timer used by the software to periodically check the
FIFO level

3.3 SOFTWARE CREATION - NIOS II SYSTEM

16 | P a g e

Nios II is a 32-bit embedded soft-core processor architecture designed by Altera for use in

Altera’s FPGAs. Nios II is based on the RISC architecture and is implemented using the logic

blocks on the FPGA. It is available in three different flavors: Nios II/f (fast), Nios II/s (standard)

and Nios II/e (economy). For Nios II software development, Altera provides Embedded Design

Suite (EDS), an Integrated Development Environment (IDE) written on top of Eclipse which

includes C/C++ compiler. EDS supports run-time debugging in a simulation mode, thereby

saving the compile time and download time for the target FPGA. A stable system design with the

Nios II software can then be downloaded on the target.

This project was first implemented using the economic edition of Nios II since it

provided support for in-depth debugging. Once the major bugs were eliminated from the project

and the performance benchmarks were set, the Nios II economic edition was replaced by the

Nios II fast edition. Also, no calls were made to the C++’s standard input output library since

these are expensive calls for the Nios II processor.

3.4 MICRO C/OS-II

Micro-Controller Operating System, known as Micro C/OS-II is a Real Time Operating

System (RTOS) supporting multi-tasking capabilities. Its light weight kernel makes it the evident

choice for use in embedded systems. In the context of the project, this OS is selected for its

ability to support multiple tasks and allow inter-task communication. Semaphores and mailbox

cores are used for task signaling and task synchronization. The following figure shows how the

Micro C/OS-II APIs integrate with the FPGA.

17 | P a g e

Figure - Micro C/OS Architecture for Nios II System
For the current implementation, the SOPC builder tool produces low level device drivers that

talk to the hardware. In order to avoid direct hardware access from the software using registers,

the SOPC builder tool generates the Hardware Abstraction Layer (HAL) APIs. Using EDS, the

software interacts with the hardware via the HAL API. The software itself uses Micro C/OS-II

APIs to create multiple tasks that synchronize using the OS flags provided by the Micro C/OS-II

API.

3.5 ECG SIGNAL SIMULATOR - ATMEL EVK1105

Atmel EVK1105 is a 32-bit microcontroller used for audio decoding and streaming

applications.

Figure - ATMEL EVK1105

18 | P a g e

In this project, it is used as a simulator to produce ECG signals at different frequencies.

The signal data is stored in a table and this data is streamed over the microphone channel. In

order to have different ECG signals, two buttons on the board are used. These buttons increase or

decrease the ECG signal frequency respectively.

The following shows the different ECG signals that can be simulated using the Atmel board:

ECG Signal at 3.1 Hz

Figure - ECG signal at 3.1 Hz
This signal produces about 187 QRS complexes which is equal to 187 beats a minute.

ECG Signal at 1.35 Hz

Figure - ECG signal at 1.35 Hz
This signal produces about 80 QRS complexes which is equal to 80 beats a minute.

19 | P a g e

ECG Signal at 0.86 Hz

Figure - ECG signal at 0.86 Hz
This signal produces about 51 QRS complexes which is equal to 51 beats a minute.

ECG Signal at 0.504 Hz

Figure - ECG signal at 0.504 Hz
This signal produces about 30 QRS complexes which is equal to 30 beats a minute.

20 | P a g e

ECG Signal at 0.416 Hz

Figure - ECG signal at 0.416 Hz
This signal produces about 25 QRS complexes in a second which is equal to 25 beats a

minute.

Having different ECG signals output from the simulator helps in verifying the correctness of

the peak detection algorithm.

3.6 OPERATIONAL AMPLIFIER – LM741

An operational amplifier (OP-AMP) provides voltage amplification having differential input

and producing a single output. The amplification is of the order of hundreds of thousands times

the voltage at its input terminals. OP-AMP LM741 is as shown below:

21 | P a g e

http://en.wikipedia.org/wiki/Electronic_amplifier
http://en.wikipedia.org/wiki/Differential_input

Figure - Operational Amplifier LM741
Two OP-AMPS are used in the current implementation. Their usage is as described below:

Amplification

The output from the simulator is fed to the first OP-AMP. During this stage, the ECG

signal is amplified and inverted. Since the ECG signal level is less than 900 mV, amplification is

required before this signal is fed to the analog to digital converter. The circuit diagram for this

OP-AMP is shown below:

Figure - ECG signal amplification circuit
Amplification equation is as shown below:

Vout=- R2R1×Vin
The output signal from the first OP-AMP is passed on to the second OP-AMP.

22 | P a g e

Level Shifting

During this stage, the ECG signal is shifted above the zero level and inverted. This is

required since the ADC does not operate on negative voltages. The circuit diagram for this OP-

AMP is shown below:

Figure - ECG signal level shifting circuit
Level shifter equation is as shown below:

Vout=- R1R2×Vin+ Vk
The output signal from the second OP-AMP is passed on to the analog to digital converter.

3.7 ANALOG TO DIGITAL CONVERTER - ADS7818P

The ADS7818P is a high speed analog-to-digital converter manufactured by Texas

Instruments. It has internal 2.5V reference, and supports SPI interface. The input range for this

ADC is between zero and five volts which is up to two times its reference voltage. This ADC

does not operate on negative voltages and hence the input signal has to be shifted above zero to

23 | P a g e

get the correct conversion. Since the ECG signal is too small, it is amplified before passing as an

input for conversion.

Figure - ADS 7818P
The FPFA clock running at 50 MHz is provided as an input clock to the ADC. It also

supports Power Down mode to save power when not in use. In this implementation the ADC is

continuously performing the conversion and therefore does not power down anytime.

Timing Diagram

The timing specification for the ADS7818P A/D converter is as shown below:

Figure - Timing diagram for the ADS7818P
The only signals of interest for the implementation are CONV, CLK and DATA. As seen

from the above figure, as soon as the CONV signal goes low, conversion starts and goes on for

16 clock cycles. At the end of the 16th clock cycle, the data is available and can be read using a

serial interface.

24 | P a g e

4. ECG IMPLEMENTATION

The entire implementation of the project is divided into modules where each module is

performs a dedicated task. The following sections explain the modules in detail:

4.1 ADC READER MODULE

ADC Reader controls A/D conversion by providing periodic convert strobes to the

ADS7818P A/D converter chip. It also is responsible for reading the converted digital ECG

samples from the A/D converter and parallelizing it for NIOS II processor consumption. It is

implemented as a state machine and is written in VHDL. This reader module is added as a part of

the Quartus project. The following sections discuss in detail the working of the ADC reader

module.

Block Diagram

The block diagram for the ADC reader module is shown below:

Figure - Block diagram for ADC reader module

Input Ports

The following table describes all the input ports of the ADC reader module:

25 | P a g e

Table - Input Ports for ADC reader module

Signal Name Bit-Width Signal Description
DATA_IN: 1 This input signal is driven by the ADS7818P A/D

converter chip’s serial-data-out line.
CLK 1 This is the module-clock. The clock rate is 100Mhz

for the current design.

Output Ports

The following table describes all the output ports of the ADC reader module:

Table - Output Ports for ADC reader module

Signal Name Bit Width Signal Description
DATA_READY 1 This 1-bit signal tells the external modules the data

from the ADC reader module is available for reading
SER_CLK 1 This is the serial-clock provided to the ADS7817 A/D

converter chip for reading the serialized 12-bit data.
For this design, the serial-clock is configured for 400
nanoseconds, well within the specifications rated for
ADS7818P. This clock is active only when reading
the serial data.

CONV 1 This 1-bit signal provides periodic convert strobe to
the ADS7818P A/D converter chip.

DATA 32 This is the 16 bit-data captured by the ADC reader
module

The HDL to implement the logic for the ADC conversion is written in VHDL and is

added as a part of the top-level Quartus project file. The table below provides the timing values

used by the ADC reader for this implementation. Please refer to the Section 3.7 for the timing

requirements for the ADS7818P A/D converter chip.

Table - ADC reader module timings

Name Value Description
tacq 3,000 ns This is the convert signal’s pulse width; ADS7818 is

in the sample mode while the convert signal’s high.
tdrp 200 ns This is the period between de-asserting the convert

signal and reading the data
tdata2conv 490,400 ns This is the duration between reading the last bit of the

16-bit data and asserting the convert signal
tserclk 400 ns This is the serial-clock period of the serial-clock to

ADS7818, for each of the 16-clock pulses needed to

26 | P a g e

pull the 16 bits of data.

Based on the values listed in the table below, this design obtains ECG sampled data,

periodically, every 500,000 microseconds.

State Machine

The following diagram shows the state machine representation of this module. This state

machine is synchronous to the module’s input clock, running at 100MHz. It uses an internal

counter to generate the slower serial clock needed by the ADS7818P A/D converter chip.

27 | P a g e

Figure - ADC reader module state diagram

Each state is described as follows:

1) IDLE : This is the power-up state for the acquisition state machine. It transitions to the
CONV state on the first clock after power-up.

2) CONV : The module remains in this state for tacq. The next state is CONV2DATA state.

3) CONV2DATA : The module remains in this state for tdrp before transitioning to the
SERIAL state. The ADS7818 specifies a maximum time before starting to read out serial
data.

4) SERIAL : In this state, the module generates the serial clock for pulling serial data from
the ADS7818 A/D converter. It generates 16 clock pulses for reading 16 bits of data.
The serial data is loaded into a serial-to-parallel converter. On completion of reading 16
bits, the parallel data is provided to the processor interface along with a data-ready strobe,

28 | P a g e

informing the receiving interface that data’s ready. The data remains valid till the next
conversion is read. The data-ready strobe is a single-clock wide pulse. The module then
enters the DATA2CONV state. ADS7818P specifications provide a lower limit to the
serial-clock rate.

5) DATA2CONV : This state is an idle state that allows reducing the acquisition rate while
not violating the other timing parameters affecting the other states.

4.2 PASSTHROUGH MODULE

This module is responsible for transferring the acquisition data from the generic-interface of

the A2D reader module to the Avalon-streaming interfaced data FIFO. The rationale for

introducing this adapter is to keep the A2D reader module with a generic interface for

component-reuse in designs that may not conform to Altera-streaming interface. As soon as the

DATA_READY is set by the ADC reader module, this module reads all the data and makes the

same data available to the Altera Avalon streaming interface. Once the right bits are set, the

Avalon streaming interface reads the data and pushes it on the FIFO.

The following sections discuss in detail the working of the passthrough module:

Block Diagram

The block diagram for the passthrough module is as shown below:

29 | P a g e

Figure - Block diagram for passthrough module

Input Ports

The following table describes all the input ports of the ADC reader module:

Table - Input Ports for passthrough module

Signal Name Bit Width Signal Description
DATA_IN 1 This is a 32-bit wide data bus, sourced by the

A2D reader module. The lower 12 bits of the
data-bus contain the A/D converter’s sampled
value. The upper 16-bits hold a linearly
incrementing value, incremented each time a
conversion’s complete, used for detecting
software induced through-put issues.

DATA_READY 2 This is a strobe signal qualifying new data on
the DATA IN bus, sourced by the A2D reader.
This signal is asserted for a single clock cycle.

CLK 5 This is the input clock to the passthrough
module

Output Ports

This module outputs signals conforming to the Avalon Streaming interface for

transferring data to the data FIFO. Since the data-rate to the FIFO is much lower than the clock-

rate of 100MHz, this module implements only the minimum required signals for the streaming

interface.

30 | P a g e

4.3 HARDWARE FIFO

Altera provides a hardware based FIFO on its on-chip memory region. This hardware FIFO

can buffer data and help in the flow control for the SOPC system. Single clock or separate clocks

can be used to operate this FIFO but this implementation uses a single clock input. An interrupt

can be generated when the FIFO level reaches a user-defined threshold. Here an interval timer is

used that queries this level periodically to determine if there are enough packets available to be

transferred over the network via the UDP protocol. The FIFO level is queried using an interface

altera_avalon_fifo_read_level() provided in the low-level driver generated by the SOPC system

and the contents of the FIFO are read using the function altera_avalon_read_fifo().

FIFO Usage

The FIFO is configured to be of 8K levels which mean the FIFO can store up to 8192

samples from the ADS7818P A/D converter chip at any time. The ADC runs continuously

converting the analog input to digital data and storing it in the FIFO. The rate at which ADC

writes data to the FIFO is synchronized with the rate at which the software reads data from the

FIFO. This ensures that there is enough memory available in the FIFO at all times. If the FIFO is

full, the ADC will stop pushing data on the FIFO, no existing samples of the FIFO are over-

written. There is no mechanism to handle this scenario and the software will come to an halt.

4.4 INTERVAL TIMER

Altera provides a hardware based Interval Timer core with the Altera DE-2 115 board. An

Interrupt Request (IRQ) is generated every time the timer expires. This timer is implemented as a

simple counter internally using the clock period of the FPGA. An Interrupt Service Routine

31 | P a g e

(ISR) has to be registered with the IRQ at the program startup as a callback method. Every time,

the timer reaches zero, it generates an IRQ that is handled by the ISR. The timer can be reset or

disabled from the ISR. The timer supports the following features:

1) Timeout period up to 1 microsecond.

2) Can be controlled using the NIOS II system

3) Can be level-triggered or edge-triggered. For this project, level-triggered mode is used for

the timer.

4) Optional watchdog to check if the timer reached to zero. Watchdog is not used in the

current implementation.

Timer ISR Implementation

When the timer reaches zero, the ISR function TimerISR() gets invoked. This function does

the following:

1) Read the current hardware FIFO level.

2) If the level is greater than 64, set the OS flag EVT_FIFO_DATA_PENDING. This

internally sends a signal to the other network task indicating data is available in the FIFO.

That task reads the data from the FIFO and sends it over the network via the UDP

protocol.

3) If the level is greater than 6000, set the OS flag EVT_FIFO_DTA_OVERRUN. Based on

the timer interval and the rate at which the ADC is producing digital data, this condition

will never be hit. This is only for debugging purposes.

4) Reset the timer

Timer ISR Code Snippet

32 | P a g e

The code snippet for the Timer ISR is shown in the box below:

Figure - Timer ISR Code Snippet
4.5 NETWORK DATA TRANSFER MODULE

The network data transfer module holds the responsibility of transferring the recorded ECG

samples as data packets over the network to the host machine. UDP protocol is used for data

transfer. When the NIOS II software is downloaded to the target, the Niche TCP/IP stack is

initialized with DHCP disabled. The FPGA is configured with a static IP of 192.168.0.120 and

the host machine is configured with a static IP of 192.168.0.121. The communication between

the FPGA and the host machine is one-to-one.

As soon as the FIFO is filled with 128 samples, the timer handler sends a signal to the main task

to send these samples over the network. Wireshark is used to monitor the UDP packets over the

network.

4.6 PEAK DETECTION MODULE

The peak detection module holds the responsibility of converting the recorded ECG samples

to a heart rate value. It does this by calculating the local maxima on the ECG data and keeping a

track of such maximas over the period of one minute.

33 | P a g e

Figure - P wave and T wave as local maxima
As seen from the ECG waveform above, the P wave and the T wave would also be

considered as a maximum which would result in incorrect heart rate value. To overcome this, a

threshold value is used that ignores the P wave and the T wave. In doing so, the peak detection

algorithm calculates a fairly accurate heart rate value based on the ECG waveform produced by

the simulator.

4.7 USER INTERFACE MODULE

The user interface module is written in C#. It is a windows forms application that reads the

UDP data packets sent by the FPGA over the network. This data packet contains the digital ECG

samples as well the heart rate computed by the FPGA. For now, the ECG samples are discarded

and the heart rate is simply displayed on the form.

User Interface

The following figure is a screenshot of the user interface:

34 | P a g e

Figure - Host Machine User Interface
The color ‘Green’ indicates that UDP packets are being successfully received by the host

machine. If the UDP packets are not being received by the host machine, the color of the status

indicator turns ‘Red’.

Data Logging

Along with displaying the heart rate, the user interface module also logs the ECG

samples in a text file. This file can be retrieved later by the module to analyze the ECG samples.

Code Snippet

The following is a code snippet from the user interface module showing how the UDP

packets are captured.

35 | P a g e

Figure - UDP Packet receive code snippet
4.8 ECG COMPUTATION

This section demonstrates the working of all the components described above in an

integrated manner.

36 | P a g e

Figure - ECG Computation Flowchart
Step 1: The Atmel EVK1105 simulator starts producing the simulated ECG signal. This ECG
signal has a period of 748 milliseconds and a peak to peak voltage of 880 mV. The original ECG
signal is as shown below:

Figure - Simulated ECG signal to the circuit
Step 2: The simulated ECG signal goes as an input to the first OP-AMP where it gets amplified
and inverted. This is needed since the original signal strength is too low for the ADS7818P A/D
converter chip to operate on. This amplified signal now has a peak to peak voltage of 1.69 V. The
amplified ECG signal is as shown below:

37 | P a g e

Figure - ECG signal amplified and inverted

Step 3: The amplified ECG signal goes as an input to the second OP-AMP where it gets level
shifted above zero. This is needed since the ADS7818P A/D converter chip cannot operate on
negative voltages. This level shifted ECG signal now has only positive voltages and is as shown
below:

Figure - ECG signal level shifted and inverted again

Step 4: The level shifted ECG signal then goes to the ADS7818P A/D converter chip.

Step 5: Assuming the ADC reader module is feeding the necessary signals to the ADS7818P A/D
converter chip, this A/D converter starts capturing the ECG samples and storing them in the
digital format.

Step 6: The ADC reader module reads the digital data generated in the above phase serially and
converts it into parallel data, sets the data ready bit to 1.

38 | P a g e

Step 7: The passthrough component senses the data ready bit is set to 1, captures the digital data
samples and sets the appropriate signals for the Avalon streaming interface.

Step 8: The Avalon streaming interface simply pushes the digital data samples on the hardware
FIFO.

Step 8: The software running on Nios II processor is continuously monitoring the FIFO level
using an interval timer that has a period of 1 millisecond. Once the FIFO level goes above 128,
the interval timer’s ISR signals the main task to read the digital data samples from the FIFO.

Step 9: The main task reads digital data samples from the FIFO and applies the peak detection
algorithm to it. It then generates the data packet with the digital data samples that need to be
transferred over the network via the UDP protocol.

Step 10: The main task transfers the data packet generated in the above phase to the host
machine via the UDP protocol.

Step 11: The main task then waits for more data to be available.

39 | P a g e

5. RESULTS

The project was tested using all the ECG signals simulated by the Atmel EVK1105

simulator. Section 3.5 to describes the simulated ECG signals. The following table shows the

heart rate values computed by the FPGA against the actual values:

Table - Experiment Results

Experiment
Number

ECG signal
frequency

Expected Heart
Rate

Computed Heart Rate

1 3.1 Hz 187 beats/minute 186 beats/minute
2 1.35 Hz 80 beats/minute 80 beats/minute
3 0.86 Hz 51 beats/minute 50 beats/minute
4 0.504 Hz 30 beats/minute 28 beats/minute
5 0.416 Hz 25 beats/minute 24 beats/minute

As seen from the table above, the computed heart rate values on the FPGA closely match

the expected values. This verifies the correctness of the ECG circuit and the peak detection

algorithm. If a plot were to be drawn using the digital ECG samples received from the ADC

reader module, the resulting signal would be identical to the one provided as an input to the

circuit by the simulator.

40 | P a g e

6. CONCLUSION

ECG heart rate computation was successfully implemented on the Altera Cyclone IV FPGA.

The calculated heart rate values match the expected heart rate values. Doing this project exposed

me to an entire design flow from concept to final implementation. It exposed me to

hardware/software design, practical real-time design considerations like data-throughput. It was

a very good learning experience and will help me in my future career as a systems engineer.

41 | P a g e

7. FUTURE WORK

This project shows how the heart rate was calculated by implementing ECG on the FPGA. As

of now, the user interface module only shows the calculated heart beats per minute. A visual

interface that can show the ECG waveform as a running graph can be very useful for diagnosing

any abnormalities with the heart.

Also, the project is implemented using ECG signals produced by a simulator. When working

with an electrical signal coming directly from a person’s heart, there will be substantial noise. In

such a case, signal processing is a huge challenge since the actual signal value has very small

amplitude. There are several other factors that impact accuracy like the pacemakers or the

interference from the power supply. Obtaining a clean ECG signal, free of all noise without

losing any important information is still a challenge in the medical domain.

42 | P a g e

8. REFRENCES

[1] ECG Interpretation

http://www.medicaltextbooksrevealed.com/files/11156-53.pdf

[2] Understanding ECGs

http://usasam.amedd.army.mil/fmc/Study/UnderstandingECG.pdf

[3] An ECG Primer

http://www.skillstat.com/PDF/ssecgPrimer.pdf

[4] ECG Processing – R Peak Detection

http://www.librow.com/cases/case-2

[5] ECG Signal Analysis: Enhancement and R-Peak Detection

http://ethesis.nitrkl.ac.in/1932/1/B.Tech_Project_Report_Swagatika_Priyadarshini

%2810609017%29.pdf

[6] ECG Basics

http://www.ambulancetechnicianstudy.co.uk/ecgbasics.html

[7] Altera Cyclone IV FPGA

http://www.altera.com/literature/hb/cyclone-iv/cyiv-51001.pdf

[8] Using Micro C/OS-II RTOS with the Nios II Processor

http://www.altera.com/literature/tt/tt_nios2_MicroC_OSII_tutorial.pdf

[9] Altera Avalon Interface Specifications

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

[10] Altera Nios II Software Developer Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

43 | P a g e

http://www.altera.com/literature/tt/tt_nios2_MicroC_OSII_tutorial.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-51001.pdf
http://www.ambulancetechnicianstudy.co.uk/ecgbasics.html
http://ethesis.nitrkl.ac.in/1932/1/B.Tech_Project_Report_Swagatika_Priyadarshini(10609017).pdf
http://ethesis.nitrkl.ac.in/1932/1/B.Tech_Project_Report_Swagatika_Priyadarshini(10609017).pdf
http://www.librow.com/cases/case-2
http://www.skillstat.com/PDF/ssecgPrimer.pdf
http://usasam.amedd.army.mil/fmc/Study/UnderstandingECG.pdf
http://www.medicaltextbooksrevealed.com/files/11156-53.pdf

[11] Altera Nios II Processor Reference

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

[12] Altera Nios II Hardware Abstraction Layer

http://www.uni-

ulm.de/fileadmin/website_uni_ulm/iui.inst.050/vorlesungen/sose09/lrob/n2sw_nii5v2_02.pdf

[13] Altera NicheStack TCP/IP

http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

[14] LM741 Operational Amplifier Datasheet

http://www.ti.com/lit/ds/symlink/lm741.pdf

[15] Configuring Altera FPGAs

http://www.altera.com/literature/hb/cfg/cfg_cf51001.pdf

[16] Architecture of FPGAs and CPLDs

http://www.eecg.toronto.edu/~jayar/pubs/brown/survey.pdf

A single supply OP-AMP Circuit Collection

http://www.eng.yale.edu/ee-labs/morse/compo/sloa058.pdf

[17] Operational Amplifier Circuits

http://webpages.ursinus.edu/lriley/ref/circuits/node5.html

[18] ADS7818P A/D Converter Chip Datasheet

http://pdf1.alldatasheet.com/datasheet-pdf/view/56556/BURR-BROWN/ADS7818P.html

[19] High Speed ADC Differential Drivers

http://www.analog.com/library/analogDialogue/archives/43-05/adc_drivers.html

44 | P a g e

http://www.analog.com/library/analogDialogue/archives/43-05/adc_drivers.html
http://pdf1.alldatasheet.com/datasheet-pdf/view/56556/BURR-BROWN/ADS7818P.html
http://webpages.ursinus.edu/lriley/ref/circuits/node5.html
http://www.eng.yale.edu/ee-labs/morse/compo/sloa058.pdf
http://www.eecg.toronto.edu/~jayar/pubs/brown/survey.pdf
http://www.altera.com/literature/hb/cfg/cfg_cf51001.pdf
http://www.ti.com/lit/ds/symlink/lm741.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52013.pdf

	Electrocardiogram (ECG/EKG) using FPGA
	Recommended Citation

	1. BACKGROUND
	2. RELATED WORK
	3. SYSTEM COMPONENTS
	Component Description
	ECG Signal at 3.1 Hz
	ECG Signal at 1.35 Hz
	ECG Signal at 0.86 Hz
	ECG Signal at 0.504 Hz
	ECG Signal at 0.416 Hz
	Amplification
	Level Shifting
	Timing Diagram

	4. ECG IMPLEMENTATION
	Block Diagram
	Input Ports
	Output Ports
	State Machine
	Block Diagram
	Input Ports
	Output Ports
	FIFO Usage
	Timer ISR Implementation
	Timer ISR Code Snippet
	User Interface
	Data Logging
	Code Snippet

	5. RESULTS
	6. CONCLUSION
	7. FUTURE WORK
	8. REFRENCES

