
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2011

BitTorrent Traffic Detection with Deep Packet Inspection and Deep BitTorrent Traffic Detection with Deep Packet Inspection and Deep

Flow Inspection Flow Inspection

Raymond Wong
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Wong, Raymond, "BitTorrent Traffic Detection with Deep Packet Inspection and Deep Flow Inspection"
(2011). Master's Projects. 250.
DOI: https://doi.org/10.31979/etd.6d8k-gr9q
https://scholarworks.sjsu.edu/etd_projects/250

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/250?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F250&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

BitTorrent Traffic Detection with Deep Packet

Inspection and Deep Flow Inspection

A Writing Project

Presented to

The Faculty of the Department of Computer Science

San Jose State University

In Partial Fulfillment of the Requirements for the

Degree

Master of Science

By

Raymond Wong

Spring 2011

 2

Raymond Wong has passed the defense for the project BitTorrent Traffic
Detection with Deep Packet Inspection and Deep Flow Inspection.

_______________________________ ____________
Dr. Teng Moh Date

_______________________________ ____________
Dr. Robert Chun Date

_______________________________ ____________
Dr. Melody Moh Date

NOTE: The advisor should send the final report to the graduate coordinator so that the
student can be cleared for graduation

 3

Table of Contents
Abstract……………………………………………………………………………………5

List of Acronyms………………………………………………………………………….6

Chapter 1: Introduction……………………………………………………………………7
 1.1 Why detection of P2P traffic is important?...7
 1.2 Major existing techniques for detecting BT traffic……………………………7

1.3 Outline of this report…………………………………………………………..7

Chapter 2: Background and Related Studies (Literature Survey)…………………………9
 2.1 Traditional methods approach………………………………..………….……9
 2.2 Combined traditional methods approach…………………………………….11
 2.3 Other approaches…………………………………………………………….11
 2.4 Performance evaluation metric……………………………….……………...13

Chapter 3: Summary of CS 297 Research ………………………...….………………....15
 3.1 Proposed System ……...……………………………………………………..15
 3.2 Preliminary results …………………………………………………………..16
 3.2.1 Ground truth generation …………………………………………………...16
 3.2.2 Study of DFI classifier accuracy ….……………………………………… 16

Chapter 4: CS298 Research …………………….……………...……………..................18
 4.1: BT packets classification software …………………………………………18
 4.1.1: Development environment………………………………………………..18
 4.2: Architecture and Implementation Details of the Proposed System…………18
 4.2.1: Offline training module…………………………………………………...18
 4.2.1.1: Network packets capture program (C program)………………………...19
 4.2.1.2: Packet features extraction program (C program)………………………..20
 4.2.1.3: Classifier Training program (Matlab)…………………………………...21
 4.2.2: Online classification module……………………………………………...23

Chapter 5: Experiment Results………………...………………………………………...26
 5.1: Comparison with existing approaches………………………………………26
 5.2: Network topology…………………...………………………………………27
 5.3: Performance comparison (DPI vs. DFI vs. DFI/DPI vs. DPI/DFI)...…….…28
 5.3.1: Classification accuracy……………...…………………………………….28
 5.3.2: Speed performance comparison……..…………………………………….29

Chapter 6: Conclusion……………………………………………………………………31

Appendix…………………………………………………………………………………32

References………………………………………………………………………………..47

 4

Figures and Tables:
Figure 1: Overview of classification algorithm [6]
Figure 2: PDF of packet length for common applications [11]
Figure 3: An example to construct a graph from nodes activities [5]
Figure 4: Proposed system to classify BT packet flows
Figure 5: Classifier accuracy with different training samples
Figure 6: System Architecture of the software written in the project
Figure 7: Offline Training Flow Chart
Figure 8: Packet capture sample code
Figure 9: Sample coding for using Winpcap to read a PCAP file
Figure 10: Sample Matlab code for training the classifier with K-means algorithm
Figure 11: Content inside the trained database
Figure 12: Online classification program block diagram
Figure 13: Four different modes of classification with a sample BT PCAP file
Figure 14: Four different modes of classification with a sample NON-BT PCAP file
Figure 15: Network topology for experiments
Figure 16: Packets Classification Execution Time experiment

Table I: Analyzed characteristics metrics by paper [1]
Table II: Network Features used in this project
Table III: Comparison of major approaches for detecting BT packets
Table IV: Classification results with DPI (Test case 1)
Table V: Classification results with DPI (Test case 2)
Table VI: Classification results with DFI (Test case 1)
Table VII: Classification results with DFI (Test case 2)
Table VIII: Classification results with DFI/DPI (Test case 1)
Table IX: Classification results with DFI/DPI (Test case 2)
Table X: Classification results with DPI/DFI (Test case 1)
Table XI: Classification results with DPI/DFI (Test case 2)

 5

Abstract:

The peer-to-peer (P2P) technology has been well developed with the internet
networking and BitTorrent (BT) is one of the very popular P2P sharing protocols widely
used. BT network traffic detection has become very challenging in recent years due to
smarter peer-to-peer applications. During my CS297 project, a new improved detection
method based on Deep Packet Inspection (DPI) and Deep Flow Inspection (DFI) was
proposed for detecting BT packets. The preliminary experiments show promising results
in terms of detection rate. In my CS298 project, the proposed method is implemented in
C and Matlab. In addition, the detection rate and performance of the proposed method
was also compared with other existing methods. The major results have been submitted to
a conference for a paper.

 6

List of Acronyms

BT BitTorrent
DFI Deep Flow Inspection
DPI Deep Packet Inspection
FTP File Transfer Protocol
ISP Internet service provider
MTU Maximum Transmission Unit
P2P Peer-to-Peers
SVM Support Vector Machine
TCM Time correlation metric
WiMax Worldwide Interoperability for Microwave Access

 7

Chapter 1:
Introduction

1.1 Why detection of P2P traffic is important?

The technology of internet networking has been evolving for the past few
decades. It has expanded exponentially. Back in the old days, if we needed to get online,
using analog phone line modem was the only option. Nowadays, we can easily get online
by using broadband, 3G or even WiMax (Worldwide Interoperability for Microwave
Access). Another technology that has been well developed with the internet networking
is called peer-to-peer (P2P) network. BitTorrent (BT) is a very popular peer-to-peer file
sharing protocol and is one of most accepted P2P protocols.

Detecting P2P traffic is important and it can be seen in different aspects from
different people. For an enterprise network, the administrators may want to rate-limit the
P2P traffic such that it can have enough bandwidth reserved for other critical/important
applications. For local broadband internet service providers (ISP), they may want to limit
the cost charged by the upstream ISP. Finally, for regular home users, most of them still
have async internet connection service from their ISP. It means that the upstream rate and
downstream rate are not equal and upstream rate is usually much lower than the
downstream rate. If the upstream is congested, it will affect the overall internet
experience.

1.2 Major existing techniques for detecting BT traffic

In general, there are four major methods to detect BT traffic: port-based
technique, deep packet inspection (DPI) technique, deep flow inspection (DFI) technique,
and combinations of above mentioned techniques. The port-based method is based on the
TCP and/or UDP port and it assumes that BT clients use fixed port for data or messages
transfer. This method is obsolete due to the fact that newer BT clients nowadays utilize
user-defined port, random port, changed port or even camouflage port to avoid the port
detection mechanism. DPI method is based on the packet signature and it looks at packet
payload to detect BT packet. DFI method detects BT packets based on the TCP flow such
as average packet size and total bytes transferred. Finally these techniques above can be
used together to increase the detection rate.

In this project, a new improved BT packets detection method based on Deep
Packet Inspection (DPI) follow by Deep Flow Inspection (DFI) is proposed. The
proposed method is implemented in C and Matlab for simulation and verification
propose. The experiments show promising results for both the detection rate as well as
the execution time efficiency.

1.3 Outline of this report

This report is organized in following manner. Chapter 1 is an introduction.
Chapter 2 is the literature survey. Chapter 3 is the summary of my CS297 research. In
chapter 4, detailed explanations of the architecture and the implementation of the

 8

proposed method are discussed. The simulation results can be found in chapter 5. Finally,
we will discuss the conclusion.

 9

Chapter 2:
Literature Survey:

In this chapter, we will go through the detection methods found in the area of
academia. A literature survey is important to this project as it shows how other people
solve this problem. In general, there are three major techniques for detecting P2P traffic
from other regular traffic.

The first method is based on the TCP and/or UDP port. The assumption of this
method is that the P2P applications use fixed port to communicate between peer
computers. One obvious advantage is that it is very easy to implement and almost no
computation power is required. Moreover, using the traffic identification based on port
not only can directly identify individual P2P applications (for example, eMule, Bit
Torrent), but also can easily eliminate well-known non-P2P application (for example,
FTP, E-Mail). The bottom line is that different applications would use different
TCP/UDP ports for data communication. In order to avoid being detected by the
detection software, most P2P application nowadays use new technology such as user-
defined port, random port, changed port and camouflage port to avoid the port detection
mechanism. As a result, this port based approach is obsolete.

Another detection method is called deep packet inspection (DPI) which is based
on the payload of the packets. This detection mechanism is to inspect these particular
characteristics to identify P2P traffic. P2P software’s handshaking messages often follow
certain patterns when communicating. In another word, they have some fixed
characteristics in the application layer payload. One example would be the BitTorrent
protocol. There is always a “BitTorrentprotocol” string appear in their handshaking
packets. The advantage of this approach is high accuracy rate and implementation
robustness; however, there are several disadvantages. First, since the payload needs to be
examined, no encryption data can be supported. Secondly, this method leads to privacy
issue because of the need to inspect the content of payload. Also, the signature of the P2P
protocol may keep changing due to the continuous change of protocols. Finally,
sometimes it is difficult to get characteristics out from open source Software. It is often
more difficult for closed source software.

The third detection method is using the traffic flow to detect P2P traffic; it is
called deep flow inspection (DFI). As the name implies, the analysis or the classification
of P2P traffic is a flow-based, focusing on the connection level patterns of P2P
applications. Thus, it does not require any payload analysis, unlike DPI. Because it
doesn’t require payload analysis, encrypted data packets can be easily supported. The
down side of this approach is that there is an additional step of extracting the connection
level pattern for the P2P traffics. And yet, there is no rule of thumb for which network
feature should be used in this method.

2.1 Traditional methods approach

Liu et al. [10] propose a simple deep packet inspection (DPI) algorithm to detect
BitTorrent traffic. Their algorithm is based on the handshaking message between the
BitTorrent peers. According to the authors, in the BitTorrent header of the handshake
messages has the following format. <a character (1 byte)><a string (19 byte)>

 10

The first byte is a fixed character with value '19', and the string value is 'BitTorrent
protocol'. Based on this common header, they use this feature as the signatures for
identifying BitTorrent traffic.

Le and But [9] use a deep flow inspection (DFI) algorithm to classify traffic. They
focused on the packet length statistics of traffic as the features for their classifier for
detecting BitTorrent traffic. The four network features used in this paper are: minimum
payload, ratio of small packets, ratio of large packets and small payload standard
deviation. Three types of traffic traces were used to train and test their classifier. These
include known BitTorrent traffic, known FTP traffic, and other traffic.

Erman et al. [6] propose semi-supervised learning algorithm to classify traffic.
Their algorithm involves a two steps approach to training their classifier. The first step is
clustering. In this step, the flows with the applications labeled will be partitioned by a
unsupervised clustering algorithm. K-means algorithm was used in this step however it is
not restricted it is the only algorithm can be used. As the authors pointed out that the key
benefit of the unsupervised learning approach is the ability to identity hidden patterns.
For example, new applications can be examining flows that form a new clustering.
 The second step is to map clusters to applications and to determine the clusters
label based on the flows label. This mapping is based on the estimation of the
probabilities that the labeled flow samples within each of the clusters. It can be estimated
by the maximum likelihood estimate, njk/nk, where njk is the number of flows that were
assigned to cluster k with label j, and nk is the total number of (labeled) flows that were
assigned to cluster k. Figure 1 depicts the overview of the classification algorithm.

Figure 1: Overview of classification algorithm [6]

There are also some papers utilizes the popular classification techniques to detect P2P

traffic. For example, Chen et al. [3] tried to use neural network as the tool to detect P2P
traffic, where in the other paper [4], they used support vector machine (SVM). There is a
paper [11] simply use packet length to detect P2P packets. Their claim is as follow. In
P2P applications, there are many small size packets and large size (close to maximum
transmission unit (MTU)) packets. The small size packets are often used to transfer
messages between server and client such as synchronization and acknowledgement. The

 11

large size packets are usually used to transfer data (actual sharing content). Figure 2
shows the PDF of the packet length for some common applications.

Figure 2: PDF of packet length for common applications [11]

2.2 Combined traditional methods approach

There are some other papers tried to combine more than one technique mentioned
above to solve the P2P classification problem. The examples would be the papers written
by Chen et al. [2] and Wang et al. [12]. Both papers claim that their combined approach
is better than the tradition approaches. Chen et al [2] claim that using both DPI and DFI
approach together can make both of the detection algorithm comprise each other, thus,
the detection rate will increase. Another advantage of this approach is the parallelism
(i.e. DPI and DFI algorithm can be executed in parallel). Instead of putting the DPI and
DFI module execute in parallel, Wang et al. [12] execute them in a serial manner. Below
are the major steps in their detection algorithm.

1) After obtaining a packet for examinations, first use traffic detection based on port to

filter the common P2P traffic.
2) Then through a DFI module to match the characteristics of the data stream whether

the traffic is P2P.
3) For those packets belonging to P2P flow, payload characteristic module (aka DPI

module) match-up will be conducted to find out P2P traffic type.
4) Finally, two traffic detection groups will be formed. They are the “P2P known type

traffic” and “P2P unknown type traffic”.

2.3 Other approaches

There is another interesting paper [5] which is based on the port analysis to create a
graph. Typical peer-to-peer traffic detection methods focus on analyzing the host or
packets, in this paper, the authors detect Peer-to-Peer traffics based on the port analysis.
The following example depicts their algorithm. Figure 3 shows an example of how to
construct a graph based on the paper's method. There are four nodes in this network.

 12

Node A first makes a connection to node B. Thus we assigned level 0 to node A and
assign level 1 to node B. After that, B makes a new connection to node C. As a result, we
assigned level 2 to node C. Notice that once the level is assigned to a host, this level
cannot change. Therefore, when node D makes another new connection to node A, we do
not change A’s level. Instead, we assign -1 to node D which is one level lower to node A.
The last connection did not change any level from nodes because node D and B already
have its own level. Once we have the graph constructed, we can use the rules below to
determine if this port is considered used by P2P application. (P.S.: The authors didn’t
specify how to determine these thresholds)

1) The number of hosts that act both as servers and clients (“ClientServers”) in the

specific port exceeds the ClientServer threshold.
2) The network diameter is at least as great as 2,
3) The numbers of hosts that are present in the first and last level of the network exceed

the Edge Level threshold.

Figure 3: An example to construct a graph from nodes activities [5]

Another approach proposed by Zhang et al. [14] is to detect BT traffic based on
recording and analyzing the peer-information which is obtained from the BitTorrent
signaling traffic. In addition, the algorithm proposed by the authors can be run and
distributed in different computers.

There is a paper proposed by Keralapura et al. [7] used a 2-stage detection
mechanism to detect P2P traffic. The first stage is based on a newly proposed algorithm,
Time correlation metric (TCM) algorithm, to detect P2P-like traffic. This algorithm is
based on the traffic packets arrival time and it is a flow based approach. Since it doesn’t
require examining the payload of the packets, this algorithm can also work with
encrypted traffic. The second stage is based on a payload signature extraction detection
algorithm. With the stage 1 and stage 2, the P2P traffics can be accurately classified

Finally, in the paper written by Basher et al. [1], they didn’t present any new
algorithms to detect P2P traffics. Instead, they did a comparative analysis between web

 13

and peer-to-peer traffic. The data base that they used contains 1.12 billion IP packets
totaling 639.4 Gigabytes. In addition, they also did a comparative study between two P2P
protocols namely BitTorrent and Gnutella. The analyzed characteristics metrics are listed
below in table I.

Table I: analyzed characteristics metrics by paper [1]

Characteristics Comments

Flow size The total bytes transferred during a TCP
flow

Flow inter-arrival
time

The time interval between two consecutive
flow arrivals

Duration The time between the start and the end of a
TCP flow

Flow concurrency
The maximum number of TCP flows a
single host uses concurrently to transfer
content

Transfer volume The total bytes transferred to and from a
host during its activity period

Geography
Distribution

The distribution of the shortest distance
between individual hosts and authors’
campus along the surface of the Earth

2.4 Performance Evaluation Matrix

Based on the literature survey that I have done, generally speaking there are two
kinds of performance evaluation matrix used by the authors of the papers. The first type
[12][13][10][9][6] simply uses the term “accuracy”. It is defined as the number of
correctly classified items divided by the total number of items. As the name implied,
higher the accuracy represents the better the proposed algorithm.

Some other papers [4][3][11][5][7] used a rather formal definition of the
statistical equations (equation 1 to 4) to evaluate the performance. The goal was to
maximize (i.e. 1) the True Positive Rate (TPR) and True Negative Rate (TNR); at the
same time to minimize (i.e. 0) the False Positive Rate (FPR) and False Negative Rate
(FNR).

)(
)(

FNTP
TPveRateTruePositiTPR
+

= ………………………………………Equation 1

)(
)(

FPTN
TNveRateTrueNegatiTNR
+

= ……………………………………..Equation 2

)(
)(

TNFP
FPiveRateFalsePositFPR
+

= …………………………………….Equation 3

 14

)(
)(

FNTP
FNiveRateFalseNegatFNR
+

= ……………………………………Equation 4

where TP is the number of correctly classified objects for a given P2P class; TN is the
number of correctly classified objects for Non-P2P class; FP is the number of objects
falsely identified as P2P class and FN is the number of objects from P2P class that are
falsely labeled as Non-P2P class.

 15

Chapter 3:
Summary of CS297 Research

3.1 Proposed System

After the literature survey, a new improved BT detection method is proposed. The
proposed BT detection method can be roughly divided into two parts, namely offline
training module and online classification module. Packet flow can be either classified as
BT class or non-BT class. The offline training module and the DFI portion of the online
module system is inspired by the paper written by Erman et al. [6]. However, the
classification accuracy is improved by using both DPI and DFI methods whereas only
DFI was used in the paper proposed by Erman et al. [6]. The proposed system first uses
DPI then DFI to classify packets which is different than the paper proposed by Wang et
al. [12]. With the proper ordering of DPI and DFI, the simulation results show that the
running execution time is improved. Figure 4 depicts our proposed system to classify BT
packet flows.

Figure 4: Proposed system to classify BT packet flows

 16

3.2 Preliminary results

 In this section, preliminary results from my CS297 will be briefly discussed.
There are two goals of performing these experiments. The first goal is to understand how
many packets should be used to train a reliable classifier. The second goal is to make sure
the packets captured software that I wrote is indeed working.

3.2.1 Ground truth generation

The ground truth is the packet flows with known classes. In order to train a
classifier, there are two types of packet flows needed to capture, namely the BT and non-
BT packet flows. To capture the BT packets, I manually force the BT client to use a
single TCP port (i.e. 1200) for data transfer. Thus, all the BT traffic must go through this
TCP port. Then, I start a sample torrent file and the BT client will automatically start
downloading/uploading the contents. At the same time, I start my packet capturing
program to obtain the packets. Similarly, to capture non-BT packets, I start my packet
capturing program while we were creating non-BT network activities including HTTP,
FTP and SSH. With the known class of the packets in the PCAP files, I could start
training the classifier.

3.2.2 Study of DFI classifier accuracy

Figure 5 shows the classifier accuracy with increasing number of BT packet flows
used to train the classifier. The classifier was first trained with a set of BT samples, and
then it was tested against with some other BT packet flows to observe the accuracy. This
experiment gives us some clues about the number of packet flows should be used in order
train a reliable classifier for the DFI module. As expected, the more BT packets are used
to train the classifier, the better the accuracy is. However, as the number of the BT
packets increase, the classifier will be saturated at some point. After that, even more
packets is provided, the accuracy does not increase significantly.

 17

Classification accuracy

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 500 1000 1500 2000 2500 3000

BT Packet flows used for training

Pe
rc

en
ta

ge

Classification accuracy

Figure 5: Classifier accuracy with different training samples

 18

Chapter 4:
CS298 Research

4.1 BT packets classification software

 One of the deliverables of my CS298 project is the BT packets classification
software. We will discuss the details in this chapter. The development environment of the
software will be first discussed. After that, the discussion of two major components,
namely offline training module and online classification module, will be followed.

4.1.1 Development environment

The BT packet classification software is built with Cygwin under Windows
environment. Cygwin provides a UNIX like environment with the full GCC supported for
software development and windows provides user friendly environment without worrying
about the network card drivers. This combination provided a user friendly development
environment and also was able to utilize open source libraries. Packets capture is made
possible by WinPcap [16] library. WinPcap is an open source library that allow user to
set his/her network interface card (NIC) to operate in "promiscuous" mode. Thus, all the
packets going through the network will be captured. Figure 6 shows the system level of
architecture of the software written in this project.

Figure 6: System Architecture of the software written in the project

4.2 Architecture and Implementation Details of the Proposed System
4.2.1 Offline training module

 The objective of the offline training module (shown in figure 7) is to create a
trained database for the DFI classification used in the online classification module. I

 19

divided the offline training module into three separate sub-programs for the ease of
development. There are two C programs and one Matlab program. They are the packet
capture program and the packet features extraction program. Both programs are linked
with the winPcap library. As the names implied, the function of the packet capture
program is to communicate with the network interface card (NIC) and to capture packets
from the network. The captured packets will be stored in a file with PCAP format. The
second C program is used to extract the network features from the packet file. There are
10 features to be extracted and they are shown in table I. Finally, the extracted features
will be used to train the classifier. The classifier is based on the K-means clustering
algorithm and it is inspired by paper written by Erman et al. [6]. The classifier program
is written in Matlab. The advantage of using Matlab over C is because Matlab has a lot of
build in numerical computation routines and the K-means cluster algorithm routine is also
supported.

Figure 7: Offline Training Flow Chart

Table II: Network Features used in this project
No. Features
1 Total number of packets
2 Average packet size
3 Total bytes
4 Total header (transport plus network layer) bytes
5 Number of flow initiator to flow responder packets
6 Total flow initiator to flow responder payload bytes
7 Total flow initiator to flow responder header bytes
8 Total flow initiator to flow responder header bytes
9 Number of flow responder to flow initiator packets
10 Total flow responder to flow initiator header bytes

4.2.1.1 Network packets capture program (C program)

 Capturing packets with WinPcap API is quite easy. Figure 8 shows a sample code
to capture packets and save them into a PCAP file. In order to capture packets, API

 20

function pcap_open_live is used. After opening the NIC device, the next step is to set up
a call back function. A call back function (got_packet) will be fired when a packet is
either received or sent. Inside the call back function, another API function pcap_dump is
used to save the packets into a PCAP file.

Figure 8: Packet capture sample code

4.2.1.2 Packet features extraction program (C program)

In order to read packets from a PCAP file, WinPcap API function
(pcap_open_offline()) is used to open the PCAP file. This function provides similar
interface to fopen() C function and it returns a handle if the command was successfully
executed. Function pcap_loop(fp, 0, call_back, 0) is used next for setting a callback
function while reading the PCAP file. The pcap_loop will call the function call_back()
for every packet found in the PCAP file. In the callback function, the packet stream is
stored in the location where the pointer variable (*packet) is pointing at. Since we are
only interested in the TCP packets, all other non-TCP packets will be filtered. After the

 21

filtering, the networking features such as packet size and header size will be computed
and stored in a network feature database. Figure 9 shows the sample coding of opening a
PCAP file and setting a callback function for reading the PCAP file.

Figure 9: Sample coding for using Winpcap to read a PCAP file

4.2.1.3 Classifier Training program (Matlab)

 As discussed previously, Matlab provides a set of build in numerical computation
routines as well as the k-means algorithm support. Figure 10 shows the Matlab script to
train the classifier. As we can see from line 6-7 (figure 10), the features are being read
into a variable called “data”. After that, Matlab command “kmeans” is applied to the
data. Note that the second parameter indicates that we will cluster the data into 400
groups. The third parameter “’EmptyAction’, ‘drop’” of the kmeans command indicates
that empty cluster will be dropped if a resulting cluster has no member associated.

 22

Finally, the “’start’, ‘cluster’” means that the initial clusters will be based on the kmeans
cluster results of the random sampling of data.
 With the clusters created, the next step is to determine if a given cluster is a BT
cluster or a non-BT cluster. A simple majority rule is used to determine the class of the
cluster. If number of BT packets is larger than the non-BT packets, that given cluster will
be marked as BT cluster. On the other hand, if number of non-BT packets is larger than
the BT packet, the cluster will be marked as non-BT cluster. The final output of this
Matlab program is a trained database which contains the features centers. Figure 11
shows a portion of trained database file.

Figure 10: Sample Matlab code for training the classifier with K-means algorithm

 23

Figure 11: Content inside the trained database

4.2.2 Online classification module

Figure 12 shows the online classification module top level block diagram. There
are three input parameters required by this module, namely Packet capture file, trained
database and the modes of operation. The online classification program supports four
modes of operation. They are the DPI, DFI, DFI followed by DPI (DFI/DPI) and DPI
followed by DFI (DPI/DFI). All four modes require users to provide a PCAP file as
source of the packet flows. The DPI mode is based on the string (i.e. "
BitTorrentprotocol") comparison to determine if the encounter packet is BT type. The
DFI mode first extracts packet flows features from the PCAP file. After that, it uses the
database from the offline training module to determine the packet flow type. The
DFI/DPI combines both DFI and DPI techniques together to classify packets. It first uses
the DFI method to determine the packet flow type. After that DPI method will be
followed to examine if the packets contain the BT pattern.

Figure 12: Online classification program block diagram

 24

The DPI/DFI is the proposed method in this project. Like DFI/DPI approach, it

utilizes more than one technique to classify packets. At first, an unknown class of packet
flows will be inputted to the DPI module in which it can be determined if the packet is a
BT packet. If it is a BT packet, database of BT hosts will be updated immediately.
Otherwise, based on the packet information, the corresponding packet flow information
will be updated (i.e. number of packet in flow, average packet size, etc) in the packet
flow database. If that packet is at the end of a flow, we will update the flow information,
and it will be applied to the DFI classification to determine if the given flow is from BT
packets. The advantage of this approach will be discussed in the next section.

Figure 13 shows an example run of the online classification program for four
different modes of operation with a sample BT PCAP file. As we can see from the
sample run, there are 408 BT IP addresses in the file. The DPI method is able to detect
35.54% of BT IP; The DFI method is able to detect 79.41%. The more advanced methods
are able to provide highest detection rate (i.e. Both DFI/DPI and DPI/DFI are able to
detect 83.09%).

Figure 13: Four different modes of classification with a sample BT PCAP file

 25

By the same token, an example run of the online classification program for four
different modes of operation with a sample Non-BT PCAP file was also shown. As we
can see from Figure 14, there are 408 BT IP addresses in the file. The DPI method is able
to detect 0% of BT IP; The DFI, DFI/DPI and DPI/DFI methods all have a false alarm
rate of 9.58%.

Figure 14: Four different modes of classification with a sample NON-BT PCAP file

 26

Chapter 5: Experiment Results

5.1 Comparison with existing approaches

In this section we will compare the four common approaches to our proposed
system. A comparison summary can be found in table III. These common approaches are
based on DPI and/or DFI techniques with learning algorithms. The first one detects the
handshaking messages pattern between BT peers. As discussed in section II, a string
("BitTorrentprotocol") can be found within the handshaking packets. This pattern can be
used to determine whether a BT client is currently running in a network. This approach is
simple and is able to provide acceptable accuracy results. However, the major drawback
of this approach is that only non-encrypted packets are supported. In addition, it will also
lead to privacy issue as examination of packets payload is needed.

The second major approach is based on the length statistics of the packet/flow
length. Since this method bases upon the packet length, encrypted packets can also be
supported. The philosophy behind this method is that BT and non-BT packets have
different packet length distribution. Therefore, only thresholds are needed to determine if
the packet is a BT packet. One of the major problems of this approach is that there are
some non-BT packets also having the same length characteristics of BT packets. Also,
there is no rule of thumb to select what length should be used. Hence, it is often difficult
to determine the right threshold values.

The third approach is based on the learning algorithms such as K-means, SVM
and neural network. It uses classification algorithms to train a database from the
packet/flow characteristics. Examples of the features used including average packet size,
total number of packet and inter packets arrival time. One problem with this approach is
that prior training is required. Usually, it will take considerable amount of time to train a
classifier. Thus, it is difficult to combine both offline training and online classification
parts into an adaptive training system (i.e. using the classifier while still continue training
the classifier)

The fourth common approach utilizes both DFI and DPI to identify BT packets.
DFI is first used to classify whether packets are P2P; then DPI is followed to determine if
the P2P packets are BT type. The major disadvantage of this approach is that it may be
difficult to implement under a live network due to the fact that DFI is per flow based
while DPI is per packet based. Thus, we will need to wait for the end of a packet flow in
order to perform DFI classification while the BT pattern can only be seen in the
handshaking packets which are only appearing at the beginning of a flow.

Finally, as mentioned in the previous section, the proposed approach also utilizes
both DFI and DPI. Instead of performing DFI in the first step; the DPI is used first to
determine if a packet is a BT packet, DFI is then followed if the BT flow pattern can not
be found. The major advantage compare to the combined method mentioned above is
that we don't need to wait for the whole flow to determine the packet type if the BT
pattern is found in the DPI stage. In other words, we can quickly identify the packet flow
is a BT flow without waiting for the whole flow to finish.

 27

Table III: Comparison of major approaches for detecting BT packets
Methods Schemes Strengths Limitations
BT header

lookup
method[10]

DPI Simple
Not Working
for encrypted
packets

Packet/ Flow
length statistics
method [9][2]

DFI Work even with
encrypted packets

It is difficult to
determine the
thresholds

Learning
algorithm [6] DFI

Packet classification is
based on a trained
database

Prior training
required

Combined
method [12]

DFI and
DPI

Higher accuracy compare
to simple DFI or DPI
approaches

It is difficult to
determine the
thresholds

Our proposed
system

DFI and
DPI

1) Higher accuracy
compare to simple DFI or
DPI approaches
2) Easier for
implementation
compared to combined
method above
3) better running time
efficiency

Prior training
required

5.2 Network topology

The network setup that I used for performing the experiments is shown in figure
15. For the sake of the simplicity, there is only one PC behind a router. However, this
minimal setup will not affect the experiment results as the main goal of this setup is to
capture BT and non-BT packets. Inside the PC, BitComet 1.21 was installed as the BT
client. A sample torrent file was downloaded for BT packets capturing purpose. As
mentioned in section I, torrent file contains the information about the tracker server and
the tracker server contains the peers’ information about the shared files.

Figure 15: Network topology for experiments

 28

5.3 Performance comparison (DPI vs DFI vs DFI/DPI vs DPI/DFI)
5.3.1 Classification accuracy

Four statistical tests were used to evaluate the classifiers in different modes of
operation. They are the true positive rate (TPR), true negative rate (TNR), false positive
rate (FPR) and false negative rate (FNR). As we discussed in section 2.4, this
performance evaluation metric is very popular as it was used by many authors in their
papers [4][3][11][5][7].

In order to test the classifier, the classifier was first trained with 8000 TCP packet
flows in which more than 3500 of them are BT TCP packet flows. Table IV-XI show the
classification results for DFI, DPI, DFI/DPI and DPI/DFI (proposed algorithm) methods
for two simulation tests. These experiments were done with PCAP files with packets type
known. The first test PCAP file contained packets with 408 BT IP addresses and 167
non-BT IP addresses and the second test PCAP file contained packets with 686 BT IP
addresses and 454 non-BT IP addresses.

Based on the statistical results, the higher the TPR and the TNR, the better the
classifier will be. There are a couple of observations from the experiments. The first
observation is that the DPI method has 100% accuracy to detect HTTP, FTP and SSH as
non-BT protocol. It is because the DPI method searches for the BT pattern string
(“BitTorrentprotocol”) explicitly inside the packets. Since the non-BT packets rarely
have exact BT pattern string in the packets, 100% accuracy was expected. On the other
hand, the DPI method is not always able to detect BT packets. It is because the BT
pattern string only happens in the handshaking messages and it may not appear during the
BT data transfer. Another observation is the methods utilizing both DFI and DPI yield
better BT detection accuracy results than using DPI or DFI alone. As a matter of fact,
DPI/DFI and DFI/DPI both provide the same accuracy in terms of classification. The
reason is due to the fact that the same However, in terms of time efficiency DPI/DFI
yield better results than DFI/DPI. We will discuss the performance details in the next
section.

Table IV: Classification results with DPI (Test case 1)
DPI
(Test Case 1)

 TPR=31% FPR=69%
 FNR=0% TNR=100%

Table V: Classification results with DPI (Test case 2)
DPI
(Test Case 2)

 TPR=35% FPR=65%
 FNR=0% TNR=100%

 29

Table VI: Classification results with DFI (Test case 1)
DFI
(Test Case 1)

 TPR=78% FPR=22%
 FNR=14% TNR=86%

Table VII: Classification results with DFI (Test case 2)
DFI
(Test Case 2)

 TPR=73% FPR=27%
 FNR=12.5% TNR=87.5%

Table VIII: Classification results with DFI/DPI (Test case 1)
DFI/DPI
(Test Case 1)

 TPR=87% FPR=13%
 FNR=14% TNR=86%

Table IX: Classification results with DFI/DPI (Test case 2)
DFI/DPI
(Test Case 2)

 TPR=85% FPR=15%
 FNR=12.5% TNR=87.5%

Table X: Classification results with DPI/DFI (Test case 1)
DPI/DFI
(Test Case 1)

 TPR=87% FPR=13%
 FNR=14% TNR=86%

Table XI: Classification results with DPI/DFI (Test case 2)
DPI/DFI
(Test Case 2)

 TPR=85% FPR=15%
 FNR=12.5% TNR=87.5%

5.3.2 Speed performance comparison

Figure 16 shows the packets classification time for various classification methods.
Note that the DPI has the fastest classification time due to the classification is purely
based on the string comparison (i.e. other methods are more computation intensive

 30

relatively). This method is fast; however, the accuracy would be low (compared to other
methods) because the BT pattern string can only be found in the handshaking BT packets
and we may not see this pattern often during large data transfer.

In the previous section, we showed that the classification accuracy of the DFI
method follow by the DPI method (DFI/DPI) and the DPI method follow by the DFI
method (DPI/DFI) is the same. However, there are some subtle differences. These subtle
differences include resources usage and performance. Both the speed and memory usage
appear to be faster and better in the DPI/DFI method. The reason is as follows. First
notices that DFI is a flow based classification, it requires the whole packet flow is
completed before any classification can be done. On the other hand, the DPI is a packet
based classification; it only takes one packet in order to determine the packet class (i.e.
BT or non-BT). Given that, assuming in a packet flow and one of its packets does contain
the BT string identifier, if we perform the DPI/DFI method, we can quickly identify the
packet flow is a BT flow without waiting for the whole flow. The advantage of this
approach is that we can identify some of the packet flows class earlier. Once we
determine the class of a packet flow, we do not need to keep track of the packet flow's
information. Based on the experiments conducted, it appears that DPI/DFI method is
about 15%-20% faster DFI/DPI method.

Packets Classification Time

0

0.2

0.4

0.6

0.8

1

1.2

35 36 37 38 39 40

Number of Packets in pcap file (x1000)

Ti
m

e
(s

ec
on

ds
)

DFI/DPI DPI/DFI (proposed algorithm) DFI DPI
Figure 16: Packets Classification Execution Time experiment

 31

Chapter 6: Conclusion

A paper with the project results from this project has submitted to a conference.
The promising simulation results show that by combining multiple techniques such as
DPI, DFI and learning algorithms, the detection rate of the BT packets can increase
significantly. In addition, applying the correct order of these techniques can further
increase the execution speed. In terms of the future work of this project, the ultimate goal
would be applying the proposed algorithm into a live network situation.

 32

Appendix A1: capture_bitTorrent.c

#include <stdlib.h>
#include "pcap.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "util.h"

void got_packet(u_char *args, const struct pcap_pkthdr *header, const u_char *packet);

static int maxpacket=100;
static int count = 1; /* packet counter */
static unsigned long long total_size_payload=0;

int main(int argc, char **argv)
{
 pcap_if_t *alldevs;
 pcap_if_t *d;
 int inum;
 int i=0;
 pcap_t *adhandle;
 char errbuf[PCAP_ERRBUF_SIZE];
 pcap_dumper_t *dumpfile;

 if (argc != 3) {
 printf("usage: %s maxpacket pcapname\n", argv[0]);
 return -1;
 }
 maxpacket = atoi(argv[1]);

 /* Retrieve the device list */
 if(pcap_findalldevs(&alldevs, errbuf) == -1) {
 fprintf(stderr,"Error in pcap_findalldevs: %s\n", errbuf);
 exit(1);
 }

 /* Print the list */
 for(d=alldevs; d; d=d->next) {
 printf("%d. %s", ++i, d->name);
 if (d->description)
 printf(" (%s)\n", d->description);
 else
 printf(" (No description available)\n");
 }

 if(i==0) {
 printf("\nNo interfaces found! Make sure WinPcap is installed.\n");
 return -1;
 }
 printf("Enter the interface number (1-%d):",i);
 scanf("%d", &inum);
 // inum = 2;

 if(inum < 1 || inum > i) {
 printf("\nInterface number out of range.\n");
 /* Free the device list */
 pcap_freealldevs(alldevs);
 return -1;
 }

printf("\nlistening on %s...\n", d->description);

 /* At this point, we don't need any more the device list. Free it */
 pcap_freealldevs(alldevs);

 /* start the capture */
 pcap_loop(adhandle, 0, got_packet, (unsigned char *)dumpfile);
 pcap_close(adhandle);
 return 0;
}

 33

Appendix A1(Cont.): capture_bitTorrent.c

void got_packet(u_char *dumpfile, const struct pcap_pkthdr *header, const u_char *packet)
{

 /* declare pointers to packet headers */
 const struct sniff_ethernet *ethernet; /* The ethernet header [1] */
 const struct sniff_ip *ip; /* The IP header */
 const struct sniff_tcp *tcp; /* The TCP header */

 int size_ip;
 int size_tcp;
 int size_payload;

 if (count-1==maxpacket) { /* done if we hit max packet */
 printf("Total number of packets captured:%d\n", count-1);
 printf("Total packet size captured:%llu\n", total_size_payload);
 exit(0);
 }

 /* define ethernet header */
 ethernet = (struct sniff_ethernet*)(packet);

 /* define/compute ip header offset */
 ip = (struct sniff_ip*)(packet + SIZE_ETHERNET);
 size_ip = IP_HL(ip)*4;
 if (size_ip < 20) /* Invalid IP header length */
 return;

 /* determine protocol */
 switch(ip->ip_p) {
 case IPPROTO_TCP:
 break;
 case IPPROTO_UDP:
 case IPPROTO_ICMP:
 case IPPROTO_IP:
 default:
 return;
 }

 /* OK, this packet is TCP. */

 /* define/compute tcp header offset */
 tcp = (struct sniff_tcp*)(packet + SIZE_ETHERNET + size_ip);
 size_tcp = TH_OFF(tcp)*4;
 if (size_tcp < 20) {
 return;
 }

 /* In order to capture BT packets only, I have setup the following
 1) My BT client uses TCP port 1200 only (set in BT client software)
 2) My BT client IP is 192.168.3.173
 The filter below is used to filter non-BT packets
 */
 // if (((strcmp(inet_ntoa(ip->ip_src), "192.168.3.173") ==0) && (ntohs(tcp->th_sport) ==
1200)) ||
 // ((strcmp(inet_ntoa(ip->ip_dst), "192.168.3.173") ==0) && (ntohs(tcp->th_dport) ==
1200))) {

 size_payload = ntohs(ip->ip_len) - (size_ip + size_tcp);
 if (size_payload <= 0)
 return;

 count++;
 total_size_payload += size_payload;
 pcap_dump(dumpfile, header, packet);

return;
}

 34

Appendix A2: genflowdata.c

#include "util.h"
#include <stdlib.h>
#include "pcap.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

/* Global variables */
flow* nptr;
static int count = 0;
static int pcount = 0; /* packet counter */

void got_packet(u_char *args, const struct pcap_pkthdr *header, const u_char *packet);
void saveFlowData(char* path) ;

int main(int argc, char **argv)
{
 pcap_t *fp;
 char errbuf[PCAP_ERRBUF_SIZE];
 if(argc != 3) {
 printf("usage: %s pcap_filename flow_data_filename", argv[0]);
 return -1;
 }

 /* Open the capture file */
 if ((fp = pcap_open_offline(argv[1], errbuf)) == NULL) {
 fprintf(stderr,"\nUnable to open the file %s.\n", argv[1]);
 return -1;
 }

 /* allocate space for pkt stat */
 nptr = (flow*)malloc(MAXPACKETS*sizeof(flow));
 bzero(nptr, MAXPACKETS*sizeof(flow));

 /* read and dispatch packets until EOF is reached */
 pcap_loop(fp, 0, got_packet, NULL);

 qsort(nptr, count, sizeof(flow), (int(*)(const void*, const void*))flowCmpNumPkt);

 saveFlowData(argv[2]);

 pcap_close(fp);

 return 0;
}

void saveFlowData(char* path) {

 FILE *fp1, *fp2;
 char fp2name[100];
 sprintf(fp2name, "%s.flow", path);
 fp1 = fopen(path, "w");
 fp2 = fopen(fp2name, "w");

 if (0) { //Raymond
 int i,j;
 for (i=0;i<count;i++) {
 printf("Node :%d\n", i);
 printf("IP1:%s\n", nptr[i].ipAddr1);
 printf("Port1:%u\n", nptr[i].port1);
 printf("IP2:%s\n", nptr[i].ipAddr2);
 printf("Port2:%u\n", nptr[i].port2);
 printf("Total packets:%d\n", nptr[i].numTPkt);

 for (j=0;j<=nptr[i].infonum;j++) {
 printf("FLOW:%d, numPkt:%d, avgSize:%f, totalHeaderSize:%d, totalSize:%d\n",
 j, nptr[i].infoptr[j].numPkt, nptr[i].infoptr[j].avgSize,
nptr[i].infoptr[j].totalHeaderSize, nptr[i].infoptr[j].totalSize);
 printf("numSendPkt:%d, totalSendHeaderSize:%d, totalSendSize:%d\n",
 nptr[i].infoptr[j].numSendPkt, nptr[i].infoptr[j].totalSendHeaderSize,
nptr[i].infoptr[j].totalSendSize);
 printf("numReceivePkt:%d, totalReceiveHeaderSize:%d, totalReceiveSize:%d\n\n",
 nptr[i].infoptr[j].numReceivePkt, nptr[i].infoptr[j].totalReceiveHeaderSize,
nptr[i].infoptr[j].totalReceiveSize);
 }
 }
 } else {

 35

Appendix A2(Cont.): genflowdata.c

 int i,j;
 for (i=0;i<count;i++) {
 for (j=0;j<=nptr[i].infonum;j++) {
 fprintf(fp1, "%d %d %d %d %f %d %d %d %d %d %d %d %d\n",
 i, nptr[i].numTPkt, j, nptr[i].infoptr[j].numPkt, nptr[i].infoptr[j].avgSize,
nptr[i].infoptr[j].totalHeaderSize,
 nptr[i].infoptr[j].totalSize, nptr[i].infoptr[j].numSendPkt,
nptr[i].infoptr[j].totalSendHeaderSize, nptr[i].infoptr[j].totalSendSize,
 nptr[i].infoptr[j].numReceivePkt, nptr[i].infoptr[j].totalReceiveHeaderSize,
nptr[i].infoptr[j].totalReceiveSize);
 fprintf(fp2, "%s:%u<->%s:%u\n", nptr[i].ipAddr1, nptr[i].port1, nptr[i].ipAddr2,
nptr[i].port2);
 }
 }
 }

 fclose(fp1);
 fclose(fp2);
}
void addFlow(int count, struct in_addr ip1, u_short port1, struct in_addr ip2, u_short port2,
unsigned headsize, unsigned pktsize, int send) {

 char str1[30];
 char str2[30];
 strcpy(str1, inet_ntoa(ip1));
 strcpy(str2, inet_ntoa(ip2));

 nptr[count].infoptr = (info*)malloc(999*sizeof(info));
 bzero(nptr[count].infoptr, 999*sizeof(info));

 strcpy(nptr[count].ipAddr1, str1);
 strcpy(nptr[count].ipAddr2, str2);
 nptr[count].port1 = ntohs(port1);
 nptr[count].port2 = ntohs(port2);

 nptr[count].numTPkt=1;

 nptr[count].infoptr[0].numPkt=1;
 nptr[count].infoptr[0].avgSize = pktsize;
 nptr[count].infoptr[0].totalSize=pktsize;

 if (send==1) {
 nptr[count].infoptr[0].numSendPkt=1;
 nptr[count].infoptr[0].totalSendHeaderSize=headsize;
 nptr[count].infoptr[0].totalSendSize=pktsize;
 } else {
 nptr[count].infoptr[0].numReceivePkt=1;
 nptr[count].infoptr[0].totalReceiveHeaderSize=headsize;
 nptr[count].infoptr[0].totalReceiveSize=pktsize;
 }
 qsort(nptr, count+1, sizeof(flow), (int(*)(const void*, const void*))flowCmp);
}
void
got_packet(u_char *dumpfile, const struct pcap_pkthdr *header, const u_char *packet)
{
 /* declare pointers to packet headers */
 const struct sniff_ethernet *ethernet; /* The ethernet header [1] */
 const struct sniff_ip *ip; /* The IP header */
 const struct sniff_tcp *tcp; /* The TCP header */
 // const u_char *payload; /* Packet payload */

 int size_ip;
 int size_tcp;
 int size_payload;

 ethernet = (struct sniff_ethernet*)(packet);

 /* define/compute ip header offset */
 ip = (struct sniff_ip*)(packet + SIZE_ETHERNET);
 size_ip = IP_HL(ip)*4;
 if (size_ip < 20) // Invalid IP header length
 return;

 /* determine protocol */
 switch(ip->ip_p) {
 case IPPROTO_TCP:
 break;
 case IPPROTO_UDP:
 return;
 case IPPROTO_ICMP:
 return;
 case IPPROTO_IP:
 return;
 default:
 return;
 }

 36

Appendix A2(Cont.): genflowdata.c

/*
 * OK, this packet is TCP.
 */

 /* define/compute tcp header offset */
 tcp = (struct sniff_tcp*)(packet + SIZE_ETHERNET + size_ip);
 size_tcp = TH_OFF(tcp)*4;
 if (size_tcp < 20)
 return;

 size_payload = ntohs(ip->ip_len) - (size_ip + size_tcp);

 flow n;
 strcpy(n.ipAddr1, inet_ntoa(ip->ip_src)); // sender
 strcpy(n.ipAddr2, inet_ntoa(ip->ip_dst));
 n.port1=ntohs(tcp->th_sport);
 n.port2=ntohs(tcp->th_dport);
 pcount++;

 flow* r = bsearch(&n, nptr, count, sizeof(flow), (int(*)(const void*, const void*))flowCmp);
 if (r) {
 if ((tcp->th_flags & TH_FIN) == TH_FIN) // a flow ends
 r->infonum++;
 r->numTPkt++;
 r->infoptr[r->infonum].avgSize = ((r->infoptr[r->infonum].avgSize * r->infoptr[r-
>infonum].numPkt) + ntohs(ip->ip_len))/(r->infoptr[r->infonum].numPkt+1);
 r->infoptr[r->infonum].numPkt++;
 r->infoptr[r->infonum].totalHeaderSize += size_ip + size_tcp;
 r->infoptr[r->infonum].totalSize += ntohs(ip->ip_len);

 r->infoptr[r->infonum].numSendPkt++;
 r->infoptr[r->infonum].totalSendSize+=ntohs(ip->ip_len);
 r->infoptr[r->infonum].totalSendHeaderSize+= size_ip + size_tcp;
 } else {
 strcpy(n.ipAddr1, inet_ntoa(ip->ip_dst));
 strcpy(n.ipAddr2, inet_ntoa(ip->ip_src));
 n.port1=ntohs(tcp->th_dport);
 n.port2=ntohs(tcp->th_sport);
 r = bsearch(&n, nptr, count, sizeof(flow), (int(*)(const void*, const void*))flowCmp);
 if (r) {
 if ((tcp->th_flags & TH_FIN) == TH_FIN)
 r->infonum++;
 r->numTPkt++;
 r->infoptr[r->infonum].avgSize = ((r->infoptr[r->infonum].avgSize * r->infoptr[r-
>infonum].numPkt) + ntohs(ip->ip_len))/(r->infoptr[r->infonum].numPkt+1);
 r->infoptr[r->infonum].numPkt++;
 r->infoptr[r->infonum].totalHeaderSize += size_ip + size_tcp;
 r->infoptr[r->infonum].totalSize += ntohs(ip->ip_len);
 r->infoptr[r->infonum].numReceivePkt++;
 r->infoptr[r->infonum].totalReceiveSize+=ntohs(ip->ip_len);
 r->infoptr[r->infonum].totalReceiveHeaderSize+= size_ip + size_tcp;
 } else {
 addFlow(count, ip->ip_src ,tcp->th_sport ,ip->ip_dst, tcp->th_dport, size_ip + size_tcp,
ntohs(ip->ip_len), 1);
 count++;
 }
 }
return;
}

 37

Appendix A3: classifier.m

clear all; warning off;
NUM_CLUSTER = 400; STARTF=4; FIELD=13;

a=fopen('./data/nonBT_1.dat', 'r');
s=fscanf(a, '%d %d %d %d %f %d %d %d %d %d %d %d %d');
n=size(s,1)/FIELD;
ss= reshape(s, FIELD, n)';
sss0=ss(:,STARTF:FIELD);
sss0=[sss0 ones(n,1)]; % label 1 = nonBT
fclose(a);

a=fopen('./data/nonBT_2.dat', 'r');
s=fscanf(a, '%d %d %d %d %f %d %d %d %d %d %d %d %d');
n=size(s,1)/FIELD;
ss= reshape(s, FIELD, n)';
sss1=ss(:,STARTF:FIELD);
sss1=[sss1 ones(n,1)];
fclose(a);

a=fopen('./data/BT_1.dat', 'r');
s=fscanf(a, '%d %d %d %d %f %d %d %d %d %d %d %d %d');
n=size(s,1)/FIELD;
ss= reshape(s, FIELD, n)';
sss2=ss(:,4:FIELD);
sss2=[sss2 2*ones(n,1)]; % label 2 = BT
fclose(a);

a=fopen('./data/BT_2.dat', 'r');
s=fscanf(a, '%d %d %d %d %f %d %d %d %d %d %d %d %d');
n=size(s,1)/FIELD;
ss= reshape(s, FIELD, n)';
sss3=ss(:,STARTF:FIELD);
sss3=[sss3 2*ones(n,1)];
fclose(a);

a=fopen('./data/ssh_pcap.dat', 'r');
s=fscanf(a, '%d %d %d %d %f %d %d %d %d %d %d %d %d');
n=size(s,1)/FIELD;
ss= reshape(s, FIELD, n)';
sss4=ss(:,STARTF:FIELD);
sss4=[sss4 1*ones(n,1)];
fclose(a);

a=fopen('./data/ssh_pcap_2.dat', 'r');
s=fscanf(a, '%d %d %d %d %f %d %d %d %d %d %d %d %d');
n=size(s,1)/FIELD;
ss= reshape(s, FIELD, n)';
sss5=ss(:,STARTF:FIELD);
sss5=[sss5 1*ones(n,1)];
fclose(a);
s_with_label = [sss0; sss1; sss2; sss3; sss4; sss5];

fprintf('There are %d BT flow\n', size(find(s_with_label(:,11)==2),1));
fprintf('There are %d nonBT flow\n', size(find(s_with_label(:,11)==1),1));
fprintf('Running K-means to train the classifier now (K=%d)...\n', NUM_CLUSTER);

s_without_label=s_with_label(:,1:10);
[idx C]= kmeans(s_without_label, NUM_CLUSTER, 'EmptyAction', 'drop');

for i=1:NUM_CLUSTER
 id=find(idx==i);
 marked_P2P = size(find(s_with_label(id,11)==2),1);
 marked_nonP2P = size(find(s_with_label(id,11)==1),1);

 if (marked_P2P ==0 && marked_nonP2P ==0)
 cluster(i) =0;
 conf(i)=-1;
 else
 if (marked_P2P > marked_nonP2P)
 cluster(i)= 2;
 conf(i)=marked_P2P/(marked_P2P+marked_nonP2P);
 else
 cluster(i)= 1;
 conf(i)=marked_nonP2P/(marked_P2P+marked_nonP2P);
 end
 end
end
P2Pclusters = size(find(cluster==2),2);
nonP2Pclusters = size(find(cluster==1),2);
fprintf('BT clusters number:%d, percentage:%f\n', P2Pclusters ,P2Pclusters/NUM_CLUSTER);
fprintf('NonBT clusters number:%d, percentage:%f\n', nonP2Pclusters,
nonP2Pclusters/NUM_CLUSTER);
fprintf('Empty clusters number:%d, percentage:%f\n', NUM_CLUSTER-P2Pclusters-nonP2Pclusters,
(NUM_CLUSTER-P2Pclusters-nonP2Pclusters)/NUM_CLUSTER);
fprintf('Done trainning...\n');
fprintf('Saving the classifier...\n');
save classifier

 38

Appendix A4: dpi.c

#include <stdlib.h>
#include "pcap.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "util.h"

/* prototype of the packet handler */
void got_packet(u_char *args, const struct pcap_pkthdr *header, const u_char *packet);

int main(int argc, char **argv)
{
 pcap_t *fp;
 char errbuf[PCAP_ERRBUF_SIZE];
 if(argc != 2) {
 printf("usage: %s filename", argv[0]);
 return -1;
 }

 /* Open the capture file */
 if ((fp = pcap_open_offline(argv[1], errbuf)) == NULL) {
 fprintf(stderr,"\nUnable to open the file %s.\n", argv[1]);
 return -1;
 }

 /* read and dispatch packets until EOF is reached */
 pcap_loop(fp, 0, got_packet, NULL);
 pcap_close(fp);
 return 0;
}

void got_packet(u_char *dumpfile, const struct pcap_pkthdr *header, const u_char *packet)
{
 /* declare pointers to packet headers */
 const struct sniff_ethernet *ethernet; /* The ethernet header [1] */
 const struct sniff_ip *ip; /* The IP header */
 const struct sniff_tcp *tcp; /* The TCP header */
 const u_char *payload; /* Packet payload */

 static int counter=0;
 int size_ip;
 int size_tcp;
 int size_payload;

 /* define ethernet header */
 ethernet = (struct sniff_ethernet*)(packet);

 /* define/compute ip header offset */
 ip = (struct sniff_ip*)(packet + SIZE_ETHERNET);
 size_ip = IP_HL(ip)*4;

 if (size_ip < 20) // Invalid IP header length
 return;

 if (ip->ip_p != IPPROTO_TCP) // IPPROTO_TCP, IPPROTO_UDP, IPPROTO_ICMP, IPPROTO_IP
 return;

 /* define/compute tcp header offset */
 tcp = (struct sniff_tcp*)(packet + SIZE_ETHERNET + size_ip);
 size_tcp = TH_OFF(tcp)*4;
 if (size_tcp < 20) // Invalid TCP header length
 return;

 size_payload = ntohs(ip->ip_len) - (size_ip + size_tcp);
 if (size_payload <= 0) // Invalid payload length
 return;

 /* define/compute tcp payload (segment) offset */
 payload = (u_char *)(packet + SIZE_ETHERNET + size_ip + size_tcp);

 if (strncmp((char*)payload, "\023BitTorrent protocolex", 22)==0) {
 counter++;
 printf("(%d) %s:%d<==>", counter, inet_ntoa(ip->ip_src), ntohs(tcp->th_sport));
 printf("%s:%d\n", inet_ntoa(ip->ip_dst), ntohs(tcp->th_dport));
 print_payload(payload, size_payload);
 }
 return;
}

 39

Appendix A5: dfi.c

#include "util.h"
#include <stdlib.h>
#include "pcap.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <math.h>

/* Global variables */
flow* nptr;
btip* ipptr;
static int ipcount=0;
static int count = 0;
static int pcount = 0; /* packet counter */
const u_char *payload = 0; /* Packet payload */
float C[400][10];
int CCLASS[400];
int NUMC=0;
double startcputime;
char *argv1;

void got_packet(u_char *args, const struct pcap_pkthdr *header, const u_char *packet);
void reportData() ;
void readData(FILE* fp)
{
 int i=0;
 while(fscanf(fp, "%f %f %f %f %f %f %f %f %f %f %d\n",
 &C[i][0], &C[i][1], &C[i][2], &C[i][3], &C[i][4],
 &C[i][5], &C[i][6], &C[i][7], &C[i][8], &C[i][9],
 &CCLASS[i])!=EOF)
 {
 i++;
 assert(i<400);
 }
 NUMC = i-1;
}
int main(int argc, char **argv)
{
 pcap_t *fp;
 FILE *fp1;

 startcputime=sysGetCpuTime();

 char errbuf[PCAP_ERRBUF_SIZE];
 if(argc != 3) {
 printf("usage: %s pcap_filename cluster_center_data_base", argv[0]);
 return -1;
 }

 /* Open the capture file */
 if ((fp = pcap_open_offline(argv[1], errbuf)) == NULL) {
 fprintf(stderr,"\nUnable to open the file %s.\n", argv[1]);
 return -1;
 }
 argv1=argv[1];

 /* Open the center database */
 if ((fp1 = fopen(argv[2], "r")) == NULL) {
 fprintf(stderr,"\nUnable to open the file %s.\n", argv[2]);
 return -1;
 }
 readData(fp1);

 /* allocate space for pkt stat */
 nptr = (flow*)malloc(MAXPACKETS*sizeof(flow));
 bzero(nptr, MAXPACKETS*sizeof(flow));

 /* allocate space for btip stat */
 ipptr = (btip*)malloc(2*MAXPACKETS*sizeof(btip));
 bzero(ipptr, MAXPACKETS*sizeof(btip));

 /* read and dispatch packets until EOF is reached */
 pcap_loop(fp, 0, got_packet, NULL);
 qsort(nptr, count, sizeof(flow), (int(*)(const void*, const void*))flowCmpNumPkt);
 reportData();

 pcap_close(fp);

 return 0;
}

 40

Appendix A5 (Cont.): dfi.c

void reportData() {
 int i;
 int btcount=0;
 int btdficount=0;
 double endcputime=sysGetCpuTime();
 for (i=0;i<ipcount;i++) {
 if (ipptr[i].bt_dfi == BT || ipptr[i].bt_dpi == BT) {
 btcount++;
 }
 if (ipptr[i].bt_dfi == BT) {
 btdficount++;
 }
 }
 printf("Report for %s\n", argv1);
 printf("Total number of IP:%d\n", ipcount);
 printf("(Results with DFI method) BT IP:%d, NONBT IP:%d\n", btdficount, ipcount-btdficount);
 printf("Total time spent:%f\n\n", endcputime - startcputime);
}

int dfi_class(float dp[10])
{
 float dist, mindist;
 int i, minindex;
 for (i=0;i<NUMC;i++) {
 dist = (C[i][0]-dp[0])*(C[i][0]-dp[0]) + (C[i][1]-dp[1])*(C[i][1]-dp[1]) + (C[i][2]-
dp[2])*(C[i][2]-dp[2]) +
 (C[i][3]-dp[3])*(C[i][3]-dp[3]) + (C[i][4]-dp[4])*(C[i][4]-dp[4]) + (C[i][5]-
dp[5])*(C[i][5]-dp[5]) +
 (C[i][6]-dp[6])*(C[i][6]-dp[6]) + (C[i][7]-dp[7])*(C[i][7]-dp[7]) + (C[i][8]-
dp[8])*(C[i][8]-dp[8]) +
 (C[i][9]-dp[9])*(C[i][9]-dp[9]) ;
 if (i==0) {
 mindist = dist;
 minindex = 0;
 }
 else if (mindist > dist) {
 mindist = dist;
 minindex = i;
 }
 }
 return CCLASS[minindex]; // BT=2, NONBT=1
}
void addIp(char *ipadd, int bt_dfi, int bt_dpi)
{
 btip n;
 strcpy(n.ipAddr, ipadd);
 btip* r = bsearch(&n, ipptr, ipcount, sizeof(btip), (int(*)(const void*, const
void*))ipCmp);
 if (r) {
 if (r->bt_dfi !=BT)
 r->bt_dfi = bt_dfi;
 if (r->bt_dpi !=BT)
 r->bt_dpi = bt_dpi;

 } else {
 strcpy(ipptr[ipcount].ipAddr, ipadd);
 ipptr[ipcount].bt_dfi = bt_dfi;
 ipptr[ipcount].bt_dpi = bt_dpi;
 qsort(ipptr, ipcount+1, sizeof(btip), (int(*)(const void*, const void*))ipCmp);

 ipcount++;
 }
}
void addFlow(int count, struct in_addr ip1, u_short port1, struct in_addr ip2, u_short port2,
unsigned headsize, unsigned pktsize, int send) {

 char str1[30];
 char str2[30];
 float dp[10];

 strcpy(str1, inet_ntoa(ip1));
 strcpy(str2, inet_ntoa(ip2));

 nptr[count].infoptr = (info*)malloc(999*sizeof(info));
 bzero(nptr[count].infoptr, 999*sizeof(info));

 strcpy(nptr[count].ipAddr1, str1);
 strcpy(nptr[count].ipAddr2, str2);
 nptr[count].port1 = ntohs(port1);
 nptr[count].port2 = ntohs(port2);

 nptr[count].numTPkt=1;

 41

Appendix A5 (Cont.): dfi.c

 nptr[count].infoptr[0].numPkt=1;
 nptr[count].infoptr[0].avgSize = pktsize;
 nptr[count].infoptr[0].totalSize=pktsize;

 dp[0]=nptr[count].infoptr[0].numPkt;
 dp[1]=nptr[count].infoptr[0].avgSize;
 dp[2]=nptr[count].infoptr[0].totalHeaderSize;
 dp[3]=nptr[count].infoptr[0].totalSize;
 dp[4]=nptr[count].infoptr[0].numSendPkt;
 dp[5]=nptr[count].infoptr[0].totalSendHeaderSize;
 dp[6]=nptr[count].infoptr[0].totalSendSize;
 dp[7]=nptr[count].infoptr[0].numReceivePkt;
 dp[8]=nptr[count].infoptr[0].totalReceiveHeaderSize;
 dp[9]=nptr[count].infoptr[0].totalReceiveSize;
 nptr[count].infoptr[0].bt_dfi = dfi_class(dp);

 if (send==1) {
 nptr[count].infoptr[0].numSendPkt=1;
 nptr[count].infoptr[0].totalSendHeaderSize=headsize;
 nptr[count].infoptr[0].totalSendSize=pktsize;
 } else {
 nptr[count].infoptr[0].numReceivePkt=1;
 nptr[count].infoptr[0].totalReceiveHeaderSize=headsize;
 nptr[count].infoptr[0].totalReceiveSize=pktsize;
 }

 addIp(str1, nptr[count].infoptr[0].bt_dfi, nptr[count].infoptr[0].bt_dpi_flow);
 addIp(str2, nptr[count].infoptr[0].bt_dfi, nptr[count].infoptr[0].bt_dpi_flow);

 qsort(nptr, count+1, sizeof(flow), (int(*)(const void*, const void*))flowCmp);
}

void
got_packet(u_char *dumpfile, const struct pcap_pkthdr *header, const u_char *packet)
{
 float dp[10];
 /* declare pointers to packet headers */
 const struct sniff_ethernet *ethernet; /* The ethernet header [1] */
 const struct sniff_ip *ip; /* The IP header */
 const struct sniff_tcp *tcp; /* The TCP header */

 int size_ip;
 int size_tcp;
 int size_payload;

 ethernet = (struct sniff_ethernet*)(packet);

 /* define/compute ip header offset */
 ip = (struct sniff_ip*)(packet + SIZE_ETHERNET);
 size_ip = IP_HL(ip)*4;
 if (size_ip < 20) // Invalid IP header length
 return;

 /* determine protocol */
 switch(ip->ip_p) {
 case IPPROTO_TCP:
 break;
 case IPPROTO_UDP:
 return;
 case IPPROTO_ICMP:
 return;
 case IPPROTO_IP:
 return;
 default:
 return;
 }
 /*
 * OK, this packet is TCP.
 */

 /* define/compute tcp header offset */
 tcp = (struct sniff_tcp*)(packet + SIZE_ETHERNET + size_ip);
 size_tcp = TH_OFF(tcp)*4;
 if (size_tcp < 20)
 return;

 size_payload = ntohs(ip->ip_len) - (size_ip + size_tcp);
 /* define/compute tcp payload (segment) offset */
 payload = (u_char *)(packet + SIZE_ETHERNET + size_ip + size_tcp);

 flow n;
 strcpy(n.ipAddr1, inet_ntoa(ip->ip_src)); // sender
 strcpy(n.ipAddr2, inet_ntoa(ip->ip_dst));
 n.port1=ntohs(tcp->th_sport);
 n.port2=ntohs(tcp->th_dport);
 pcount++;

 42

Appendix A5 (Cont.): dfi.c

 flow* r = bsearch(&n, nptr, count, sizeof(flow), (int(*)(const void*, const void*))flowCmp);
 if (r) {
 r->numTPkt++;
 r->infoptr[r->infonum].avgSize = ((r->infoptr[r->infonum].avgSize * r->infoptr[r-
>infonum].numPkt) + ntohs(ip->ip_len))/(r->infoptr[r->infonum].numPkt+1);
 r->infoptr[r->infonum].numPkt++;
 r->infoptr[r->infonum].totalHeaderSize += size_ip + size_tcp;
 r->infoptr[r->infonum].totalSize += ntohs(ip->ip_len);
 r->infoptr[r->infonum].numSendPkt++;
 r->infoptr[r->infonum].totalSendSize+=ntohs(ip->ip_len);
 r->infoptr[r->infonum].totalSendHeaderSize+= size_ip + size_tcp;

 dp[0]=r->infoptr[r->infonum].numPkt;
 dp[1]=r->infoptr[r->infonum].avgSize;
 dp[2]=r->infoptr[r->infonum].totalHeaderSize;
 dp[3]=r->infoptr[r->infonum].totalSize;
 dp[4]=r->infoptr[r->infonum].numSendPkt;
 dp[5]=r->infoptr[r->infonum].totalSendHeaderSize;
 dp[6]=r->infoptr[r->infonum].totalSendSize;
 dp[7]=r->infoptr[r->infonum].numReceivePkt;
 dp[8]=r->infoptr[r->infonum].totalReceiveHeaderSize;
 dp[9]=r->infoptr[r->infonum].totalReceiveSize;
 r->infoptr[r->infonum].bt_dfi = dfi_class(dp);

 addIp(r->ipAddr1, r->infoptr[r->infonum].bt_dfi, r->infoptr[r->infonum].bt_dpi_packet);
 addIp(r->ipAddr2, r->infoptr[r->infonum].bt_dfi, r->infoptr[r->infonum].bt_dpi_packet);

 if ((tcp->th_flags & TH_FIN) == TH_FIN) { // a flow ends
 r->infonum++;
 }
 } else {
 strcpy(n.ipAddr1, inet_ntoa(ip->ip_dst));
 strcpy(n.ipAddr2, inet_ntoa(ip->ip_src));
 n.port1=ntohs(tcp->th_dport);
 n.port2=ntohs(tcp->th_sport);
 r = bsearch(&n, nptr, count, sizeof(flow), (int(*)(const void*, const void*))flowCmp);
 if (r) {
 r->numTPkt++;
 r->infoptr[r->infonum].avgSize = ((r->infoptr[r->infonum].avgSize * r->infoptr[r-
>infonum].numPkt) + ntohs(ip->ip_len))/(r->infoptr[r->infonum].numPkt+1);
 r->infoptr[r->infonum].numPkt++;
 r->infoptr[r->infonum].totalHeaderSize += size_ip + size_tcp;
 r->infoptr[r->infonum].totalSize += ntohs(ip->ip_len);
 r->infoptr[r->infonum].numReceivePkt++;
 r->infoptr[r->infonum].totalReceiveSize+=ntohs(ip->ip_len);
 r->infoptr[r->infonum].totalReceiveHeaderSize+= size_ip + size_tcp;

 dp[0]=r->infoptr[r->infonum].numPkt;
 dp[1]=r->infoptr[r->infonum].avgSize;
 dp[2]=r->infoptr[r->infonum].totalHeaderSize;
 dp[3]=r->infoptr[r->infonum].totalSize;
 dp[4]=r->infoptr[r->infonum].numSendPkt;
 dp[5]=r->infoptr[r->infonum].totalSendHeaderSize;
 dp[6]=r->infoptr[r->infonum].totalSendSize;
 dp[7]=r->infoptr[r->infonum].numReceivePkt;
 dp[8]=r->infoptr[r->infonum].totalReceiveHeaderSize;
 dp[9]=r->infoptr[r->infonum].totalReceiveSize;
 r->infoptr[r->infonum].bt_dfi = dfi_class(dp);

 addIp(r->ipAddr1, r->infoptr[r->infonum].bt_dfi, r->infoptr[r->infonum].bt_dpi_packet);
 addIp(r->ipAddr2, r->infoptr[r->infonum].bt_dfi, r->infoptr[r->infonum].bt_dpi_packet);

 if ((tcp->th_flags & TH_FIN) == TH_FIN) { // a flow ends
 r->infonum++;
 }
 } else { // a new flow
 addFlow(count, ip->ip_src ,tcp->th_sport ,ip->ip_dst, tcp->th_dport, size_ip + size_tcp,
ntohs(ip->ip_len), 1);
 count++;
 }
 }

return;
}

 43

Appendix A6: util.c

#include "util.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>
#include <sys/times.h>
#include <limits.h>
#include "unistd.h"

int flowCmp(const void* a, const void* b){
 char tmp1[100], tmp2[100];
 flow* na = (flow*) a;
 flow* nb = (flow*) b;
 sprintf(tmp1, "%s.%d.%s.%d", na->ipAddr1, na->port1, na->ipAddr2, na->port2);
 sprintf(tmp2, "%s.%d.%s.%d", nb->ipAddr1, nb->port1, nb->ipAddr2, nb->port2);

 return strcmp(tmp1, tmp2);

}

int ipCmp(const void* a, const void* b){
 btip* na = (btip*) a;
 btip* nb = (btip*) b;
 return strcmp(na->ipAddr, nb->ipAddr);
}

int flowCmpNumPkt(const void* a, const void* b){
 flow* na = (flow*) a;
 flow* nb = (flow*) b;
 if (na->numTPkt < nb->numTPkt)
 return 1;
 if (na->numTPkt > nb->numTPkt)
 return -1;
 return 0;
}

Void print_hex_ascii_line(const u_char *payload, int len, int offset)
{

 int i;
 int gap;
 const u_char *ch;

 /* offset */
 printf("%05d ", offset);

 /* hex */
 ch = payload;
 for(i = 0; i < len; i++) {
 printf("%02x ", *ch);
 ch++;
 /* print extra space after 8th byte for visual aid */
 if (i == 7)
 printf(" ");
 }
 /* print space to handle line less than 8 bytes */
 if (len < 8)
 printf(" ");

 /* fill hex gap with spaces if not full line */
 if (len < 16) {
 gap = 16 - len;
 for (i = 0; i < gap; i++) {
 printf(" ");
 }
 }
 printf(" ");

 /* ascii (if printable) */
 ch = payload;
 for(i = 0; i < len; i++) {
 if (isprint(*ch))
 printf("%c", *ch);
 else
 printf(".");
 ch++;
 }

 printf("\n");

return;
}

 44

Appendix A6 (Cont.): util.c

Void print_payload(const u_char *payload, int len)
{

 int len_rem = len;
 int line_width = 16; /* number of bytes per line */
 int line_len;
 int offset = 0; /* zero-based offset counter */
 const u_char *ch = payload;

 if (len <= 0)
 return;

 /* data fits on one line */
 if (len <= line_width) {
 print_hex_ascii_line(ch, len, offset);
 return;
 }

 /* data spans multiple lines */
 for (;;) {
 /* compute current line length */
 line_len = line_width % len_rem;
 /* print line */
 print_hex_ascii_line(ch, line_len, offset);
 /* compute total remaining */
 len_rem = len_rem - line_len;
 /* shift pointer to remaining bytes to print */
 ch = ch + line_len;
 /* add offset */
 offset = offset + line_width;
 /* check if we have line width chars or less */
 if (len_rem <= line_width) {
 /* print last line and get out */
 print_hex_ascii_line(ch, len_rem, offset);
 break;
 }
 }

return;
}

double sysGetCpuTime()
{
 long curTime;
 struct tms tmsBuf;

 (void) times(&tmsBuf);
 curTime = tmsBuf.tms_utime + tmsBuf.tms_cutime;
 return((double) curTime / sysconf(_SC_CLK_TCK));
}

 45

Appendix A7: util.h

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "pcap.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

double sysGetCpuTime();

#define NONBT 1
#define BT 2
enum {DFI, DPI};

#define MAXPACKETS 10000

/* default snap length (maximum bytes per packet to capture) */
#define SNAP_LEN 1518

/* ethernet headers are always exactly 14 bytes [1] */
#define SIZE_ETHERNET 14

/* Ethernet addresses are 6 bytes */
#define ETHER_ADDR_LEN 6

/* Ethernet header */
struct sniff_ethernet {
 u_char ether_dhost[ETHER_ADDR_LEN]; /* destination host address */
 u_char ether_shost[ETHER_ADDR_LEN]; /* source host address */
 u_short ether_type; /* IP? ARP? RARP? etc */
};

/* IP header */
struct sniff_ip {
 u_char ip_vhl; /* version << 4 | header length >> 2 */
 u_char ip_tos; /* type of service */
 u_short ip_len; /* total length */
 u_short ip_id; /* identification */
 u_short ip_off; /* fragment offset field */
 #define IP_RF 0x8000 /* reserved fragment flag */
 #define IP_DF 0x4000 /* dont fragment flag */
 #define IP_MF 0x2000 /* more fragments flag */
 #define IP_OFFMASK 0x1fff /* mask for fragmenting bits */
 u_char ip_ttl; /* time to live */
 u_char ip_p; /* protocol */
 u_short ip_sum; /* checksum */
 struct in_addr ip_src,ip_dst; /* source and dest address */
};
#define IP_HL(ip) (((ip)->ip_vhl) & 0x0f)
#define IP_V(ip) (((ip)->ip_vhl) >> 4)

/* TCP header */
typedef u_int tcp_seq;

struct sniff_tcp {
 u_short th_sport; /* source port */
 u_short th_dport; /* destination port */
 tcp_seq th_seq; /* sequence number */
 tcp_seq th_ack; /* acknowledgement number */
 u_char th_offx2; /* data offset, rsvd */
#define TH_OFF(th) (((th)->th_offx2 & 0xf0) >> 4)
 u_char th_flags;
 #define TH_FIN 0x01
 #define TH_SYN 0x02
 #define TH_RST 0x04
 #define TH_PUSH 0x08
 #define TH_ACK 0x10
 #define TH_URG 0x20
 #define TH_ECE 0x40
 #define TH_CWR 0x80
 #define TH_FLAGS (TH_FIN|TH_SYN|TH_RST|TH_ACK|TH_URG|TH_ECE|TH_CWR)
 u_short th_win; /* window */
 u_short th_sum; /* checksum */
 u_short th_urp; /* urgent pointer */
};

 46

Appendix A7 (Cont.): util.h

int ipCmp(const void* a, const void* b);

int flowCmp(const void* a, const void* b);
int flowCmpAvgSize(const void* a, const void* b);
int flowCmpNumPkt(const void* a, const void* b);
void print_payload(const u_char *payload, int len);
void print_hex_ascii_line(const u_char *payload, int len, int offset);

typedef struct info_s {
 unsigned numPkt;
 double avgSize;
 unsigned totalHeaderSize;
 unsigned totalSize;

 unsigned numSendPkt;
 unsigned totalSendHeaderSize;
 unsigned totalSendSize;

 unsigned numReceivePkt;
 unsigned totalReceiveHeaderSize;
 unsigned totalReceiveSize;

 int bt_dpi_packet;
 int bt_dpi_flow;
 int bt_dfi;
} info;

typedef struct flow_s {
 char ipAddr1[3*4+3+1];
 char ipAddr2[3*4+3+1];
 unsigned port1;
 unsigned port2;
 unsigned numTPkt;

 info *infoptr;
 int infonum;
} flow;

/*
typedef struct ip_s {
 char ipAddr[3*4+3+1];
 int bt_dfi;
 int bt_dpi;
 } ip; */

typedef struct BTIp_s {
 char ipAddr[3*4+3+1];
 int bt_dfi;
 int bt_dpi;
} btip;

 47

References:
[1] N. Basher, A. Mahanti, A. Mahanti, C. Williamson and M. Arlitt, “A comparative
analysis of web and peer-to-peer traffic,” Proceeding of the 17th international conference
on World Wide Web, April 21-25, 2008, Beijing, China
, China

[2] H. Chen, Z. Hu, Z. Ye and W. Liu, “A New Model for P2P Traffic Identification
Based on DPI and DFI,” Information Engineering and Computer Science, 2009. ICIECS
2009. International Conference on Digital Object Identifier:
10.1109/ICIECS.2009.5366295; Publication Year: 2009 , Page(s): 1 – 3

[3] H. Chen, Z. Hu, Z. Ye and W. Liu, “Research of P2P Traffic Identification Based on
Neural Network,” Computer Network and Multimedia Technology, 2009. CNMT 2009.
International Symposium on Digital Object Identifier: 10.1109/CNMT.2009.5374510;
Publication Year: 2009 , Page(s): 1 – 4

[4] H. Chen, X. Zhou, F. You and C. Wang, “Study of Double-Characteristics-Based
SVM Method for P2P Traffic Identification,” Networks Security Wireless
Communications and Trusted Computing (NSWCTC), 2010 Second International
Conference on Volume: 1. Digital Object Identifier: 10.1109/NSWCTC.2010.54
Publication Year: 2010 , Page(s): 202 – 205

[5] F. Constantinou and P. Mavrommatis, “Identifying Known and Unknown Peer-to-
Peer Traffic,” Proceedings of the Fifth IEEE International Symposium on Network
Computing and Applications, p.93-102, July 24-26, 2006

[6] J. Erman, A. Mahanti, M. Arlitt, I. Cohen, and C. Williamson, “Offline/Realtime
Traffic Classification Using Semi-Supervised Learning,” IFIP Performance, October
2007.

[7] R. Keralapura, A. Nucci and C. Chuah, “Self-Learning Peer-to-Peer Traffic
Classifier,” Computer Communications and Networks, 2009. ICCCN 2009. Proceedings
of 18th Internatonal Conference on Digital Object Identifier:
10.1109/ICCCN.2009.5235313 Publication Year: 2009 , Page(s): 1 – 83

 [8] A. Klemm, C. Lindemann, M. K. Vernon, and O. P. Waldhorst. Characterizing the
query behavior in peer-to-peer file sharing systems. In IMC ’04: Proceedings of the 4th
ACM SIGCOMM conference on Internet measurement, pages 55–67. ACM Press, 2004

 [9] T. Le and J. But, “Bittorrent traffic classification,” CAIA Technical report
091022A, 22 October 2009, http://caia.swin.edu.au/reports/091022A/CAIA-TR-
091022A.pdf

 48

 [10] B. Liu, Zhitand Li and Zhanchun Li, “Measurements of BitTorrent System Based
on Netfilter,” Computational Intelligence and Security, 2006 International Conference on
Volume: 2 Digital Object Identifier: 10.1109/ICCIAS.2006.295304; Publication Year:
2006 , Page(s): 1470 – 1474

[11] F. Liu; Z. Li and J. Yu, “Applications Identification Based on the Statistics Analysis
of Packet Length,” Information Engineering and Electronic Commerce, 2009. IEEC '09.
International Symposium on Digital Object Identifier: 10.1109/IEEC.2009.38;
Publication Year: 2009 , Page(s): 160 – 163

 [12] C. Wang, T. Li and H. Chen, “P2P Traffic Identification Based on Double Layer
Characteristics,” Information Technology and Computer Science, 2009. ITCS 2009.
International Conference on Volume: 2, Digital Object Identifier:
10.1109/ITCS.2009.298, Publication Year: 2009 , Page(s): 593 – 596

[13] B. Xu, M. Chen, F. Lan and N. Wang, “P2P flows identification method based on
listening port,” Broadband Network & Multimedia Technology, 2009. IC-BNMT '09.
2nd IEEE International Conference on Digital Object Identifier:
10.1109/ICBNMT.2009.5348496 Publication Year: 2009 , Page(s): 296 - 300

[14] R. Zhang, Y. Du and Y. Zhang, “A BT Traffic Identification Method Based on Peer-
Cache,” Internet Computing for Science and Engineering (ICICSE), 2009 Fourth
International Conference on Digital Object Identifier: 10.1109/ICICSE.2009.39
Publication Year: 2009, Page(s): 320 - 323

 [15] D. Zhang, C. Zheng, H. Zhang and H. Yu, “Identification and Analysis of Skype
Peer-to-Peer Traffic,” Internet and Web Applications and Services (ICIW), 2010 Fifth
International Conference on Digital Object Identifier: 10.1109/ICIW.2010.36;
Publication Year: 2010, Page(s): 200 - 206

[16]http://www.winpcap.org/

	BitTorrent Traffic Detection with Deep Packet Inspection and Deep Flow Inspection
	Recommended Citation

	Microsoft Word - CS298_report_Raymond_Wong.doc

