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ABSTRACT

Cryptanalysis of Typex

by Kelly Chang

Rotor cipher machines played a large role in World War II: Germany used

Enigma; America created Sigaba; Britain developed Typex. The breaking of Enigma

by Polish and (later) British cryptanalysts had a huge impact on the war. Despite be-

ing based on the commercial version of the Enigma, there is no documented successful

attack on Typex during its time in service.

This project covers the Typex machine. We consider the development of Typex,

we discuss how Typex works, and we present and analyze two distinct cryptanalytic

attacks on the cipher. The first attack assumes the rotor wirings are known and uses

Turing’s crib attack–originally developed for Enigma–to recover the settings of the

stepping rotors. It then performs a hill-climb to recover the static rotor settings. The

second attack assumes that the rotor wirings are unknown. This attack uses a nested

hill-climb to find the wirings of the stepping rotors.
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CHAPTER 1

Introduction

After World War I, it was clear to the British government that they needed a

stronger, more efficient, mechanized cipher system. In 1926, the government estab-

lished the Inter-Departmental Cipher Committee to explore possible cipher machines

to replace their current book cipher systems. Almost ten years later, in 1935, the

Committee decided upon “Enigma type cipher machines improved through the use

of ‘Type X’ attachments” or Typex [11]. These improvements included the use of

patents designed for the commercial Enigma that went unused by the Germans. The

Typex machine, developed by Wing Commander O.G.W. Lywood [6], was such a

close relative of the Enigma machine used by the Germans that not only did the

British use Typex machines in place of Enigma ones when trying to decipher Enigma

messages, but when German soldiers recovered a Typex machine sans rotors, they suc-

cessfully converted it into an Enigma machine [11]. Ironically, the similarity between

Typex and Enigma discouraged German cryptanalysts from attempting to cryptana-

lyze Typex enciphered messages because they believed Enigma to be unbreakable [14].

The goal of this project is to design, implement, and test two possible attacks

on the Typex cipher machine. We discuss the first attack in Section 3. It combines

Turing’s crib attack on the Enigma (Section 3.1), and a hill-climbing heuristic tech-

nique (Section 3.2). This attack assumes two things: 1. the attacker knows the rotor

wirings but not the key used to encrypt the ciphertext, and 2. that the attacker

has some knowledge of the contents of the ciphertext, that is, the attacker knows a

so-called crib [18]. We apply the crib attack to recover settings of the stepping rotors

and the hill-climbing technique to get settings of the static rotors. The two methods
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used in the first attack highlight the similarities and differences between the Typex

and its German cousin, the Enigma.

The second attack, which is discussed in Section 4, assumes the rotor wirings

are unknown, but the key is known. For this attack, we utilize a nested hill-climb

technique to solve the rotor wirings. The implementation of this attack is not specific

to the Typex cipher machine and therefore may be extended to other rotor cipher

machines.

In this project report, we begin in Section 2 by giving a reasonably complete

description of the Typex cipher, and we examine the size of the Typex keyspace. In

Section 3, we discuss our first attack on the cipher machine and Section 4 describes

our second attack on the Typex. In Section 5, we analyze the results of the second

attack. Section 6 discusses Rejewski’s method of recovering the rotor wirings. Lastly,

Section 7 concludes the report.
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CHAPTER 2

The Typex Cipher Machine

The Typex went through several different designs during its years ofservice [6];

the model pictured in Figure 1 is a Mark III, the “portable” version [11]. Its cousin,

the Mark VI, another hand powered version of the Typex, weighed in at 30 pounds,

slightly more than the Enigma’s 26.5 pounds [6]. The most widely produced and

distributed versions during World War II were the Mark II and Mark IV, numbering

at around 8,000 and 3,000, respectively [6]. A typical Typex machine came with

eight rotors, one reflector, a keyboard, and a printer [21]. The Mark III and IV

model included a handcrank to power itself [11]; others, like the Mark II, required a

230-volt AC power supply, making them stationary cipher machines [15]. Of those

eight rotors, the operator would choose five of them to insert into the machine and

assign their initial settings, letters A-Z. The first three rotors from the left of the

machine stepped as the operator typed, and two rightmost rotors remained static,

also known as stators. It was also possible to reverse the Typex rotors, effectively

doubling the amount of rotors an operator could choose from [11].

The stators served a similar purpose to the Enigma’s stecker. They permuted

the signal before it reached the stepping rotors. However, unlike the stecker, the

stators were not reciprocal [11]. The reciprocal property made it easier for British

cryptanalysts to recover the stecker settings [18]. By lacking this property, the stators

were slightly more secure than the stecker as shown in Section 3.2.

When a Typex operator typed a letter, it traveled in a similar manner to the

Enigma: from the keyboard the signal went through the two stators, followed by the

3



Figure 1: Typex Cipher Machine [11]

three stepping rotors, then across the reflector, and back through the inverse of the

stepping rotors and stators where it would then be printed out [21]. The path of the

signal can be seen in Figure 2.

Figure 2: Typex Encryption

We use the following altered notation from [18] to discuss the various permuta-
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tions in the Typex:

Sr = right stator

Sl = left stator

Rr = right rotor

Rm = middle rotor

Rl = left rotor

T = reflector.

For example, we write the encryption of a plaintext character x to ciphertext y as:

y = S−1
r S−1

l R−1
r R−1

m R−1
l TRlRmRrSlSr(x). (1)

Figure 3: Typex Rotors [11]

The frequency order of the Typex’s stepping rotors matches that of the Enigma;

however unlike the Enigma, the middle and left rotors stepped more than once per

revolution of its neighboring rotor. One of the major improvements made to the Typex

over the Enigma was this irregular stepping of the rotors. The irony of the addition of

the irregular stepping was that the British merely implemented the existing unused

Enigma patents [11]. The Typex stepped anywhere between five and nine times

per revolution [2]. The multi-notched rims attached to the rotors determined the

exact number of steps per revolution. Unlike the Enigma, where the moveable rims

5



were independent of each other [18], the multi-notched rims of the Typex were the

same for both the middle and left rotor, meaning that if the middle rotor stepped

when the right rotor was at ADGILNQUY, then the left rotor stepped when the middle

rotor was also at those positions. By adding these multi-notched rims to the rotors,

cryptanalyzing the Typex became a vastly more difficult task. The multiple steps per

revolution meant that even if the Germans attempted to decipher Typex encrypted

messages they would not only need more ciphertext than the British did to crack

Enigma encrypted messages, but it would also take longer [11].

The multi-notched rims made the stepping more random than the Enigma rotors,

and therefore increased the difficulty of predicting when the Typex rotors stepped.

For example, if the Germans knew the Typex rotors stepped nine times per revolution

but not the exact positions, there would still be 26 choose 9, about 221.6, different

possible combinations. The British had a mere 262 combinations, about 29.4, given

the Enigma’s single step per revolution [18].

2.1 Typex Keyspace

The full theoretical size of the Typex keyspace includes three components:

1. The choice of rotors, both stepping and static, and their initial position

2. The choice of multi-notched rim.

3. The choice of reflector.

The rotors create a permutation of the 26 letters of the alphabet and each rotor is

initially starts in one of 26 possible positions corresponding to A through Z. Because

the two stators remain in a fixed position, they are cryptographically equivalent to
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one rotor. That is, if the input to the first stator is A and the output of the second

stator is K then for every A entered given the current settings the output of the

second stator will always be K. Therefore, if the wirings of the rotors are unknown

there are a total of (26!)4, approximately 2353.5, possible ways to select the rotors

and set their initial positions. The multi-notched rim can have between five and

nine notches. This provides at most about 221.6 different combinations, as previously

mentioned. The Typex reflector worked the same way as the Enigma one, which had

approximately 242.8 different possible combinations [18]. In total, the theoretical size

of the Typex keyspace amounted to approximately 2353.5 ·221.6 ·242.8, or 2417.9, roughly

a 418 bit key. However, in practice this was much less, largely due to limitations on

the number of available rotors and multi-notched rims, as well as having only one

reflector [21].

The operator of the Typex machine set the key by selecting the rotors, their

order, orientation, and initial position. Assuming that the operator only had the

standard eight rotors to choose from the selection of the rotors and their order is 8!
3!

,

about 212.7, possible permutations. The orientation is a binary choice, forwards or

backwards, making that part 25. Initial position of the rotors refers to the letter

that it started at, giving the operator 26 options per rotor or 265 in total. The total

keyspace based on these values ends up being 212.7 · 25 · 265, or approximately 241.2.

2.2 Converting an Enigma Simulator to Typex

Because of the similarities between the Typex and Enigma, we start with an

accurate, working copy of Enigma code and convert it to Typex; this involves several

different changes. We remove the stecker and replace it with the two stators. However,

this requires a little more than a simple find and replace. Because the stators are
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rotors, we also include them when calculating the inverse permutations of the rotors.

Unlike the stecker, which is simply a plugboard, the stators permute all the letters of

the alphabet. This permutation changes based on the orientation of the stator and its

positioning, which means that the inverse permutation must also adapt accordingly.

This leads to expanding the rotor initialization section of the code to not only include

the three stepping rotors but also the stators as well. In addition to that, the formula

to permute the incoming plaintext to ciphertext, and vice versa, needs to be altered

so that the character goes through the stators first and comes out their inverse last.

Other modifications include the extra notches on the rotors and reversing the

rotors. Based on our research, we concluded that the notches for each rotor were the

same [1, 4]. This means that instead of creating unique notch settings for every rotor,

we only need one and each rotor can check the notch settings to determine whether

or not to step based on its current position.

By far, the hardest part of the Typex simulator involves reversing the rotors.

With physical rotors, the operator simply flipped it over and inserted the rotor into

the machine. For the simulator however, the rotor needs to be completely “rewired.”

With the help of paper rotors, we successfully designed a way to reverse the rotors

in the simulator. Keeping in mind that a reversed rotor must contain two poles that

retain their previous “wirings,” reversing a rotor becomes a matter of swapping these

“wirings” with the correct position. We achieve this by using subtraction and the

modulo operator.

Finally, the last change we implement adds the space character as a part of the

acceptable input. For the Enigma code, the only valid plain or ciphertext are the

letters A to Z all uppercase. With Typex, the operator can use the space bar, but

it is connected to the X key on the keyboard and enciphers as such [11]. Therefore,

8



Table 1: Pseudo Code to Reverse a Rotor

create a new rotor[26][26]
for i = 0 to 26

for j = 0 to 26
new rotor[i][j] = old rotor[i][(26− j) %26]

next j
next i

Figure 4: Typex Rotor in Forward Orientation [17]

our simulator checks for the space character and converts it to X prior to enciphering,

similar to the actual machine. This means that when deciphering any text the end

result will have the letter X in place of spaces as the simulator has no way to differ-

entiate between spaces enciphered as X and actual X characters. See Appendix C for

the full Typex simulator code.

Figure 5: Typex Rotor in Reverse Orientation [17]

9



Table 2: Pseudo Code of Encryption/Decryption and Stepping Part of Typex Simu-
lator

read file one character at a time
while not EOF

if character is a space
convert to X

end if
if character is not valid

exit
end if
if middle rotor at a notch

step middle and left rotor
step backwards if rotor is reversed

end if
if right rotor at a notch

step middle rotor
step backwards if rotor is reversed

end if
always step right rotor
step backwards if rotor is reversed
output = RS inv[init RS][LS inv[init LS][R inv[cur R][M inv[cur M]

[L inv[cur L][reflector[L[cur L][M[cur M][R[cur R][LS[init LS][RS
[init RS][inChar]]]]]]]]]]]

print output
read in next character

10



CHAPTER 3

Cryptanalyzing the Key

3.1 Breaking the Rotors

With the simulator running correctly, we take the next step: cryptanalyzing the

Typex. Because of the similarities between the Typex and the Enigma, we decide

to start with a technique that can be used to break the Enigma. We choose Alan

Turing’s crib attack because it works without knowing the stecker settings of the

Enigma; this allows us to ignore the Typex stators as they operate similar to the

stecker only without the reciprocal property [11].

Turing’s attack requires some known plaintext, also known as a crib. Turing

compared the plaintext against the ciphertext produced by the Enigma, looking for

cycles between the letters. With enough cycles Turing could recover the rotor settings

of the Enigma and, with a little extra work, most of the stecker settings as well [18].

This attack works similarly on the Typex but without the added benefit of recovering

the stator settings.

i 0 1 2 3 4 5 6 7 8 9 10 11
Plaintext T E S T O F T Y P E X C

Ciphertext P L M A D L I C V B M Y

i 12 13 14 15 16 17 18 19 20 21 22 23
Plaintext I P H E R M A C H I N E

Ciphertext S U D T L W P R M V V H

Table 3: Typex Crib Attack Example

The crib attack works as follows: we let S(x) be the transformation of the let-

ter x when it passes through the stators, or SlSr(x) from our previous notation;

11



similarly S−1(x) is the transformation when x passes through the stators in the op-

posite direction, S−1
l S−1

r (x). We also define Pi as the permutation at step i, or the

path the signal take as it travels through the two stators, three rotors, across the

reflector, and back through the rotors and the stators in the opposite, also called

inverse, direction. To sum up:

Pi = R−1
r R−1

m R−1
l TRlRmRr. (2)

This also means that the inverse permutation, P−1
i , exists [18].

By using S(x), S−1(x), Pi, and P−1
i , we create equations of known plaintext

and its ciphertext counterpart, which we then link together to form a cycle for a

letter. For example, in Table 3 above, we describe the transition in the column 6

in the following way: the plaintext character T passes through the stators, S(T ),

through the rotors, P6, and back through the stators, S−1, resulting in the ciphertext

character I. In equation form, we write this as S−1P6S(T ) = I, which we can rearrange

as P6S(T ) = S(I). We create similar equations for columns 12, 2, 20, 23, and 15 as

shown below,

P12S(I) = S(S)

P2S(S) = S(M)

P20S(H) = S(M)

P23S(E) = S(H)

P15S(E) = S(T )

(3)

which, when combined with the first equation we obtain

S(T ) = P15P
−1
23 P−1

20 P2P12P6S(T ). (4)

We test this equation against all possible rotor settings. If the equation holds

true for some rotor setting, meaning that there exists an input character, A-Z, that

12



has the same output character after running through the cycle, we keep this rotor

setting as a potential putative key. If we try all characters and the equation does not

hold true for any of them, then we discard the rotor setting as a potential putative

key. However, with only one cycle this approach would not help us anymore than

guessing at random does because there are 26 possibilities for S(T ) and a 1/26 chance

that the equation will hold true at random [18].

We can avoid this by finding additional cycles that equal S(T ). For example,

P0S(T ) = S(P )

P8S(P ) = S(V )

P21S(I) = S(V )

P6S(T ) = S(I)

(5)

gives us the equation S(T ) = P−1
0 P−1

8 P21P6S(T ). When combined with the first

equation we reduce the chance that both equations hold true at random to (1/26)2,

reducing the number of potential keys by a factor of 26 [18]. Therefore, with the

Typex’s 241.2 possible keys we expect to need about nine or ten pairs of cycles to

recover the key.

3.2 Cracking the Stators

When the British discovered the correct rotor settings on the Enigma, they could

simply deduce the position of the stecker cables by looking at the putative plaintext

and seeing which letters were swapped. For example, if the putative plaintext read

LEIHLITHER then the British could easily see that a stecker cable swapped the letters L

and H [16]. However, because the stators are not their own inverse like the Enigma’s

stecker is, we cannot use the cycles found in the crib attack to recover the stator

settings. That is, while the cycles continue to hold true if the stator settings are

13



incorrect, the output produced by the settings still looks like ciphertext. Instead,

we decide to use a hill-climb attack. In this hill-climb technique, we begin with an

arbitrary solution and incrementally improve the solution through a series of minor

transformations, only retaining the modification if the new version of the solution is

better than the previous [10].

The two main parts of a hill-climb algorithm are the technique used to iteratively

modify the solution and the method of calculating how “good” or “close” the putative

solution is to the actual one. The easiest way to measure a solution’s goodness is to

use a numeric score. A solution with a score closer to the actual solution’s score can

then be considered a better solution than the previous one. As the solutions continue

to improve the scores will continue to climb, thereby giving the technique its name.

However, a significant flaw exists in the hill-climb technique because the outcome of

the algorithm depends heavily on the initial solution. Because hill-climbing only ac-

cepts improving scores, if the current solution is the local optimum but not the global

optimum then the hill-climb technique will be unable to find the actual solution [5].

In hill-climbing the stators we incrementally guess the stator settings and attempt

to solve the ciphertext based on those settings. Figure 6 shows an image of the

following description. Given an initial guess of two stators and their positions, we

first check all possible settings of the right stator up to Z, then increment the setting

of the left stator to its next setting. For example, if the guess is rotors 3 and 4 set to

S and J respectively, we first check that setting before moving on to rotors 3 and 4 set

to S and K, then set to S and L and so on until S and Z. After checking that setting,

we change rotor 3 to T and rotor 4 to A. When we have exhausted all the settings up

to rotor 3 at Z and rotor 4 at Z we then change the right stator to the next available

rotor and start the process all over again.
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Figure 6: Incrementing the Stators in the Hill-Climb

For each setting we analyze the text and compare it to the previous output using

the index of coincidence, or IC. The index of coincidence is technique developed by

William F. Friedman, which determines the probability that two random ciphertext

letters correlate to the same plaintext character. If the plaintext generated by our

putative stators has an IC close to 1.0 this means that the alphabet of the plaintext is

evenly distributed. However, this is not the case for the English language, where the

IC is close to 1.7; therefore, as the stators approach the correct settings the plaintext

should become less random, and the IC of the putative plaintext should begin to

climb from 1.0 to 1.7 [8].

If the new settings produce an IC greater than the IC of the previous settings,

then we keep the current settings and repeat the process. If the new IC is less than

the IC of previous attempt then we stop [19]. The point of the hill-climb technique

is that we continue to try new settings so long as the IC produced by the decrypted

ciphertext continues to increase. Once the settings begin to generate ICs that decline

we stop and assume that the settings with the highest IC is the putative key for the

stators. The pseudo code for this initial hill-climb design is in Table 4.

However, with the stators, this approach requires a few slight changes to it.

Unlike a typical substitution cipher, where the index of coincidence gradually improves

as the guessed key approaches the actual key, the IC of the Typex stators there is

very little variation between one setting and the next unless the setting is close to
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Table 4: Pseudo Code of Initial Hill Climb Attack

// attack assumes stepping rotor settings are known
guess the stator settings
prevIC = currIC = 0
while prevIC ≤ currIC

run Typex simulator
currIC = IC of text from simulator
if currIC ≥ prevIC

prevIC = currIC
set putative settings to current settings

end if
increment settings

the actual key. To ensure that the attack does not stop prematurely, instead of

stopping strictly when the IC starts to decrease, we add an additional check to see if

the difference between the previous IC and the current IC is greater than 0.25. We

choose 0.25 because it provides enough of a buffer between random changes in the IC

from a series of incorrect stator settings and a genuine increase in the IC because we

are close to the actual stator settings. Table 5 shows the improved attack.

Table 5: Pseudo Code of Revised Hill-Climb Attack

guess the stator settings
prevIC = currIC = 0
while prevIC ≤ currIC

run Typex simulator
currIC = IC of text from simulator
if currIC ≥ prevIC OR (prevIC − currIC) < .25

prevIC = currIC
set putative settings to current settings

end if
increment settings
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3.3 Some Shortcuts are Better than None

Because of the way the Typex stators work the hill-climbing attack amounts to

little more than a brute force attack. For both the hill-climb and brute force attacks

we would have to check all 5·4·22·262, about 215.7, possible stator settings in the worst-

case scenario. This is not a very large number given the power of modern computers,

but the bulk of the work comes from having to decrypt the ciphertext 215.7 times,

which we have to do in either attack, making our hill-climb approach on the stators

somewhat useless. Therefore, the overall amount of work required to recover the

stators is the total number of stator settings multiplied by the size of the ciphertext,

in our case 200 characters, which is about 223.3 operations.

This differs for the crib attack on the stepping rotors. While we still have to check

all possible 8 · 7 · 6 · 23 · 263 keys, approximately 225.5, we reduce the amount of work

done during each iteration by having the cycles. Rather than completely decrypting

the ciphertext each time, we simply check the cycles and see if the equation holds

true for that particular setting. Therefore the amount of work involved in recovering

the rotors is the total number of rotor settings multiplied by the number of cycles

required. The Typex requires about nine or ten cycles to reduce the keyspace to

one rotor setting; as a result, it takes about 228.8 operations to find the correct rotor

settings.

Despite having to use a brute force attack to recover the stators, we can still

break the attack up into two parts, rotors and stators, decreasing the amount of work

that we need to do. Instead of attempting all 241.2 keys at once, we only need to

check 225.5 keys for the rotors plus 215.7 for the stators. Even after considering the

number of operations performed per iteration of each key this still only amounts to

slightly more than 228.8 operations in total to recover both the stator and the rotor
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settings, a vast improvement over a brute force attack on the Typex system as a

whole.

These numbers are easily feasible by modern standards, but given WWII tech-

nology it would have been more difficult, though not impossible, for the Germans

to attempt these two attacks on any intercepted Typex messages. In fact, even

though the Typex includes improvements on the design of the commercial Enigma,

the amount of work involved in cracking the Typex is still slightly less than that of

the military Enigma [1, 7]. The only difficulty the Germans may have faced was in

intercepting enough ciphertext to create the necessary number of cycles, but even this

would have been conceivable given that the Germans transmitted over two million

words a day [16]. Two factors affected Germany’s ability to cryptanalyze the Typex:

their blind trust in the Enigma’s security and a lack of resources [7].
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CHAPTER 4

Hill-Climb for Rotor Wirings

Hill-climbing is a heuristic search technique. When hill-climbing the stators, we

assume that the rotor wirings are known and therefore only have a choice of 5·4·22·262,

or about 215.7 possibilities. However, if the rotor wirings are unknown to the attacker

then there are 26! different wiring combinations per rotor. The amount of work

involved in recovering unknown rotor wirings amounts to approximately 288.4 per

rotor. Because there is such a large key space for the rotor wirings we must use a

heuristic algorithm in order to solve for them in polynomial time. Heuristic algorithms

use heuristic methods to solve a given problem. A heuristic method is a series of

modifications made to a guessed solution to produce a different solution. While

heuristic algorithms cannot guarantee success, for certain types of problems they can

do well at determining good or close to optimal solutions in a much faster time than

other algorithms [5].

4.1 Scoring the Wiring

Much like the stators, when we run our hill-climbing algorithm on the rotor

wirings we require some measure of how close we are to the original rotor wirings.

Instead of using the index of coincidence, as we did with the stators, we use digram

frequencies, the frequency of a given letter to be followed by another letter. We apply

this method to score the wiring versus the index of coincidence because we only

need the digram frequency of the ciphertext in order to break a simple substitution

cipher [9], which is what a rotor wiring is. However, we cannot incorporate the

traditional English digram matrix (Figure 7) for two reasons: first, it includes the
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space character, which Typex automatically converts to an X, and second it is possible

to have the correct rotor wiring but the wrong initial position, meaning that the

putative rotor is shifted from the original. A typical digram matrix cannot keep

track of the position of a rotor nor any kind of shift in the alphabet due to the rotor

being offset from the original setting; therefore, we create a new one using the text

from [12, 13, 20]. After generating our own digram frequency matrix, we take the sum

of the columns of the matrix and create a new matrix that has the shifted versions of

the sums, shown in Figure 8.

4.2 Perfecting the Swap

Hill-climbing the stators proved that iteratively changing the solution by incre-

mentally increasing the settings does not work well with Typex. Similarly, due to the

large number of possible rotor wirings, we cannot simply pick a starting point and

then start incrementing the wirings. Instead, we must design a swapping algorithm

that covers enough permutations and shuffles the wirings enough to encourage a good

success rate. By doing so, we will be able to cover a larger variety of wirings rather

than remaining close to our initial wiring.

We start with the two algorithms described in [5]. The first method we call the

fast swap method. In this method, we select the wirings to swap based on a series of

incrementing rounds. For example, given a N -letter rotor with wirings W1 to WN , in

the first round, we would swap W1 with W2, W2 with W3, and so forth. In the second

round, we swap W1 and W3, W2 and W4, etc.. We continue to swap in this manner

until we reach the last round, where we only swap W1 with WN . In total, with the

fast swap method, we achieve
(
N
2

)
swaps.

We call the second method in [5] the slow hill-climb. The slow hill-climb only
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Figure 7: English Digram Frequency Matrix [3]

swaps adjacent wirings; however, it will continue to swap until it runs through the

wiring once and fails to keep any changes. The slow hill-climb has the potential to

swap a much greater number of wirings as long as the score continues to improve.

Similar to hill-climbing the stators, we find that because of the incremental nature

of the slow hill-climb, unless our first guess at the rotor wirings is already close to
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Figure 8: Digram Frequency Matrix with Shift Allowance

Table 6: Pseudo Code of Fast Swap Method

—MAIN—
while round < N

SWAP(round,position)
if newscore better

keep wiring
else

swap back
end if
increment position
if position+round > N−1

reset position
increment round

end if
end while

—SWAP(round,position)—
temp = wire[position]
wire[position] = wire[position+round]
wire[position+round] = temp

the original wirings, we do not make very many swaps before stopping because the

wiring has not changed for an entire loop. Therefore, despite the fact that the fast
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Table 7: Pseudo Code of Slow Hill-Climb Method

—MAIN—
while wiring continues to change

SWAP(round,position)
if newscore better

keep wiring
else

swap back
end if
increment position
if position > N−2

reset position
end if

end while

—SWAP(position)—
temp = wire[position]
wire[position] = wire[position+1]
wire[position+1] = temp

swap method has a fixed number of swaps, it still results in a better putative wiring

than the slow hill-climb.

To improve the fast swap method we decide to incorporate a few changes.

Namely, instead of having a fixed
(
N
2

)
swaps, we continue to swap until the wiring

stops improving. We achieve this by comparing the wiring after the
(
N
2

)
swaps to the

wiring before the
(
N
2

)
swaps. The downside to this addition is that we will always

perform
(
N
2

)
swaps more than necessary. In the case of one unknown 26-letter rotor,

we only perform an extra 325 swaps, but this number increases exponentially with

each additional unknown rotor.

To mitigate this situation we try a variation on our improved fast swap method.

We swap as the previous method, but instead of having a fixed number of swaps we re-
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Table 8: Pseudo Code of Fast Swap Method with Wiring Check

—MAIN—
while previous wiring 6= current wiring

previous wiring = current wiring
while round < N

SWAP(round,position)
if newscore better

keep wiring
else

swap back
end if
increment position
if position+round > N−1

reset position
increment round

end if
end while

end while

set the position and round counters when we encounter a better wiring. Interestingly,

we find that this variation does not perform as well as the method with the wiring

comparison, but also that more swaps are necessary than our previous version of the

fast swap method. It could be that by resetting the two counters we inadvertently

find local optimum solutions instead of the global optimum.

4.3 Hill-Climbing and Nesting Inside Typex

With our swap method selected we move on to adding the swap inside of the

simulator. Because the wiring of the rotors changes with each swap, we initialize the

rotors and run the simulator within the loop of the swap method. Additionally, in the

case of multiple unknown rotors, we must pay attention to perform the initialization

and simulation within the innermost swap loop. This ensures that no matter which
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Table 9: Pseudo Code of Fast Swap Method with Counter Reset

—MAIN—
while round < N

SWAP(round,position)
if newscore better

reset position and round counters
keep wiring

else
swap back

end if
increment position
if position+round > N−1

reset position
increment round

end if
end while

wiring is swapped we score the most current version of the wiring.

When we start to add more unknown rotors to our hill-climbing algorithm we

set the rightmost rotor to be the outer loop and work our way left as we nest the

swap method within itself. The order in which we recover the rotor wirings should

not matter. We choose to nest the slowest rotor in the innermost loop to allow it the

most opportunities to try different wirings, with the hope that doing so encourages

it to find the correct wiring with fewer swaps than if it were on the outermost loop.

Appendix B shows that the choice of which rotor we nest on the inner loop versus

the outer loop does not matter.

4.4 Hill-Climbing is Hard Work

As previously mentioned the basic number of swaps is
(
N
2

)
. This number is then

multiplied by the number of times that we repeat the loop as the putative wiring
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Table 10: Pseudo Code of Simulator Inside Swap Method

—MAIN—
while previous wiring 6= current wiring

previous wiring = current wiring
while round < N

initialize rotors
run simulator
calculate score
if newscore better

keep wiring
else

swap back
end if
SWAP(round,position)
increment position
if position+round > N−1

reset position
increment round

end if
end while

end while

continues to change. For one rotor we found the average number of swaps to be 210.4,

which means that our loop ran, on average, about four times.

While this might not seem like that many swaps compared to the total 288.4 possi-

ble rotor wirings, the bulk of the work comes from having to run the Typex simulator

for each swap. The amount of work involved in the simulation depends largely on the

amount of text given to the simulator. A small message of 100 characters multiplied

by 210.4 is approximately 217.1, certainly a large number but not overwhelming; how-

ever, because of Typex’s multiple notched stepping mechanism, we require a much

larger amount of text than 100 characters. Our tests in Section 5 show that with one

unknown rotor, at the very least, we need 1000 characters and on average most initial
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Table 11: Pseudo Code of Nested Hill-Climb

—MAIN—
while previous right wiring 6= current right wiring

previous right wiring = current right wiring
while right round < N

while previous middle wiring 6= current middle wiring
previous middle wiring = current middle wiring
while middle round < N

initialize rotors
run simulator
calculate score
if middle newscore better

change right newscore
keep current middle wiring

else
swap back

end if
SWAP(middle round,middle position)
increment middle position
if middle position+middle round > N−1

reset middle position
increment middle round

end if
end while
if right newscore better

keep current right wiring
else

swap back
end if
SWAP(right round,right position)
increment right position
if right position+right round > N−1

reset right position
increment right round

end if
end while

end while
end while
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wiring guesses require around 215.6 characters. When we combine this number with

the number of swaps required the result is approximately 226 operations to recover

the wiring of one unknown rotor. While this may seem like a large number, it is a

huge improvement over the brute force approach, which requires 287 on average.

With each additional unknown rotor this number increases exponentially. In the

case of two unknown rotors, the minimum amount of data our hill-climb algorithm

requires is 212.3 characters. On average, we need 220 characters. Two unknown rotors

average about 221 swaps to recover both wirings. In total, this amounts to 221 ·220, or

approximately 241, operations. Strangely, this is much less than the expected 2(26·2),

or 252, that we expect given the numbers from our one unknown rotor test.

While the number of swaps required grew exponentially, the amount of text

required did not. This could possibly be due to the fact that we used the same text

in our tests as we did to generate the digram matrix. We created the digram matrix

using approximately 219.4 characters. Therefore, when running our two rotor tests we

reused some of the text for the larger character tests. It would be interesting to see

the results of a rotor wiring hill-climb where the digram matrix text and text used in

the tests did not overlap.
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CHAPTER 5

Analyzing the Hill-Climb

5.1 One Rotor at a Time

We begin our wiring hill-climb with just one unknown rotor and assume the

remaining rotors’ initial positions, order, and orientations are known. Because the

signal must first travel through the stators, the choice of which rotor should be the

unknown one does not matter. In our case, we select the rightmost rotor. We create a

random wiring generator and use it to create the wirings we set as our initial guesses

in the hill-climbing algorithm.

As we can see from Figure 9, our hill-climb does not have a one hundred percent

success rate; however, as a hill-climb we do not expect such. Out of 2905 different

initial wirings, we recovered the actual wiring used, or were within 5 wirings of the

original, 2241 times, providing us with a success rate of 0.771. This is a good success

rate and shows that our hill-climb technique works well for one unknown rotor.

With only one unknown rotor, the time it takes to recover the rotor wirings is

fairly minimal as shown in Table 12. One interesting thing to note is that as the

amount of data increases the number of swaps decreases. However, we can see that

the time it takes to run the simulator on such a large amount of text still outweighs

the benefit of the decreased swapping.

5.2 Increasing the Number of Unknowns

After verifying that hill-climbing one rotor is possible, we move on to two un-

known rotors, the right and middle rotors. As previously mentioned, the amount of
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Figure 9: One Rotor Hill-Climbing Results

Data Used
(Charac-
ters)

1000 2000 5000 10000 25000 50000 75000 100000

Average
Swaps

1365 1380 1419 1420 1390 1342 1318 1273

Average
Time (secs)

1.439 1.867 2.809 4.107 6.091 11.964 14.394 17.236

Number of
Successes

1 15 260 506 918 1472 1559 1770

Number of
Test Cases

2000 2000 2000 2000 2000 2000 2000 2000

Table 12: Comparison of Data Used, Average Swaps, Average Time, Number of
Successes, and Number of Test Cases (One Rotor)
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time it takes to recover two unknown wirings is exponentially longer than that of just

one because the number of swaps increases exponentially. Additionally, the amount

of data necessary to recover the wirings increases.

For our two unknown rotors test, we use the same initial wirings as the one rotor

test. As can be seen in Figure 10, we recover the correct wiring of the middle rotor

only 1774 times for a rate of 0.611, about 80% of the amount recovered in the one

rotor test. Also notable is the dispersion of the failed attempts. There is a much

higher concentration in the high teens and low twenties than the previous test, with

some initial guessing points only managing to recover two of the correct wirings. This

remains an impressive result despite the drop in number of wirings correctly found.

Figure 10: Two Rotor Hill-Climbing Results (Middle Rotor)

Much like the middle rotor, the spread of the failed attempts continues to climb
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towards the twenties. Because recovering the right rotor is related to the recovery of

the middle rotor, we only recover the right rotor 1043 times out of 2905 attempts.

This is approximately 60% the amount of middle rotor wirings recovered. In this test,

when we successfully recover the right rotor we also successfully recover the middle

rotor. There are no situations where the right rotor is recovered but the middle rotor

is not. Therefore, given two unknown rotors we have a success rate of 0.359, meaning

that the chances of recovering both wirings is about 35.9%.

Figure 11: Two Rotor Hill-Climbing Results (Right Rotor)

As expected, the average number of swaps increases roughly by the amount of

swaps squared. Likewise, the time also increases based on the number of times the

simulator needs to be run.
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Data Used
(Charac-
ters)

50000 100000 250000 500000 750000 1000000

Average
Swaps

2047712 2056453 2065281 2054810 2051334 2042556

Average
Time (secs)

3168.287 5282.438 8427.554 16228.515 21708.101 24482.764

Number of
Successes

7 75 144 203 291 387

Number of
Test Cases

1000 1000 1000 1000 1000 1000

Table 13: Comparison of Data Used, Average Swaps, Average Time, Number of
Successes, and Number of Test Cases (Two Rotors)
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CHAPTER 6

The Polish Attack on the Wirings

Marian Rejewski was a brilliant Polish mathematician and cryptanalyst. His con-

tributions in breaking Enigma undoubtedly made it much easier for those at Bletchley

Park to decipher the machine. By far one of the biggest breakthroughs was the recov-

ery of the internal wirings of the Enigma’s rotors. His attack exploited the Enigma

operators’ use of a repeated message key at the beginning of each message. Through

the use of disjoint cycles in the repeated message key and theorems on transpositions,

Rejewski connected the wirings in Enigma’s rotors [4].

Each day Enigma operators were given a new key to use. However to avoid

having millions of characters enciphered with same key, only six letters per message

used the day key. These six letters were the message key, which was just three letters

repeated twice. The Germans implemented the repetition to avoid mistakes from

operator error and signal interference. However, this repetition allowed Rejewski to

recover the rotor wirings [16].

Over the course of a day, Rejewski collected enough message keys allowing him to

find cycles between the first and fourth letters, second and fifth letters, and third and

sixth letters. He labeled these cycles AD, BE, and CF , respectively. Equation (6)

is an example of these cycles.

AD = (kxgzyodvpf)(nqlhteijmu)(bc)(rw)(a)(s)

BE = (veoumblfq)(wizrnhjps)(xta)(gyc)(d)(k)

CF = (jgfcqnyabvikt)(lxwpsmoduzreh)

(6)

Rejewski’s goal was to factor these cycles into their individual compo-
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nents: A, B, C, D, E, and F . To do so he made use of a couple of theorems

on transpositions and the knowledge that the message keys used by the Enigma

operators were not entirely chosen at random. The main theorem used to factor-

ize the cycles was Rejewski’s converse to the theorem on the product of transposi-

tions. The theorem basically states that if XY = (a1a3)(a2a4) then X = (a1a4)(a2a3)

and Y = (a1a2)(a3a4) [4].

From our example we can clearly see that (as) is in both A and D based on the

converse to the theorem on the product of transpositions. Similarly, either (br)(cw)

is in A or (bw)(cr) is in A, which means that (cr)(bw) or (cw)(br) is in D, depending

on which is in A. For the last pair of cycles, (kxgzyodvpf)(nqlhteijmu), there are 10

possibilities, forming a total of 20, 1 · 2 · 10, factorizations. Rejewski knew that the

Enigma operators did not choose the message key at random. They often used initials

or patterns in the keyboard to select the key. Because of this knowledge Rejewski

could narrow down the number of possible factorizations [4].

With the individual factorizations known, Rejewski then looked at the permu-

tations at each step. He then assumed that the middle and left rotors, Rm and Rl,

did not step while the operator typed the message key. This allowed him to re-

duce RmRlTR
−1
l R−1

m to a single variable Q, leaving him only three unknowns Rr, Q,

and S.

A = SP 1RrP
−1RmRlTR

−1
l R−1

m P 1R−1
r P−1S−1

B = SP 2RrP
−2RmRlTR

−1
l R−1

m P 2R−1
r P−2S−1

C = SP 3RrP
−3RmRlTR

−1
l R−1

m P 3R−1
r P−3S−1

D = SP 4RrP
−4RmRlTR

−1
l R−1

m P 4R−1
r P−4S−1

E = SP 5RrP
−5RmRlTR

−1
l R−1

m P 5R−1
r P−5S−1

F = SP 6RrP
−6RmRlTR

−1
l R−1

m P 6R−1
r P−6S−1

(7)
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where P i is

P 1 = (abcdefghijklmnopqrstuvwxyz)

P 2 = (acegikmoqsuwy)(bdfhjlnprtvxz)

P 3 = (adgjmpsvybehknqtwzcfilorux)

P 4 = (aeimquycgkosw)(bfjnrzvdhlptx)

P 5 = (afpuzejotydinsxchmrwbglqv)

P 6 = (agmsyekqwciou)(bhntzflrxdjpv)

(8)

Luckily, the French came across documents that included the daily keys, which they

sent to the Poles due to a military cooperation agreement signed 10 year earlier [16].

With only two unknowns, Rejewski reordered his permutation equations, placing all

known variables on one side of the equation, and re-labeled them [4].

U = P−1S−1ASP 1 = RrP
−1QP 1R−1

r

V = P−2S−1BSP 2 = RrP
−2QP 2R−1

r

W = P−3S−1CSP 3 = RrP
−3QP 3R−1

r

X = P−4S−1DSP 4 = RrP
−4QP 4R−1

r

Y = P−4S−1ESP 5 = RrP
−5QP 5R−1

r

Z = P−6S−1FSP 6 = RrP
−6QP 6R−1

r

(9)

Because Rejewski only had two unknowns he only needed to factorize four of these

equations. With the factorizations of U , V , W , and X, Rejewski formed the prod-

ucts UV , VW , and WX. He noted that each product was a conjugate of QP−1QP 1

and that the products had the same configuration of cycles, which allowed him to
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rewrite the equations and eliminate the common expression [4].

UV = (RrP
−1QP 1R−1

r )(RrP
−2QP 2R−1

r )

= RrP
−1(QP−1QP 1)P 1R−1

r

VW = (RrP
−2QP 2R−1

r )(RrP
−3QP 3R−1

r )

= RrP
−2(QP−1QP 1)P 2R−1

r

= (RrP
1R−1

r )−1(UV )RrP
1R−1

r

WX = (RrP
−3QP 3R−1

r )(RrP
−4QP 4R−1

r )

= RrP
−3(QP−1QP 1)P 3R−1

r

= (RrP
1R−1

r )−1(VW )RrP
1R−1

r

(10)

Rejewski then reordered the cycles UV , VW , and WX such that the pairs of cy-

cles UV / VW and VW/ WX resulted in the same RrP
1R−1

r . Since P 1 was known,

this meant that Rejewski successfully recovered the right rotor [4].

Rejewski’s attack, with the same assumptions, also works on the Typex rotors.

Unfortunately, the assumption that the middle and left rotors do not step is not a

feasible one given the multi-notched rims on the Typex rotors. The attack does not

work if either rotor steps as that changes the permutation of the signal, or variable Q

in the equations. So while this assumption and attack may have worked for the rotors

with five notches; it likely would not have been valid for the rotors with nine notches.
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CHAPTER 7

Conclusion

When it became clear to the British that codebook ciphers and other methods

used in World War I were no longer sufficient, they began to search for other ways

to encrypt sensitive information. The result of their search was the Typex cipher

machine, an incredibly close cousin of the German Enigma machine. The Typex

swapped out the stecker for two stators (static rotors) and included a printer instead

of a light board. Most importantly, the Typex increased the security of the Enigma

by stepping more frequently, anywhere from five to nine times per rotation of its

neighboring rotor.

While the frequent stepping may have been an improvement over the Enigma,

it certainly does not make Typex immune to attacks that work on the Enigma. The

Enigma cycle attack, which was developed by Alan Turing during World War II, also

works on the Typex. In the case of Typex, we need a few more cycles than the

Enigma to narrow the putative keys down to one. The increased number of cycles

means that the attack requires a longer crib, which would have been slightly more

difficult for the Germans to obtain, but certainly not impossible.

Another challenge the Germans would have faced was the stators, which lack the

reciprocal property of the stecker, meaning that their settings could not be recovered

with a little extra work on the cycles used to find the stepping rotor settings. To

recover the stators, we apply a slightly modified hill-climbing attack that compares

the index of coincidences between different settings, but an exhaustive search is also

very easy.
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While the crib attack requires that the attacker attempt all possible settings

for the stepping rotors, the cycles provide a way to quickly eliminate incorrect keys

without having to check any ciphertext. They also allow us to ignore the stators,

which in turn means that we can break the Typex key up into two parts: rotors and

stators. Even if the attacker must check all 215.7 possible stator settings against 200

characters of ciphertext, the total amount of work required to recover the correct

stator settings is only 223.3 operations. This is less than the amount of work required

to recover the rotor settings, which is the total number of possible settings multiplied

the number of cycles, about 228.8 operations. The combination of these two attacks

creates enough of a shortcut to reduce the amount of work from 241.2 to slightly more

than 228.8.

The previous two attacks assume that the attacker knows the rotor wirings, as

the British did with the German Enigma machine. However, if the rotor wirings are

unknown then those must be recovered first. To do this we employ a nested hill-

climbing technique. We carefully chose a swapping algorithm that covers a variety of

wirings but does not waste too much time in doing so. To measure the accuracy of

the wiring we compare it against an English digram matrix modified to allow for all

26 possible positions of the rotor.

Our hill-climbing algorithm proved to be very effective against one unknown

rotor, finding the correct wiring, or nearly so, slightly more than 77% of the time.

When we add a second unknown rotor the recovery rate of one rotor drops to 61%

per rotor, and we recover both rotors 36% of the time.

Similar to how Turing’s crib attack successfully finds the settings of the Typex

rotors, Rejewski’s attack on the wirings is also successful against Typex. However,

in order for the attack to be successful, it requires that the same assumptions made
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with Enigma also hold true for Typex, namely that the operators repeat the message

key and that the middle and left rotors do not step during the encipherment of the

message key. While this may have held true for the rotors with five notches, it

certainly would have been a much rarer occcurence for the rotors with nine notches.
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CHAPTER 8

Future Work

While this project shows it is possible to use the nested hill-climbing algorithm

to solve for two unknown rotors, it has yet to be tested on three unknown rotors.

Clearly, as the number of unknown rotors increases the success rate decreases. The

rapid drop from 77% for one unknown rotor to 36% for two unknown rotors leaves

some room to question whether solving a third unknown rotor is possible, even with

extensive computing power and a large ciphertext.

One way to approach the decreasing recovery rate is to improve upon the swap-

ping algorithm. At its core, the chosen swap method only covers
(
N
2

)
swaps per

iteration. There exist other swapping algorithms that shuffle the wirings, much like

the fast swap method, and perform more swaps per iteration.

Another possible method of improving the success rate is to use a different heuris-

tic algorithm. Hill-climbing can be a very effective, simple algorithm to solve prob-

lems; however, there are several other heuristic algorithms that may be a better option

than hill-climbing [1].

A faster scoring method could also be considered. While we thought that the

digram matrix would work well because a rotor wiring is analogous to a simple substi-

tution, we were unable to use the method in [9] to avoid running through the putative

plaintext every time we swapped a wiring. It would also be interesting to see if using

the index of coincidence to score our plaintext could provide better results than the

digram matrix.

We successfully recovered the right rotor’s wiring using Rejewski’s method with
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the same assumptions. However, given the mutli-notched rims on the Typex rotors

it is unlikely that the middle and left rotors do not step during those first six letters.

Therefore, it is necessary to find a way to alter Rejewski’s attack that takes the rotor

stepping into account to fully adapt this attack to the Typex.
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APPENDIX A

Swap Algorithm Test Cases

To determine which swapping algorithm worked best, slow hill-climb or fast swap,

we first test it out on a single rotor simulator. A single rotor simulator works as a

simple substitution cipher that steps with every character inputted. We chose to use

a single rotor to perform the initial test to remove the complications of the stators and

other stepping rotors found in the Typex. By doing so, we can easily pick the swap

method that performs best in a single rotor situation and then add it to the Typex

simulator. If we add the swap algorithms into the simulator without first testing them

in a simpler setting we waste more time coding and running the algorithm that does

not work in the complicated setting. Once we select our swap method we can then

go ahead and implement it within Typex and then compare minor variations of the

swap method. We generate 1000 random initial wirings and then run them through

both the slow hill-climb and the fast swap algorithms. It is obvious from Figure A.12

that given a simple single rotor construction the fast swap method outperforms the

slow hill-climb by a wide margin. The fast swap method recovers the original wiring

with nearly a 100% success rate; whereas the slow hill-climb fails to come close to

finding the original wiring.

To test the full effectiveness of the fast swap method variations, we add the

swap methods to the Typex simulator. We use 3000 random initial wirings and 2000

character data set to solve for the one unknown rotor. Again, we base our choices on

the amount of time it takes to recover a wiring.

Figure A.13 shows that the reset method without the wire comparison performs
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Figure A.12: Slow Hill Climb vs. Fast Swap (Single Rotor)

just as well as the reset method with the comparison. Interestingly enough, when

we remove the reset and run the fast swap method with the wiring comparison, the

resulting swap algorithm performs slightly better than the fast swap with reset. The

wire comparison recovered the correct wiring 34 times, and the reset method only

recovered the correct wiring 25 times.
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Figure A.13: Slow Hill Climb vs. Fast Swap (Single Rotor)
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APPENDIX B

Nested Loop Test Cases

To verify that the choice of rotors and the order in which they are nested does

not matter we run a few short test cases. Because of time constraints we only perform

the tests on 100 initial wirings for each combination of two rotors. The figures below

show their results.

Figure B.14: Two Rotor Results, Left Rotor Inner Loop and Middle Rotor Outer
Loop
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Figure B.15: Two Rotor Results, Left Rotor Inner Loop and Right Rotor Outer Loop
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Figure B.16: Two Rotor Results, Middle Rotor Inner Loop and Left Rotor Outer
Loop
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Figure B.17: Two Rotor Results, Right Rotor Inner Loop and Left Rotor Outer Loop
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Figure B.18: Two Rotor Results, Right Rotor Inner Loop and Middle Rotor Outer
Loop
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APPENDIX C

Typex Simulator Code

/*

Program to simulate Typex cipher

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

// Print flags

// print rotors, reflector, and stator permutations

//#define PR_PERMS

// print output for each step of encryption/decryption

//#define PR_STEPS

// print the key

//#define PR_KEY

// print rotor stepping

//#define PR_ROTORS

FILE *in,

*out;

int Lrotor[26],

Mrotor[26],

Rrotor[26],

Lstator[26],

Rstator[26],

reflector[26],

notch[9],

ort[5];

int L[26][26],

M[26][26],

R[26][26],

L_inv[26][26],

M_inv[26][26],
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R_inv[26][26],

LS[26][26],

RS[26][26],

LS_inv[26][26],

RS_inv[26][26];

char letter[26] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ",

rot[8][26] = {"QWECYJIBFKMLTVZPOHUDGNRSXA",

"AJDKSIRUXBLHWTMCQGZNPYFVOE",

"BDFHJLCPRTXVZNYEIWGAKMUSQO",

"ESOVPZJAYQUIRHXLNFTGKDCMWB",

"VZBRGITYUPSDNHLXAWMJQOFECK",

"FVPJIAOYEDRZXWGCTKUQSBNMHL",

"KZGLIUCJEHADXRYWVTNSFQPMOB",

"ZLVGOIFTYWUEPMABNCXRQSDKHJ"},

ref[26] = "YRUHQSLDPXNGOKMIEBFZCWVJAT",

step[9] = "ACEINQTVY";

int stepRotor (int pos, int n, int rev) {

int t;

if (rev == 1) {

t = pos - 1;

if (t < 0) {

t = 25;

}

}

else {

t = pos + 1;

if (t >= n) {

t = 0;

}

}

return(t);

}// end stepRotor

void reverse (int x) {

int i,

j,

**newrotor;
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newrotor = (int**) calloc(26, sizeof(int*));

for (i = 0; i < 26; ++i) {

newrotor[i] = (int*) calloc(26, sizeof(int));

}

// reverse Left rotor

if (x == 0) {

for (i = 0; i < 26; ++i) {

for (j = 0; j < 26; ++j) {

newrotor[i][j] = L[i][(26 - j) % 26];

}

}

for (i = 0; i < 26; ++i) {

for (j = 0; j < 26; ++j) {

L[i][j] = newrotor[i][j];

}

}

}

// reverse Middle rotor

if (x == 1) {

for (i = 0; i < 26; ++i) {

for (j = 0; j < 26; ++j) {

newrotor[i][j] = M[i][(26 - j) % 26];

}

}

for (i = 0; i < 26; ++i) {

for (j = 0; j < 26; ++j) {

M[i][j] = newrotor[i][j];

}

}

}

// reverse Right rotor

if (x == 2) {

for (i = 0; i < 26; ++i) {

for (j = 0; j < 26; ++j) {

newrotor[i][j] = R[i][(26 - j) % 26];

}

}

for (i = 0; i < 26; ++i) {

for (j = 0; j < 26; ++j) {

R[i][j] = newrotor[i][j];

}
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}

}

// reverse Left Stator

if (x == 3) {

for (i = 0; i < 26; ++i) {

for (j = 0; j < 26; ++j) {

newrotor[i][j] = LS[i][(26 - j) % 26];

}

}

for (i = 0; i < 26; ++i) {

for (j = 0; j < 26; ++j) {

LS[i][j] = newrotor[i][j];

}

}

}

// reverse Right Stator

if (x == 4) {

for (i = 0; i < 26; ++i) {

for (j = 0; j < 26; ++j) {

newrotor[i][j] = RS[i][(26 - j) % 26];

}

}

for (i = 0; i < 26; ++i) {

for (j = 0; j < 26; ++j) {

RS[i][j] = newrotor[i][j];

}

}

}

for (i = 0; i < 26; ++i) {

free(newrotor[i]);

}

free(newrotor);

}// end reverse

void getInversePerm (int invPerm[], int perm[], int n) {

int i;

for (i = 0; i < n; ++i) {

invPerm[perm[i]] = i;

}// next i
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}// end getInversePerm

void initRotors (int numL, int numM, int numR, int numLS, int numRS) {

int i,

j;

// initialize rotor and reflector arrays

for (i = 0; i < 26; ++i) {

Lrotor[i] = (int)rot[numL][i] - 65;

Mrotor[i] = (int)rot[numM][i] - 65;

Rrotor[i] = (int)rot[numR][i] - 65;

Lstator[i] = (int)rot[numLS][i] - 65;

Rstator[i] = (int)rot[numRS][i] - 65;

reflector[i] = (int)ref[i] - 65;

}// next i

// sets initial permutation

for (i = 0; i < 26; ++i) {

L[0][i] = Lrotor[i];

M[0][i] = Mrotor[i];

R[0][i] = Rrotor[i];

LS[0][i] = Lstator[i];

RS[0][i] = Rstator[i];

}// next i

// sets permutation for all other letters

for (i = 1; i < 26; ++i) {

for (j = 0; j < 26; ++j) {

L[i][j] = (Lrotor[(i + j) % 26] + 26 - i) % 26;

M[i][j] = (Mrotor[(i + j) % 26] + 26 - i) % 26;

R[i][j] = (Rrotor[(i + j) % 26] + 26 - i) % 26;

LS[i][j] = (Lstator[(i + j) % 26] + 26 - i) % 26;

RS[i][j] = (Rstator[(i + j) % 26] + 26 - i) % 26;

}// next j

}// next i

// reverse rotors

for (i = 0; i < 5; ++i) {

if (ort[i] == 1) {

reverse(i);

}

}

57



// find inverse permutation

for (i = 0; i < 26; ++i) {

getInversePerm(L_inv[i], L[i], 26);

getInversePerm(M_inv[i], M[i], 26);

getInversePerm(R_inv[i], R[i], 26);

getInversePerm(LS_inv[i], LS[i], 26);

getInversePerm(RS_inv[i], RS[i], 26);

}// next i

// initialize notches

for (i = 0; i < 9; ++i) {

notch[i] = (int)step[i] - 65;

}

}// end initRotors

void simulator (int init_L, int init_M, int init_R, int init_LS,

int init_RS) {

int i,

space,

temp,

cur_L,

cur_M,

cur_R,

stepR,

stepM,

stepL;

unsigned char inChar,

outChar;

cur_L = init_L;

cur_M = init_M;

cur_R = init_R;

stepR = 0;

stepM = 0;

stepL = 0;

// encryption/decryption and stepping part

while (1) {

temp = fgetc(in);

if (temp == EOF) {
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break;

}

space = temp;

temp -= 65;

space -= 32;

if (space == 0) {

temp = 23;

}

if (temp < 0 || temp > 25) {

fprintf(stderr, "\nError --- all input characters must be " +

"upper case A thru Z or a space\n");

exit(0);

}

inChar = (unsigned char)temp;

// R is fast rotor

// M is medium rotor

// L is slow rotor

// rotors step _before_ encryption/decryption

// check all possible notches

for (i = 0; i < 9; ++i) {

// all 3 step (step left and middle here)

if (cur_M == notch[i]) {

if (ort[0] == 1) {

cur_L = stepRotor(cur_L, 26, 1);

}

else {

cur_L = stepRotor(cur_L, 26, 0);

}

if (ort[1] == 1) {

cur_M = stepRotor(cur_M, 26, 1);

}

else {

cur_M = stepRotor(cur_M, 26, 0);

}

stepL++;

stepM++;

}

else {

// M and R both step (step middle here)

if (cur_R == notch[i]) {
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if (ort[1] == 1) {

cur_M = stepRotor(cur_M, 26, 1);

}

else {

cur_M = stepRotor(cur_M, 26, 0);

}

stepM++;

}

}

}

// step right (fast) rotor --- always steps

if (ort[2] == 1) {

cur_R = stepRotor(cur_R, 26, 1);

}

else {

cur_R = stepRotor(cur_R, 26, 0);

}

stepR++;

// Typex transformation

#ifdef PR_ROTORS

printf("[%d]", cur_R);

printf("[%d]", cur_M);

printf("[%d]\n", cur_L);

#endif

#ifdef PR_STEPS

printf("\ninChar = %c\n", letter[inChar]);

printf("RS[%d][%d] = ", init_RS, inChar);

temp = RS[init_RS][inChar];

printf("%c\n", letter[temp]);

printf("LS[%d][%d] = ", init_LS, temp);

temp = LS[init_LS][temp];

printf("%c\n", letter[temp]);

printf("R[%d][%d] = ", cur_R, temp);

temp = R[cur_R][temp];

printf("%c\n", letter[temp]);

printf("M[%d][%d] = ", cur_M, temp);

temp = M[cur_M][temp];

printf("%c\n", letter[temp]);

printf("L[%d][%d] = ", cur_L, temp);

temp = L[cur_L][temp];
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printf("%c\n", letter[temp]);

printf("reflector[%d] = ", temp);

temp = reflector[temp];

printf("%c\n", letter[temp]);

printf("L_inv[%d][%d] = ", cur_L, temp);

temp = L_inv[cur_L][temp];

printf("%c\n", letter[temp]);

printf("M_inv[%d][%d] = ", cur_M, temp);

temp = M_inv[cur_M][temp];

printf("%c\n", letter[temp]);

printf("R_inv[%d][%d] = ", cur_R, temp);

temp = R_inv[cur_R][temp];

printf("%c\n", letter[temp]);

printf("LS_inv[%d][%d] = ", init_LS, temp);

temp = LS_inv[init_LS][temp];

printf("%c\n", letter[temp]);

printf("RS_inv[%d][%d] = ", init_RS, temp);

temp = RS_inv[init_RS][temp];

printf("%c\n", letter[temp]);

#endif

outChar = RS_inv[init_RS][LS_inv[init_LS][R_inv[cur_R][M_inv[cur_M]

[L_inv[cur_L][reflector[L[cur_L][M[cur_M][R[cur_R]

[LS[init_LS][RS[init_RS][inChar]]]]]]]]]]];

#ifdef PR_STEPS

printf("letter[temp] = %c, letter[outChar] = %c\n", letter[temp],

letter[outChar]);

#endif

printf("%c", letter[outChar]);

fprintf(out, "%c", letter[outChar]);

}// end while

printf("\n\n");

#ifdef PR_ROTORS

printf("stepR = %d\n", stepR);

printf("stepM = %d\n", stepM);

printf("stepL = %d\n", stepL);

#endif

}// end simulator
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int main (int argc, const char *argv[]) {

int i,

j,

n,

init_L,

init_M,

init_R,

init_LS,

init_RS,

numL,

numM,

numR,

numLS,

numRS;

char infname[100],

outfname[100];

if (argc != 6) {

oops: fprintf(stderr, "\n\nUsage: %s rotors orientation init infile "+

"outfile\n\n"

,argv[0]);

fprintf(stderr, "where rotors == [L][M][R][LS][RS] rotors\n"+

" (0 thru 7, no space, no repeats)\n");

fprintf(stderr, " orientation == rotor orientations, "+

"0 = forward, 1 = reverse\n");

fprintf(stderr," (binary 5-tuple)\n");

fprintf(stderr, " init == initial position for "+

"[L][M][R][LS][RS] rotors\n");

fprintf(stderr," (A thru Z, no space)\n");

fprintf(stderr, " infile == input file name\n\n");

fprintf(stderr, " outfile == output file name\n\n");

fprintf(stderr,

"For example: %s 27016 01100 ZXWAK plain.txt out.txt\n\n",

argv[0]);

fprintf(stderr, "Note 1: Input file must contain only upper "+

"case A thru Z. Spaces are OK.\n\n");

exit(0);

}

if (strlen(argv[1]) != 5) {
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fprintf(stderr, "\nError --- must specify 5 rotors\n");

goto oops;

}

numL = argv[1][0] - 48;

if (numL < 0 || numL > 7) {

fprintf(stderr, "\nError --- left rotor must be 0 thru 7\n");

goto oops;

}

numM = argv[1][1] - 48;

if (numM < 0 || numM > 7) {

fprintf(stderr, "\nError --- middle rotor must be 0 thru 7\n");

goto oops;

}

numR = argv[1][2] - 48;

if (numR < 0 || numR > 7) {

fprintf(stderr, "\nError --- right rotor must be 0 thru 7\n");

goto oops;

}

numLS = argv[1][3] - 48;

if (numLS < 0 || numLS > 7) {

fprintf(stderr, "\nError --- left stator must be 0 thru 7\n");

goto oops;

}

numRS = argv[1][4] - 48;

if (numRS < 0 || numRS > 7) {

fprintf(stderr, "\nError --- right stator must be 0 thru 7\n");

goto oops;

}

if ((numL == numM) || (numL == numR) || (numL == numLS) ||

(numL == numRS) || (numM == numR) || (numM == numLS) ||

(numM == numRS) || (numR == numLS) ||(numR == numRS) ||

(numLS == numRS)) {

fprintf(stderr, "\nError --- rotors must be distinct\n");

goto oops;

}

// orientation check

if (strlen(argv[2]) != 5) {

fprintf(stderr, "\nError --- rotor orientation must be "+

"5 characters, each 0 or 1\n");

goto oops;

}
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for (i = 0; i < 5; ++i) {

ort[i] = argv[2][i] - 48;

if (ort[i] < 0 || ort[i] > 1) {

fprintf(stderr, "\nError --- rotor orientation must be 5 "+

"characters, each 0 or 1\n");

goto oops;

}

}

// init input check

if (strlen(argv[3]) != 5) {

fprintf(stderr, "\nError --- init must be five characters, "+

"each upper case A thru Z\n");

goto oops;

}

init_L = argv[3][0] - 65;

if (init_L < 0 || init_L > 25) {

fprintf(stderr, "\nError --- init must be five characters, "+

"each upper case A thru Z\n");

goto oops;

}

init_M = argv[3][1] - 65;

if (init_M < 0 || init_M > 25) {

fprintf(stderr, "\nError --- init must be five characters, "+

"each upper case A thru Z\n");

goto oops;

}

init_R = argv[3][2] - 65;

if (init_R < 0 || init_R > 25) {

fprintf(stderr, "\nError --- init must be five characters, "+

"each upper case A thru Z\n");

goto oops;

}

init_LS = argv[3][3] - 65;

if (init_LS < 0 || init_LS > 25) {

fprintf(stderr, "\nError --- init_s must be a five characters, "+

"each upper case A thru Z\n");

goto oops;

}

init_RS = argv[3][4] - 65;

if (init_RS < 0 || init_RS > 25) {

fprintf(stderr, "\nError --- init must be a five characters, "+
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"each upper case A thru Z\n");

goto oops;

}

// filename input check

sprintf(infname, argv[4]);

in = fopen(infname, "r");

if (in == NULL) {

fprintf(stderr, "\n\nError opening file %s\nTry again\n\n",

infname);

goto oops;

}

// filename output check

sprintf(outfname, argv[5]);

out = fopen(outfname, "w");

if (out == NULL) {

fprintf(stderr, "\n\nError opening file %s\nTry again\n\n",

outfname);

goto oops;

}

initRotors(numL, numM, numR, numLS, numRS);

#ifdef PR_PERMS

printf("L perms\n");

for (i = 0; i < 26; ++i) {

printf("L[%2d] = ", i);

for (j = 0; j < 26; ++j) {

printf("%c", letter[L[i][j]]);

}

printf("\n");

}

printf("\n");

printf("M perms\n");

for (i = 0; i < 26; ++i) {

printf("M[%2d] = ", i);

for (j = 0; j < 26; ++j) {

printf("%c", letter[M[i][j]]);

}

printf("\n");

}
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printf("\n");

printf("R perms\n");

for (i = 0; i < 26; ++i) {

printf("R[%2d] = ", i);

for (j = 0; j < 26; ++j) {

printf("%c", letter[R[i][j]]);

}

printf("\n");

}

printf("\n");

printf("LS perms\n");

for (i = 0; i < 26; ++i) {

printf("LS[%2d] = ", i);

for (j = 0; j < 26; ++j) {

printf("%c", letter[LS[i][j]]);

}

printf("\n");

}

printf("\n");

printf("RS perms\n");

for (i = 0; i < 26; ++i) {

printf("RS[%2d] = ", i);

for (j = 0; j < 26; ++j) {

printf("%c", letter[RS[i][j]]);

}

printf("\n");

}

printf("\n");

printf("L_inv perms\n");

for (i = 0; i < 26; ++i) {

printf("L_inv[%2d] = ", i);

for (j = 0; j < 26; ++j) {

printf("%c", letter[L_inv[i][j]]);

}

printf("\n");

}

printf("\n");

printf("M_inv perms\n");

for (i = 0; i < 26; ++i) {

printf("M_inv[%2d] = ", i);

for (j = 0; j < 26; ++j) {

printf("%c", letter[M_inv[i][j]]);
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}

printf("\n");

}

printf("\n");

printf("R_inv perms\n");

for (i = 0; i < 26; ++i) {

printf("R_inv[%2d] = ", i);

for (j = 0; j < 26; ++j) {

printf("%c", letter[R_inv[i][j]]);

}

printf("\n");

}

printf("\n");

printf("LS_inv perms\n");

for (i = 0; i < 26; ++i) {

printf("LS_inv[%2d] = ", i);

for (j = 0; j < 26; ++j) {

printf("%c", letter[LS_inv[i][j]]);

}

printf("\n");

}

printf("\n");

printf("RS_inv perms\n");

for (i = 0; i < 26; ++i) {

printf("RS_inv[%2d] = ", i);

for (j = 0; j < 26; ++j) {

printf("%c", letter[RS_inv[i][j]]);

}

printf("\n");

}

printf("\n");

printf("reflector\n");

for (i = 0; i < 26; ++i) {

printf("%c", letter[reflector[i]]);

}

printf("\n\n");

#endif

#ifdef PR_KEY

printf("\nKey:\n");

printf("rotors (L,M,R,LS,RS) = (%d,%d,%d,%d,%d)\n", numL, numM, numR,

numLS, numRS);

67



printf("initial rotor positions (L,M,R,LS,RS) = (%c,%c,%c,%c,%c)\n",

(char)(init_L + 65), (char)(init_M + 65), (char)(init_R + 65),

(char)(init_LS + 65), (char)(init_RS + 65));

printf("\nOutput:\n");

#endif

simulator(init_L, init_M, init_R, init_LS, init_RS);

fclose(in);

fclose(out);

}// end main

68


	CRYPTANALYSIS OF TYPEX
	Recommended Citation

	tmp.1337958131.pdf.POTBV

